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Abstract. At CHES 2016, Bos et al. introduced differential computational analysis (DCA) as an attack
on white-box software implementations of block ciphers. This attack builds on the same principles as
DPA in the classical side-channel context, but uses computational traces consisting of plain values
computed by the implementation during execution. It was shown to be able to recover the key of many
existing AES white-box implementations.
The DCA adversary is passive, and so does not exploit the full power of the white-box setting, implying
that many white-box schemes are insecure even in a weaker setting than the one they were designed
for. It is therefore important to develop implementations which are resistant to this attack. We inves-
tigate the approach of applying standard side-channel countermeasures such as masking and shuffling.
Under some necessary conditions on the underlying randomness generation, we show that these coun-
termeasures provide resistance to standard (first-order) DCA. Furthermore, we introduce higher-order
DCA, along with an enhanced multivariate version, and analyze the security of the countermeasures
against these attacks. We derive analytic expressions for the complexity of the attacks – backed up
through extensive attack experiments – enabling a designer to quantify the security level of a masked
and shuffled implementation in the (higher-order) DCA setting.
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1 Introduction

In the classical cryptanalytic setting, the adversary faces the challenge of breaking the security of e.g. an
encryption algorithm while only being able to consider the algorithm as a black box ; she can query the box
with inputs and receive the corresponding outputs. While the design of the algorithm is known, the adversary
cannot observe the internal state of the algorithm, or affect the execution of the algorithm.

In practice, a cryptographic algorithm has to be implemented somewhere to be useful, i.e. in hardware
or software. Thus, the adversary has the option of physically interacting with the encryption device. In this
case, the adversary has access to implementation specific side-channel information. If an implementation
is not sufficiently protected, leaking information such as the execution time or the power consumption can
be used to extract secret information, e.g. encryption keys. The widespread use and success of side-channel
attacks show that a cryptographer has to be very careful when operating in this gray-box model.

1.1 Shades of Gray

For hardware implementations, the gray-box model is often the limit of what an adversary can achieve. This
is not the case for software implementations that are executed in untrusted environments. If an adversary
is given full access to the execution environment of the cryptographic software, she can easily observe and



manipulate the execution of the primitive, instantiated with some secret key. This setting, introduced by
Chow et al. in [10], is called the white-box model.

In the white-box setting, the adversary can study the logic flow of the implementation, observe any tables
the implementation uses, observe intermediate values computed during execution, alter the implementation
at run-time, etc. Indeed, “when the attacker has internal information about a cryptographic implementa-
tion, choice of implementation is the sole remaining line of defense” [10]. Ideally, the aim of a white-box
implementation would be to leave the white-box adversary with at most the same advantage as a black-
box adversary, but this seems to be very difficult. Instead, the current white-box paradigm aims to provide
practical security, in the sense that the implementation is difficult enough to attack so that an adversary is
forced to attempt other attack vectors.

Several different approaches have been proposed to make white-box secure implementations for standard
block ciphers, such as AES [10,9,29,17,5,6]. Sadly, all these designs have been broken by structural attacks
[2,22,21,27,19,23]. Additionally, no provably secure solutions have been reported in the literature. Still, there
exists an increasing industrial need for the protection of cryptographic implementations executed in untrusted
environments, such as the traditional digital rights management use case and the mobile payment applications
running on smart devices. This has driven the industry to develop home-made solutions relying on obscurity
(i.e. secrecy of the underlying obfuscation techniques). In this paradigm, white-box cryptography acts as a
moving target based on regular security updates and/or short-term key tokens and is considered a building
block of wider security solutions.

1.2 Differential Computational Analysis

The mentioned attacks against public white-box implementations exploit flaws in the underlying white-
box schemes. However, secret variants of known designs that change a few parameters or combine different
techniques would likely thwart these attacks, if exact designs are kept secret. To attack such implementations,
the adversary would have to perform reverse engineering, which can take considerable time and effort if
various layers of obfuscation have been applied.

A more generic approach was given recently by Bos et al.; [4] introduced the white-box equivalent of DPA,
namely differential computational analysis (DCA), and demonstrated how this technique is able to recover
the encryption key of several existing white-box implementations of the AES. Notably, the DCA adversary
is extremely powerful as it is implementation agnostic and therefore does not need to exert expensive reverse
engineering efforts. Thus, DCA has been devastating for industrial solutions that leverage design secrecy to
develop white-box implementations consisting of a mix of various techniques (common white-box techniques,
code obfuscation, home-made encodings, etc.).

Moreover, the DCA adversary does not take advantage of the full power of the white-box model. The
adversary only needs to be able to observe the addresses and values of memory being accessed during the
execution of the implementation. The adversary does not need to reason about the implementation details,
or modify the functionality of the code in any way, e.g. by disabling RNG functionalities – tasks that could
required considerable effort. Thus, the DCA attack is a passive and non-invasive attack, existing in a setting
which is closer to a gray-box than a white-box. Additionally, the attacks presented in [4] have very low
complexities.

Following these observations, the current white-box AES implementations are not even secure in a weaker
attack context than the one they were designed for, and as a consequence, designing secure white-box
implementation seems out of reach. Indeed, DCA seems to be the biggest hindrance to designing practically
secure white-box implementations. It is therefore of importance to first explore the design of cryptographic
implementations which are secure against DCA.

1.3 Our Contributions

A natural approach when attempting to mitigate the threat of DCA attacks is to apply known countermea-
sures from the side-channel literature. However, it is not clear how well these countermeasures carry over to
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the white-box context and what level of security can be achieved by such countermeasures against a DCA
adversary. To address these issues, we achieve the following:

– Side-channel countermeasures in the white-box setting: In Section 3 we discuss how to apply
the well known side-channel countermeasures in the white-box setting focusing on the (passive) DCA
adversary. Specifically, we focus on higher-order masking along with shuffling of operations to introduce
noise in the DCA traces. We show that if the source of randomness used in the implementation satisfies
some specific security properties, then this approach is sufficient to achieve security against standard
first-order DCA.

