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Abstract—We present Helix, a Byzantine fault tolerant and
scalable consensus algorithm for fair ordering of transactions
among nodes in a distributed network. In Helix, one among the
network nodes proposes a potential set of successive transactions
(block). The known PBFT protocol is then run within a bounded-
size committee in order to achieve agreement and commit
the block to the blockchain indefinitely. In Helix, transactions
are encrypted via a threshold encryption scheme in order to
hide information from the ordering nodes, limiting censorship
and front-running. The encryption is further used to realize
a verifiable source of randomness, which in turn is used to
elect the committees in an unpredictable way, as well as to
introduce a correlated sampling scheme of transactions included
in a proposed block. The correlated sampling scheme restricts
nodes from promoting their own transactions over those of others.
Nodes are elected to participate in committees in proportion to
their relative reputation. Reputation, attributed to each node,
serves as a measure of obedience to the protocol’s instructions.
Committees are thus chosen in a way that is beneficial to the
protocol.

I. INTRODUCTION

As the blockchain space matures, different variants of
the technology emerge, each with its different strengths and
weaknesses. The Nakamoto consensus [1] was first to realize
a permissionless membership model, mitigating Sybil attacks
and reducing communication complexity by integrating the
ingenious Proof-of-Work [2] (PoW) mechanism. While the
incentive structure of PoW-based blockchains proved suc-
cessful in bringing many competitors to the mining game,
thereby increasing the security and resilience of the system,
it created a paradigm that is extremely slow and expensive.
Its exceptionally open nature coincides with its ability to
facilitate a large number of miners, but restricts its transaction
throughput. Transaction confirmation is slow and finality is
asymptotically approached but never really obtained. More-
over, miners’ interests are only partially aligned with those of
the users—they first and foremost wish to solve PoW puzzles
rather than execute and validate smart contracts [3].

Variants of the original PoW-based blockchain protocol
try to improve certain aspects of it, while maintaining PoW
as a key factor. Byzcoin [4] offers finality in a PoW-based
blockchain by introducing a PBFT [5] layer among a com-
mittee of recent block finders. Technologies based on block-
DAGs are good examples for recently suggested solutions to
some scalability and speed issues with PoW. These include

GHOST [6], which offers an alternative to the longest chain
rule whose resilience does not deteriorate when the block rate
is high; and SPECTRE [7], which gives up the concept of
a chain of blocks altogether and suggests a virtual voting
algorithm to determine the order of blocks in a block-DAG.

Parallel to Nakamoto consensus variants, we see prolif-
eration of additional protocols and blockchains, inspired by
ideas from the domain of distributed systems. These try to
mitigate some of the fundamental problems with PoW, and
develop cheap and fast consensus without the excess work
associated with the latter. An interesting protocol in this
regard is Algorand [8], which cleverly introduces a cheap
way to incorporate common randomness and use it to select a
block leader, emulating the native randomness incorporated in
PoW. Another protocol that alternates block leaders is Tender-
mint [9], which introduces a procedure for continuous primary
rotation over a PBFT [5] variant. Other attempts to design
consensus protocols for a business-oriented environment focus
on assuring a degree of fairness among the participating nodes
by being resilient to transaction censorship. A good example is
HoneyBadgerBFT [10], where initially encrypted transactions
are included in blocks, and only after their order is finalized,
the transactions are revealed.

Helix borrows from these ideas to achieve a fast, scalable,
and fair consensus protocol that is highly suited to the business
requirements of modern applications. Helix relies on PBFT for
Byzantine fault tolerance. In fact, Helix can be interpreted
as a blockchain construction on top of PBFT, based on
randomly-elected committees, which enables it to run many
individual instances of PBFT sequentially, each responsible for
a single value (block). It inherits PBFT’s finality, eliminating
the possibility of natural forks in the blockchain. And it
restricts the agreement process to a bounded-size committee,
selected from the larger set of all consensus nodes, in order
to mitigate PBFT’s inherent difficulty to scale to large net-
works. The committee size is determined according to some
conservative upper bound on the number of faulty nodes, f . In
PBFT, whenever the number of participating nodes n satisfies
n > 3f + 1, performance is sacrificed for redundant security.
In Helix, performance is optimized even when n is large, by
setting the elected committee’s size to be m = 3f+1, possibly
satisfying m < n, which is the smallest committee size that
retains PBFT’s properties. To provide resilience against DoS
attacks, the re-election of these committees is frequent and
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unpredictable.
Helix explicitly defines the interests driving its consensus

nodes and emphasizes fairness among them in regard to these
definitions. Specifically, it focuses on ensuring fair distribution
of power among the nodes and on guaranteeing that the order
of transactions on the blockchain cannot be manipulated by a
single node (or a small coalition). Helix also takes into account
the end-users of the protocol and aims to protect them from
being censored.

Helix concentrates on the ordering of transactions. It does
not attribute semantics to the transactions it arranges and is
completely unaware of state changes these transactions may
invoke1. It is therefore possible to use threshold encryption to
obfuscate the transactions from the nodes. Once the position
of a transaction becomes final, its content is revealed.

The threshold encryption scheme is further used to produce
verifiable randomness within the protocol. Helix realizes a
randomness beacon without requiring additional rounds of
communication2. It then makes use of the randomness in
two respects: first, to elect leaders (and committees, which
are used to address scalability concerns, as PBFT does not
scale adequately to large networks) in an unpredictable and
non-manipulable manner; and second, to realize correlated
sampling [13], which is used to force nodes to randomly
sample their pool of pending transactions when constructing
blocks. The correlated sampling scheme enables new fee mod-
els (e.g., constant fees) that differ from traditional approaches
and prevent the emergence of undesired fee markets.

Helix assumes a known list of consensus nodes respon-
sible for constructing and validating blocks. Such a list can
be defined and modified frequently with various governance
schemes—permissioned, based on an authority that explicitly
determines the composition of the list; or permissionless, based
on stake in the system, PoW or other criteria. For simplicity,
through the course of this paper we assume that a set of
consensus nodes is given. The fact that consensus nodes are
identified allows Helix to introduce a reputation measure,
which estimates a node’s compatibility with the protocol’s
instructions. The reputation measure is used to compensate
or punish a node, incentivizing correct behavior.

We explicitly mention our three main contributions. First,
Helix achieves consensus over a fair ordering of transactions,
where each block includes an unbiased set of transactions.
Put differently, a node cannot prioritize transactions she fa-
vors and include them in the block she constructs. Such a
restriction enables scenarios where transactions fees cover only
the processing costs of a transaction but bare no revenue.
In such scenarios nodes prioritize transactions according to

1The execution and validation of transactions is beyond the scope of
this paper. We mention though, that under the abstraction of a well-defined
order (obtained by Helix), invalid transactions can simply be skipped by the
execution service.

2We note that the problem of using multi-party computation to produce
verifiable randomness has a long history both in and apart from the context
of blockchains [11], [8], [12].

other criteria3 and such type of fairness becomes relevant.
Second, in Helix end-users, which do not take active part in
the consensus protocol, enjoy protection from being censored
or discriminated against by the nodes that connect them to
the network. This is achieved by having the users encrypt
their transactions prior to transferring them to their nodes.
Finally, while many consensus protocols rely on a stable
leader to progress rapidly and suffer great latencies from
leader substitution, Helix, under normal flow, efficiently rotates
leaders (and committee members). The leader rotation comes
only with negligible communication overhead and, unlike
other protocols that use a round-robin scheme, is unpredictable
and can be weighted non-equally between the nodes.

The remainder of the paper is organized as follows. We
begin with some short background in Sec. II, covering basic
concepts in distributed systems and a few cryptography prim-
itives used by Helix. Then, in Sec. III we describe our system
model. In Sec. IV we give a detailed description of the Helix
protocol. Sec. V is dedicated to prove basic properties Helix
satisfies. In Sec. VI we focus on epochs with high transaction
rates and suggest a sampling scheme to construct blocks in
a fair manner. Finally, in Sec. VII we propose a method to
synchronize nodes rapidly.

