
On the Security Loss of Unique Signatures

Andrew Morgan
Cornell University

asmorgan@cs.cornell.edu

Rafael Pass∗

Cornell Tech
rafael@cornell.edu

September 21, 2018

Abstract

We consider the question of whether the security of unique digital signature schemes can
be based on game-based cryptographic assumptions using linear-preserving black-box security
reductions—that is, black-box reductions for which the security loss (i.e., the ratio between
“work” of the adversary and the “work” of the reduction) is some a priori bounded polynomial.
A seminal result by Coron (Eurocrypt’02) shows limitations of such reductions; however, his
impossibility result and its subsequent extensions all suffer from two notable restrictions: (1)
they only rule out so-called “simple” reductions, where the reduction is restricted to only sequen-
tially invoke “straight-line” instances of the adversary; and (2) they only rule out reductions to
non-interactive (two-round) assumptions.

In this work, we present the first full impossibility result: our main result shows that the ex-
istence of any linear-preserving black-box reduction for basing the security of unique signatures
on some bounded-round assumption implies that the assumption can be broken in polynomial
time.

∗Supported in part by NSF Award CNS-1561209, NSF Award CNS-1217821, AFOSR Award FA9550-15-1-0262,
a Microsoft Faculty Fellowship, and a Google Faculty Research Award.

1

1 Introduction

Digital signature schemes, whereby a party can “sign” a message in a publicly verifiable yet still
adversarially unforgeable way, are one of the most basic and important classes of cryptographic
primitives; their security has been studied since the 1970s. While the earliest constructions of digital
signatures [RSA78,Rab79,Sha78,DH06] were heuristic in nature, modern constructions have tight
proofs of security against all computationally bounded adversaries based on certain underlying
assumptions.

Specifically, in a provably secure construction, we have a reduction R, which, given any adver-
sary A which breaks the security of a digital signature scheme Π, can break a certain underlying
assumption C; hence, if the assumption holds, then the scheme must be secure. In this paper, we
restrict our attention to black-box security reductions, where R only interacts with A as a “black
box”.1 As far as we know, all security proofs for digital signatures rely on black-box security
reductions.

We are interested in the security loss of such a reduction (a concept originally proposed as
“security preservation” in [Lub96]), or intuitively how “inefficient” it is in terms of running time
and success probability compared to the adversary it runs. Informally, if, given a security parameter
n, R (including the instances of A it runs) and A run in time TimeRA(n) and TimeA(n) respectively,
and have success probabilities of SuccessRA(n) and SuccessA(n), then the security loss is given by
the maximum over all adversaries A of:

λR(n) =
SuccessA(n)

SuccessRA(n)

TimeRA(n)

TimeA(n)

Intuitively, if we define the “work factor” of the adversary A to be the ratio of its running time
to its success probability, or WorkA(n) = TimeA(n)

SuccessA(n)
(and respectively for RA), then we can think

of the security loss as

λR =
WorkRA(n)

WorkA(n)

or how much “work” the reduction R needs to do to break the underlying assumption compared
to the amount of work that its adversary A does to break the primitive Π. So the higher the
security loss, the easier the primitive is to break compared to the underlying assumption. As
such, having security reductions with low security loss is essential for proving practical security of
cryptographic primitives, since the security loss has a significant effect on the security parameter
(i.e., the bit length of a key, size of a large prime for RSA, etc.) which must be used for the
underlying assumption to achieve a particular level of security for the primitive.

The most efficient possible reductions are those which have constant security loss λR(n) ≤ c;
these are commonly called tight reductions [BR96]. These reductions prove that WorkA(n) is always
directly proportional to WorkRA(n), and so increasing the security parameter will always have the
same effect on the security of the primitive as on the security of the underlying assumption.

A weaker notion of efficiency—introduced by Luby [Lub96]—is that of a linear-preserving re-
duction, where the security loss is required to be bounded by some a priori fixed polynomial p(·)
in just the security parameter; that is, λR(n) ≤ p(n).

For instance, a security reduction that only runs the adversary A a fixed polynomial number
of times (independent of A’s running time and success probability) may not be tight, but is still

1We note that Π need not be black-box itself in some underlying primitive; we only require the reduction R to be
black-box.

1

linear-preserving.2 While, with a linear-preserving reduction, the concrete security of the primitive
Π is only comparable to that of the assumption if we use an increased security parameter for Π,
Π still retains the same “asymptotic” security as the underlying assumption: for instance, if Π can
be broken in time poly(n) · (2n/3), then so can the underlying assumption.

Unique Signatures. While the original provably secure construction of digital signatures in
[GMR88] was neither tight nor linear-preserving, more recent constructions [BR96,Ber08,AFLT12,
HJ12, CW13, CGW17] with tight reductions have been exhibited. However, while these modern
constructions are quite efficient, they sacrifice some arguably important features of the original
constructions in achieving this. Most notably, the earliest construction in [RSA78] had the property
that signatures were unique—that is, for every public key and every message, there exists at most
one valid signature for that message. Whereas provably secure constructions of unique signatures ex-
ist [MVR99,Lys02], as well as constructions of verifiable random functions [MVR99,BGRV09,Jag15]
(which [MVR99] shows imply unique signatures), none of these have linear-preserving, let alone
tight, security reductions. And unfortunately, for many recent applications of digital signatures
(e.g., the recent applications to blockchains [GHM+17, PS17]), this uniqueness property is in fact
necessary.

Can Unique Signatures Have Linear-Preserving Reductions? A natural question, given
the fact that no linear-preserving reductions have been discovered, is whether a certain degree of
security loss is required when proving the security of unique signatures. This question was first
addressed in 2002 by Jean-Sébastien Coron in his seminal paper [Cor02]. At a high level, Coron’s
goal was to demonstrate that any unique signature scheme with a black-box security reduction must
have a security loss of O(`(n)), where `(n) is the number of signing queries made by the adversary.
This, in particular, would rule out all linear-preserving reductions for unique signature schemes
because `(n) depends on the specific adversary A and can be an arbitrarily large polynomial.

However, while Coron’s proof rules out many “natural” reductions, it does not fully answer
the question. In particular, it applies only to a quite restricted class of “simple” reductions which
run the adversary in a “sequential straight-line” fashion—that is, they can run many instances of
the adversary, but must run them sequentially (such that each must finish before the next starts)
and cannot rewind the adversary. Furthermore, Coron’s result applies only to reductions to the
class of non-interactive (i.e., two-round) security assumptions (e.g., inverting a one-way function or
breaking RSA). This latter restriction is necessary to some extent; if the security assumption may
have arbitrarily many rounds, then it becomes trivial to base security on such an assumption (e.g.,
reducing the security of digital signatures to itself). However, there is still a large gap between
non-interactive and “unbounded-round” security assumptions, leaving open the question of whether
bounded-round assumptions [Pas11] (that is, security assumptions modeled as security games with
an a priori bounded number of communication rounds) can be used to prove the security of unique
signatures.

Since Coron’s seminal work, his result has been generalized to a number of related primi-
tives [HJK12, BJLS16], improved and simplified [BJLS16, KK12], and extended to rule out other
notions of security tightness [WMHT18]. However, despite these extensions, improvements, and

2The name “linear-preserving” comes from the fact that WorkRA is still linear in the quantity WorkA(n), although
it may depend polynomially on the security parameter n.

2

generalizations, the above restrictions—to simple reductions, and to non-interactive assumptions—
have not yet been surmounted, leaving open the question:

Does there exist a linear-preserving security reduction for basing the security of unique
digital signatures on some natural hardness assumption?

Main Theorem. In this work, we settle this question, ruling out all linear-preserving reductions
from unique signatures to any bounded-round assumption.

Theorem 1. (Informal.) There does not exist a linear-preserving black-box reduction from the
security of some unique signature scheme Π to a bounded-round intractability assumption C, unless
C can be broken in polynomial time.

More precisely, we show that, unless C can be broken in polynomial time, the security loss of any
black-box reduction from the security of some unique signature scheme Π to any bounded-round
intractability assumption C must be at leastO(

√
`(n)), where `(n) is the number of signature queries

the adversary uses (and thus not a fixed polynomial independent of the adversary). Moreover, we
observe (in Appendix C) that our main theorem, with minor alterations, can also be applied to
the related notion of rerandomizable signatures, or non-unique signatures with the property that
signatures can be efficiently “rerandomized”.

1.1 Proof Outline

In proving our main theorem, we follow the “meta-reduction” paradigm, originally pioneered in
[BV98] (see also [BMV08,HRS09,FS10,AGO11,BBF13,BFW16] for related work concerning meta-
reductions), though we note that work on black-box separations using other frameworks dates
back much farther, to [IR89]. The core idea behind this approach is, given an arbitrary black-box
reduction R that breaks the assumption C by using black-box access to some “ideal adversary”
A (which itself breaks the security of the primitive Π), to create an efficient adversary B which
breaks C without using A: B will internally run R and, roughly speaking, internally (and efficiently)
“emulate” A for R. The implication then is that if such a reduction R exists and breaks C using
the inefficient adversary A, then B would likewise break C, but in polynomial time, proving that C
is not a secure assumption. See Figure 1 for an illustration of the mechanics of this paradigm.

Of course, we cannot prove complete non-existence (since, indeed, provably secure unique sig-
nature schemes exist); instead, we show that, unless R makes many queries to A—which already
implies that the security loss is high—then we can efficiently emulate A’s responses with “high”
(but not overwhelming) probability, which in turn will imply that B breaks C unless R’s success
probability is relatively small (again implying that its security loss is high).

Coron’s Meta-Reduction. As already mentioned, Coron, in [Cor02], demonstrates how to em-
ploy this technique for a restricted class of reductions from the security of unique signatures. In
particular, imagine an “ideal” inefficient adversary A which requests signatures for `(n) randomly
chosen messages, next uses a brute-force search to find a signature (i.e., a forgery) on a new random
message, and finally returns the forgery. (Note that this adversary A is inefficient as it requires
a brute-force search to recover the forgery.) In order to simulate R’s interaction with A while
running in polynomial time, B will run R normally and simulate A by first requesting signatures
for `(n) random messages. However, in order to extract a forgery without using brute force, B will

3

R A

C

-�

?

6

breaks Π
inefficient

breaks C
R A

C

-�

?

6

(emulated)
efficient

(run by B)

B (meta-reduction), breaks C

Figure 1: The meta-reduction paradigm. Left: R breaks the assumption C by using the “ideal” but
inefficient adversary A (against the signature scheme Π) as an oracle. Right: the meta-reduction B
runs R (forwarding its communication with C) and efficiently emulates A to break C with slightly
less probability than in the left experiment.

pick a random message m∗, rewind the execution of R to before a randomly selected query, and
try querying R for m∗ instead of what it sent to R during the “main” (i.e., non-rewound) thread.
If R returns a correct signature for m∗ during this “rewinding”, then B has succeeded in efficiently
extracting a forgery and can return it to R. In this case, B has succeeded in perfectly emulating A;
note that this relies on the fact that the signature scheme is unique and thus there exists at most
one valid signature on m∗.

Of course, R may not always return a correct response to A’s (or B’s) queries; however, if
A receives any incorrect responses in the “main” thread, it may simply return ⊥ to R (as the
security game for unique signatures only dictates that A must return a valid forgery when its
queries are correctly answered), and so, in that case, B may also do so when emulating A. The
only time that B will fail to emulate A is, in fact, when R responds correctly to the original
`(n) queries by B during the “main” execution, but fails to respond to the rewound query of m∗

in any rewinding (and so B can neither return ⊥ or a forgery). Coron, through an elegant (yet
complex) probabilistic argument, shows that the probability of this “bad event” is bounded above
by O(1)/`(n). Intuitively, the reason this holds is that, unless R provides signatures to a fraction
O(1)/`(n) of random messages m∗ (and thus the rewinding succeeds with probability O(1)/`(n)),
it is unlikely that R provides correct signatures to all the `(n) signature requests on the “main”
thread, and in this case B does not need to provide a forgery to succeed in emulating A. Of course,
formalizing this argument is quite non-trivial, and Coron presents a sophisticated analysis which
does so.

This argument rules out all reductions R from the security of unique signatures to a non-
interactive security assumption which break the assumption with probability greater than the failure
probability of B—that is, O(1)/`(n)—assuming R runs a single instance of its adversary. If R runs
multiple, M(n), instances of its adversary in a sequential (i.e., non-interleaved) manner, then by the
union bound over all instances, the failure probability bound becomes O(M(n))/`(n). Furthermore,
in this case we know that TimeRA(n) ≥ M(n)TimeA(n), and so (given SuccessA(n) = 1) Coron’s
argument achieves a bound of

λR(n) ≥ O(`(n))

4

AR

...

m1,`(n)

pk2

m2,1

σ2,`(n)

(m∗2, σ
∗
2)

σ1,`(n)

(m∗1, σ
∗
1)

Figure 2: A simple example of nested rewinding by B that might occur during interaction between
R and two concurrent simulated instances of A. Note that the inner rewinding must occur twice,
once before the outer rewinding and once after, as the public key pk2 might change based on the
message m1,`(n). In fact, with m concurrent instances, up to 2m rewindings may occur in this
fashion.

which thus rules out all linear-preserving reductions as there is no a priori polynomial bound on
`(n).