– Higher-order DCA: We develop higher-order DCA in Section 4 to analyze the security of the proposed
protection. We show that higher-order DCA is able to break a masked implementation of any order
using a couple of traces. However, by introducing noise in the form of shuffling, the security of the
implementation can be dramatically increased. As a demonstration, a typical AES implementation with
2nd order masking (and shuffling degree of 16) requires 221 traces to break with 3rd order DCA.

– Multivariate higher-order DCA: We extend the above attack by introducing a multivariate version
in Section 5, which reduces the computational complexity by decreasing the number of required traces
for a successful attack. Using this multivariate variant, the number of traces required to successfully
attack the AES implementation mentioned above can be reduced to 210.

– Formal analysis and experimental verification: We derive analytic expressions for the success prob-
ability and attack complexities of both the higher-order DCA and its multivariate variant. Using these
expressions, we are able to give estimates for the security level of a masked and shuffled implementation
in the DCA setting. As an example, an AES implementation with 7th order masking would have a se-
curity level of about 85 bits in this setting. Then accuracy of our expressions for the success probability
of the multivariate higher-order DCA is verified in Section 5.2 through extensive experiments for a wide
range of implementation and attack parameters. 2 000 attacks of up to order 4 were simulated, using as
many as 30 000 traces per attack.

In summary, our result provides formal ground to the study of standard side-channel defenses in the white-
box setting. We have analyzed the widely used masking and shuffling countermeasures with respect to the
DCA adversary and we have quantified their security against advanced DCA attacks. From our analysis, a
designer can choose an appropriate set of implementation parameters to achieve a given security level with
respect to DCA, which is a first step towards building security against a stronger white-box adversary.

1.4 Related Works

Two independent and related works have been published since the first version of the present paper which
both address masking in the white-box context. First, Biryukov and Udovenko [3] broadly overview how a
white-box adversary could attack masked white-box implementations in several aspects, in particular, in an
active (fault injection) attack setting. Second, Goubin et al. [15] proposed a method to attack an obscure
white-box implementation (in the sense that the adversary has no/limited knowledge on the design), which
was successfully applied to break the winning challenge in the recent WhibOx 2017 contest [1]. Particularly,
their linear decoding analysis can break a noise-free masked implementation with complexity approximately
cubic in the size of the computation trace.

Compared to these works, the adversary we consider is passive, as such she would not be impacted by
fault detection/correction measures. Moreover, [15] demonstrates that masking is a weak countermeasure
unless it is composed with some kind of noise. Therefore, this work focuses on white-box implementations
protected with both masking and shuffling.

2 Differential Computation Analysis

The DCA adversary is capable of querying a software implementation of a cryptographic primitive with
arbitrary input to obtain a computational trace of the execution. The computational trace consists of: any
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value calculated, written, or read by the implementation, and the address of any memory location read from
or written to during execution. Each data point in the computational trace is further annotated with the
time it occurred in the execution. When a number of traces have been collected, the adversary calculates
correlations between a prediction of a key-dependent intermediate value and computed values.

2.1 DCA Setting

As for hardware side-channel attacks, DCA exploits that the (software) implementation leaks some informa-
tion about intermediate variables involved in the execution of the cryptographic algorithm. Some of these
intermediate variables depend on the plaintext and (part of) the secret key, and knowledge of such variables
can therefore reveal the key. We denote such a secret variable by s = ϕ(x, k∗), where ϕ is a deterministic
function, x is a public value, e.g. (part of) the plaintext, and k∗ ∈ K is a (secret) subkey over some subkey
space K. For instance, k∗ could be a byte of the secret key and K would then be {0, 1}8.

The DCA attack itself consists of first obtaining a number of computational traces from the execution of
the cipher implementation with secret subkey k∗ for several (random) plaintexts. We denote a computational
trace consisting of t time points by the ordered t-tuple v = (v1, v2, . . . , vt), with vi ∈ V for some set V. In
principle, the traces can be any value exposed to a dynamic binary analysis tool, as explained above. Usually,
an attacker will obtain N computational traces, v1, . . . ,vN , representing N executions of the implementation
with different inputs, each corresponding to a value si = ϕ(xi, k

∗) of the target secret variable. These traces
could e.g. arise from the encryption of N different plaintexts. The attacker then performs a classic DPA, in
which a distinguisher is used to indicate a correct guess of k∗. The distinguisher is a function D which maps
the set of computational traces (vi)i, and corresponding inputs (xi)i, to a score vector :

(γk)k∈K = D
(
(v1, . . . ,vN ); (x1, . . . , xN )

)
.

The adversary then selects the key guess k with the highest score γk as candidate for the correct value of
k∗. We define the success probability of the attack as

psucc = Pr(argmaxk∈Kγk = k∗),

where this probability is taken over any randomness supplied to the implementation (including the random-
ness of the inputs).

2.2 Standard First-Order DCA

The description above does not specify the distinguisher D. Here, we briefly describe the distinguisher used
in [4], which we will call the standard first-order DCA. Let us denote by vi,j the value at the j’th time
point of the i’th trace. The standard first-order DCA attack consists of calculating a correlation coefficient
between a vector of predicted values of the secret variable, (sk1 , . . . , s

k
N ), where ski = ϕ(xi, k), and the vector

(v1,j , . . . , vN,j), for every time index 1 ≤ j ≤ t. Then the score γk is defined as the maximum correlation
obtained over the different time indices, i.e.

γk = max
j
C
(
(v1,j , . . . , vN,j), (ψ(sk1), . . . , ψ(skN ))

)
,

for some correlation measure C and some pre-processing function ψ. For example, C could be the Pearson
correlation coefficient and ψ either the Hamming weight function or the selection of one bit of the predicted
variable. If there exists a statistical correlation between the secret variable and the values of the computational
trace, we would expect a large absolute value of C for some index j and the correct prediction of the secret
variables, i.e. the vector (sk

∗

1 , . . . , sk
∗

N ). On the other hand, if k 6= k∗, we expect a low correlation between all
ski and any point in the computational trace. It was shown in [4] that this approach is very effective against
a range of different AES and DES white-box implementations.
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3 Side-Channel Countermeasures against DCA

The DCA adversary is highly reminiscent of the standard side-channel adversary. It is therefore natural
to apply traditional side-channel countermeasures to a white-box implementation, and to evaluate their
performance against a DCA adversary. In the following, we specifically study the common software coun-
termeasures of higher-order masking and operation shuffling. We further discuss the source of randomness
necessary to feed these countermeasures and state a few security properties that it should satisfy in this
setting. We then show that this approach achieves security against standard first-order DCA. The rest of
the paper is dedicated to the study of advanced DCA attacks against these countermeasures.