II. BACKGROUND

A. Distributed systems

In a distributed system independent entities run local com-
putations and exchange information in order to complete a
global task. A fundamental problem in the field is reaching
agreement on a common output value. In this problem we
consider n entities, each associated with an input value, and
the goal is to design a protocol, executed locally by each
entity, which ensures all entities output the same value. Ex-
isting agreement protocol are designed with various execution
environments in mind, or possible behaviors by entities, and
result in different performance characteristics.

The properties of a distributed protocol are affected by the
quality of the underlying network communication. A few types
of synchronous environments we refer to throughout the paper,
taken from [14] are given hereafter:

Definition 1 (Strong synchronous network) A network is said
to be strongly synchronous if there exists a known fixed bound,
δ, such that every message delays at most δ time when sent
from one point in the network to another.

Definition 2 (Partial synchronous network) A network is said
to be partially synchronous if there exists a fixed bound, δ, on
a message’s traversal delay and one of the following holds:

1) δ always holds, but is unknown.
2) δ is known, but only holds starting at some unknown time.

3For example, we can think of nodes as application developers that prioritize
transactions made by their own users.
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A particular execution environment, considered to be general
and least constraining with regards to the communication
synchrony is the asynchronous network.

Definition 3 (Asynchronous network) A network is said to
be asynchronous if there is no upper bound on a message’s
traversal delay.

In the settings presented above, network links can either be
reliable or unreliable. Reliable links are guaranteed to deliver
all sent messages, while with unreliable links, messages may
be lost in route. In both cases, and in all the environments
described above, dispatched messages can be delivered out of
order.

We formulate a primitive that captures the essence of
agreement by the three following requirements:

Definition 4 (Non-triviality) If a correct entity outputs a value
v then some entity proposed v.

Definition 5 (Agreement) If a correct entity outputs a value
v then all correct entities output the value v.

Definition 6 (Liveness) If all correct entities initiated the
protocol then, eventually, all correct entities output some
value.

An early protocol to propose a solution to the agreement
problem was Paxos [15]. In Paxos, entities either follow the
protocol’s prescriptions, or have crashed and thus do not par-
ticipate at all. Paxos is non-trivial and maintains the agreement
property under all circumstances, but is guaranteed to be live
only when the network is synchronous and less than half of
the entities have crashed. Raft [16], a modern Paxos variant,
explicitly defines a timeout scheme that achieves liveness when
communication is synchronous and reliable.

Fischer, Lynch and Paterson [17] showed that a deter-
ministic agreement protocol in an asynchronous network can
not guarantee liveness if one entity may crash, even when
links are assumed to be reliable4. A key idea there is that
in an asynchronous system one cannot distinguish between
a crashed node and a correct one. Hence, deciding the full
network’s state and deducing from it an agreed-upon output
is impossible.

A variant of the agreement problem assumes a more in-
volved failure model, where nodes may act maliciously in
addition to crashing. A Byzantine entity does not follow the
protocol’s instructions and behaves arbitrarily. This problem
is often called Byzantine agreement (BA) and was introduced
by Lamport, Shostak and Pease [19]. A well known result
in the field of distributed systems is that in an asynchronous
network, agreement cannot be reached unless less than 1/3 of
the participants are Byzantine.

A natural extension of the single-value agreement problem
is to agree on a set of values. In agreement on a sequence (log)
of values, the agreement needs to cover both, the output values

4When links are unreliable reaching an agreement is impossible even
in a strongly synchronous network, a result known as the two generals
problem [18].

and their order. Given a solution for a single-value agreement,
it can be used as a black box to achieve agreement on a
sequence of values. However, a version of Paxos (sometimes
called Multi-Paxos or multi-decree Paxos) optimizes it by
dividing the consensus protocol to a fast “normal mode” and
a slow “recovery mode”. The recovery mode (which is also
run initially when the protocol starts) selects a leader with
a unique (monotonically increasing) ballot number. In the
normal mode, the leader coordinates agreement on a sequence
of values using an expedited protocol. If the leader fails or is
suspected to have failed, the slow recovery mode is run to elect
a new one. Similarly, Castro and Liskov proposed Practical
Byzantine Fault Tolerance (PBFT) [5] which was the first
efficient protocol to implement agreement on a sequence of
values in the presence of (less than a third) Byzantine entities,
employing similar type of optimization.

We further formulate a primitive that satisfies agreement on
a sequence of values written to a log, through the previous
requirements, together with an additional requirement. In
agreement on a sequence of values, values are written to a
specific slot or index in the log.

Definition 7 (Strong consistency) For any pair of correct
entities i, j with corresponding logs (vi0, v

i
1, . . . , v

i
l) and

(vj0, v
j
1, . . . , v

j
l′) where l ≤ l′, it holds that vik = vjk for every

k ≤ l.

A protocol that satisfies strong consistency is said to be
safe. Intuitively, this means that for every position in the log, or
index, only one value can be agreed upon and once a value was
agreed upon in a certain position, it will stay there indefinitely.

A different approach to reach agreement on a sequence
of values is referred to as Nakamoto consensus [1]. The
fundamental data structure that underlies the consensus is the
famous blockchain. A blockchain, similarly to a linked list, is a
sequential data structure composed of blocks, each pointing to
the previous one by storing its hash. This yields a very strong
property where any modification to the data included in a block
utterly changes the output of its hash. Hence, modification
of one block in the blockchain causes any succeeding block
to change. Therefore, securing the hash of the current block
guarantees that any previous block was not tampered and
consensus on the history can be kept.

Reaching consensus on the current block remains the main
problem. The Nakamoto consensus allows multiple values
(blocks) to exist in the same index (height), resulting in a
data structure that is better interpreted as a tree of blocks
rather than a chain. Of the branches within this tree an entity
is aware of, she selects the longest one as the valid chain
(more accurately, she selects the branch that admits to the
most amount of accumulative work according to the PoW
principle [2], which we do not explain in this paper). Over
time, this rule yields a single prefix-chain that is agreed upon
by all. Nakamoto consensus is thus said to satisfy eventual
consistency, rather than strong consistency or finality.

The eventual consistency of the Nakamoto consensus highly
depends on the network being strongly synchronous, where
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new blocks propagate to the network in negligible time relative
to the average block creation rate [20]. In case this assumption
does not hold, the resilience of the longest chain rule may
become fragile, facilitating an attacker to successfully re-
organize the valid chain5.

B. Cryptographic primitives

Threshold Cryptography

Threshold cryptography [21] refers broadly to techniques
for allowing only joint groups of parties to use a cryptosystem,
be it to compute signatures, or to decrypt data. In particular,
a (t, n)-threshold encryption cryptosystem is executed by
n entities, any of which can encrypt messages, while the
cooperation of t + 1

(
for some fixed t ∈ {1, . . . , n − 1}

)
is

necessary in order to decrypt messages successfully. Threshold
security guarantees that any attempt by up to t of the entities
to decrypt a ciphertext is bound to fail. The (t, n)-threshold
cryptosystem we refer to in this paper consists of the following
components:

1) A distributed key generation scheme executed once to set
up a common public key PK, secret keys S0, . . . , Sn−1
and verification keys V0, . . . , Vn−1.

2) A non-malleable encryption scheme6 [22] which uses
PK for encryption.

3) A threshold decryption scheme which consists of two
parts. In the first part, individual (and secret) key shares
obtained by each entity are used in order to produce
decrypted shares (from the ciphertext). The second part
allows joining t+ 1 decrypted shares in order to retrieve
the original message. A non-malleable threshold encryp-
tion scheme must include two local verification steps.
First, to validate the ciphertext before producing a share,
and second, to validate the shares before joining them.

We note that one appropriate choice for a such a threshold
encryption cryptosystem is [23].

Hash Functions

We rely on an efficiently computable cryptographic hash
function, H , that maps arbitrarily long strings to binary strings
of fixed length. One property we will explicitly assume our
hash function admits to is collision-resistance:

Definition 8 A hash function H is said to be collision resistant
if it is infeasible to find two different strings x and y such that
H(x) = H(y).