We note that while Coron’s proof relies on a subtle and non-trivial analysis, a very recent and
elegant work by Bader et al. [BJLS16] presents a much simpler proof of Coron’s theorem. In their
approach, however, they consider a quite different ideal adversary A′, which is even more tailored
to simple reductions and non-interactive assumptions.3 Consequently, we focus on Coron’s original
approach, which we shall see can be generalized to deal with all reductions and all bounded-round
assumptions.

The problem with interactive assumptions and “nesting”. Note that, in the above argu-
ment, it is crucial that the security assumption is non-interactive. Otherwise, when we rewind R,
R may send a new message to C and may require a response before proceeding; if this happens, we
can no longer perform the emulation (as we cannot rewind the communication with C).

Additionally, the argument crucially relies on the fact that R talks to A in a “straight-line”
fashion, and only considers sequential interactions with (multiple instances) of A. If we did not
have that restriction, R might simultaneously run multiple instances of A and “nest” these different
executions. For instance, it might be the case that R receives a query from a particular instance of
A, begins an entirely different instance of A (or perhaps even multiple instances), makes queries,
and potentially requests a forgery, all before returning a response to the first query. Rewinding this
will be troublesome because, depending on the query, R could respond differently to the nested
queries or even follow an entirely different execution pattern. Even more worrying is the fact that,
if there are enough levels of nesting, rewinding every query for every instance may take super-
polynomial time, which would invalidate the construction of B (since an inefficient adversary would
not contradict the assumption C). See Figure 2 for an example illustrating this.

Interestingly, this problem is also prevalent in research concerning concurrent zero-knowledge

3In fact, whereas it is not clear whether Coron’s meta-reduction B fails under these more general conditions, the
meta-reduction from [BJLS16] trivially breaks down under them.

5

[DNS98]. This connection was already noted in the earlier impossibility result for black-box reduc-
tions of [Pas11], where a “recursive rewinding strategy” (similar to [RK99,CLP10,DGS09,PV08])
is used to overcome this problem. The core idea behind this technique is to rewind every relevant
query, but to “abort” the rewinding when “too many” nested queries take place during the rewind-
ing. The limit on nested queries furthermore decreases by a factor of n with each recursive level of
nesting, so, since the total number of messages is polynomial, the number of levels will always be
bounded by a constant, providing the polynomial bound on running time.

One might be tempted to simply apply this technique directly to the problem at hand; unfor-
tunately, due to a fundamental difference between the two results, this is not possible. Specifically,
in [Pas11], the result proven is a complete impossibility (and not just a bound on the security
loss): more precisely, emulation of A can be shown to succeed with overwhelming probability. In
our context, however, the probability that the emulation succeeds is some inverse polynomial (and
inherently must be so, or else we would have shown a complete impossibility of black-box security
reductions). The problem then with a recursive rewinding strategy is that the failure probabilities
may “cascade”. Additionally, we cannot rely on the technique from [Pas11] of repeatedly rewinding
until we obtain a correct response, since that would bias the distribution of the message m∗ on
which we output a forgery!

A Simple Rewinding Technique. We deal with the problem by using a different (and actually
much simpler) rewinding strategy, inspired by a technique for “bounded-concurrent” zero-knowledge
arguments originally introduced by Lindell [Lin03]. The key observation is that rewinding is only
necessary when B encounters an “end message” (i.e., R requesting a forgery from an instance of A).
If, during the rewinding to extract a forgery for some instance of A, B avoids queries that contain
an end message for a separate instance of A (i.e., those that would cause recursive rewinding),
then it becomes straightforward to bound the number of rewindings and show that B will run in
polynomial time; as an added advantage, this allows us to treat end messages very similarly to
external communication in the analysis of our meta-reduction.

However, while this simulation strategy at first glance may seem fairly straightforward (and,
indeed, in the context of bounded-concurrent zero-knowledge, the analysis is simple), our scenario
presents multiple major differences that make it quite non-trivial. In particular (as already men-
tioned above), unlike for zero-knowledge, we can no longer rewind queries with arbitrary messages;
instead, in order to generate a forgery of a uniformly random message, we must choose a single
forgery target m∗ and rewind every query only once using this same message m∗ (otherwise, as
mentioned above, we would bias the distribution of the message m∗ on which we output a forgery).
Thus, to not bias the distribution of m∗, we must rewind each query with the same message m∗

and consequently, we no longer have any independence between the rewindings, which severely
complicates the analysis. (Indeed, recall that even in the simplified setting of Coron, his argument
is already quite non-trivial.)

Towards dealing with this, we present a new way of analyzing an ideal adversary which is quite
similar to Coron’s ideal adversary. Our analysis relies on a “randomness-switching” argument
similar in spirit to that of [PRS02, PTV14], where we demonstrate that any “bad” sequence of
randomness which causes the meta-reduction to fail can be permuted into many “good” sequences
for which the meta-reduction succeeds. In particular, recall from our above discussion of Coron’s
meta-reduction that, if a sequence of messages is such that B fails to emulate A, then all of its
rewindings with the forgery target m∗ must fail to extract a signature for the query to m∗. Hence,

6

every rewound sequence beginning with a prefix (m1, . . . ,mi−1,m
∗) will either contain nesting or

external communication during the query for m∗, or is such that R provides an incorrect signature
for m∗. In the latter case, we can conclude as above that A and B, having received an invalid
signature, will both accordingly return ⊥ (meaning that in fact B will succeed) if any sequence
with that prefix is given in the (non-rewound) execution; thus, any such sequence cannot itself
be a “bad” sequence. This, combined with the fact that the amount of nesting and external
communication (and hence the possible number of rewound sequences which do not fall into the
latter category) is bounded, will allow us to derive an upper bound for the possible number of
“bad” sequences of randomness and hence for the probability of one of these sequences occurring
(and causing the meta-reduction B to fail). This failure probability bound for B will ultimately
allow us to upper-bound the success probability, and hence lower-bound the security loss, of the
reduction R. (In Appendix A, as an independent contribution and a warm-up, we sketch how
an even simpler randomness-switching approach can be used to provide a simplified proof of a
generalization of Coron’s theorem to arbitrary reductions with static scheduling—where the order
in which the reductions sends its sends messages is a-priori fixed).

Overview. In Section 2 we present key notation and definitions to be employed in our proof. We
present and discuss our main result in Section 3, construct our “ideal” adversary A in Section 3.1,
construct the meta-reduction B in Section 3.2, and complete our analysis and proof of the main
theorem in Section 3.3. Lastly, we provide a synopsis of related work in Section 4.

2 Preliminaries and Definitions

2.1 Notation

Let N denote the set of natural numbers (positive integers), and let [n] denote the set of natural
numbers at most n, or {1, 2, . . . , n}. For n ∈ N, we denote by 1n the string of n ones, which will be
used to provide a security parameter as input to an algorithm (this is by convention, so that the
input length is bounded below by the security parameter). Given a set S = {s1, . . . , sn} of distinct
elements, we shall let |S| denote the number of elements n in S, and we refer to the set Πn(S) as
the set of permutations of S, which contains any sequence which itself contains, in any order, each
element of S exactly once.

When we say that a statement holds “for all sufficiently large n ∈ N”, by this we indicate that
there exists an N ∈ N such that, for any integer n ≥ N , the statement holds for n.

We recall that a function ε(·) is negligible if, for any polynomial p(·), ε(n) < 1/p(n) for all
sufficiently large n ∈ N—that is, if ε(·) is asymptotically smaller than any inverse polynomial. (For
instance, an inverse exponential such as e−cn is negligible in n for any constant c > 0.)

Lastly, we assume a basic level of familiarity with the concepts of probabilistic algorithms and
interactive Turing machines [GMR85]. We will let RA(x) denote the probability distribution over
the output of an oracle algorithmR given oracle access to a probabilistic A. If A is a (deterministic)
interactive algorithm, we instead assume R has oracle access to the function that, given the current
partial transcript of (i.e., all messages sent up to a certain point in) interaction between R and A,
returns A’s next message to R.

Furthermore, we shall refer by 〈A, C〉(x) to the probability distribution over the output of C
after interaction between probabilistic interactive Turing machines A and C, both given common

7

input x (where the common input is also provided to any oracles, e.g., to O if A is an oracle machine
given by AO); the view of the respective experiment, or the transcript of all messages sent and all
randomness consumed, shall be denoted as [A ↔ C](x).

2.2 Unique Signatures

First, we define unique signature schemes. Recall that a signature scheme is a means by which a
message can be signed with the signer’s secret key and the signature can be verified using a public
key. A unique signature scheme, then, is simply a signature scheme for which each message can
only have one possible signature:

Definition 1. A unique signature scheme is a triple (Gen,Sign,Ver) of probabilistic polynomial-
time algorithms such that, for every n ∈ N:

• Gen, on input 1n, produces a pair (pk, sk)
• Sign, on input (sk,m) for any m ∈ {0, 1}n, produces a signature σ. (We write σ ← Signsk(m).)
• Ver, on input (pk,m, σ), produces either Accept or Reject. (We write out← Verpk(m,σ).)

and, in addition, the following properties hold:

• Correctness: For every n ∈ N and m ∈ {0, 1}n:

Pr [(pk, sk)← Gen(1n) : Verpk(m,Signsk(m)) = Accept] = 1

• Uniqueness: For every m ∈ {0, 1}∗, and pk ∈ {0, 1}∗, there exists at most one σ ∈ {0, 1}∗ for
which Verpk(m,σ) = Accept.

We next turn to discussing what it means for such a scheme to be secure. A natural definition of
security is the notion of existential unforgeability against adaptive chosen-message attacks [GMR88],
which requires that an adversary knowing the public key, even if allowed to adaptively choose a
bounded number of messages and observe their signatures, is unable to forge any signature for a
message they have not yet queried. We formalize this by allowing the adversary access to an oracle
for Sign, as follows:

Definition 2. We say that a signature scheme is unforgeable if, for every non-uniform proba-
bilistic polynomial-time oracle-aided algorithm A, there is some negligible function ε(·) such that
for all n ∈ N:

Pr
[
(pk, sk)← Gen(1n); (m,σ)← ASignsk(·)(1n, pk) : Verpk(m,σ) = Accept ∧ Valid

]
≤ ε(n)

where Valid is the event that none of A’s queries were for the signature of the output message m.
We will define a weaker notion of a signature scheme being `(·)-unforgeable identically to the

above, with the exception that Valid is the event that the following two conditions on A are true:

• A has queried its oracle at most `(n) times.
• None of A’s queries were for the signature of the output message m.

8

The bounded notion of `(·)-unforgeability is primarily useful to prove our concrete security loss
bound, whereas our main result applies to the general notion of unforgeability. Furthermore, for
the purposes of the impossibility result, we weaken the definition of unforgeability to a worst-case
definition, as this will strengthen our main theorem (by showing that basing even this weak notion
of security on standard assumptions will incur a security loss):

Definition 3. We say that a signature scheme is weakly unforgeable (respectively, weakly `(·)-
unforgeable) if, for every non-uniform probabilistic polynomial-time oracle-aided algorithm A and
every n ∈ N:

Pr
[
(pk, sk)← Gen(1n); (m,σ)← ASignsk(·)(1n, pk) : Verpk(m,σ) = Accept ∧ Valid

]
< 1

where Valid is defined as above (and respectively for `(·)-unforgeability). In particular, we say that
a non-uniform probabilistic polynomial-time algorithm A breaks weak unforgeability of a signature
scheme (Gen, Sign,Ver) if the probability above is equal to 1.

2.3 Intractability Assumptions

Next, we define intractability assumptions in a manner originally proposed in [Nao03]. Formally,
we can model an assumption as a “security game” involving an interaction between a probabilistic
challenger C and adversary A, after which C will output either Accept or Reject. We say that
an adversary A breaks the assumption if C accepts with probability non-negligibly greater than a
certain threshold.

For instance, an assumption that a function f is one-way could be modeled by a two-round
interaction where C sends A the image y = f(x) on a uniformly random input x, A sends a
message x′ to C, and C accepts if and only if f(x′) = y. In this case, A breaks the assumption if it
inverts f (i.e., C accepts) with probability non-negligibly greater than zero.

As an example of an assumption that would have a non-zero threshold, an assumption that two
distributions D0 and D1 are indistinguishable could be modeled by the two-round interaction where
C picks a random b ∈ {0, 1}, sends A a sample from Db, receives b′ from A, and accepts if b = b′.
Then A would only break the assumption if C accepts with probability non-negligibly greater than
a threshold of 1/2. Formally, we model these assumptions following [Pas11]:

Definition 4. For polynomial r(·), we denote an r(·)-round intractability assumption by a
pair (C, t(·)), where t(·) is a function and C is a probabilistic interactive algorithm with input 1n

and an a priori bound of r(n) rounds of communication. We say that (C, t(·)) is secure if the
following is true:

For any non-uniform probabilistic polynomial-time interactive algorithm A, there exists a neg-
ligible function ε(·) such that, for all n ∈ N:

Pr [〈A, C〉(1n) = Accept] ≤ t(n) + ε(n)

Furthermore, we say that a specific A breaks the assumption if the above inequality is not true
with respect to that A; in particular, for some polynomial p(·), we say that A breaks (C, t(·)) with
probability 1/p(·) if, for infinitely many n ∈ N,

Pr [〈A, C〉(1n) = Accept] ≥ t(n) +
1

p(n)

9

We also call a pair (C, t(·)) a bounded-round intractability assumption if there exists some
polynomial r(·) such that (C, t(·)) is an r(·)-round intractability assumption.