3.1 DCA is a Passive and Non-Invasive Gray-Box Attack

We start by noting that applying the mentioned countermeasures in a strict white-box context might be
hazardous – indeed classical countermeasures such as masking and shuffling use fresh randomness throughout
the execution of the protected implementation which is usually provided by an external random number
generator (RNG). Since a white-box adversary has full control over the execution environment, such an RNG
could be detected and disabled, shuffled operations could be re-synchronized (e.g. using memory addresses,
program counter, etc.), and/or masks could be canceled (if masked variables and corresponding masks are
easily identified).

In order to make such disabling difficult, the used randomness should rely on some internal PRNG
(see Section 3.4) and one should further add some layers of obfuscation countermeasures on top of it. The
adversary then has to invest some reverse engineering effort to bypass these countermeasures. Nevertheless,
we stress that this is exactly the type of analysis an adversary performing a DCA attack is trying to avoid.
While DCA attacks might not be optimal in terms of time and/or data complexity, they are very powerful due
to their genericness and the fact that they can be applied in a black-box way, i.e. without requiring reverse
engineering effort. This is an essential property of these attacks in the current white-box cryptography
paradigm where designers aim at practical security (as provable security seems out of reach) and use the
secrecy of the design as a leverage towards this goal. The main purpose of protecting against DCA is therefore
to force an adversary to employ more complicated and dedicated attack techniques, which might take a long
time to develop and apply, which is beneficial when combined with a moving target strategy.

3.2 Masking

A widely used countermeasure to standard DPA of hardware implementations is masking [7,16]. Since the
DCA attack relies on the same ideas as DPA, the prospect of applying masking to secure a software imple-
mentation against DCA is promising. To mask a secret variable, it is split into several parts that are then
processed independently. Specifically, each secret variable s occurring in the execution of the implementation
is split into d shares s1, . . . , sd such that s1⊕ . . .⊕sd = s. The masking must be done such that any subset of
less than d shares are statistically independent of s. A simple way to achieve this is by picking s1, . . . , sd−1
uniformly at random (the masks), and setting sd = s⊕ s1 ⊕ . . .⊕ sd−1 (the masked variable). The masking
is then said to be of order d − 1. One important aspect of a masked implementation is therefore that of
randomness: the implementation has to use a (P)RNG to generate these d− 1 masks.

Knowledge of all d shares is required to recover s, but combining the d shares would reveal the secret
variable to the DCA adversary. Thus, the implementation must be able to perform computations on the
secret variable s without combining the shares, i.e. for a function f , we want to compute shares ri such
that r1 ⊕ . . . ⊕ rd = f(s), from the original shares s1, . . . , sd. The computation is then said to be secure at
the order τ if no τ -tuple of intermediate variables is statistically dependent on a key-dependent variable.
Usually, d’th order masking aims to provide security at the order τ = d − 1. To compute any F2-linear
function on a masked variable s, we simply compute the function on each share separately. Thus, calculation
of the linear components of a typical SPN can be easily implemented on the masked state. Computing the
non-linear components (i.e. typically the S-boxes) is more involved but several masking schemes exist that
achieve (d− 1)’th order security (see for instance [24,13,11]).
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Masked state Normal in order iteration

Randomised iteration

Fig. 1. An illustration of memory (top) and time (bottom) shuffling applied to a second-order masked implementation.
The location of each share in memory and the order of iteration is randomised for each execution.

3.3 Shuffling

We will show in Section 4 that if masking is the only countermeasure, the DCA adversary can easily recover
the key. Indeed, the strength of a masked implementation is directly related to how noisy the adversary’s
observation of the shares is. Several approaches for introducing and increasing noise in masked implemen-
tations have been proposed and analyzed, e.g. in [28,26,12,25]. One such approach is shuffling: instead of
processing the calculations of the cipher in some fixed order, the order of execution is randomly chosen for
each run of the implementation based on the value of the input (e.g. the plaintext). The situation is slightly
more complicated in the DCA setting. Here, the adversary can make observations in two dimensions, namely
time and memory. Even if the order of execution is shuffled in time, an adversary can choose to order the
traces by the memory addresses accessed. Thus, we need to shuffle in both the time and memory dimension.

Memory Shuffle. In a masked implementation, we will typically have some state in which each element is
shared as described in Section 3.2. The idea of the memory shuffle is to randomly rearrange the shares
of the state in memory. Consider a state consisting of S elements. We assume that the shares si,j , 1 ≤
i < S, 1 ≤ j ≤ d, are stored in an array, initially in order. That is, the implementation uses the array
(s1,1, s2,1, . . . , sS−1,d, sS,d). Then, we randomly pick a permutation P : [1, S] × [1, d] → [1, S] × [1, d], based
on the value of the input. Note that this can be done efficiently using the Fisher-Yates shuffle [14]. Now,
instead of using the in-order array, we rearrange the array such that the implementation uses the array
(sP (1,1), sP (2,1), . . . , sP (S−1,d), sP (S,d)). Whenever the implementation needs to access share si,j , it simply
looks up the element in position P−1(i, j) of the array. A similar randomisation is performed for any key
shares.