Additionally, we model H as a random oracle [24] as is often
assumed in the literature.

5The GHOST [6] protocol suggests the “heaviest subtree” rule to determine
the valid chain, partially mitigating this problem.

6A non-malleable encryption scheme guarantees that it is impossible to
transform a given ciphertext, of a plaintext m, into another ciphertext which
decrypts to a related plaintext, f(m) (for a known function f ).

Digital Signatures

Digital signature schemes enable authenticating a message
by verifying it was created by a certain entity. Digital signa-
tures usually require a secret key, denoted by ski, used by
entity i for signing a message, and a public key, denoted by
pki, used for verifying the signature of entity i. To prevent
anyone else from signing on her behalf, an entity should
not share her secret key. Any entity with knowledge of
the public key can verify the signature. A digital signature
scheme typically consists of three algorithms: a key generation
algorithm, a signing algorithm, and a verification algorithm. In
order to produce a new pair of keys, sk and pk, the generation
algorithm is used. The binary string σi(m) is referred to as the
digital signature of entity i over a message m and is produced
using the signing algorithm and ski.

The main properties required from a digital signature
scheme are:

1) Legitimate signatures pass verification. σi(m) passes
the verification algorithm under i’s public key and the
message m.

2) Digital signatures are secure. Without knowledge of ski
it is infeasible to find a string that passes the verification
algorithm, for a message m that was never signed by i
beforehand, even to an adversary that is allowed to view
signatures under ski (for other messages).

We denote by 〈m〉σi the signature message which contains the
message m, the identity of the signer pki and the signature
σi(m).

III. MODEL

In this section we introduce the model assumptions that
the Helix protocol relies on to achieve safety, liveness and
fairness. We assume a strongly synchronous distributed system
where participants are connected by a network over which they
exchange messages in order to achieve consensus. The partici-
pants are presented first, then the network topology and finally
the adversarial model. We also mention two communication
schemes used in our protocol.

A. Participants

In Helix there are two types of participants—users and
nodes. Both locally generate cryptographic key pairs which
serve as unique identifiers and help to ensure message authen-
ticity (as described in Sec. II-B).

Nodes. The nodes participating in the protocol form a
fixed set of ids (public keys) known to all. Nodes are run
by strong machines with practically non-limited storage and
abundant computation power (partially justified by parallelism
capabilities). This assumption implies that reasonable local
computations are done instantaneously, e.g., signature verifi-
cation, hash function computation or decryption of encrypted
messages. Conversely, we assume nodes cannot break the
cryptographic primitives used in the protocol, e.g., forging
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digital signatures or finding hash collisions. We further assume
that each node owns an internal clock, and that all clocks tick
at the same speed; we do not, however, require that the clocks
be synchronized across nodes.

Users. Users form an open set of public keys and can join or
leave the network as they please. They do not actively engage
in the consensus process and can be seen as a virtual fragment
of the node they are connected to.

B. Network topology

There are two types of network connections: node-node con-
nections and user-node connections. A node-node connection
exists between each pair of nodes, such that the nodes are
characterized by a clique topology. User-node connections are
organized differently, where each user is connected to exactly
one node. We assume there are many more users than nodes.

Node-node connections are assumed to be strongly syn-
chronous7, i.e., messages transmitted over them, are guaran-
teed to be delivered within a known time period δ. This is
a reasonable assumption under our circumstances, where the
protocol assures limited-sized messages, and node participa-
tion is conditioned. In the design of our protocol, we would
like both connection types to consume a limited amount of
bandwidth8.

C. Adversary

We distinguish between correct nodes, defined as nodes that
follow the protocol’s instructions precisely, and faulty nodes,
which do not. Among the faulty nodes, we further distinguish
between Byzantine faulty nodes, defined as nodes that act
arbitrarily, and benign faulty (or sleepy) nodes, which are
unresponsive due to a crash or lack of information. We denote
the total number of nodes in the network as n, the number
of Byzantine nodes among them as fByz, and the number of
sleepy nodes as fSlp. Thus, the number of faulty nodes is
f = fByz +fSlp. We restrict the adversary to control at most f
faulty nodes, where9 3f + 1 ≤ n. Note that to achieve safety,
it is enough to bound fByz rather than f = fByz + fSlp.

We assume a single powerful adversary that determines
which nodes are correct and which nodes are faulty. Generally
speaking, the protocol is divided into terms, where in each
term a single block is added to the blockchain. The adversary
is static in the sense that she must pre-determine which nodes
will be faulty during a given term r, before the term starts.
The adversary is adaptive in the sense that in different terms

7We emphasize that if our network violates the synchrony assumption, i.e.,
it is asynchronous, our protocol nonetheless satisfies the safety property as
shown in Sec. V-A.

8While many existing BFT protocols assume to be run over a LAN (local-
area network) where bandwidth is not the bottleneck, we consider a WAN
(wide-area network) where bandwidth constraints are more strict.

9We further limit the adversary in the amount of resources she controls,
which in our protocol is attributed to reputation. We assume the adversary
controls at most f/n of the accumulative reputation of all nodes. This
assumption is analogous to the common restriction of Byzantine hash power
in PoW chains or stake in PoS chains.

she can choose different faulty nodes. In a specific term, the
adversary is restricted to sign only on behalf of the nodes she
controls in that term10. The adversary controls all the faulty
nodes and coordinates their behavior. In addition, she delivers
messages between the faulty nodes instantaneously. Hence, the
adversary may perfectly coordinate attacks she wishes using
all the corrupted nodes.

We maintain that in the context of our environment, as-
suming network synchronization and a small number of faulty
nodes is realistic. First, strong synchronization can be justified
by constructing a highly connected network and requiring
nodes to obtain high speed connections11. Second, a reputation
mechanism maintained in our system incentivizes correct
participation and increases nodes reliability (see Sec. IV-D for
details). The assumed bound on the number of faulty nodes
is implied by the chances of each node to be faulty. We note
that Helix’s performance increases as this bound can be tuned
smaller.

Fig. 1 shows an example of a fully-connected Helix network
with eight nodes (illustrated by black large circles), serving
various numbers of users (appearing as small red circles).

D. Communication schemes

The protocol uses two high level approaches for communi-
cation. The first aims to reduce message dissemination time
while the second aims to maximize originator anonymity. In
both approaches, nodes’ bandwidth consumption is limited,
i.e., a node is restricted in the number of nodes she sends
messages to.

The fast broadcast scheme is deterministic (namely, not
using random gossip), implying a fixed bound for the time a
message is propagated in the network. The scheme is resilient
to f Byzantine nodes that do not follow the scheme and may
act arbitrarily. Let δ be the maximal time it takes for point-to-
point messages to arrive at their destinations and let ∆ be the
maximal time it takes a message that a correct node broadcasts,
to reach all correct nodes. By the scheme a node multicasts a
message to 2(f + 1) neighbors and a message is propagated
to the whole network within ζ = O(log(n/f)) hops such that
∆ = ζ · δ.

When anonymity is of interest, a second approach is used.
The anonymous broadcast, generalizes a simple ring topology
and uses different heuristics to reach destined nodes while not
revealing much information on the identity of the source node.

10One practical way to achieve such a restriction is to utilize ephemeral
keys for signing messages. In general, a node creates a pairwise ephemeral
key for each term, composed of a secret key and a corresponding public key,
which is uniquely associated both to the identity of the node and to some term
number. The node publishes in advance (e.g., for the next thousand rounds) a
commitment for these exclusive keys (one way of creating such a commitment
is by using a Merkle tree and publishing the root). Every term the node signs
messages with the term’s ephemeral secret key and destroys it when the term
ends. Hence, if the adversary takes control over the node in a subsequent
term, she cannot sign messages from an earlier term.