We note that any standard cryptographic security assumption can be modeled as a pair (C, t(·))
of this form, including our definitions above of the security of signature schemes. (In this case, the
threshold t(n) would be zero, and C would have r(n) = 2`(n) + 2 rounds of communication, first
generating (pk, sk) and sending pk to A, then signing `(n) messages for A, and finally receiving
(m,σ) and outputting the result of Ver, or Reject if it had already signed m.) In particular, this is
why we require an a priori bound on the number of rounds r(·) of the assumption; it will allow us
to avoid such trivial reductions as reducing unforgeability to itself (for which we could obviously
not prove the impossibility result).

2.4 Black-Box Reductions

Finally, we briefly discuss what it means for one assumption to be based on another assumption.
In particular, given two assumptions (C1, t1(·)) and (C2, t2(·)), basing the hardness of C1 on that of
C2 in a black-box way would classically entail, given an arbitrary adversary A2 which can break
(C2, t2(·)) constructing a polynomial-time procedure A1 that breaks (C1, t1(·)) through standard
interactions with A2 (i.e., using A2 in a black-box manner).

Notably, there is no guarantee that A1 invoke A2 only once; it could be the case that there are
polynomially many invocations, or even “nested” invocations (e.g., multiple concurrent invocations
such that the rounds of communication may be interleaved or dependent on one another), of A2

during the execution of A1. We can formalize this by imagining A1 as a polynomial-time reduction
R that has oracle access to the interactive algorithm A (formerly A2):

Definition 5. We refer to a probabilistic polynomial-time oracle-aided algorithm R as a black-
box reduction for basing the hardness of assumption (C1, t1(·)) on that of (C2, t2(·)) if,
given any deterministic A that breaks (C1, t1(·)), RA breaks (C2, t2(·)). We refer to such a reduction
as fixed-parameter if, given common input 1n, RA queries A only on input 1n.

We notably restrict our attention to oracles that are deterministic (or have some fixed random-
ness), as this allows us to consider cases where the reduction R can rewind or restart its oracle.
We shall also restrict our attention, similarly to [Pas11], to the case of fixed-parameter reductions
where R invokes its adversary A only using a single security parameter (i.e., A must be the same
algorithm in each instance); in particular, for security parameter n, we allow R to run up to M(n)
instances of some parameterized adversary A(1n). Lastly, we can also apply the above concept
to our definition of weak `(·)-unforgeability (and define a fixed-parameter reduction identically for
this case):

Definition 6. We say that a probabilistic polynomial-time oracle-aided algorithm R is a black-box
reduction for basing weak unforgeability of a signature scheme (Gen,Sign,Ver) on the hardness of an
assumption (C, t(·)) (resp. for weak `(·)-unforgeability) if, for every deterministic algorithm A that
breaks weak unforgeability of (Gen, Sign,Ver) (i.e., forges a signature with probability 1), there is a
polynomial p(·) such that, for infinitely many n ∈ N, RA breaks (C, t(·)) with probability 1/p(n).

Finally, we wish to formalize the security loss of such a reductionR, or the loss in the reduction’s
success probability proportionate to its time efficiency. We state this as follows:

10

Definition 7. Let R be a black-box reduction for basing the hardness of assumption (C1, t1(·)) on
that of (C2, t2(·)). Given any deterministic A and for each n ∈ N:

• Let SuccessA(n) = Pr[〈A, C1〉(1n) = Accept] − t1(n) (that is, the probability with which A
breaks (C1, t1(·)), taken over all randomness of A and C1).

• Let QueryA(n) denote the maximum, over all randomness of A and C1, of the possible number
of messages sent from C1 to A during the experiment [A ↔ C1](1n).

• Let SuccessRA(n) = Pr[〈RA, C2〉(1n) = Accept] − t2(n) (that is, the probability with which
RA breaks (C2, t2(·)) taken over all randomness of A, C2, and R).

• Let QueryRA(n) denote the maximum, over all randomness of A, C2, and R, of the possible
number of messages sent from R to A during the experiment [RA ↔ C2](1n).

Then we say that the security loss of R is given by:

λR(n) = maxA

(
SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)

)
Furthermore, we say that R is linear-preserving if its security loss is bounded above by a

fixed polynomial independent of A—that is, there is a polynomial p(·) for which, for all sufficiently
large n ∈ N and every A, λR(n) ≤ p(n).

We note that, as we consider black-box reductions, we consider the ratio between the commu-
nication complexities of R and A as opposed to the running times when determining the security
loss. While many other recent works (e.g., [HJK12,BJLS16]) use a definition which, though similar
to the above, measures actual running time rather than rounds of communication, we note that our
definition is at least as strong as time-based alternatives, and formally prove this fact in Appendix
B.

3 Main Theorem

As our main theorem, we prove the following result:

Theorem 2. Let Π = (Gen,Sign,Ver) be a unique signature scheme, and let (C, t(·)) be some r(·)-
round intractability assumption for polynomial r(·). If there exists some fixed-parameter black-box
reduction R for basing weak unforgeability of Π on the hardness of (C, t(·)), then either:

(1) R is not a linear-preserving reduction, or

(2) there exists a polynomial-time adversary B that breaks the assumption (C, t(·)).

We note that this result also applies to the slightly more general notion of rerandomizable
signatures through an almost identical argument; we discuss this in more detail in Appendix C.
Theorem 2 follows in a straightforward manner from the following lemma, which is a concrete
security loss bound analogous to Coron’s in [Cor02], but generalized so that it handles arbitrary
(i.e., not just simple) reductions:

11

Lemma 1. Let Π = (Gen, Sign,Ver) be a unique signature scheme, and let (C, t(·)) be some r(·)-
round intractability assumption for polynomial r(·). If for some polynomial `(·) there exists some
fixed-parameter black-box reduction R for basing weak `(·)-unforgeability of Π on the hardness of
(C, t(·)), then either R’s security loss is at least

λR(n) ≥
√
`(n)− (r(n) + 1)

for all sufficiently large n ∈ N, or there exists a polynomial-time adversary B that breaks the
assumption (C, t(·)).

First, we show that Lemma 1 implies Theorem 2:

Proof. Given Lemma 1, assume for the sake of contradiction that (C, t(·)) is secure, and that
the R described in Theorem 2 is linear-preserving. Then there exists a polynomial p(·) such
that λR(n) ≤ p(n) for all sufficiently large n. Because R by assumption is a reduction from
(unbounded) weak unforgeability, it must likewise be a reduction from the strictly more specific
definition of weak `(·)-unforgeability for any polynomial `(·), since every weak `(·)-unforgeability
adversary will trivially break unbounded weak unforgeability. So, let `(n) , (p(n) + r(n) + 2)2;
hence, by Lemma 1, either there exists a polynomial-time adversary B which breaks (C, t(·))—which
is false by assumption—or the security loss of R is no less than√

`(n)− (r(n) + 1) = p(n) + 1 > p(n)

for all sufficiently large n, which is a contradiction and hence proves Theorem 2.

Hence, the remainder of the section is dedicated to proving Lemma 1. Our proof of Lemma
1 follows four major steps, which we shall describe here at a high level before beginning the full
argument.

Constructing an Ideal Adversary. First, we describe an “ideal” adversary A which is guaran-
teed to break the security of Π while sending `(n) queries, but does so by brute force and hence does
not run in polynomial time. Our objective then is to create a meta-reduction B that almost always
emulates the interaction RA between R and A. If it does so with, say, probability 1− 1/p(n), then
B will break the assumption (C, t(·)) with probability at least SuccessRA(n)−1/p(n). However, this
means that RA itself cannot have success probability non-negligibly greater than 1/p(n); otherwise,
C would be broken with non-negligible probability by B.

The “ideal” A will pick `(n) messages (~m) at random and query R for the signatures of each of
these messages in turn, and will finally brute-force a secret key from the results and use that key to
forge a signature for another random message m∗, which it will return. Crucially, A will also verify
R’s responses to its queries and return ⊥ instead if not all are correct signatures. By construction
A breaks `(·)-weak unforgeability; however, due to the brute-force step, it (and consequently RA)
will not run in polynomial time.

Constructing a Meta-Reduction. Hence, to efficiently emulate RA, we create the meta-
reduction B. B will run R and forward communicate with C as normal; when R would start a
new instance of its adversary A, B will generate messages ~m and m∗ randomly (i.e., identically to
A) and forward queries to R in the same manner as A. However, when R requires an instance to

12

provide a forged signature, B will also “rewind” the simulated execution to the start of each query
for that instance and try to query R with m∗ instead of the message it would normally query. If
R gives a response to the rewound query, then B has (efficiently) found a forgery for m∗, which it
can return to R when it requests a forgery from the corresponding instance of A.
B, while rewinding, will abort (and try rewinding the next slot instead) if either R would

communicate externally with C (which B of course cannot rewind) or R would request a forgery for
some other simulated instance of A during the simulated execution of RA (i.e., before responding
to the rewound query). In particular, this strategy ensures that recursive rewinding as in [Pas11]
will not be required, since B will never attempt to start rewinding some instance while rewinding
a different one.

Furthermore, B will “verify” all of R’s responses to its signature queries (in the non-rewound
part of the execution) in the same manner as A, likewise returning ⊥ from the simulated instance
of A if not all responses are valid. So, whenever either R gives a simulated instance one or more
incorrect responses or B successfully extracts a forgery (noting that, by the uniqueness property,
the forgeries they return must be identical, which is crucial), A and B’s simulations of A will be
identically distributed to one another.

Bounding the Failure Probability. So, to bound the probability with which B does not suc-
cessfully emulate some instance of A, we must bound the probability that all of B’s queries to
R (~m) are correctly answered, yet the rewinding of every one of the queries fails due to either
R responding badly to m∗, R communicating externally with C, or a forgery request for another
simulated instance of A occurring before R responds.

We bound this probability by using a counting argument similar to that exhibited in the in-
troduction. In particular, we consider the messages ~m and m∗ for a particular instance, fixing
the randomness outside of that instance arbitrarily. Then we show that, for any “bad” sequencing
of these messages such that the non-rewound execution succeeds but every rewinding fails, many
(though not all, because of the possibility for rewindings to fail due to an end message or external
communication) of the rewindings of this sequence will correspond to “good” sequences where B
returns ⊥ due to receiving an incorrect response from R.

What we intuitively show is that, in every set of `(n)+1 sequences corresponding to a sequence
and its various rewindings, at most M(n) + r(n) + 1 can be bad (since, informally, given a bad
sequence, in expectation only M(n) + r(n) of its rewindings can fail for reasons besides R respond-
ing incorrectly, i.e., due to nested end messages or external communication), where M(n) is the
maximum number of instances of A which R executes (which we show by our construction of A
must be no less than the number of successful end messages). Hence we obtain a bound of

M(n) + r(n) + 1

`(n) + 1

on the failure probability for each instance, which by the union bound over all M(n) instances sums
to an overall failure probability of less than

M(n)

(
M(n) + r(n) + 1

`(n)

)
Bounding the Security Loss. This does not immediately imply a bound on the security loss
λR(n), since M(n) can be arbitrarily large. However, as in the technical overview, we bound the

13

security loss by showing that, if M(n) is large, this requires a large enough running time of R that
we still obtain a non-trivial lower bound on the security loss. Specifically, recalling that

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)

we notice first that QueryRA(n)/QueryA(n) ≥M(n), which follows (with some subtleties which we
defer to the main proof) from the fact that R will in the worst case run M(n) instances of A. So,
since SuccessA(n) = 1 by construction, and since, as we discussed previously, SuccessRA(n) cannot
be non-negligibly larger than the failure probability of B, we have

λR(n) ≥ `(n)

M(n) + r(n) + 1

which immediately implies the bound when M(n) <
√
`(n)− (r(n) + 1) (and so λR(n) >

√
`(n)).

On the other hand, we also know that SuccessRA(n) ≤ 1 trivially, and so it is also the case that
λR(n) ≥ M(n), which implies the bound when M(n) ≥

√
`(n)− (r(n) + 1), completing the proof

of Lemma 1 and hence Theorem 2.

3.1 The “Ideal” Adversary

We now proceed to the formal proof of Lemma 1. First, we exhibit an inefficient adversary A that
will break weak `(·)-unforgeability, so that we can later construct an efficient B to simulate it while
running R in order to break the assumption (C, t(·)).