Time Shuffle. In a typical SPN, there will be several operations that operate on each element of the state
in each round. The order of these operations is typically suggested by the cipher designers. As an example,
consider the case where we want to apply a linear operation A to each element of the state separately.
Since the operation is linear, we can apply it to each share of the masked elements individually. This will
normally be done in some “natural” order, e.g. A(s1,1), A(s1,2), A(s1,3), . . . , A(sS,d). However, the exact order
of execution does not matter. Thus, we can shuffle in the time dimension by randomly ordering these S · d
operations. In general, if a set of λ independent operations exists, we can freely shuffle the order in which we
process the λ · d shares. Formally, we randomly pick a permutation Q : [1, λ]× [1, d] → [1, λ]× [1, d]. Then,
when we normally would have processed share si,j , we instead process share sQ(i,j). Thus, the probability
that a specific share is processed in a given step is 1/(λ · d). We will denote the size of the smallest maximal
set of independent operations the shuffling degree.
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3.4 On the Source of Randomness

A potential issue while applying side-channel countermeasures to the white-box context is randomness gener-
ation. Since a white-box adversary can easily get rid of an external RNG, the randomness used by a white-box
implementation must be pseudo-randomly generated from the single available source of variation: the input
plaintext. In other words, the white-box implementation should embed some kind of pseudo random number
generator (PRNG) seeded by the input plaintext. We now (informally) state a few security properties that
should be fulfilled by such a PRNG in the white-box setting:

1. Pseudorandomness: The output stream of the PRNG should be hard to distinguish from true randomness.
2. Obscurity: The design of the PRNG should be kept secret.
3. Obfuscation: The PRNG should be mixed with the white-box implementation so that its output stream

is hard to distinguish from other intermediate variables.

The pseudorandomness property is required to ensure that the PRNG does not introduce a statistical flaw
in the implemented countermeasures. It is well known that a flawed RNG can be a disaster for the secu-
rity of masking (see for instance [20]). The pseudorandomness property further implies that the generated
randomness is unpredictable provided that the obscurity property also holds. The unpredictability of the
generated randomness is necessary to get DCA resistance, since without it all the intermediate variables
can be expressed as (known) deterministic functions of the plaintext and the secret key, which enables the
application of standard first-order DCA.5

Indeed, if the PRNG design was known to the adversary, then she could predict all the generated ran-
domness from the plaintext. Therefore in order to provide unpredictability, some part of the design must be
secret, even if the obscurity concept clearly clashes with the adage of Kerckhoffs’s Principle [18]. Nevertheless,
it seems almost impossible to provide any security if the full design is known, and we stress that this does not
imply that one should forego all good cryptographic engineering practices. One could use a keyed PRNG (or
PRNG with secret initial state), but even then if the design was known to the adversary she could mount a
DCA attack to recover the PRNG key and we would then face a chicken and egg problem. Alternatively, an
implementation could use a known strong PRNG with some sound changes to design parameters, in order to
have some confidence in its security. Another approach, which aligns with the moving target strategy, would
be to have a set of different PRNG designs that are often changed.

Finally the obfuscation property is required to prevent easy detection of the PRNG output which could
facilitate a DCA attack. It is for instance described in [15] how the generated randomness can be easily
detected by switching the values of intermediate variables and checking whether this affects the final result.
Such a detection is an active attack that tampers with the execution (in the same way as fault attacks) and
is hence out of scope of the DCA adversary. However it should be made difficult (in the same way as fault
attacks should be made difficult) to achieve some level of resistance in practice.

In the following, we shall consider that the above security properties are satisfied by the used PRNG so
that the DCA adversary cannot easily remove or predict the generated randomness. We will then analyze
which level of security is achievable by using masking and shuffling in this context.

3.5 Resistance to First-Order DCA

In Section 2 we described the capabilities of the DCA adversary and the standard first-order DCA. For
the masked implementation described above with d > 1, the d’th order security of the underlying masking
scheme implies that any d-tuple of variables from the computation trace v = (v1, v2, . . . , vt) is statistically
independent of any key-dependent variable. Assuming that the PRNG embedded in the target implementa-
tion outputs strong and unpredictable pseudorandomness (as required in Section 3.4) the distribution of any
d-tuple of variables from v is indistinguishable from the same distribution with perfect randomness, which
makes it (computationally) independent of any key-dependent variable. Therefore, standard first-order DCA
as described in Section 2.2 is doomed to fail.
5 Following the DCA setting described in Section 2.1, the only impact of the countermeasures in presence of a known

PRNG is to change the deterministic function ϕ in the expression of the secret variable s.
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4 Introducing Higher-Order DCA

While masking has been proven to be an effective defense against standard DPA, and we have argued for its
effectiveness against standard first-order DCA, there are ways to attack such masked implementations. For
hardware implementations, it is well known that a (d− 1)’th-order masked implementation, such as the one
described above, can be defeated by d’th-order DPA, if no other protection is employed. We will therefore
develop a higher-order version of DCA.

A d’th-order DCA consists of a pre-processing step followed by a first-order DCA. The adversary first
pre-processes each computational trace v to obtain a d’th-order computational trace w by applying a so-
called (d’th-order) combination function ψ. Specifically, the d’th-order computational trace w consists of
q =

(
t
d

)
points (w1, . . . , wq) given by

wj = ψ(vj1 , vj2 , . . . , vjd), {j1, . . . , jd} = φ(j),

where φ(j) is the j’th subset of {1, . . . , t} of size d (for some ordering). After computing the set of d’th order
traces w1, . . . ,wN , the adversary proceeds as for first-order DCA, using the wi’s as input to the distinguisher
D. Specifically, the adversary computes the score vector (γk)k∈K = D

(
(wi)i; (xi)i

)
in order to determine a

candidate for k∗.
For side-channel analysis of hardware implementations, it has been shown that a good combination

function for higher-order DPA is the centered product ψ : (v1, . . . , vd) 7→
∏
j(vj − µj), where µj is the

average of the leakage point vj over several encryptions. Nevertheless, since the measurements in this setting
are inherently noisy, a larger masking degree will require a larger number of traces to obtain a good success
probability. Note that this is not the case in the DCA context, if no noise is introduced in the implementation,
e.g. by using shuffling as described in Section 3.3. In this case, the exact value of each variable that appears
in an execution of the implementation appears at the same position of every computational trace vi. Then
there exists a fixed j∗, such that for φ(j∗) = (j∗1 , . . . , j

∗
d), the elements vj∗1 , . . . , vj∗d of the trace are the shares

of the target secret variable s. In that case, an optimal choice for the combination function is the XOR sum
of the trace values, that is

ψ(vj1 , vj2 , . . . , vjd) = vj1 ⊕ vj2 ⊕ · · · ⊕ vjd .