11Centralized relay services such as Bitcoin’s FIBRE network (see: http:
//bitcoinfibre.org/) serve as a good example for a fast, synchronous and reliable
network.
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user

node (not in committee)

node (committee member)

Figure 1: Illustration of a Helix fully mesh network with n = 8
nodes, serving various numbers of users. Among the nodes,
m = 4 nodes (filled with dots) participate in the committee of
some term r.

IV. THE HELIX PROTOCOL

This section is dedicated to a high-level description of the
Helix protocol—we first illustrate the main data types used in
Helix and then describe its operation.

In Helix, users issue Encrypted-transactions (etxs), which
they send to the node they are connected to via a user-node
connection. We refer to the receiving node as the owner node
of the etx. etxs are stored locally by every node in her
Epool, pool of Encrypted-transactions. The protocol’s goal is
to order the etxs, such that the order is agreed upon by all
correct nodes. The etxs are grouped into Eblocks, blocks of
Encrypted-transactions, which will ultimately be incorporated
into the blockchain. The protocol progresses in iterations, or
terms, where in each term exactly one Eblock is appended to
the blockchain.

Agreement on the next Eblock in the blockchain is achieved
using a Byzantine agreement protocol, run within a committee
comprising a subset of the nodes (see Fig. 1). A special
feature of Helix is that the committee members constructing
an Eblock do not know the content of the transactions or
their owner nodes. This property is achieved by encrypting
transactions using a (t, n)-threshold encryption scheme among
the nodes, where t = f , and broadcasting them anonymously.
After a committee reaches an agreement on a new Eblock,
a proof for this agreement, referred to as a Block-proof, is
constructed and broadcasted to all nodes. Only then is the
Eblock decrypted, in a process where, first each individual
node produces her own Shares-block, and later t + 1 (for a
further explanation see Sec. IV-C) different Shares-blocks are
later combined to reveal the Dblock, block of decrypted etxs
(corresponding to the Eblock).

Each node incorporates a so-called Encrypted-secret into
the Shares-block that she generates. When the Dblock is
revealed (i.e., decrypted from the corresponding Eblock), the

Encrypted-secrets are also decrypted, and combined together
to generate an unpredictable random seed. This random
seed is used, together with the reputations of the nodes,
to determine the new committee members responsible for
appending a new Eblock to the blockchain in the next term.
Intuitively, the reputation is a measure of node’s behavior in
the protocol.

A. The Helix data types

Transaction (tx) and Encrypted-transaction (etx). Transac-
tions are the atomic pieces of information12 that Helix com-
municates and orders. Users issue transactions and sign them
to prove their system-identities. They then employ a threshold
encryption scheme13, where only t + 1 or more cooperating
nodes can decrypt. By ordering encrypted transactions prior
to their disclosure, Helix enhances the fairness of the system
(as discussed in Sec. V-C).

Secret (se) and Encrypted-secret (ese). A Secret is a fixed-
length bit string sampled uniformly at random periodically by
each node, and used to implement Helix’s randomness beacon.
As their name suggests, the Encrypted-secrets are the cipher-
texts corresponding to the secrets14. Each ese is propagated
along the network after being associated with a term number
r and signed by its issuer i, denoted 〈ese, r〉σi = eseri .

Epool. The Epool is a collection of etxs stored and main-
tained locally by each node. The etxs contained in a given
node’s Epool may have been issued by the node’s users, or
forwarded from other nodes (we emphasize that the encryption
scheme together with the anonymous communication scheme
obfuscate the issuing user and his owner node). Once an etx
is included in a committed Eblock (i.e., an Eblock that is
appended to the blockchain) it is removed from all Epools
it appears in.

Committee-map (Cmapr). A Committee-map is an ordered
list of the nodes in the system and their respective reputations,
corresponding to a specific term. The first m = 3f + 1 nodes
in Cmapr form the committee of term r (with the first node
serving as primary), which determines EBr. A Committee-
map for term r is generated after the committed Eblock for
the previous term EBr−1 is decrypted. The calculation of
Cmapr is done locally and deterministically by each node,
and depends on the random seed RSr−1 and the nodes’
reputations.

Eblock (EBr). The Helix blockchain is made up of
Eblocks, each comprising two parts: payload and header. The
payload contains a Merkle tree of etxs and a list of t + 1
signed (and distinct) esers

(
these come from the t+1 Shares-

blocks that were used in order to decrypt EBr−1
)
. The header

12In many cases it is useful to think of transactions as inputs to some
transition function that updates a state. However, for the sake of generality,
in this article we avoid attributing any particular semantics or functionality to
transactions.

13Note that the encryption scheme should be CCA secure [25] as the
protocol could be interpreted as a decryption oracle.

14Note that the encryption scheme should be non-malleable to prevent
manipulating the randomness beacon, as will be discussed later.
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Figure 2: Illustration of the Helix blockchain. Hash pointers are used to point within blocks (in solid red) or over blocks (in
dashed blue).

contains the following metadata:
• Term number, r.
• Current Committee-map15, Cmapr.
• Hash of the previous Eblock’s header, H(EBr−1).
• Hash of the previous Dblock’s header, H(DBr−1).
• Merkle root for the payload’s Merkle tree.
• Hash of t+ 1 concatenated esers.
• Composer. The composer is the node that originally

constructed the current EBlock EBr from her Epool. The
composer’s identity is taken into account for reputation
updates.

• View. The view in which EBr was committed (see
Sec. IV-C for details). The view is also taken into account
for reputation updates.

We note that the header contains a digest of the payload
and that Eblocks hash-point their predecessors. To support the
inherent tamper-resistance of blockchains such a cryptographic
dependency structure is required. We assume that EBs are
limited in capacity16. In Helix we denote by b the maximal
number of etxs in an Eblock.

Block-proof (BP r). BP r is a list of messages and signa-
tures, generated by the committee of term r, that acts as proof
that EBr has successfully undergone all the phases of the
Helix base agreement protocol (see Sec. IV-C). It manifests
that EBr is valid and safe to append to the blockchain. BP r

metadata includes H(EBr) and the term number r. There is
a slight abuse of notation here as there could be many valid
different Block-proofs in term r, and different nodes might
store different ones. The exact content of a Block-proof is
described in Sec. IV-C.

Shares-block (SBri ). SBri consists of a list of decryption-
shares, produced by a single node i for term r; the list
comprises one decryption-share per etx and ese in EBr.
According to the threshold encryption scheme, each node is
capable of producing exactly one Shares-block per term. A
node that received (any) t+ 1 distinct Shares-blocks for term
r can verify each one’s authenticity and then decrypt EBr.

15The motivation behind including Cmap in Eblocks is to allow joining
nodes to sync quickly (see further details in Sec. VII).

16Capacity can be defined in many ways: space (such as in Bitcoin, where
blocks are limited to some predetermined memory size) or “gas” (such as
in Ethereum [26], where blocks are limited according to the amount of
computation and storage usage they invoke).

The metadata of SBri includes H(EBr), the term number r,
a legally-generated eser+1

i and node i’s signature.
Dblock (DBr). DBr is the decrypted version of EBr.

Similarly to an Eblock, the Dblock contains two parts: header
and payload. The payload contains a Merkle tree of txs
(decrypted transactions) and a list of ses (decrypted eses),
whose order is dictated by their order in EBr. The header
includes:
• Term number, r.
• H(EBr).
• Merkle root of the (decrypted) transaction tree.
• New random seed, calculated as follows: RSr = ser0 ⊕
· · · ⊕ sert . The choice of t + 1 ses is dictated by the
assumption on the number of Byzantine nodes (f = t).
In Sec. V-C we formally prove the unpredictability of the
random seed and explain the choice of the XOR operator.

Fig. 2 illustrates the Helix blockchain. Each block is com-
posed of an EB, a BP , a DB, and t + 1 SBs. A block
includes internal hash pointers between components of the
block as well as hash pointers to components in the previous
block. Notice the Helix hash chaining structure—only unique
elements (i.e., Eblocks and Dblocks) are referenced, while
non-unique elements, that may differ from node to node,
reference unique elements.