Let Π = (Gen, Sign,Ver) be a unique signature scheme, and let (C, t(·)) be some r(·)-round
intractability assumption for polynomial r(·). Assume that there exists some black-box reduction
R for basing weak `(·)-unforgeability of Π on the hardness of (C, t(·)) which, given an oracle breaking
weak unforgeability, will break (C, t(·)) with probability 1/p(·) for some polynomial p(·).

First, for any polynomial `(n), we construct an inefficient but easily emulatable adversary A
which sends at most `(n) queries and is guaranteed to break weak unforgeability of Π. Since we will
require A to be deterministic during execution yet generate random messages, we will assume that
A is formally given by a deterministic interactive AO which has access to a random oracle O (of
course, O is not needed for our actual constructions, as we shall emulate A), which, as in [Pas11],
is given by a random variable which is uniformly distributed over functions {0, 1}∗ → {0, 1}∞.
In particular, this ensures that the queries output by AO are uniformly distributed (i.e., over the
randomness of O), but are still preserved under rewinding.

We shall henceforth denote by A the specific adversary AO which, on input 1n, behaves as
described in Figure 3. Informally, A makes `(n) signature queries, generating the message for
each query by applying O to the current partial transcript. Finally, after receiving responses for
each query, A returns a brute-forced forgery, but only if it successfully “verifies” the transcript by
ensuring that each query’s response is valid and that each query in the transcript was generated in
the correct manner (i.e., by O applied to the prior partial transcript).

It is straightforward to see that A, given any fixed oracle O, will break weak `(·)-unforgeability;
given an honest signing oracle (which will always send the correct partial transcript), it will always
return some (m,σ) such that Verpk(m,σ) = Accept, m was not queried (as m∗ is not equal to any
of the queries mi), and only `(n) queries were made.

14

• Initially, receive a message pk, the public key; respond (i.e., generate m1) according to the next
step for i = 1.

• On receiving a message consisting of a partial transcript τ = (pk,m1, σ1, · · · ,mi−1, σi−1) for
some i ∈ [`(n)], do the following:

– Generate mi by taking the first n bits resulting from applying the oracle O to τ .

– Return the new partial transcript τ ||mi.

• On receiving a message consisting of a complete transcript τ = (pk,m1, σ1, · · · ,m`(n), σ`(n)) (we
shall refer to such a message as a “forgery request” or “end message”), do the following:

– Verify that, for each signature σi, Verpk(mi, σi) = Accept. If not true for all i, return ⊥.

– Verify that, for each message mi, mi is equal to the first n bits resulting from applying the
oracle O to the prefix transcript τ<i = (pk,m1, σ1, · · · ,mi−1, σi−1). If not true for all i,
then return ⊥.

– Finally, generate a random message m∗ (distinct from each mi in τ) by applying O to the
transcript τ , use brute force to find a signature σ∗ for which Verpk(m∗, σ∗) = Accept, and
return the forgery (m∗, σ∗).

Figure 3: Formal description of the “ideal” adversary AO.

However, when interacting with R, which is not bound by the rules of an honest oracle, the
transcript verification is necessary to prevent R from “cheating” in certain ways during its inter-
action. First, we wish to ensure that R will return valid signatures to queries as often as possible.
Also, we wish to ensure that R is actually required to answer `(n) signature queries generated
randomly by A and cannot, for instance, immediately send A an end message with an artificially
generated transcript; this is done by using the oracle O to generate A’s messages and ensuring that
the transcript is consistent with the oracle. Formally, we make the following claim, which will be
useful later:

Claim 1. There exists a negligible function ν(·) such that, for all n ∈ N, the probability, over

all randomness in the experiment [RAO ↔ C](1n), that some instance of A returns a forgery (i.e.,
something besides ⊥) to R without having received `(n) different responses to its signature queries
from R, is less than ν(n).

Proof. Assume that A returns a forgery to R after receiving fewer than `(n) responses to its
signature queries; we shall demonstrate that the only way this can happen is if R correctly predicts
the output of the random oracle O, which can happen with only negligible probability (specifically,
no greater than ν(n) , `(n)2−n) due to the uniformly random choice of O.

Let i ∈ [`(n) − 1] (we exclude `(n) because R by assumption makes a forgery request) be the
index of the first signature query “skipped” by R—that is, the first index for which R does not
send A a partial transcript τ≤i = (pk,m1, σ1, · · · ,mi, σi). Of course, there must exist such an i by
the assumption that R sends A fewer than `(n) messages. In order to receive a forgery from A
(and not ⊥), R must send a complete transcript τ = (pk,m1, σ1, · · · ,m`(n), σ`(n)), notably having
the property that each message mj is equivalent to the first n bits of the result of applying the
random oracle O to the prior transcript m≤j−1.

15

In particular, since by assumption R did not send A any partial transcript τ≤i, it is impossible
for R to have received from A the correct message mi+1, which can, by construction of A, only be
retrieved by sending A the (unique) partial transcript τ≤i for which all mj are generated according
to O and all σj are the (unique) accepting signature for the respective mj .

By our assumption, then, R will only be able to send the correct message mi+1 in its forgery
request, and hence receive a forgery from A, with probability 2−n—that is, the chance that the
output of the (uniformly distributed) random oracle O matches the sent mi+1 in the first n bits.
And as, by our assumption, R sends fewer than `(n) messages to A, it cannot attempt to “guess”
the correct mi+1 more than `(n) times; thus the probability that A will return a forgery, taken
over the randomly distributed O, is by the union bound no more than ν(n) = `(n)2−n, which as
desired is negligible.

Furthermore, this construction of A (using the oracle O) allows us to assume, without loss of
generality, that the reductionR will never rewind an instance ofA—this is without loss of generality
because there is a single accepting transcript for each choice of the oracle O. Namely, given an oracle
O, if R always provides correct signatures, then A’s messages (including the forgery it returns) and
R’s responses are fully determined by O and the uniqueness property of Π. Meanwhile, if R does
not provide correct signatures, A will not return a forgery.

Because A breaks unforgeability, and by the assumed properties of R and the determinism of
AO for any fixed oracle O, it must be true that there exists polynomial p(·) such that

Pr
[
〈RAO , C〉(1n) = Accept

]
≥ t(n) +

1

p(n)

for any oracle O. As such, by the fact that R is fixed-parameter, we can observe that, for any n,
averaging this probability over all possible oracles O, we likewise have

Pr
[
〈RA, C〉(1n) = Accept

]
≥ t(n) +

1

p(n)

even though A over a randomly-chosen O is not deterministic.
Of course, A is inefficient, so, in order to break the assumption (C, t(·)), we must construct an

efficient B that is able to run R while emulating its interactions with A most of the time. Hence,
the remainder of the proof will be dedicated to constructing this meta-reduction and analyzing the
probability with which it succeeds in emulating the “ideal” A. Intuitively, if B successfully emulates
A at least 1− 1/p′(n) of the time for some function p′(·), then:∣∣Pr

[
〈RA, C〉(1n) = Accept

]
− Pr [〈B, C〉(1n) = Accept]

∣∣ ≤ 1

p′(n)

Pr [〈B, C〉(1n) = Accept] ≥ t(n) +
1

p(n)
− 1

p′(n)

meaning that B must break C with probability at least 1/p(n)−1/p′(n), as desired. Hence, what we
shall effectively show in the subsequent steps is that, unless the security loss of R is large, 1/p′(n)
will be non-negligibly smaller than 1/p(n), and thus B will break the security of (C, t(·)).

16

Slots. As a notational aside, we shall for simplicity henceforth refer to the pair of a query made
by A (or something, such as B, which emulates A) and its corresponding response by R as a slot
(vopen, vclose). Such a slot is determined by two views: the “opening” of the slot, or the view vopen
of the execution of R immediately before A’s query to R, and the “closing” of the slot, or the view
vclose of the execution immediately after R responds to the respective query. (We will also often
refer to the view of R immediately after the opening query of a message m, which we shall denote
by the concatenation vopen||m.)

3.2 The Meta-Reduction

We next construct the meta-reduction B which will efficiently emulate A. Let B be as described
formally in Figure 4; informally, B will run R internally, forwarding communication to C as R would
while also internally simulating instances of A interacting with R. The primary difference between
B and the “ideal” execution of A interacting with R is that B, being restricted to polynomial time,
cannot brute-force forgeries as A does; instead, while simulating each instance of A, B will select
at random a message m∗ for which to forge a signature and attempt to rewind each slot for that
instance, substituting m∗ for the original message.4

If R ever returns a valid signature σ∗ for m∗, then B may store that signature and finally return
(m∗, σ∗) when R requests a forgery for that instance. However, if one of the following “bad events”
occurs:

• R fails to return a valid signature of m∗.

• R asks for a forgery for another instance before returning a signature.

• R requires external communication with C (which cannot be rewound) before returning a
signature.

then B will abort and try the next slot. In this way we circumvent the issue of having to recursively
rewind nested end messages as in [Pas11].

First, we can show that B, unlike A, is efficient:

Claim 2. There exists a polynomial t(n) such that, for all n ∈ N, Real(1n) is guaranteed to run in
time at most t(n).

Proof. It suffices to show that B sends a polynomial number of simulated messages to R, as R
and C run in polynomial time by definition and all other operations performed by B are clearly
polynomial-time. To that end, we observe that each instance I contains O(`(n) + r(n)) rounds
of communication (including both communication with R and R’s external communication with
C). Furthermore, there are at most a polynomial number of instances of A started by R—call this
number M(n)—and so disregarding rewinding we know that there must be O((`(n) + r(n))M(n))
total messages.
B will rewind R as described above; however, we know that there can be at most `(n)M(n)

rewound slots (as each slot is rewound once and B will never rewind recursively), each of which
might contain O((`(n) + r(n))M(n)) nested messages; hence, the total number of messages is

4That is, when “rewinding” a slot (vopen, vclose), B will simulate interaction with R starting from the view
vopen||m∗.

17

• Set initial view v ← ⊥ and set k ← 1. Execute R, updating the current view v according to the following
rules.

• WhenR begins a new instance of A and sends a public key pk, label this instance as instance k. Generate
and store `(n) random queries ~mk = (mk,1, . . . ,mk,`(n)) and a target forgery m∗k. (Abort and return
Fail if m∗k is equal to a message in ~mk.a) Also let pkk ← pk and initialize the forgery fk ← {}. Lastly,
respond with τ∗k = pkk||mk,1 and increment k.

• When R attempts to communicate externally with C, forward the message, return C’s response to R,
and update v accordingly.

• When R sends a transcript τ = (pk,mI,1, σI,1, · · · ,mI,j , σI,j) to some simulated instance I of A, store
the signature σI,j and do the following:

– If j = `(n) (i.e., this is an end message), then do the following:

∗ If τ is an inconsistent transcript (i.e., mI,i or σI,i in τ is different from the stored mI,i or
σI,i (respectively) for some i ∈ [`(n)], or not all σI,i have been stored) or R’s response to
some signature query j was invalid (i.e., VerpkI (mI,i, σI,i) = Reject for some i ∈ [`(n)]), then
return ⊥.

∗ Otherwise, if fI is still empty (i.e., not ⊥), run the procedure Rewind detailed below for the
instance I.

∗ If, at this point, there is a stored forgery fI = (m∗I , σ
∗
I), then return it and continue executing

R as above. Otherwise, abort the entire execution of B and return Fail.

– If the response is an invalid signature (i.e., VerpkI (mI,j , σI,j) = Reject), then store fI ← ⊥.

– Lastly, respond with τ ||mI,j+1 and continue the execution of R.

Rewind procedure:

• Given instance I, for j ∈ [`(n)] let (vjopen, v
j
close) denote the slot corresponding to the jth signature query

for instance I.

• For each j ∈ [`(n)], “rewind” the slot (vjopen, v
j
close) as follows: Let k′ ← k, and begin executing R from

the view v′ = vjopen||m∗I as in the main routine, with the following exceptions:

– When R begins a new instance of A, label this instance as instance k′ and increment k′. (That
is, continue creating new instances, but preserve the counter k in the outer execution for after the
rewinding.)

– When R attempts to communicate externally with C, abort the rewinding and continue to the
next j.

– When R sends an end message for an instance I ′ 6= I of A, abort the rewinding and continue to
the next j, unless R has not sent responses to `(n) signature queries for that instance (in which
case respond with ⊥).

– If v′ ever contains a message whose transcript contains a response σ∗I to the query for m∗I , then,
if it is the case that VerpkI (m∗I , σ

∗
I) = Accept, store fi ← (m∗I , σ

∗
I) and end the Rewind procedure

(i.e., return to the outer execution); otherwise, if VerpkI (m∗I , σ
∗
I) = Reject, store nothing to fI and

continue to the next j.

aNote that in the case where this happens, then B will fail to output a successful forgery regardless; however,
this can only happen with probability negligible in n, and hence will not affect the bound we show.

Figure 4: Formal description of the meta-reduction B.

18

bounded by O(`(n)(`(n) + r(n))M(n)2), which is still polynomial. The claim follows from defining
t(n) accordingly.

(Note that, while we assume without loss of generality that R will never rewind A, such rewind-
ing even if it did occur could at most multiply the running time by a polynomial factor since R is
restricted to polynomial time.)