For this combination function, we have that ψ(vj∗1 , vj∗2 , . . . , vj∗d ) = s for all the d’th-order traces. By counting
the number of times this equality holds, we can easily determine the correct key. That is, we set

γk = max
j

(
Ck(vφ(j), (xi)i)

)
, with Ck(vφ(j), (xi)i) =

∣∣∣∣{i ;
⊕
l∈φ(j)

vi,l = ϕ(xi, k)

}∣∣∣∣.
For the correct key k∗, we deterministically have that γk∗ = N . Thus, if no noise is present, the higher-order
DCA is successful when γk× < N for all k× 6= k∗. The probability of this happening is quite close to 1, even
for small N . Thus, the introduction of some noise in the traces is required to secure a masked white-box
implementation against DCA.

4.1 Higher-Order DCA against Masking and Shuffling

We now consider how well the masked and shuffled implementation resists the higher-order DCA attack
described above. Due to the shuffling, the adversary is no longer guaranteed that her prediction for the correct
key guess will correspond to a single time point for all traces. Thus, she must compensate by increasing the
number of traces. The higher the degree of shuffling, the more traces needs to be collected.

Attack Analysis In the following, we assume that the adversary knows exactly where in the computational
trace to attack. That is, for a masking order d − 1 and a shuffling degree λ, she knows the range of the
t = λ · d time points that contain the shares of the target secret variable. In other words, the length of each
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Table 1. The number of traces N and the time needed to successfully attack an implementation with (d− 1)-order
masking and shuffling of degree λ with d’th-order DCA. Here, |K| = 256, and we fix the success probability at 90%.
The parameters chosen would be typical for a protected AES implementation.

d λ log2N log2 time d λ log2N log2 time d λ log2N log2 time

2 8 8.6 23.5 3 8 15.7 34.7 4 8 23.6 46.7
2 16 11.0 28.0 3 16 21.6 43.7 4 16 31.7 59.0

computational trace v is t. This, intuitively, represents the optimal situation for the adversary.6 We seek an
expression for the success probability of the attack, i.e. the probability that the correct key has a higher
score than all other key candidates.

The adversary proceeds as above and computes the d’th-order computational trace. However, there will
no longer be a single value j such that Ck∗(vφ(j), (xi)i) = N deterministically for the correct key k∗. Thus,
we need to know the distribution of γk, both for a wrong and a right guess of the key.

Theorem 1. Consider a masked white-box implementation of order d − 1 with shuffling degree λ. Let p =(
t
d

)−1
where t = λ · d, and let F (x;n, q) be the CDF (cumulative distribution function) of the binomial

distribution with parameters n and q. Let |K| be the number of possible key values and define

F×max(x) = F (x;N, (1− p) 1
|K| )

(t
d),

F ∗max(x) = F (x;N, p+ (1− p) 1
|K| )

(t
d).

Then the probability of recovering a key using d’th-order DCA with N traces is

psucc =

(
N∑
i=0

(F ∗max(i)− F ∗max(i− 1)) · F×max(i− 1)

)|K|−1
.

We prove Theorem 1 in Appendix A. We can use this formula to calculate the required N to obtain a
desired probability of success. The number of traces required to obtain 90% success probability for a range
of parameters is shown in Table 1. Here, |K| = 256, and the parameters would be typical choices for e.g. a
protected AES implementation.

Attack Complexity We consider the time complexity of recovering the secret key k∗ using the higher-
order DCA attack. For a fixed probability of success psucc, let Nd be the number of computational traces
required to obtain this probability for a d’th-order implementation. We again assume that t = λ · d. The
cost of computing the higher-order trace is Nd ·

(
t
d

)
. Then, for each key guess k and each time point in

the higher-order trace, the adversary computes Ck. The complexity of this is |K| · Nd ·
(
t
d

)
. Thus, the time

complexity is O
(
|K| ·Nd ·

(
t
d

))
. Table 1 shows the time complexity of the attack for a range of parameters.

5 Multivariate Higher-Order DCA

In the higher-order DCA, presented in Section 4, the adversary tries to correlate each sample of the higher-
order trace with the predicted variable independently, finally taking the maximum over the obtained cor-
relation scores. Such an approach is not optimal, as successive samples may carry joint information on the
secret. As in the side-channel context, one can take advantage of this joint information by performing a
multivariate attack, namely an attack in which the distinguisher exploits the multivariate distribution of
different samples in the higher-order trace. Emblematic multivariate attacks in the classical side-channel
context are the so-called template attacks [8]. In the following section, we describe a similar attack in the
setting of the DCA adversary.

6 In practice, the adversary could exhaustively search the correct location of the (λ · d)-length subtrace in the full
computation trace of length tfull, which increases the complexity at most tfull times.
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5.1 Multivariate Higher-Order DCA against Masking and Shuffling

Our proposed multivariate higher-order DCA attack is based on the principle of maximum likelihood. Similar
techniques have been adopted in side-channel template attacks. Let K, (Xi)i, and (V i)i be random vari-
ables representing the subkey k, the public inputs (xi)i, and the computational traces (vi)i. The likelihood
distinguisher is then defined as

L :
(
(vi)i, (xi)i

)
7→ (`k)k∈K,

`k ∝ Pr
(
K = k | (V i)i = (vi)i ∧ (Xi)i = (xi)i

)
, (1)

where ∝ means equal up to some factor constant w.r.t. k. To evaluate this likelihood function, we need a
model for the distribution of the traces (also called a template in the side-channel context). It is well known
that if Equation 1 is evaluated from the true distributions of (Xi)i and (V i)i, then the above distinguisher
is optimal. This is sound, as in this case, the score is the exact probability that the target subkey equals a
key guess k, for all k ∈ K.