B. Happy flow: An overview of Helix’s normal operation

We describe the normal flow of the protocol on a high level.
Node i ∈ {0, . . . , n − 1} reveals the Dblock of the previous
term DBr−1 and obtains the new random seed RSr−1. she
then calculates for j ∈ {0, . . . , n− 1} the values

vrj =
H
(
RSr−1, r, pkj

)
reprj

Here, reprj is the reputation of node j in term r. Cmapr is
ordered according to {vri }

n−1
i=0 , where the m nodes with the

minimal values are considered the committee for term r and
the first node among them is the primary.

Once the primary finds out her role, she initiates the
consensus base protocol (PBFT), proposing a new Eblock.
To construct a valid Eblock, the primary chooses uniformly
at random at most b etxs from her Epool. If a correct
primary constructs a valid Eblock, then with overwhelming
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Figure 3: A high-level, system-view of the dynamics of a Helix
term. Segment four and the intra-committee communication
related to the base agreement protocol lies in the dotted ellipse.

probability (w.o.p.) she succeeds in committing it (see analysis
in Sec. V-B) and a Block-proof for it is created. Committee
members that complete assembling BP r, then add EBr to
their blockchain and broadcast the pair 〈EBr, BP r〉 to all
nodes (in particular to non-committee members). Now, the
decryption process begins. Nodes that do not hear of t + 1
corresponding Shares-blocks SBs prior to receiving the pair
〈EBr, BP r〉, produce their version of SBr and broadcast
it to all nodes. Upon receiving t + 1 Shares-blocks, EBr is
decrypted and DBr is revealed. Finally, a new term begins.
Fig. 3 illustrates a high-level flow of a helix term.

C. The segments of the Helix protocol

For clarity of presentation, we divide Helix’s operation into
four distinct segments, where each segment is responsible for
a specific logic within the protocol. The first handles an initial
setup phase; the second is responsible for etx propagation; the
third handles dissemination of information on the consensus
result to all nodes, with the purpose of concluding the current
term and initiating the following one; and the fourth handles
reaching consensus among committee members. Helix consists
of several processes that run concurrently and invoke each
other frequently. We proceed to present the different segments
of the protocol and pseudo-codes for the various processes.

Segment 1—Initial setup

Since Helix relies on a threshold cryptosystem, an initial
interactive step for key generation is required. A distributed
key generation (DKG) protocol among the nodes would be

used (e.g., [23], [27], [28]).
Threshold encryption. We use the DKG to generate a

common public key (PK), secret keys (S0, ..., Sn−1) and
verification keys (V0, ..., Vn−1). The PK is known to all
entities in the system and is used to encrypt transactions. The
secret and verification keys are kept privately by the nodes
and are used to decrypt etxs. In this article we assume static
membership of nodes17.

Random seed. In every term, a random seed is generated
as part of the decryption of the committed Eblock. The initial
random seed RS0 is hard-coded into the genesis block. The
initial seed will be used to determine the first Cmap and in
particular the first committee. Instead of using a dealer, a
(Public)-VSS Coin Tossing scheme can be used to generate
RS0 [11].

Segment 2—etxetxetx propagation

Transactions are issued by users; each user signs and then
encrypts each transaction that he issues18. Each user’s unique
sk is used for signing, whereas the common PK is used for
encryption. The sk is generated locally by each user, whereas
the PK is hard-coded into the genesis block19. After signing
and encrypting is complete, the user sends the etx to his owner
node.

Communicating Encrypted-transactions. As described pre-
viously, each etx is sent by the issuing user to his owner
node. The owner node then forwards the etx to all the nodes
in the network. A key objective of the forwarding scheme is
to reduce the ability of other nodes to identify the original
sender node (a node should only certify which etxs she owns
but will not publicize this until after the Eblock containing her
etx is committed). This is crucial for maintaining fairness (as
described in Sec. V-C). Each node maintains her own Epool by
adding new etxs she receives and by removing committed etxs
(i.e., etxs included in committed Eblocks). We emphasize that
the progress of segment 2 is independent of the advancement
of the blockchain as described in segments 3 and 4.

Segment 3—Spreading consensus

The main purpose of this segment is to update all non-
committee members as to the consensus result from the
previous term and to kick-start the next one.

17An interesting topic for future investigation is removing the need to redo
the setup process every time a node joins or leaves. A possible approach is
to generate extra key pairs and distribute them among the nodes according
to some secret sharing scheme. When a new node joins she collects enough
shares to construct her key pair, in the spirit of [28]. Supporting removal of
nodes can be more tricky.

18The choice to have users sign and then encrypt transactions favors
user’s anonymity, but exposes the network to spam attacks. Under our model
assumptions, these attacks are mitigated by the nodes, where each node is
responsible for her users. As a matter of fact, the bare minimum required is
a mechanism that reveals the owner nodes of committed transactions. If this
cannot be achieved in a real deployment system, user anonymity can be given
up.

19To address cases in which the PK changes due to a reconfiguration of
the participating nodes, it is necessary to have a safe means for updating the
users. We leave this discussion for future work.
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Process User
Let sk be the user’s secret key and PK the network’s
public key.

// Issuing transaction and casting it
1: tx← IssueNewTransaction

()
2: σ ← SignTransaction

(
tx, sk

)
3: etx← EncryptTransaction

(
〈tx〉σ, PK

)
4: Unicast

(
etx
)

. to owner node

Eblocks and Block-proofs. In a certain term r, once the con-
sensus procedure for EBr has concluded and some committee
member has built a valid BP r, the pair 〈EBr, BP r〉 should
be propagated to the whole network as rapidly as possible.
Once a non-committee member receives the pair 〈EBr, BP r〉,
she performs a brief-validation and appends EBr to her
blockchain. A brief-validation of a pair 〈EBr, BP r〉 includes
the following checks:

1) The Cmap appearing in EBr’s header matches the one
calculated locally by the node. In particular, a correct
node would refuse to append 〈EBr, BP r〉 unless she had
already appended the previous Eblock and can calculate
the current Cmap and the current committee’s composi-
tion. As a matter of fact, this step can be dropped as we
explain in Sec. VII.

2) BP r serves as a valid proof that the base agreement
protocol has been carried out successfully (as described in
segment four) by the rightful committee (i.e., all signers
appearing in BP r appear in Cmapr[0, . . . ,m− 1]).

Shares-blocks and decryption. As briefly noted above,
Shares-blocks are constructed by nodes that have committed
an Eblock and have not yet received t+1 Shares-blocks for that
Eblock (this condition is set to reduce the number of Shares-
blocks propagating in the network). Normally, committee
members would be first to hear of new committed Eblocks and
would thus be the ones producing Shares-blocks (this however
strongly depends on message propagation in the network).
After a node assembles a Shares-block, she broadcasts the
Shares-block to all nodes through the fast forwarding scheme.
Once a node obtains t + 1 Shares-blocks for a committed
Eblock, the Eblock is decrypted and the Dblock is revealed.
We note that from the nature of the threshold encryption
scheme, any valid t + 1 Shares-blocks would produce the
same Dblock. The choice t = f minimizes the time from
committing an Eblock to decrypting it, while maintaining
Helix’s resilience to f Byzantine (and cooperating) nodes.

Segment 4—Base agreement protocol

Generally speaking, the base agreement protocol is a single-
value variant of PBFT, re-instantiated every term, and re-
sponsible for intra-committee consensus regarding the current
term’s Eblock. The ellipse in Fig. 3 illustrates segment four
within the Helix protocol. PBFT, as a Byzantine agreement
protocol, enables Helix to reach finality, i.e., no two correct
nodes ever commit different Eblocks in the same term, as long

Process Node (for node i)
Let r be the term number and Cmapr the Cmap of term r.