Next, to reason about the failure probability of B (and through it the success probability of
RA), let us define the following experiments:

• Let Ideal(1n) denote [RA ↔ C](1n)—that is, the experiment where R(1n), using the “ideal”
adversary A(1n) as a black box, communicates with C(1n).

– When we refer to probabilities in the context of this experiment, they are taken over
a uniform distribution over random oracles O (which results in uniformly distributed
messages ~mI and m∗I) for each instance I of A started by R.

– When we wish to fix the randomness of a particular execution of Ideal, we will denote this
with the notation Ideal{OI}I∈[M(n)],Oext(1

n), or, for more clarity, Ideal{~mI ,m
∗
I}I∈[M(n)],Oext(1

n).
~mI and m∗I are the messages and forgery generated for instance I by each oracle OI given
the (deterministic) prefix; Oext is a random variable representing the random coins used
by R and C, containing a number of bits equal to the maximum number of coins needed
(which must be polynomially many since R and C are polynomial-time). When all ~mI

and m∗I are fixed, and Oext is fixed, note that the execution of Ideal is deterministic for
each instance.

• Let Real(1n) denote [B ↔ C](1n)—that is, the “real” experiment where B(1n) communicates
directly with C(1n) by attempting to simulate the interaction between A(1n) and R(1n) while
forwarding any external communications.

– When we refer to probabilities in the context of this experiment, they are taken over
uniformly distributed messages ~mI and m∗I for each simulated instance I of A started
by R in the context of B.

– When we wish to fix the randomness of a particular execution of Real, we will again
denote this with the notation Real{~mI ,m

∗
I}I∈[M(n)],Oext(1

n), where ~mI and m∗I are the
messages and forgery for each simulated instance I of A and Oext is again a random
variable representing the random coins used by R and C. When all ~mI and m∗I are fixed,
and Oext is fixed, note that the execution of Real is deterministic for each instance, just
as with Ideal.

– Furthermore, we may opt to isolate a particular simulated instance k by fixing all ran-
domness except for that instance’s; we denote this by Real∗{~mI ,m

∗
I}−k,Oext

(1n) and note

that the probability space in this altered experiment is over uniformly distributed ~mk

and m∗k. Further note that in experiment Real∗ the execution up to the start of the
isolated instance k is deterministic, as is the execution for any choice of ~mk and m∗k.

• In all experiments, we will denote the view, or execution, as the transcript of all messages sent
between, and all randomness consumed by, real or simulated machines (i.e., between R, A or
B’s simulation of A, and C). We will notate this using just the notation for the experiment,
e.g., Real(1n).

19

• In all experiments, we will denote the result, or output, as either the final output of C (either
Accept or Reject) if C finishes, or as Fail if C does not finish (i.e., when B aborts returning
Fail). This will be notated by Output, e.g., Output[Real(1n)] = Accept.

3.3 Analyzing the Meta-Reduction

Using this terminology, we wish to show that Real(1n) is identically distributed to Ideal(1n) with
high probability. To that end, we make the following claim:

Claim 3. For all n ∈ N:

|Pr[Output[Real(1n)] = Accept]− Pr[Output[Ideal(1n)] = Accept]| ≤ Pr[Output[Real(1n)] = Fail]

Proof. The probability of each possible assignment of the random variables {~mI ,m
∗
I}I∈[M(n)] and

Oext occurring is clearly identical between the Real and Ideal experiments due to the choice of
uniformly random oracles O for the Ideal experiment. Thus, it suffices to show the following
lemma:

Lemma 2. For all n ∈ N and for any assignment of {~mI ,m
∗
I}I∈[M(n)] and Oext such that

Output[Real{~mI ,m
∗
I}I∈[M(n)],Oext(1

n)] 6= Fail

it holds that:
Ideal{~mI ,m

∗
I}I∈[M(n)],Oext(1

n) = Real{~mI ,m
∗
I}I∈[M(n)],Oext(1

n)

and thus

Output[Ideal{~mI ,m
∗
I}I∈[M(n)],Oext(1

n)] = Output[Real{~mI ,m
∗
I}I∈[M(n)],Oext(1

n)]

Proof. Intuitively, the lemma follows from the uniqueness property of Π; for any message m∗, there
is only a single possible signature σ∗. Thus, unless the extraction fails for some m∗, the simulation
in B will output the same forgery as in the actual execution of A.

Formally, denote the experiments Real{~mI ,m
∗
I}I∈[M(n)],Oext(1

n) and Ideal{~mI ,m
∗
I}I∈[M(n)],Oext(1

n) by
Real and Ideal respectively. Because A’s, C’s, and R’s randomness are fixed by assumption, it must
be the case that the views of Ideal and Real are identical up to the first forgery request. At this
point, if B in Real does not return Fail (indicating that B either found a valid forgery or will return
⊥ due to R returning an incorrect signature), the forgeries (m∗I , σ

∗
I) returned by A in Ideal and by

B in Real must also be identical. This holds because (1) the situations in which A or B return ⊥
are the same, and (2) if, given certain randomness, A does not return ⊥ and B does not return Fail,
both A and B must return a correct signature of an identical message m∗I , which by uniqueness
must also be identical.

From here, we can inductively apply the same logic; if we assume that the first k forgery
requests’ responses are identical (i.e. that B has not yet failed), then, for each possible assignment
of these responses (which must by assumption be equally likely between A and B), the execution
with fixed randomness proceeds identically up to the (k + 1)st forgery request; hence, if B does
not return Fail for that request as well, its responses are once again distributed identically in Real
to A’s in Ideal, meaning that the executions up to the (k + 1)st forgery requests’ responses must
likewise be identical.

20

So, if we fix {~mI ,m
∗
I}I∈[M(n)] and Oext for both experiments, and if B does not return Fail, then

all messages sent by A to R in Ideal must be identical to the simulated (non-rewound) messages
from B to R in Ideal, ensuring that (since R and C are executed identically and with the same
randomness in both experiments) the executions will likewise be identical.

Thus, by this lemma, the probability that the outputs of the two experiments differ must be at
most the probability that some assignment of the random variables occurs which causes Real(1n)
to return Fail (as in all other cases the views and outputs are identical), as desired.

Next, we use this to bound RA’s success probability by bounding the probability that B will
return Fail for some simulated instance I of A. Let M(n) be the maximum, over all randomness of
A, C, and R, of the number of instances of A that R runs to completion (i.e., for which it responds
to all `(n) queries) during the experiment Real(1n). Then we show the following:

Proposition 1. There exists a negligible function ε(·) such that, for all n ∈ N:

Pr[Output[Real(1n)] = Fail] ≤M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ ε(n)

Proof. We first prove the following claim for any execution Real∗{~mI ,m
∗
I}−k,Oext

(1n) (i.e., for any fixed

setting of all randomness aside from ~mk and m∗k), and notice that, since it applies to arbitrarily
fixed randomness, it must thus apply over all possible randomness of the experiment Real(1n):

Claim 4. There exists a negligible ν(·) such that, given any experiment Real∗{~mI ,m
∗
I}−k,Oext

(1n), the

probability, over the uniformly chosen messages mk,1, . . . ,mk,`(n),m
∗
k, that the simulated instance

k will return Fail is, for all n ∈ N, at most

M(n) + r(n) + 1

`(n) + 1
+ ν(n)

Proof. Let us begin by assuming that other simulated instances (besides k) of A in the experiment
Real∗{~mI ,m

∗
I}−k,Oext

(1n) will never return Fail (i.e., that they will “magically” produce a correct

forgery in the case where they otherwise would return Fail). Clearly, this can only increase the
probability that instance k will return Fail by ensuring that the experiment never aborts early.

Now let us consider the messages ~m∗k , (mk,1, . . . ,mk,`(n),m
∗
k) in instance k; note that by the

definition of Real∗{~mI ,m
∗
I}−k,Oext

(1n) the execution is fully determined by ~m∗k. Let us also define for

i ∈ [`(n)− 1] the “rewound” sequence

ρ(~m∗k, i) , (mk,1, . . . ,mk,i−1,m
∗
k)

that is, the rewinding of ~mk where the message in slot i is replaced by m∗k to attempt to extract a
forgery.

In order for B to return Fail, one of the following “bad events” must occur for each i ∈ [`(n)]:

• E1(ρ(~m∗k, i)): R fails to return a valid signature of m∗I in the rewinding of the last slot in
the sequence (slot i).

21

• E2(ρ(~m∗k, i)): During the rewinding of the last slot in the sequence (slot i), R asks for
a forgery for another instance k′ 6= k before returning a signature for m∗I , or R requires
external communication with C (which cannot be rewound) before returning a signature for
m∗I .

In addition, for k to fail, the non-rewound execution of the instance must succeed, in that the
event E1(~mk,≤i) (where R fails to return a valid signature) cannot occur for any prefix ~mk,≤i =
(mk,1, . . . ,mk,i), where i ∈ [`(n)].

Since, as we have noted, the behavior of k in the execution of Real∗{~mI ,m
∗
I}−k,Oext

(1n) is fully

determined by ~m∗k, every sequence ~m∗k will deterministically either result in instance k returning
something (either a forgery or ⊥) or aborting and returning Fail; we shall refer to the former type
of sequence (where k succeeds) as a “good” sequence, and the latter type as a “bad” sequence.
To describe the relationship between these “good” and “bad” sequences, we first introduce the
following terminology:

For any k > 0 and any arbitrary set ~m of k distinct messages in [2n], let Πk(~m) denote the set
of ordered permutations of the elements of ~m. Given a sequence π = (m1, . . . ,mk−1,m

∗) ∈ Πk(~m),
we let the “rewinding” operator ρ for i ∈ [k − 1] be defined as before—that is:

ρ(π, i) , (m1, . . . ,mi−1,m
∗)

(Note that this is a sequence of length i.) We shall say that a sequence a = (a1, . . . , ak−1, a
∗) ∈

Πk(~m) blocks a sequence b = (b1, . . . , bk−1, b
∗) ∈ Πk(~m) with respect to some i ∈ [k − 1] if

ρ(a, i) = (b1, . . . , bi)

that is, if a has a rewinding equivalent to a prefix of b. If we wish to denote that a blocks b
with respect to a particular i, we shall say that a blocks b in slot i. Furthermore, we will say that
sequences a1, a2, . . . ac ∈ Πk(~m) c-block a sequence b ∈ Πk(~m) if there exist distinct i1, . . . , ic ∈ [k−1]
such that, for any j ∈ [c], aj blocks b in slot ij .

We next formalize the relationship between the “blocking” property and good/bad sequences
that will allow us to use this property to bound the number of bad sequences that may occur.
Specifically, we prove the following lemma:

Lemma 3. Any sequence that is (M(n) + r(n) + 1)-blocked by bad sequences must be a good
sequence.

Proof. Consider a sequence ~m′k which is (M(n) + r(n) + 1)-blocked by bad sequences. This means
that ~m′k must have M(n)+r(n)+1 distinct slots ij for which E1 or E2 occurs in its (non-rewound)
execution, as the execution is at each of those points identical to a rewinding of one of the bad
sequences by the fact that the sequence blocks ~m′k in slot ij . However, because at most M(n)
end messages (to completed instances of A, note that others are answered with ⊥) and at most
r(n) rounds of external communication can occur in any given execution, we observe that E2 can
happen for at most M(n) + r(n) of these slots, and thus that E1 must happen for at least one slot.
In this case, we can deduce that ~m′k must be a good sequence, because it must contain some slot for
which R fails to return a correct response (meaning that B can successfully emulate A by returning
⊥)—that is, the event E1(~mk,≤i) must occur for that slot, which we have previously stated cannot
be the case for bad ~m∗k.

22

Consider, then, a set S of “bad” sequences ~m∗k which are permutations of any set of `(n) + 1
distinct messages (i.e., an unordered set containing ~mk,i and m∗k). The following lemma, combined
with Lemma 3, allows us to bound the size of such a set S:

Lemma 4. Let ~m be an arbitrary set of `+ 1 distinct messages in [2n], and let S ⊂ Π`+1(~m) be a
set of permutations of ~m. If it is the case that, for some B ∈ N, any member of Π`+1(~m) which is
(B + 1)-blocked by a subset of S cannot itself lie in S, then |S| ≤ (B + 1)`!

Proof. We begin with the following crucial claim:

Subclaim 1. No member of Π`+1(~m) is (B + 2)-blocked by a subset of S.

Proof. Assume for the sake of contradiction that there exists some π ∈ Π`+1(~m), B + 2 sequences
π1, . . . , πB+2 ∈ S, and B + 2 distinct integers i1, . . . , iB+2 ∈ [`] such that each partial sequence
ρ(πj , ij) is equivalent to the first ij elements of π.

Assume without loss of generality that the integers ij are in strictly ascending order. Consider
the last sequence πB+2 = (πB+2

1 , . . . , πB+2
∗); we shall show that πB+2 is (M + 1)-blocked by se-

quences in S, leading to a contradiction because by definition no element of S can be (M+1)-blocked
by other members of S.