In the following, we will assume that V i is composed of t uniformly distributed random variables Vi,1,
Vi,2, . . . , Vi,t, with the constraint that for a uniformly chosen j, we have

⊕
l∈φ(j) Vi,l = ϕ(Xi,K). This

assumption matches the setting of a masked and shuffled implementation. The public inputs Xi and the
subkey K are also assumed to be uniformly distributed and mutually independent. Under this model, we
have the following result (see proof in Appendix B):

Proposition 1. The likelihood distinguisher, Equation 1, satisfies:

`k ∝
N∏
i=1

Ck(vi, xi),

where Ck(v, x) is the number of d-tuples in a trace v with bitwise sum equals to ϕ(x, k), that is Ck(v, x) =∣∣{(vj1 , . . . , vjd) ; vj1 ⊕ · · · ⊕ vjd = ϕ(x, k)
}∣∣ .

Remark 1. For practical reasons, it is more convenient to evaluate the log-likelihood, that is log `k =∑N
i=1 logCk(vi, xi) . Note that this does not affect the ranking of the key guesses (as the logarithm is a

monotonically increasing function) and therefore has no impact on the success probability of the attack.

5.2 Analysis of the Likelihood Distinguisher

In this section we analyze the success probability of the likelihood distinguisher. For the sake of simplicity,
we only consider two key guesses, namely the right key guess k∗ and a wrong key guess k×. We then consider
their likelihood scores `k∗ and `k× random variables, since

`k =

N∏
i=1

Ck(V i, Xi) ,

for k ∈ {k∗, k×}, where (V i)i and (Xi)i are the random variables defined above for the computational traces
and the corresponding public inputs. We then consider the probability psucc = Pr

(
`k∗ > `k×

)
in Theorem 2.

Theorem 2. For a multivariate d’th-order DCA attack using the likelihood distinguisher on N traces of
length t, the probability that a correct key guess is ranked higher than an incorrect key guess is approximately
given by

psucc ≈ pU + (1− pU )

(
1

2
+

1

2
erf

(√
N |V|

2
√
q

))

where q =
(
t
d

)
and pU = 1−

(
1−

(
1− |V|−1

)q)N
.
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The total success probability of the attack pfull-succ, i.e. the probability that the correct key guess has

the largest likelihood, is then heuristically pfull-succ ≈ p
|K|−1
succ . Moreover, it can be checked that pU ≈ N ·(

1− |V|−1
)q

becomes negligible as q grows. Theorem 2 then implies

psucc = Θ

(
erf

(√
N |V|

2
√
q

))
,

from which we deduce that the data complexity of the attack is N = Θ(q). Namely, the number of required
traces N to achieve certain psucc is linear in the number of combinations q =

(
t
d

)
. We also have N = Θ(q/|V|)

to make appear the impact of the definition set V.
In order to prove Theorem 2, we introduce the concept of the zero-counter event. Denoted by Uk, this is the

event that Ck(vi, xi) = 0 for at least one i ∈ [1, N ] for a key guess k. Note that this event can never happen
for k = k∗, since for all i, there exists a j such that

⊕
l∈φ(j) vi,l = ϕ(xi, k

∗). Thus, Pr(`k∗ > `k× | Uk×) = 1,

since in this case the likelihood `k× equals zero (or equivalently, the log-likelihood equals −∞). This is
intuitively sound, as the right key guess could not give rise to a zero counter for any of the N computational
traces. Then, by the law of total probability, we can write

psucc = Pr(Uk×) + Pr(¬ Uk×) · Pr(`k∗ > `k× | ¬ Uk×). (2)

We are therefore interested in the probabilities Pr(Uk×) and Pr(`k∗ > `k× | ¬ Uk×). These are given in the
following lemmas.

Lemma 1. Given N traces of length t, the probability of the zero-counter event for a wrong key guess k×

in a d’th-order attack is approximately given by

Pr(Uk×) ≈ 1−
(

1−
(
1− |V|−1

)q)N
,

where q =
(
t
d

)
.

Lemma 2. Given N traces of length t, let q =
(
t
d

)
, and assume that the zero-counter event does not occur.

The probability that a correct key guess has a higher likelihood score than a wrong key guess in a d’th-order
attack is approximately

Pr(`k∗ > `k× | ¬ Uk×) ≈ 1

2
+

1

2
erf

(√
N |V|

2
√
q

)
.

We prove Lemma 1 in Appendix C and Lemma 2 in Appendix D. Theorem 2 then follows directly from
Equation 2 and these two results.

6 Experimental Verification and Security Evaluation

The proof of Theorem 2 relies on a number of approximations. We therefore verified the accuracy of the
estimate by simulating the multivariate higher-order DCA attack for various choices of the parameters d
and t. We chose to simulate traces of a masked and shuffled AES implementation, that is, the target secret
variable was taken to be ϕ(x, k∗) = SboxAES(x ⊕ k∗). The computational traces were generated according
to the model described at the beginning of Section 5.1, namely by sampling random values vj over V = F28

with the constraint that one randomly chosen d-tuple of each trace has XOR-sum ϕ(x, k∗).
We generated traces for d ∈ {2, 3, 4} and t ∈ {8, 16, 24, 32, 40, 48, 56, 64, 72}, and calculated the log-

likelihood scores for the correct key and a randomly chosen wrong key. This was repeated 2 000 times, and
the probability Pr(`k∗ > `k×) was calculated for varying values of N . The results are shown in Figure 2.
The figure shows that the estimate of Theorem 2 is quite accurate in most cases, only deviating from the
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Fig. 2. The measured probability of ranking a correct key higher than an incorrect key in the multivariate higher-
order DCA attack, compared to Theorem 2. The measurement is based on 2 000 simulations of the attack. Here, d is
the attack order and t is the length of the obtained traces.

experimental measurements for very small values of q =
(
t
d

)
(q < 300). Note that in practice, this would

rarely be a problem. For example, if all shares of the full AES state were shuffled in a first order masked
implementation, as described in Section 3.3, the smallest trace that would always contain the correct shares
would have q =

(
2·16
2

)
= 496.