1: Upon receiving a briefly validated 〈EBr , BP r〉 and t+ 1 SBrs
2: DBr ←DecryptEblock

(
EBr , SBr[0, . . . , t]

)
3: AppendToBlockchain

([
EBr , SBr[0, . . . , t], BP r ,DBr

])
4: Cmapr+1 ←UpdateCmap

(
DBr , Cmapr

)
5: r ← r + 1
6: Broadcast

(
〈EBr , BP r〉

)
7: If i ∈ Cmapr[0, . . . ,m− 1]

8: Trigger Process PBFT

as the bound f on the number of Byzantine nodes holds (see
proof in Sec. V-A). To emphasize this, Helix inherits PBFT’s
robust safety guarantees—safety is kept even during times
the communication network is asynchronous or unreliable.
We split the segment’s description into two parts. First, we
describe segment four as an ideal agreement protocol that
achieves certain properties. Then, we explain how PBFT is
used to implement it.

Ideal agreement protocol. The ideal agreement protocol run
between m nodes u0, . . . , um−1 shall implement the following
primitive.

Definition 9 (ideal agreement protocol) An agreement protocol
is said to implement the ideal agreement protocol for Helix’s
segment four if it satisfies the following properties:

• Validity. If a correct node commits a value α then some
node proposed α.

• Liveness. If all correct nodes initiated the protocol then
all correct nodes commit a value.

• Safety. If a correct node commits a value α then every
correct node commits α.

• Verifiability. If a correct node commits a value α, then she
can produce a proof pα, such that anyone can efficiently
verify that α was agreed upon by the m nodes.

A typical Byzantine agreement (BA) protocol satisfies the
first three items. Nodes that have not participated actively in
the BA and wish to commit the agreed-upon value after the
fact can do so (safely and efficiently) using the verifiability
proof. Helix’s base agreement protocol implements the ideal
agreement protocol, where EBr is the value agreed upon and
BP r serves as a proof that it was indeed agreed upon by nodes
u0, . . . , um−1. The question remains though—which nodes are
the rightful committee members in term r? In order to avoid
forks (i.e., inconsistencies), Helix must figure out a way for
all the participating nodes to come to an agreement as to a
single committee. This is done using EBr−1 which contains a
commitment to the seed that determines the r-term committee.
Using an inductive argument, if there are no forks in term
r− 1, then only a single committee is possible in term r and
accordingly there can neither be forks in term r. Finally, since
the first committee is hard-coded into the genesis block and
agreed upon by all nodes, Helix enjoys no forks.

Simplified PBFT as the ideal agreement protocol. In Helix,
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the ideal agreement protocol is implemented using a simplified
version of PBFT [5] that reaches agreement over a single
value. We assume a familiarity with PBFT’s logic and ter-
minology and describe Helix’s adjustments and modifications
to PBFT20.

Accepting an Eblock. In PBFT, a node accepts a pre-prepare
message (and the value she proposes) by broadcasting a
corresponding prepare message after validating the following:

1) The view in the pre-prepare message matches her internal
view number.

2) The pre-prepare message is signed by the rightful primary
in that view.

3) She has not accepted a pre-prepare message in the same
view containing a different Eblock.

In Helix, when accepting EBr, a correct committee member
further validates that:

1) EBr’s header contains Cmapr as locally computed with
DBr−1 and EBr−1. We emphasize that a correct com-
mittee member does not depend on EBr’s header in order
to figure out whether she is in the committee or not.
This implies that in order to participate in a committee a
correct node must obtain DBr−1 and EBr−1.

2) EBr’s header contains a valid hash pointer to EBr−1.
3) EBr’s header contains a valid hash pointer to DBr−1.
4) EBr’s header contains a valid hash of concatenated

eses, i.e., H(eseri0 , . . . , ese
r
it

), properly signed by the
different nodes i0, . . . , it (taken from the t + 1 SBr−1s
the composer node used in order to decrypt EBr−1).

5) EBr’s header contains the correct composer and view
(this can be validated with the new-view messages, if
exist).

6) EBr’s payload contains at most b etxs.
View-change mechanism. In PBFT, when timeouts expire

(e.g., due to a faulty primary or an unexpected network
slowdown) view-change messages are broadcasted with the
aim of replacing the primary. In order to ensure safety is
maintained cross-views, proofs of previously committed values
are submitted within the view-change mechanism. To avoid
rerunning all the committed values from the beginning of
time, a checkpoint mechanism is introduced where proofs are
sent only for values that were committed after the last stable
checkpoint. Helix’s blockchain construction enables invoking a
new instance of a single-value PBFT for each term (this single-
value PBFT implements the ideal agreement protocol). Thus,
the checkpoint and truncating mechanism can be given up
altogether (while primaries keep being replaced seamlessly).
In addition, new-view messages contain only one pre-prepare
message which never contains the null digest, dnull. Only in
case a new Eblock is proposed, the Eblock itself is passed as
regularly done with pre-prepare messages.

20To keep our presentation concise, we leave PBFT’s original point-to-
point communication intact and do not adopt a more bandwidth-economical
protocol such as CoSi [29] as proposed in Byzcoin [4] or Zilliqa [30]. In
Helix, optimizations to PBFT’s bandwidth consumption can be relieved as
we assume m� n, where m is the size of the committee running PBFT.

Verifying consensus. The verifiability property of the ideal
agreement protocol (see definition 9) is obtained by the Block-
proof that stores a signed pre-prepare message, 2f corre-
sponding signed prepare messages and 2f + 1 corresponding
signed commit messages21. On its own, a Block-proof is not
enough as a node needs to know the composition of the term’s
committee and make sure all the signers are indeed committee
members. As mentioned before, this can be deduced from
the previous term’s block. We show in Sec. V-A that BP r

indeed serves as an unforgeable proof a EBr was committed-
locally by some correct committee member in term r. Thus,
the pair 〈EBr, BP r〉 (after validation) is safe to append to
one’s blockchain.

Timeout mechanism. We consider two timeout mechanisms
for Helix. In PBFT’s original approach, timeouts are determin-
istic and double every time the view increases, i.e., the timer
in view v is set to be 2v−1x, for some positive value x. This
ensures that in a timely network, all backups will eventually
converge to a specific view (that of the current most advanced
backup or one view later), even if the network performs
unreliably for a restricted amount of time. This technique,
although it works in theory, is very problematic (see [32])
as timeouts must keep growing and cannot be adjusted to be
shorter22.

We suggest a different possible timeout mechanism, in
which timeouts remain constant and thus highly relies on
the network being reliable and predictable in latency. Every
time an instance of PBFT is initiated, or when a view-change
message is sent, a node’s timer is reset to the same value,
x = max {2∆, ∆ + 3δ}. In a nutshell, this value is set so that
it expires only after a committee member is certain a correct
primary had enough time to get her Eblock committed. In
the next section, we prove formally that Helix is indeed live
under the condition any piece of information a node broadcasts
(according to the fast forwarding scheme) is received by all
correct nodes within a known bound ∆.

D. Incentive mechanism in Helix

Processing a transaction in Helix costs money as it con-
sumes resources such as bandwidth, storage and computa-
tion. Each node is responsible for the processing costs of
transactions issued by her own users23. However, the cost
for processing transactions for other nodes’ users may be
considerable, and thus requires in-protocol compensation from
those nodes. If all nodes produce the same amount of trans-
actions, compensation is settled trivially as costs balance.
Though if nodes produce different amounts of transactions,

21We note that in order to reduce the size of such a proof, aggregation of
signatures or a threshold signature scheme may be deployed, as in [31].

22As a matter of fact, once a backup commits-locally a value in PBFT, she
could potentially start over with timer set to x in the next view, leaving in
previous views at most f backups. These would eventually be synced with
the checkpoint mechanism.

23The way a node covers the costs of her users depends on her business
model, e.g., funding may come from the users themselves or from a third
party.
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Process PBFT (for committee member i)
Let r be the term’s number, Cmapr the Cmap of term r, v ∈ N the view, and CEB a candidate Eblock.
Let j ∈Cmapr[ 0, . . . ,m− 1] be a committee member and pv =Cmapr[ v mod m] be v’s primary.

Init: v ← 0, CEB ← null, prepared← false, committed locally ← false, Pri ← null.
Timer: Set timer to x0 = x and start countdown.