We know that, since by assumption the first iB+2 elements of π are equivalent to

ρ(πB+2, iB+2) = (πB+2
1 , . . . , πB+2

iB+2−1, π
B+2
∗)

then the first iB+2 − 1 elements of πB+2 and π must be identical. However, notice that, for any
j < B+2, we have that ρ(πj , ij) is identical to π in the first ij elements, which, since by assumption
ij ≤ iB+2 − 1, also indicates that ρ(πj , ij) is identical to πB+2 in the first ij elements.

This in turn implies that πB+2 is (B + 1)-blocked by the sequences π1, . . . , πB+1 ∈ S, contra-
dicting that πB+2 ∈ S by the requisite property of S.

So, we know that any member of S can be at most B-blocked by a subset of S, while any non-
member can be at most (B + 1)-blocked by a subset of S. We will combine this fact (an effective
upper bound on the number of blocked sequences) with the subsequent claim (a respective lower
bound) to derive our final bound on |S|.

Subclaim 2. For each i ∈ [`], there exist |S| distinct sequences blocked in slot i by sequences in
S.

Proof. Beginning with i = 1, we observe that sequences with at least |S|/`! different last elements
m∗ must occur in S (as there are only `! sequences with any given last element). Furthermore, any
sequence in S with a certain last element m∗ must block in slot 1 a total of `! different sequences
(i.e., anything beginning with m∗), and different m∗ will produce disjoint sets of sequences blocked.
Thus, we conclude that the sequences in S will block in slot 1 at least (|S|/`!)`! = |S| distinct
sequences.

For the remaining slots i > 1, we can apply the same logic to the distinct arrangements of
the elements (m1, ...,mi−1) and m∗ . Among the sequences in S there must be a minimum of
|S|/(` + 1 − i)! such arrangements (since, given a fixed (m1, ...,mi−1,m

∗), there are (` + 1 − i)!
sequences possible), and sequences with each arrangement will block in slot i a total of (`+ 1− i)!
distinct sequences (i.e., any sequence beginning with (m1, ...,mi−1,m

∗)). Hence, the sequences in
S will block in slot i at least (|S|/(`+ 1− i)!)(`+ 1− i)! = |S| distinct sequences.

23

In total, we notice that at least |S| distinct sequences are blocked in slot i for any i ∈ [`], and so
there are at least |S|` distinct pairs (π, i) such that the sequence π is blocked in slot i by sequences in
S. Furthermore, we recall that the sequences in S are each blocked in slot i by sequences in S for at
most B different i, while the remaining (`+1)!−|S| elements are each blocked in slot i by sequences
in S for at most B + 1 different i. This provides an upper bound of B|S|+ ((`+ 1)!− |S|)(B + 1)
on the number of “blocking” pairs (π, i). We lastly combine these lower and upper bounds (noting
that, if the lower bound exceeded the upper bound, there would be a contradiction) to bound |S|:

|S|` ≤ B|S|+ ((`+ 1)!− |S|)(B + 1) = B(`+ 1)! + (`+ 1)!− |S|

|S|(`+ 1) ≤ (B + 1)(`+ 1)!

|S| ≤ (B + 1)`!

Recall that, if S is the set of all bad sequences which are permutations of some set ~m∗ of `(n)+1
distinct messages, we have by Lemma 3 that any sequence which is (M(n) + r(n) + 1)-blocked by
bad sequences in S must be good and thus lie outside of S. Hence, by Lemma 4, S has size at most

(M(n) + r(n) + 1) (`(n))!

Given any set of `(n) + 1 distinct messages, then, the above applies to show that at most an

(M(n) + r(n) + 1) (`(n))!

(`(n) + 1)!
=
M(n) + r(n) + 1

`(n) + 1

fraction of the sequences defined by the permutations of this set can be bad, and the remainder
must be good. Applying this to every possible set of `(n) + 1 distinct messages, we get that at
most the same fraction of all sequences of distinct messages can be bad. While the property that
messages are distinct is not necessarily guaranteed, we note that the probability that they are not
over uniformly randomly chosen messages is negligible—specifically, we notice that the probability
of any pair of elements colliding is 2−n, and so, by the union bound, the probability that any of
the `(n)(`(n)+1)

2 pairs of elements can collide is smaller than ν(n) , `(n)22−n (which is negligible in
n because `(·) is polynomial).

Hence, the chance that a sequence chosen at random is bad, which by definition is equal to the
probability that a randomly chosen sequence of messages ~m∗k = (mk,1, . . . ,mk,`(n),m

∗
k) will result

in instance k returning Fail, can be at most the fraction of sequences without repeated elements
which are bad plus the fraction of sequences with repeated elements, or:

M(n) + r(n) + 1

`(n) + 1
+ ν(n)

as desired.

Recall that, because this result holds for any execution of Real∗{~mI ,m
∗
I}−k,Oext

(1n), it must also

hold over a random such execution—i.e., the actual execution Real(1n) of B, where the messages
for all instances are chosen uniformly at random. Furthermore, it holds for any instance k of A.

To conclude the proof of the proposition, by Claim 1 we know that R must send a total of at
least `(n) messages to each instance of A in order for the failure probability of B to emulate that

24

instance to be more than negligible; if not, then B will always respond with ⊥ (having not received
`(n) signature query responses), while the claim shows that A will return ⊥ with all but negligible
probability. Recall that M(n) is an upper bound to the number of instances of A to which R
sends `(n) messages. By Claim 4 and the union bound over all M(n) completed instances of A,
the failure probability of B for those instances is at most

M(n)

(
M(n) + r(n) + 1

`(n) + 1
+ ν(n)

)
for negligible ν(·), and the failure probability for all other instances (of which there can only be a
polynomial number by the time constraint on R) is negligible by the union bound applied to Claim
1. Hence the overall failure probability of Real (i.e., the execution of B) must be bounded above by

Pr[Output[Real(1n)] = Fail] ≤M(n)

(
M(n) + r(n) + 1

`(n) + 1
+ ν(n)

)
+ ν ′(n)

< M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ ε(n)

for some negligible functions ν ′(·) and ε(·).

Completing the Proof of Lemma 1. Finally, in order to bound the security loss, we note that,
if the probability SuccessRA(n) (which specifically is by definition a lower bound to the probability
Pr[Output[Ideal(1n)] = Accept]− t(n); recall that t(·) is the threshold for the underlying assumption
C) is non-negligibly greater than the failure probability of Real, there exists a polynomial p(·) such
that:

Pr[Output[Ideal(1n)] = Accept]− t(n) ≥ Pr[Output[Real(1n)] = Fail] +
1

p(n)

But, by Claim 3, this would imply that

Pr[Output[Real(1n)] = Accept]− t(n) ≥ 1

p(n)

that is, that B breaks the security of (C, t(·)). So, by Proposition 1, unless B breaks the security of
(C, t(·)), the above cannot be the case—that is, there must exist negligible ε(·), ε′(·) such that, for
sufficiently large n:

SuccessRA(n) ≤ Pr[Output[Real(1n)] = Fail] + ε′(n)

< M(n)

(
M(n) + r(n) + 1

`(n) + 1

)
+ (ε(n) + ε′(n)) < M(n)

(
M(n) + r(n) + 1

`(n)

)
Of course, SuccessRA(n), being a probability, is also trivially bounded above by 1. Furthermore,

by the definition of M(n), we know that QueryRA(n) ≥ M(n)`(n). Lastly, we consider two cases
to derive our bound on the security loss.

Case 1. If M(n) ≥
√
`(n)− (r(n) + 1), then:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)
≥ 1

1

M(n)`(n)

`(n)

= M(n) ≥
√
`(n)− (r(n) + 1)

25

Case 2. Otherwise, if M(n) <
√
`(n)− (r(n) + 1) we have M(n) + r(n) + 1 <

√
`(n), and so:

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)
≥ 1

M(n)
(
M(n)+r(n)+1

`(n)

)M(n)`(n)

`(n)

=
`(n)

M(n) + r(n) + 1
>

`(n)√
`(n)

=
√
`(n)

Either way, we observe that λR(n) ≥
√
`(n)− (r(n)+1), thus completing the proof of both Lemma

1 and Theorem 2.

4 Related Work

Lastly, we present a brief survey of, and comparison of our results with, related work concerning
unique signatures and black-box impossibility results.

Definitions and techniques. The notion of security loss dates back to literature on “security-
preserving reductions”, formalized originally by Luby in 1996 [Lub96]; early works on security-
preserving reductions include Naor and Reingold’s efficient constructions of pseudo-random func-
tions in [NR97,NR99], and there has been a considerable amount of more recent research concern-
ing efficient and tight security reductions [BR96,BBM00,BR09,BJLS16]. Black-box separations, or
techniques for proving the impossibility of certain black-box reductions, date back to the work of
Impagliazzo and Rudich in 1989 [IR89]; the meta-reduction framework (which we employ here) was
originally proposed by Boneh and Venkatesan in 1998 [BV98], and has since been applied to prove
impossibilities for “one-more” problems [BMV08], witness-hiding of interactive proofs [HRS09],
blind signatures [FS10], structure-preserving signatures [AGO11], and CCA-security of certain sig-
nature schemes [BFW16]. Lastly, Pass, in [Pas11], provides a generalization of several of the above
results (analogous in some ways to our generalization of Coron), drawing the connection with
concurrent zero-knowledge upon which we build here and presenting a powerful meta-reduction
technique used to rule out a wide class of reductions (specifically, reductions to any standard
bounded-round assumption from sequential witness-hiding of any protocol which is constant-round,
unique-witness, and computationally special-sound).

Impossibilities for Unique Signatures. Focusing in particular on black-box impossibilities
for unique signatures, literature dates back to the original result of Coron in 2002 [Cor02]. Since
then, there have been many refinements and generalizations of this elegant result. For instance,
Hofheinz et al. [HJK12] demonstrate that the bound also extends to rerandomizable signatures.
Kakvi and Kiltz [KK12] demonstrate a subtlety in Coron’s argument which allows for more efficient
reductions for full-domain hash signatures (and in general for signatures where uniqueness is not
certifiable), amending Coron’s result while also demonstrating such a reduction. Bader et al.
[BJLS16] refine Coron’s result to demonstrate a modernized version of the bound that applies to
efficiently rerandomizable primitives and to decisional complexity assumptions. Recent works by
Wang et al. [WMHT18] have applied analysis similar to Coron’s to rule out memory-tight reductions
from unique signatures to general security assumptions in partially restricted settings.

26

Lastly, there are impossibility results unrelated to Coron’s bound which indirectly demonstrate
complete impossibility for basing unique signatures on specific cryptographic primitives using black-
box constructions: Brakerski et al. [BGRV09] show that black-box constructions of verifiable random
functions (which imply unique signatures) from one-way permutations are impossible; subsequently,
Fiore and Schröder [FS12] demonstrate that black-box constructions from trapdoor permutations
are likewise impossible. In contrast, note that we here (just like Coron) consider arbitrary (poten-
tially non-black-box) constructions—we only restrict to black-box reductions.

Constructions of Unique Signatures. Of course, all of the upper bounds for reductions based
on generic assumptions, including those which we present here, merely rule out efficient (i.e.,
linear-preserving) black-box reductions; indeed, there are many well-known constructions of unique
signature schemes from standard assumptions. Unique signature schemes, along with the related
notion of verifiable random functions, were first presented by Micali et al. in 1999 [MVR99];
the authors defined these primitives and also proved that they could be constructed from the
RSA assumption. Since then, there have been several black-box constructions of both unique and
rerandomizable signatures (e.g. [Lys02,Wat05]) and, more recently, of verifiable random functions
(e.g. [BGRV09, Jag15, HJ16]) from various assumptions. More recently still, Guo et al. [GCS+17]
devised a non-black-box reduction proving security of a unique signature scheme in the random
oracle model; while such a reduction is not subject to Coron’s impossibility or variants thereof,
it is still not linear-preserving (since its security loss depends on the number of adversarial oracle
queries).

Tightly Secure Constructions of Non-Unique Signatures. We lastly remark on the exis-
tence of several constructions of non-unique and non-rerandomizable digital signature schemes, as
well as of identity-based encryption (IBE) schemes (which, as described in [BF01], imply signature
schemes with the same security loss via a transformation devised by Naor), that exhibit tight or
linear-preserving security reductions. Bellare and Rogaway [BIN97] and, later, Bernstein [Ber08]
and Abdalla et al. [AFLT12], demonstrated tightly secure reductions for digital signature schemes
in the random-oracle model. Hofheinz and Jager [HJ12] constructed a signature scheme which is
tightly secure based only on the Decision Linear assumption. Chen and Wee [CW13] proposed
the first IBE scheme with a linear-preserving reduction based on standard assumptions, and Chen
et al. [CGW17] later proposed another IBE scheme which, while not technically tight or linear-
preserving, is tighter than any previous construction in a concrete sense (as its security loss is
proportional to the logarithm of the number of secret keys and challenge ciphertexts revealed to
the adversary).