The attack complexity of the multivariate higher-order DCA is the same as that of the higher-order
DCA, namely O

(
|K| ·Nd ·

(
t
d

))
. Using this and Theorem 2 we can provide an estimate of the security

level obtained by a masked and shuffled implementation against the DCA adversary. Table 2 shows the
complexities of attacking e.g. a protected AES implementation where the operations are shuffled among all
16 state bytes (the shuffling degree is λ = 16 implying t = 16 · d). When fixing pfull-succ at 90%, we see that
an implementation which uses 7th order masking will obtain an estimated security level of 85 bits.
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Table 2. The number of traces N and the time needed to successfully attack an implementation with (d− 1)-order
masking and shuffling of degree λ = 16 (t = 16 · d) using multivariate d’th-order DCA . Here, |K| = 256, and we fix
the success probability at 90%.

d log2N log2 time d log2N log2 time d log2N log2 time

3 10.6 32.7 5 21.0 53.5 7 31.6 74.6
4 15.8 43.1 6 26.3 64.1 8 36.9 85.3
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A Success probability of Higher-Order DCA (Proof of Theorem 1)

Consider a specific value wj of the higher-order trace w. Denote by A the event that wj corresponds to the
combination of the correct shares. The probability of A occurring, i.e. of choosing the correct d shares out

of the t elements of the original computational trace v, is p =
(
t
d

)−1
.

Fix some plaintext and the corresponding trace. By the law of total probability, the probability that a
value wj of the d’th order trace is equal to a prediction s = ϕ(x, k) for some key guess k is

Pr(wj = s) = Pr(wj = s|A) · Pr(A) + Pr(wj = s|¬A) · Pr(¬A).

For a wrong key guess, k× 6= k∗, Pr(wj = s×|A) = 0, while for a right key guess Pr(wj = s∗|A) = 1. In both
cases, we have Pr(wj = s|¬A) = 1/|K|. In total:

p× = Pr(wj = s×) = (1− p)/|K|,
p∗ = Pr(wj = s∗) = p+ (1− p)/|K|.

Thus, for N traces,

Ck×(vφ(j), (xi)i) ∼ Bin(N, p×)

for a wrong key guess, and

Ck∗(vφ(j), (xi)i) ∼ Bin(N, p∗)
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for a right key guess. Note that |w| =
(
t
d

)
. LetX1, . . . , X|w| be distributed as Bin(N, p×). Then γk× ∼ maxXi,

and we denote the CDF by F×max(x). If the Xi were independent, we would have

F×max(x) = F (x;N, p×)(
t
d).

While the Xi are pairwise independent, they are not mutually independent. However, we find that in practice,
the dependence is so weak that γk× approximately has CDF F×max, even for small values of |w| and N . We
define F ∗max(x) similarly.

The attack is successful if γk∗ > γk× for all k×. As there are |K| − 1 wrong keys, and all γk× are
independent and identically distributed, we have psucc = Pr(γk∗ > γk×)|K|−1, where

Pr(γk∗ > γk×) =

N∑
i=0

(F ∗max(i)− F ∗max(i− 1)) · F×max(i− 1).

which concludes the proof.

B Proof of Proposition 1

Proof. By applying the Bayes’ rule, one gets (we skip random variables for the sake of clarity):

Pr
(
k | (vi)i ∧ (xi)i

)
=

Pr
(
(vi)i | k ∧ (xi)i

)
· Pr

(
k ∧ (xi)i

)
Pr
(
(vi)i ∧ (xi)i

) (3)

By mutual independence of the Xi’s and K, we have Pr
(
k ∧ (xi)i

)
= 1
|K|
(

1
|X |
)N

for every k ∈ K. Moreover,

Pr
(
(vi)i ∧ (xi)i

)
is constant with respect to k. We hence get

Pr
(
k | (vi)i ∧ (xi)i

)
∝ Pr

(
(vi)i | k ∧ (xi)i

)
. (4)

By mutual independence of the V i’s and the Xi’s we further deduce

Pr
(
(vi)i | k ∧ (xi)i

)
=

N∏
i=1

Pr(vi | k ∧ xi) . (5)

For the sake of simplicity we skip the index i in the following. By the law of total probability, we have

Pr(v | k ∧ x) =
∑
φ(j)

Pr(Sφ(j)) · Pr(v | k ∧ x ∧ Sφ(j)) , (6)

where Sφ(j) denotes the event that the set φ(j) is selected for the sharing of ϕ(X,K). By definition, we have

Pr(Sφ(j)) =
1(
t
d

) (7)

and

Pr(v | k ∧ x ∧ Sφ(j)) =

{(
1
|V|
)t−1

if
⊕

l∈φ(j) vl = ϕ(x, k)

0 otherwise
(8)

which finally gives

Pr(v | k ∧ x) ∝ Ck(v, x) . (9)
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C Probability of the Zero-Counter Event (Proof of Lemma 1)

We first define Zk as the zero-counter event for key k for a single computational trace V . Formally,

Zk = “ ∀j ⊆
{

1, . . . ,

(
t

d

)}
:
⊕
i∈φ(j)

Vi 6= ϕ(X, k) ”.

The zero-counter event Zk occurs if and only if none of the q =
(
t
d

)
combinations

⊕
i∈φ(j) Vi match the

predicted value ϕ(X, k). As discussed, Zk∗ never occurs for the correct key guess k∗. For the incorrect key
guess k×, intuitively, the zero-counter probability Pr(Zk×) should quickly become negligible as the number
of combinations q grows. While all q combinations are not strictly independent, we can approximate the
probability of Zk× by:

Pr(Zk×) ≈
(

1− 1

|V|
)q
. (10)

We verified this approximation by estimating the zero-counter probability over some sampled computation
traces. As illustrated it Table 3, the obtained estimations match the approximation pretty well.

Table 3. Approximation and estimation of the zero-counter probability.