// First primary
1: If i = p0,
2: CEB ← ConstructEblockFromEpool

()
3: Multicastcommittee

(〈
〈PRE-PREPARE, 0, r, H(CEB)〉σp0 , CEB

〉)
// Normal flow

4: Upon receiving a
〈
〈PRE-PREPARE, v, r, H(EB)〉σpv , EB

〉
message

5: ValidateEblock
(
EB

)
. see Sec.IV-C

6: CEB ← EB
7: Multicastcommittee

(
〈PREPARE, v, r, H(CEB), pki〉σi

)
8: Upon receiving 2f 〈PREPARE, v, r, H(CEB), pki〉σj messages and CEB 6= null

9: prepared← true
10: Multicastcommittee

(
〈COMMIT, v, r, H(CEB), pki〉σi

)
11: Upon receiving 2f + 1 〈COMMIT, v, r, H(CEB), pki〉σj messages and prepared = true

12: committed locally ← true
13: BP ← ConstructBP

()
14: PropagateEB

(
CEB, BP

)
// Timeout: primary change proposal

15: Upon timer expiry, reset timer to xv+1 = 2v+1x0
16: Pri = null
17: If prepared = true then,

18: Pri =

{
Pri .EB ← CEB

Pri .msgsv ← 2f + 1 PREPARE messages with view v, received for CEB

19: Unicastpv+1

(
〈VIEW-CHANGE, v + 1, r, Pri , pki〉σi

)
20: v ← v + 1

// Primary change takeover, for pṽ
21: Upon receiving 2f + 1 〈VIEW-CHANGE, ṽ, r, Prj , pkj〉σj messages, denote them by V
22: If there exists a j s.t. Prj 6= null then,
23: j ← the node with the maximal v among Prj .msgsv
24: CEB ← Prj .EB
25: Otherwise,
26: CEB ← ConstructEblockFromEpool

()
27: O ←

〈
〈PRE-PREPARE, ṽ, r, H(CEB)〉σi , CEB

〉
28: Multicastcommittee

(
〈NEW-VIEW, ṽ, r, V , O〉

)
. NEW-VIEW messages, after validated, are treated as

. PRE-PREPARE messages by recipients

a fee mechanism that offsets costs among nodes is required.
Fees would basically be paid by nodes with a high transaction
rate to those with a low transaction rate24.

Fees, in addition to balancing costs, serve as means to
incentivize nodes to follow the protocol’s instructions and
allow the protocol to reach optimal performance. This is
achieved by a reputation score that is attributed to each node
and is updated frequently. The reputation strives to serve as
a reliable measure to a node’s quality of service. A node’s

24At this point we do not elaborate as to the implementation of Helix’s fee
mechanism, but assume that the fee is proportional to a node’s transaction
rate.

reputation is taken into account when calculating her fee
tariffs, where nodes with low reputation can charge lower fees
for their services than their peers, possibly resulting in losses.
For this reason, it is important that both the measurement of
the resource usage and of the quality of service are accurate.

Measuring a node’s usage is straightforward after revealing
the owner nodes of all etxs in the decryption process. Making
sure the reputation is consistent with Helix’s requirements and
instructions is more complicated. We suggest a few practical
criteria that the reputation may examine, but a more elaborate
discussion as to its exact specification is due at a later time.
We further note that with the evolution of the system, the
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reputation measure may be enhanced to mitigate new found
vulnerabilities in the protocol or to encourage new desired
behaviors. The discussion above makes clear that nodes are
incentivized to increase their reputation, but also wish to
include their own etxs in Eblocks as fast as possible. These
two distinct preferences may be conflicting, requiring nodes
to prioritize.

We shall now illustrate a naive reputation measure. It is
updated frequently (e.g., every 1000 blocks or every month),
locally and deterministically by each node, according to the
blockchain. A few concrete examples:
• In order to make sure that nodes maintain high uptime

and stay available, every node is evaluated according to
the average view number of committed Eblocks when she
was a committee member. The higher the average view,
the lower the reputation should be.

• In order to make sure that nodes maintain the recent
blockchain history, if an Eblock consists of a previously
included etx, its composer should be punished by reduc-
ing hers reputation.

• In order to make sure that nodes select etxs randomly
(see Sec. VI for more details), adjacent Eblocks should
represent similar distributions (in terms of the owner
nodes of the etxs they include). If a specific node is
found to construct Eblocks that significantly deviate from
the Eblocks in their surrounding, she should be penalized
by reducing her reputation.

• In order to encourage nodes to stay up-to-date with
protocol changes, a node that constructs an Eblock with
a decommissioned protocol version should be penalized
by reducing her reputation.

We emphasize that the reputation update rules that do not
depend on Dblocks may be used as validation checks in the
agreement protocol. On the contrary, some of the validation
checks in Sec. IV-C may be relaxed and become a part of the
reputation mechanism. An interesting possibility is to relate
reputation to a node’s stake in the system. We also note that
the reputation measure is shared across other services in the
system such as the execution service.

V. BASIC PROPERTIES AND PROOFS

Helix achieves three desired properties: safety, liveness and
fairness. First and foremost, Helix is safe. As long as the bound
f on the number of Byzantine (rather than sleepy) nodes holds,
even without any assumptions on network synchrony, forks
cannot happen (i.e., there will not be a situation in which
different nodes commit different blocks in the same term).
Second, Helix is live. We refer to two types of liveness. First,
under a weakly synchronous network Helix achieves (eventual)
liveness, meaning that new blocks are (eventually) added to the
blockchain in some finite time. Second, we show that under
a strongly synchronous network Helix achieves a stronger
property referred to as strong liveness, in which new blocks are
added within a known bounded period of time. Finally, Helix
is fair with regard to three types of fairness. The first two

refer to fairness among nodes: election fairness (of committee
members) and selection fairness (of transactions in Eblocks).
The third type refers to fairness towards users. In this section,
we elaborate on each of these three properties and prove that
the Helix protocol fulfills them.

A. Safety

Helix is designed to provide safety even in the case of a
slow and unreliable communication network. Safety implies
finality, meaning that once an Eblock has been appended to
the blockchain in the eyes of any (even one) correct node,
then no correct node ever appends a different Eblock for that
term. The safety of Helix relies on the safety of its underlying
protocol, PBFT [5].

Claim 10 (Helix is safe) Let 0, . . . , n−1 be the nodes running
Helix. In term r, let EBri and EBrj be Eblocks appended
by correct nodes i, j ∈ [n − 1], respectively, to their local
blockchains. Then, EBri = EBrj .

Proof. For PBFT’s proof to be applicable here, we need to
show that the committee in term r is a well-defined and
agreed-upon set of m nodes. Put differently, we need to show
that no correct node can be “tricked” into believing she is
a committee member when she is actually not, submitting
signatures for invalid Eblocks. This is easily prevented by
relying on the previous term’s Eblock (or more accurately
Dblock) to determine the next term’s committee. A simple
inductive argument can convince that there can be only a
single version of DBr−1 and thus the composition of the r-
term committee is well defined. Since all nodes compute the
r-term committee from their r-term Dblock, all correct nodes
will agree as to its composition. This concludes the proof using
PBFT’s safety proof.

B. Liveness

In its most general sense, liveness guarantees that new
blocks are added to the blockchain in some finite time. We
consider two types of liveness which correspond to different
synchrony assumptions and timeout mechanisms.

General liveness

For Helix to be live in the general sense, we need each PBFT
instance to be live and for each member of the subsequent
committee to (eventually) realize that she has been assigned
to this role. For this to hold, we need the same synchrony
assumptions as in PBFT, namely, a weakly synchronous net-
work, where message delay is arbitrary up to a certain point
but is eventually bounded by some unknown bound.