References

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi.
Tightly-Secure Signatures from Lossy Identification Schemes. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, pages
572–590, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[AGO11] Masayuki Abe, Jens Groth, and Miyako Ohkubo. Separating Short Structure-
Preserving Signatures from Non-interactive Assumptions. In Proceedings of the 17th In-

27

ternational Conference on The Theory and Application of Cryptology and Information
Security, ASIACRYPT’11, pages 628–646, Berlin, Heidelberg, 2011. Springer-Verlag.

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the Impossibility of Tight
Cryptographic Reductions. In Proceedings, Part II, of the 35th Annual International
Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume 9666, pages
273–304, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[BBF13] Paul Baecher, Christina Brzuska, and Marc Fischlin. Notions of Black-Box Reduc-
tions, Revisited. In Part I of the Proceedings of the 19th International Conference on
Advances in Cryptology - ASIACRYPT 2013 - Volume 8269, pages 296–315, Berlin,
Heidelberg, 2013. Springer-Verlag.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-Key Encryption in
a Multi-user Setting: Security Proofs and Improvements. In Bart Preneel, editor,
Advances in Cryptology — EUROCRYPT 2000, pages 259–274, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does Parallel Repetition Lower
the Error in Computationally Sound Protocols? In Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, pages 374–, Washington,
DC, USA, 1997. IEEE Computer Society.

[BR09] Mihir Bellare and Thomas Ristenpart. Simulation without the Artificial Abort: Sim-
plified Proof and Improved Concrete Security for Waters’ IBE Scheme. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 407–424, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures–How to
Sign with RSA and Rabin. In Proceedings of the 15th Annual International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT’96, pages 399–
416, Berlin, Heidelberg, 1996. Springer-Verlag.

[BFW16] David Bernhard, Marc Fischlin, and Bogdan Warinschi. On the Hardness of Proving
CCA-Security of Signed ElGamal. In Proceedings, Part I, of the 19th IACR Inter-
national Conference on Public-Key Cryptography — PKC 2016 - Volume 9614, pages
47–69, Berlin, Heidelberg, 2016. Springer-Verlag.

[Ber08] Daniel J. Bernstein. Proving Tight Security for Rabin-Williams Signatures. In Nigel
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, pages 70–87, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[BF01] Dan Boneh and Matt Franklin. Identity-Based Encryption from the Weil Pairing. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 213–229, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to
factoring. In Kaisa Nyberg, editor, Advances in Cryptology — EUROCRYPT’98, pages
59–71, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

28

[BGRV09] Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and Vinod Vaikuntanathan.
Weak Verifiable Random Functions. In Proceedings of the 6th International Confer-
ence on Theory of Cryptography, TCC ’09, pages 558–576, Berlin, Heidelberg, 2009.
Springer-Verlag.

[BMV08] Emmanuel Bresson, Jean Monnerat, and Damien Vergnaud. Separation Results on the
“One-More” Computational Problems. In Tal Malkin, editor, Topics in Cryptology –
CT-RSA 2008, pages 71–87, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive Hardness and Composable Security
in the Plain Model from Standard Assumptions. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 541–550, Oct 2010.

[CGW17] Jie Chen, Junqing Gong, and Jian Weng. Tightly Secure IBE Under Constant-Size
Master Public Key. In Serge Fehr, editor, Public-Key Cryptography – PKC 2017, pages
207–231, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[CW13] Jie Chen and Hoeteck Wee. Fully, (Almost) Tightly Secure IBE and Dual System
Groups. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, pages 435–460, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Cor02] Jean-Sébastien Coron. Optimal Security Proofs for PSS and Other Signature Schemes.
In Proceedings of the International Conference on the Theory and Applications of Cryp-
tographic Techniques: Advances in Cryptology, EUROCRYPT ’02, pages 272–287, Lon-
don, UK, UK, 2002. Springer-Verlag.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the Simultaneous Resettability
Conjecture and a New Non-Black-Box Simulation Strategy. In Proceedings of the 2009
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, pages
251–260, Washington, DC, USA, 2009. IEEE Computer Society.

[DH06] Witfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE Trans.
Inf. Theor., 22(6):644–654, September 2006.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent Zero-Knowledge. In Pro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, pages 409–418, New York, NY, USA, 1998. ACM.

[FS12] Dario Fiore and Dominique Schröder. Uniqueness is a Different Story: Impossibility of
Verifiable Random Functions from Trapdoor Permutations. In Proceedings of the 9th
International Conference on Theory of Cryptography, TCC’12, pages 636–653, Berlin,
Heidelberg, 2012. Springer-Verlag.

[FS10] Marc Fischlin and Dominique Schröder. On the Impossibility of Three-move Blind
Signature Schemes. In Proceedings of the 29th Annual International Conference on
Theory and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 197–
215, Berlin, Heidelberg, 2010. Springer-Verlag.

29

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, pages 51–68, New York,
NY, USA, 2017. ACM.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC ’85, pages 291–304, New York, NY, USA, 1985. ACM.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308,
April 1988.

[GCS+17] Fuchun Guo, Rongmao Chen, Willy Susilo, Jianchang Lai, Guomin Yang, and Yi Mu.
Optimal Security Reductions for Unique Signatures: Bypassing Impossibilities with a
Counterexample. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryp-
tology – CRYPTO 2017: 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20–24, 2017, Proceedings, Part II, pages 517–547, Cham,
2017. Springer International Publishing.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (Im)possibility of Arthur-
Merlin Witness Hiding Protocols. In Omer Reingold, editor, Theory of Cryptography,
pages 220–237, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly Secure Signatures and Public-Key Encryp-
tion. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, pages 590–607, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[HJ16] Dennis Hofheinz and Tibor Jager. Verifiable Random Functions from Standard As-
sumptions. In Proceedings, Part I, of the 13th International Conference on Theory of
Cryptography - Volume 9562, TCC 2016-A, pages 336–362, New York, NY, USA, 2016.
Springer-Verlag New York, Inc.

[HJK12] Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters Signatures with Optimal
Security Reduction. In Proceedings of the 15th International Conference on Practice
and Theory in Public Key Cryptography, PKC’12, pages 66–83, Berlin, Heidelberg,
2012. Springer-Verlag.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences of One-
way Permutations. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC ’89, pages 44–61, New York, NY, USA, 1989. ACM.

[Jag15] Tibor Jager. Verifiable Random Functions from Weaker Assumptions. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography: 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part II, pages 121–143, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal Security Proofs for Full Domain Hash, Re-
visited. In Proceedings of the 31st Annual International Conference on Theory and

30

Applications of Cryptographic Techniques, EUROCRYPT’12, pages 537–553, Berlin,
Heidelberg, 2012. Springer-Verlag.

[Lin03] Yehuda Lindell. Bounded-Concurrent Secure Two-party Computation Without Setup
Assumptions. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’03, pages 683–692, New York, NY, USA, 2003. ACM.

[Lub96] Michael Luby. Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Jan. 1996.

[Lys02] Anna Lysyanskaya. Unique Signatures and Verifiable Random Functions from the
DH-DDH Separation. In Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’02, pages 597–612, London, UK,
UK, 2002. Springer-Verlag.

[MVR99] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable Random Functions. In Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, pages 120–, Washington, DC, USA, 1999. IEEE Computer Society.

[Nao03] Moni Naor. On Cryptographic Assumptions and Challenges. Advances in Cryptology
- CRYPTO 2003, pages 96–109, 2003.

[NR97] Moni Naor and Omer Reingold. Number-Theoretic Constructions of Efficient Pseudo-
Random Functions. J. ACM, 51:231–262, 1997.

[NR99] Moni Naor and Omer Reingold. Synthesizers and Their Application to the Parallel
Construction of Pseudo-Random Functions. J. Comput. Syst. Sci., 58(2):336–375,
April 1999.

[Pas11] Rafael Pass. Limits of Provable Security from Standard Assumptions. In Proceedings
of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11, pages
109–118, New York, NY, USA, 2011. ACM.

[PS17] Rafael Pass and Elaine Shi. The Sleepy Model of Consensus. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 380–409,
Cham, 2017. Springer International Publishing.

[PTV14] Rafael Pass, Wei-Lung Tseng, and Muthuramakrishnan Venkitasubramaniam. Con-
current Zero Knowledge, Revisited. J. Cryptol., 27(1):45–66, January 2014.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On Constant-Round Con-
current Zero-Knowledge. In Proceedings of the Fifth International Conference on The-
ory of Cryptography, TCC’08, pages 553–570, 2008.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent Zero Knowledge with
Logarithmic Round-Complexity. In Proceedings of the 43rd Symposium on Foundations
of Computer Science, FOCS ’02, pages 366–375, Washington, DC, USA, 2002. IEEE
Computer Society.

[Rab79] Michael Rabin. Digitalized signatures and public-key functions as intractable as fac-
torization. Technical report, Cambridge, MA, USA, 1979.

31

[RK99] Ransom Richardson and Joe Kilian. On the Concurrent Composition of Zero-
knowledge Proofs. In Proceedings of the 17th International Conference on Theory and
Application of Cryptographic Techniques, EUROCRYPT’99, pages 415–431, Berlin,
Heidelberg, 1999. Springer-Verlag.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining Digital
Signatures and Public-key Cryptosystems. Commun. ACM, 21(2):120–126, February
1978.

[Sha78] Adi Shamir. A fast signature scheme. Technical report, Cambridge, MA, USA, 1978.

[WMHT18] Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory
Lower Bounds of Reductions Revisited. In Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I,
pages 61–90, 2018.

[Wat05] Brent Waters. Efficient Identity-based Encryption Without Random Oracles. In Pro-
ceedings of the 24th Annual International Conference on Theory and Applications of
Cryptographic Techniques, EUROCRYPT’05, pages 114–127, Berlin, Heidelberg, 2005.
Springer-Verlag.

A A Stronger Bound for Statically Scheduled Reductions

As a high-level demonstration of our proof techniques, we present a brief simplified version of
our argument assuming static scheduling (i.e., that R queries instances of A in the same order
irrespective of the messages sent by A) which in fact achieves a security loss bound asymptotically
equivalent to the original result of Coron in a more general setting. We emphasize that our actual
proof, as it must deal with dynamic scheduling, is significantly more complicated.

Assume that M(n) instances of A are run to completion by R, and each instance makes at most
`(n) signature queries; in that case, in any one instance of A, there can be at most M(n) queries for
which R requires a forgery for some other instance of A before its response, and an additional r(n)
which can contain (non-rewindable) external communication between R and C before R’s response.
As such, the minimum possible number of queries in some instance of A which are “rewindable” in
that they do not have one of these occurrences is

`∗(n) , `(n)− (M(n) + r(n))

(which for brevity we shall abbreviate as `∗, and similarly for `, m, and r). To analyze the
probability of B failing to emulate A, then, we must consider the probability with which R will
respond incorrectly to all of the rewindings of the `∗ rewindable queries while responding correctly
to all of B’s original queries.

As we restrict to static scheduling, we can bound the failure probability of B by noticing an
important relationship between sequences of messages for which B fails to emulate A correctly
and sequences for which B succeeds in emulating A. In particular, consider a context where we
(arbitrarily) fix all randomness aside from the messages and forgery generated by a certain specific

32

instance of A5, and assume we have some sequence (m1, . . . ,m`;m
∗), defined by the messages

(m1, . . . ,m`) and forgery message m∗ for that instance, that is “bad” in the sense that B will fail
to emulate A due to every rewinding failing to extract a forgery for m∗ yet every (non-rewound)
query receiving a valid response from R. In that case, given some message mi whose query is
rewindable (in the sense that, given the static schedule, it does not contain a forgery request
or external communication), we can deduce that running the same instance using the queries
(m1, . . . ,mi−1,m

∗,mi+1, . . . ,m`), as the execution is identical to one of the rewindings of B which
by assumption does not receive a valid signature for m∗, must result in R failing to respond to m∗

and thus A (and likewise B) returning ⊥. However, in this latter case, we notice that B in fact will
successfully emulate A, and so the latter sequence of messages cannot be “bad” as defined above.

In other words, for each sequence (m1, . . . ,m`;m
∗) which is “bad” in that it causes B to return

⊥ while A would return a forgery, the `∗ sequences given by (m1, . . . ,mi−1,m
∗,mi+1, . . . ,m`;mi)

for each rewindable query i must be “good” in that they cause B to successfully emulate A (by
both returning ⊥). Furthermore, note that each of the “good” sequences we consider are mapped
uniquely to the “bad” sequence from which they originate by switching the forgery message (i.e.,
mi) with the first query where R fails to respond. Note that this query must be m∗, since, because
(m1, . . . ,m`;m

∗) is “bad”, the non-rewound queries (m1, . . . ,m`) receive a valid response, and so
the prefix (m1, . . . ,mi−1) must likewise receive valid responses to all queries, and yet we know that
placing m∗ in the ith query must fail to procure a correct response to m∗.