(t, d) (16,2) (16,3) (16,4) (24,2) (24,3) (32,2) (32,3)

Approximation (10) 0.625 0.112 8·10−4 0.340 4·10−4 0.144 4·10−9

Estimation (prec. ∼ 10−3) 0.628 0.135 < 10−3 0.342 < 10−3 0.145 < 10−3

Then, by definition, the zero-counter event for N traces is the union

Uk = Z(1)
k ∨ Z

(2)
k ∨ · · · ∨ Z

(N)
k ,

where Z(i)
k denotes the zero-counter event for k on trace V i. Taking the negation we obtain ¬ Uk× =

(¬Z(1)
k ) ∧ (¬Z(2)

k ) ∧ · · · ∧ (¬Z(N)
k ), and since the zero events Z(i)

k× are mutually independent, we get

Pr(Uk×) = 1−
N∏
i=1

Pr(¬Z(i)
k×) = 1−

(
1− Pr(Zk×)

)N
.

This finishes the proof of Lemma 1.

D Success Probability with no Zero Counters (Proof of Lemma 2)

If the zero counter event does not occur, we can think of each trace V i as a random variable uniformly
distributed over Vt. Since the public input Xi is also random, the counters Ck(V , X) follow some probability
distribution. In order to prove Lemma 2, we first prove the following result regarding these distributions.

Lemma 3. Let k∗ and k× be a right and wrong key guess. Let q =
(
t
d

)
and κ = (q− 1) 1

|V| . Then for a trace

of length t and a d’th-order attack,

Ck∗(V , X) ∼ N (κ+ 1, κ) and Ck×(V , X) ∼ N (κ, κ),

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.
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Proof. Let δ : V2 → {0, 1} be the function defined as

δ(v1, v2) =

{
1 if v1 = v2,

0 otherwise.

The counter Ck(V , X) can be rewritten as a sum Ck(V , X) =
∑q
j=1 δ(Wj , ϕ(X, k)), where the variables

(Wj)j are defined as the q =
(
t
d

)
combinations

⊕
i∈φ(j) Vi. We recall that for one index j we have Wj =

ϕ(X, k∗), whereas for the other indices the Wj are randomly distributed independently of X. The counter
expectation then satisfies

E
(
Ck(V , X)

)
=

q∑
j=1

E
(
δ(Wj , ϕ(X, k))

)
=

{
(q − 1) 1

|V| if k 6= k∗,

(q − 1) 1
|V| + 1 if k = k∗.

On the other hand, the counter variance can be expressed as:

Var
(
Ck(V , X)

)
=

q∑
j=1

Var
(
δ(Wj , ϕ(X, k))

)
+ 2

∑
1≤j<j′≤q

Cov
(
δ(Wj , ϕ(X, k)), δ(Wj′ , ϕ(X, k))

)
.

It can be checked that the covariances will be equal to 0 most of the time. Indeed, the covariances are
non-zero only when Wj ⊕Wj′ = ϕ(X, k∗), which never happens when d is odd and which happens for few
pairs (j, j′) when d is even. Therefore these covariance terms will only have a small impact on the overall
variance. Moreover, it can be checked that this impact is negative, i.e. it reduces the variance.7 Therefore
we will ignore the sum of covariances, which yields a correct result when d is odd and a slight overestimation
when d is even. We then have

Var
(
δ(Wj , ϕ(X, k))

)
=

{
1
|V|
(
1− 1

|V|
)

if j 6= j∗,

0 if j = j∗,

where j∗ denotes the index of the right combination matching ϕ(X, k∗). Combining the two above equations
gives:

Var
(
Ck(V , X)

)
= (q − 1)

1

|V|
(

1− 1

|V|
)
≈ (q − 1)

1

|V| .

Since the counter is defined as a sum of somewhat independent random variables, we can soundly ap-
proximate its distribution by a Gaussian, and setting κ = (q − 1) 1

|V| concludes the proof. ut
In the above proof, we use that the δ(Wj , ϕ(X, k)) are somewhat independent. By somewhat independent

we mean that these variables are pairwise independent (for most or all of them, as discussed). Note that
variants of the central limit theorem exist that take some form of dependence between the summed vari-
ables into account. We have experimentally verified that the Gaussian approximation is sound for various
parameters (t, d).

Using Lemma 3, we can now prove Lemma 2. Following Remark 1, we will focus on the log-likelihood,
i.e. we consider

Pr(`k∗ > `k× | ¬ Uk×) = Pr
(

log `k∗ − log `k× > 0 | ¬ Uk×
)
,

log `k∗ − log `k× =

N∑
i=1

logCk∗(V i, Xi)− logCk×(V i, Xi)︸ ︷︷ ︸
Yi

.

7 Most of the time we have ϕ(X, k∗) 6= 0 so that the pairs (j, j′) with Wj ⊕Wj′ = ϕ(X, k∗) are such that Wj 6= Wj′

with high probability. In that case δ(Wj , ϕ(X, k)) = 1 implies δ(Wj′ , ϕ(X, k)) = 0 and conversely which yields a
negative covariance.
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As introduced above, we denote by Yi the difference between the log-counters for the trace V i. Since the Yi
are mutually independent and identically distributed, the central limit theorem implies that, for N sufficiently
large,

1

N
(log `k∗ − log `k×) ∼ N

(
µY , σ

2
YN

−1) with

{
µY = E(Y ),

σ2
Y = Var(Y ),

for Y = logCk∗(V , X)− logCk×(V , X). Thus

Pr(`k∗ > `k× | ¬ Uk×) = 1− ΦµY ,σ2
Y /N

(0) =
1

2
+

1

2
erf
(√N µY√

2 σY

)
, (11)

where Φµ,σ is the CDF ofN (µ, σ2). By the heuristic assumption that Ck∗(V , X) and Ck×(V , X) are mutually
independent, and using the Taylor expansion of the logarithm at E(C), as well as Lemma 3, we have

µY ≈ log(κ+ 1)− κ

2(κ+ 1)2
− log κ+

κ

2κ2
≈ 1

κ
, and σ2

Y ≈ 2
κ

κ2
=

2

κ
,

where the approximation of the mean is sound if κ is large enough (e.g. κ > 10). Inserting these approxima-
tions into Equation 11, remembering that κ = (q − 1) 1

|V| ≈
q
|V| , finishes the proof.
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