Hence, we notice that each “bad” sequence implies that, out of itself and `∗ of its rewindings
(a total of `∗ + 1 sequences), `∗ of those must be “good” (and that these sets of implied “good”
sequences are disjoint between different “bad” sequences); hence, at most an

1

`∗ + 1
=

1

`− (M + r) + 1

fraction of all sequences can be bad, which by definition corresponds precisely to the probability
that B fails to emulate that particular instance of A taken over a randomly chosen sequence of
messages and forgery message. (And, as this bound holds given any fixed external randomness,
it must hold in general when the randomness is not fixed.) Applying the union bound over M
different instances gives us an overall failure probability bound for B of

M

`− (M + r) + 1

To bound the security loss, we must of course consider the success probability of RA rather
than the success probability of B. However, we know by the security assumption (C, t(·)) that B can
break C with probability at most negligible in n (that is, it causes C to accept with probability no
greater than t(n) + ν(n) for some negligible ν(·)), and, since RA and B are identically distributed
with all but M

`−(M+r)+1 probability, this means that RA can only break C with probability

SuccessRA(n) ≤ M

`− (M + r) + 1
+ ν(n) <

M

`− (M + r)

(for sufficiently large n). We can separate into two cases from here.

5We shall, as in the main result, show that our failure probability bound holds for any setting of such external
randomness.

33

Case 1: If M < `/2− r, then the security loss is given by

λR(n) ≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)
≥ `− (M + r)

M

(
M`

`

)
= `− (M + r) ≥ `

2

(notice that SuccessA(n) = 1 and R must send ` messages to each instance of A).

Case 2: Otherwise, if M ≥ `/2 − r, we can observe that, even without regarding the failure
probability of B (i.e., only comparing the running times of R and A), we obtain:

λR(n) >
1

1

((
`
2 − r

)
`

`

)
=
`

2
− r

Either way, we notice that λR(n) ≥ `(n)
2 − r(n).

Thus, we have demonstrated a basic bound on the security loss of such a reduction R. And,
assuming for the sake of contradiction that R is linear-preserving with λR(n) ≤ p(n) for some
polynomial p(·), setting `(n) > 2(p(n) + r(n)) (since the adversary A may make any polynomial
number of signature queries) gives λR(n) > p(n), which is a contradiction.

B Defining Security Loss using Queries

Here we prove that our definition of security loss using the number of queries instead overall running
time is in fact without loss of generality; in particular, we can always construct an adversary A′
where the maximum running time is proportional to the maximum number of queries, showing
that the query-based security loss is a lower bound for the time-based security loss. As a result of
this, our results, while proven using our query-based definition, apply to time-based definitions of
security loss as well.

Lemma 5. For any reduction R which breaks some assumption (C, t(·)) and any deterministic
adversary A, there exists a deterministic adversary A′ such that, letting TimeA′(n) and TimeRA′ (n)

denote the worst-case running time of A′ and RA′ , respectively:

SuccessA′(n)

SuccessRA′ (n)

TimeRA′ (n)

TimeA′(n)
≥ SuccessA(n)

SuccessRA(n)

QueryRA(n)

QueryA(n)

Proof. Given some A, let τ(n) denote for each n ∈ N the maximum time taken by A to send
a message after receiving a message from R during any experiment [RA ↔ C](1n)—that is, the
maximum is taken over all randomness of R, A, and C.

Let A′ be an adversary that proceeds identically to A, except that, on input 1n, it takes τ(n)
time (after receiving a message from R) to send every message in its interaction with R. So we
have:

SuccessA′(n)

SuccessRA′ (n)
=

SuccessA(n)

SuccessRA(n)

and, since by construction TimeRA′ (n) ≥ τ(n)QueryRA(n) and TimeA′(n) = τ(n)QueryA(n), we
also have:

TimeRA′ (n)

TimeA′(n)
≥ τ(n)QueryRA(n)

τ(n)QueryA(n)
=

QueryRA(n)

QueryA(n)

These facts taken together complete the argument.

34

C Rerandomizable Signatures

Our impossibility result for unique signatures also applies to the more general class of rerandomiz-
able signatures, which are signature schemes that need not be unique but are “efficiently rerandom-
izable” in the sense that there exists some algorithm Rerand which can select a rerandomization of
a signature uniformly randomly from the set of possible signatures of a message. Formally:

Definition 8. A rerandomizable signature scheme is a tuple (Gen, Sign,Ver,Rerand) of prob-
abilistic polynomial-time algorithms such that, for every n ∈ N:

• Gen, on input 1n, produces a pair (pk, sk)
• Sign, on input (sk,m) for any m ∈ {0, 1}n, produces a signature σ. (We write σ ← Signsk(m).)
• Ver, on input (pk,m, σ), produces either Accept or Reject. (We write out← Verpk(m,σ).)
• Rerand, on input (pk,m, σ), produces a signature σ′. (We write σ′ ← Rerandpk(m,σ).)

and, in addition, the following properties hold:

• Correctness: For every n ∈ N and m ∈ {0, 1}n:

Pr [(pk, sk)← Gen(1n) : Verpk(m,Signsk(m)) = Accept] = 1

• Rerandomizability : For any pk ∈ {0, 1}∗, m ∈ {0, 1}n, and σ ∈ {0, 1}∗ such that Verpk(m,σ) =
Accept, the output of Rerandpk(m,σ) is uniformly distributed over the set Σpk,m of all signa-
tures σ′ where Verpk(m,σ′) = Accept.

We note that this is of course a strict generalization of unique signatures, as we may take
Rerandpk(m,σ) = σ to trivially transform any unique signature scheme into a rerandomizable
signature scheme.

The impossibility results presented in [HJK12,BJLS16] are generalized to the case of rerandom-
izable signatures, but are notably still restricted to the case of straight-line or “simple” reductions.
Through a slight alteration to the meta-reduction we use to prove Theorem 2 for the case of unique
signatures, we can generalize our result (for arbitrary fixed-parameter reductions and any bounded-
round assumption) to rerandomizable signatures by proving the following analogue of Theorem 2:

Theorem 3. Let Π = (Gen, Sign,Ver,Rerand) be a rerandomizable signature scheme, and let
(C, t(·)) be some r(·)-round intractability assumption for polynomial r(·). If there exists some
fixed-parameter black-box reduction R for basing weak unforgeability of Π on the hardness of
(C, t(·)), then either:

(1) R is not a linear-preserving reduction, or

(2) there exists a polynomial-time adversary B that breaks the assumption (C, t(·)).

While it is tempting to believe that we could directly apply the ideal adversary A and meta-
reduction B from Theorem 2 to show this, while simply using the rerandomizability property as
a substitute for uniqueness (that is, have A and B respectively rerandomize their forgeries to
guarantee that the results, and hence transcripts, are identically distributed), there is a subtle

35

• Initially, receive a message pk, the public key; respond (i.e., generate m1) according to the next
step for i = 1.

• On receiving a message consisting of a partial transcript τ = (pk,m1, σ1, · · · ,mi−1, σi−1) for
some i ∈ [`(n)], do the following:

– Generate mi by taking the first n bits resulting from applying the oracle O to the input
(pk, i,Valid(O, τ)).

– Return the new partial transcript τ ||mi which results from appending mi to the transcript
τ .

• On receiving a message consisting of a complete transcript τ = (pk,m1, σ1, · · · ,m`(n), σ`(n)) (we
shall refer to such a message as a “forgery request” or “end message”), do the following:

– If Valid(O, τ) returns 0, then return ⊥.

– Otherwise, generate a random message m∗ (distinct from each mi in τ) by applying O to
the transcript τ ′, use brute force to find a signature σ∗ for which Verpk(m∗, σ∗) = Accept,
and return the forgery (m∗,Rerandpk(m∗, σ∗)).

Let Valid(O, τ) be defined as follows:

• Parse τ = (pk,m1, σ1, . . . ,mk, σk).

• Verify that, for each signature σi, Verpk(mi, σi) = Accept. If not true for all i, return 0.

• Verify that, for each message mi, mi is equal to the first n bits resulting from applying the oracle
O to the input (pk, i, 1). If not true for all i, then return 0.

• Otherwise, return 1.

Figure 5: Formal description of the “ideal” adversary AO for rerandomizable signatures.

issue that precludes doing so. In particular, it is no longer without loss of generality that R is
unable to rewind A; instead, since we no longer have the uniqueness property, R may attempt to
influence the signature queries generated by A by rewinding to a prior query and offering a different
(valid) signature for the respective message, which will change the random transcript to which the
oracle O is applied and thus influence subsequent queries from A.

Hence, we instead require the subtlely altered ideal adversary and meta-reduction presented in
Figures 5 and 6, respectively. The key difference is that the input to the oracle O depends not on
the prior responses from R, but only on whether the prior responses were valid; in this way, we
can once again assert that R is without loss of generality unable to rewind A (as, for a particular
O, every sequence of valid responses from R will produce the same sequence of queries from A,
irrespective of the responses themselves), while also preserving Claim 1 in that R must still give a
valid response to each of A’s queries in order to receive the correct subsequent queries from A (and
so it must still answer every query correctly, or guess the output of the random oracle, in order to
receive a forgery).

Using this, we can now proceed to prove Theorem 3 in an identical manner to Theorem 2, with
the aforementioned exception that, for the purposes of showing that A’s and B’s forgeries (now
rerandomized before returning) are identically distributed in the case where B succeeds (i.e., Claim
3), we replace the uniqueness property with the fact that the rerandomizations of any two valid

36

• Set initial view v ← ⊥ and set k ← 1. Execute R, updating the current view v according to the following
rules.

• When R begins a new instance of A and sends a public key pk, label this instance as instance k.
Generate and store 2`(n) random queries ~m0

k = (m0
k,1, . . . ,m

0
k,`(n)) and ~m1

k = (m1
k,1, . . . ,m

1
k,`(n)) and a

target forgery m∗k. (Abort and return Fail if m∗k is equal to a message in either ~m∗k.) Also let pkk ← pk
and initialize the forgery fk ← {}. Lastly, respond with τ∗k = pkk||mk,1 and increment k.

• When R attempts to communicate externally with C, forward the message, return C’s response to R,
and update v accordingly.

• When R sends a transcript τ = (pk,mI,1, σI,1, · · · ,mI,j , σI,j) to some simulated instance I of A:

– If Valid(τ, ~m1) = 1 then store the signature σI,j .

– If j = `(n) (i.e., this is an end message), then do the following:

∗ If Valid(τ, ~m1
I) = 0 or if there exists some j ∈ [`(n)] for which no response σI,j has been

storeda, return ⊥.

∗ Otherwise, run the procedure Rewind detailed below for the instance I.

∗ If, after running Rewind, there is a stored forgery fI = (m∗I , σ
∗
I), then return

(m∗I ,Rerandpk(m∗I , σ
∗
I)) and continue executing R as above. Otherwise, abort the entire

execution of B and return Fail.

– Lastly, respond with τ ||mValid(τ,~m1
I)

I,j+1 and continue the execution of R.

Rewind procedure:

• Given instance I, for j ∈ [`(n)] let (vjopen, v
j
close) denote the slot corresponding to the jth signature query

for instance I (i.e., the first instance where B sends to R the message m1
I,j ; note that there must be

such an instance for B to have stored the respective signature).

• For each j ∈ [`(n)], “rewind” the slot (vjopen, v
j
close) as follows: Let k′ ← k, and begin executing R from

the view v′ = vjopen||m∗I as in the main routine, with the following exceptions:

– Replace any other instances of the message m1
I,j with m∗I (e.g., if R attempts to rewind and make

a query to the same slot).

– When R begins a new instance of A, label this instance as instance k′ and increment k′. (That
is, continue creating new instances, but preserve the counter k in the outer execution for after the
rewinding.)

– When R attempts to communicate externally with C, abort the rewinding and continue to the
next j.

– When R sends an end message for an instance I ′ 6= I of A, abort the rewinding and continue to
the next j, unless R has not sent responses to `(n) signature queries for that instance (in which
case respond with ⊥).

– If v′ ever contains a message whose transcript contains a response σ∗I to any query for m∗I , then,
if it is the case that VerpkI (m∗I , σ

∗
I) = Accept, store fi ← (m∗I , σ

∗
I) and end the Rewind procedure

(i.e., return to the outer execution); otherwise, if VerpkI (m∗I , σ
∗
I) = Reject, store nothing to fI and

continue to the next j.

Let Valid(τ, ~m1) be defined as follows:

• Parse τ as (pk,m1, σ1, · · · ,mj , σj). If this fails, return 0.

• If, for any j, Verpk(mj , σj) = Reject or mj 6= m1
j , then return 0. Otherwise, return 1.

aThis can occur with at most negligible probability if Valid = 1, as in that case R would have to guess some
element of ~m1.

Figure 6: Formal description of the meta-reduction B for rerandomizable signatures.

37

signatures of the same message are by definition identically distributed. As the proof is identical
aside from this detail, we omit it.

38

	Introduction
	Proof Outline

	Preliminaries and Definitions
	Notation
	Unique Signatures
	Intractability Assumptions
	Black-Box Reductions

	Main Theorem
	The ``Ideal" Adversary
	The Meta-Reduction
	Analyzing the Meta-Reduction

	Related Work
	A Stronger Bound for Statically Scheduled Reductions
	Defining Security Loss using Queries
	Rerandomizable Signatures