Claim 11 (Helix is live) Among n nodes, Helix (with the
doubling timeout mechanism) continues to make progress,
meaning that regardless of the internal state of the nodes,
within some finite time, some correct node will commit a new
Eblock to her blockchain.
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Proof. The proof follows from PBFT’s liveness and the fact
that committee members eventually become aware of their
committee membership. Assume that the last Eblock to be
committed by a correct node was in term r − 1. We identify
three possible system states:
• State 1: At least 2f + 1 correct nodes are aware of their

participation in term r’s PBFT instance concurrently. In
this case, by the liveness property in PBFT, in a finite
time, at least one of them will append a valid Eblock to
her blockchain.

• State 2: Fewer than 2f + 1 correct committee members
are aware of their committee membership, but at least
one correct node knows the identities of the committee
members for term r. This node has the ability (and duty,
so to speak) to update all the committee members for term
r (safety guarantees that this will not contradict any other
correct node’s view of term r’s committee members) by
sending them EBr, BP r and t + 1 SBrs. A simple
syncing and feedback protocol25 run between the nodes
ensures that this information is eventually propagated to
all correct nodes. Accordingly, after a finite period of time
state 1 takes place.

• State 3: No correct node is aware of the composition of
term r’s committee. According to the protocol, the correct
node that appended (r−1)’s Eblock to her blockchain is
in the process of decrypting it (again, safety guarantees
no forks in the term r − 1). The decryption process
duration depends only on the time of message dispersal,
i.e., propagation of the committed Eblock, its Block-proof
and t+ 1 Shares-blocks. Thus, the process of decrypting
term (r− 1)’s Eblock is finite. Once at least one correct
node decrypts the committed Eblock, we are back in state
2, which concludes the proof.

Strong liveness

In Helix, we wish to obtain a stronger notion of liveness
that relies on two additional requirements. First, we require
a time frame in which new blocks are committed. Second,
we aim for a correct primary to succeed in committing her
Eblock before a new primary is appointed. The first of these
requirements is driven by the need for practical liveness (with
a guaranteed bound on progress time), whereas the second
requirement is related to fairness (discussed in Sec. V-C). We
refer to this stricter notion of liveness as strong liveness. For
strong liveness to hold in Helix we require the network to be
strongly synchronous, namely, message delay is assumed to be
bounded by some known constant (as explained in detail in
Sec. III). To obtain strong liveness in Helix we use the constant
timeout mechanism, in which x = max {2∆, ∆ + 3δ} is set
as the timeout, as mentioned in Sec. IV-C.

Definition 12 (Strong liveness) A blockchain protocol (that
enjoys finality), run between n participants is said to be

25We do not get into the details of this protocol, but it is clear that as long
as messages are eventually delivered, this information will propagate.

strongly live if it satisfies the following properties:

1) A primary that proposes a valid block, immediately after
its construction, gets it committed.

2) A correct node that appended the (r − 1)-term block,
appends the r-term block within some known bounded
period of time.

Before proceeding, recall the network model assumptions:
∆ is the maximal time it takes for a message that a correct
node broadcasts, according to the fast forwarding scheme, to
reach all correct nodes; and δ is the maximal time it takes
for point-to-point messages to arrive at their destinations. The
relationship between δ and ∆ depends on the communication
protocol26 as discussed in Sec. III.

We now prove that Helix (with the constant timeout mech-
anism) is strongly live if the network is strongly synchronous.
We distinguish between two cases based on the status of the
first primary. First, we denote by ur the first correct node to
reveal DBr at time τr, and with it, Cmapr+1.

Lemma 13 (Term with a correct first primary) If the first
primary Cmapr[0] is correct, she will get EBr committed
prior to any correct member’s timeout expiring.

Proof. In term r, ur−1’s initial timeout will be the first among
the correct nodes to expire (at time τr−1 + x). Since ur−1
follows the communication protocol, she has propagated each
piece of information she has heard or produced so far (in
particular EBr−1, BP r−1 and some t+ 1 SBr−1s) and thus
necessarily all nodes reveal DBr−1 (and Cmapr) by time
τr−1 + ∆. In particular, the first committee’s primary (since
assumed to be correct) would realize her role by time τr−1+∆
and would multicast a pre-prepared message with EBr to all
committee members of term r. This message would reach all
correct committee members by time τr−1 + ∆ + δ (intra-
committee communication is done point-to-point). Then, by
time τr−1 + ∆ + 2δ all correct committee members should
receive enough prepare messages and by time τr−1 + ∆ + 3δ,
EBr should be committed-locally by all correct committee
members. Since all correct nodes’ timers expire later than
τr−1 + ∆ + 3δ, no timeouts expire before EBr is committed-
locally by all as required.

Lemma 14 (Term with a faulty first primary) Assume
Cmapr[0],. . . ,Cmapr[i− 1] are all faulty nodes and Cmapr[i]
is a correct node, where i ∈ {1, . . . , f}. Then, EBr will be
committed-locally by all correct committee members in a view
v ∈ {1, . . . , i}.

Proof. If EBr is committed-locally, by even a single correct
member, in view j < i, we are done because a correct
committed-locally member would propagate 〈EBr, BP r〉 to
all correct nodes within ∆ time. This ensures that any correct

26In general gossip communication, where nodes send a new piece of
information to some random group of neighbor nodes, a bound like ∆ usually
refers to the time it takes to reach a certain percentage of the network, say
90%. This is because the last nodes are hard to reach in such probabilistic
protocols as was shown specifically for the Bitcoin network in [33].
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committee member would append EBr to her blockchain
prior to sending a view-change message for the (j + 2)th

time (i.e., within its j + 1 view). The (j + 2)th view-change
message can be sent, the earliest at τr−1 + (j + 2)x, on the
other hand, 〈EBr, BP r〉 would reach all nodes, the latest at
τr−1 + (j + 1)x+ 2∆. Indeed, we have x ≥ 2∆.

Otherwise, we show that all correct members commit-
locally EBr in view i. Denote the first correct committee
member to send Cmapr[i] a view-change message by u. The
earliest time u can send this message is τ ir−1 = τr−1 + i · x.
Since no other correct node had already committed-locally,
all correct nodes keep sending view-change messages every
x time. Thus, if two correct members enter term r in some
time difference, then they keep sending view-change messages
with the same time difference. As was shown in the first
case, this difference is bounded by ∆. Thus, by τ ir−1 + ∆ all
correct nodes would send Cmapr[i] a view-change message
and Cmapr[i], being correct, would reply with a new-view
message containing a valid Eblock EBr, that would reach all
correct committee members by time τ ir−1 + ∆ + δ. As was
explained before, by τ ir−1+∆+3δ, EBr would be committed-
locally by all correct committee members. Since all the (i+1)th

timers expire later than τ ir−1 + ∆ + 3δ, none should expire
before committing-locally EBr as required.

Corollary 15 (Helix is strongly live) If Helix is run over
a strong synchronous network (with the constant timeout
mechanism), it is strongly live.

Proof. The first property (in definition 12) is deduced directly
from the two previous lemmas.

To conclude the second property in the definition, we
look at a correct node that appended EBr−1. Since the
network is strongly synchronous, then from the fast forwarding
scheme, EBr−1 would propagate to all correct nodes within
∆ time and decrypted within another ∆ time. Once DBr−1 is
revealed, the two lemmas above become relevant—the more
view-changes, the longer it takes to reach agreement as to the
r-term Eblock. Since there could be at most f faulty nodes
within the term-r committee, we saw that there can be at most
f view-changes after which it is certain a correct primary is
appointed. A correct primary gets her Eblock committed in
another 3δ time. Since every view lasts exactly x time, we
conclude that a node that appended EBr−1 would append
EBr in (at most) 2∆ + f · x+ 3δ time.

We note that if Helix is run with the doubling timeout
mechanism, nonetheless Helix is strongly live, only with a
longer bound.

C. Fairness

Helix achieves fairness in three aspects. Election fairness
relates to the amount of terms in which a node participates
as committee member. Fairness in this sense implies that
a node’s participation level is proportional to her resource

holdings, which in our system is related to reputation27.
Fairness towards users relates to mechanisms that limit nodes’
capabilities in discriminating or censoring users’ transactions.
In this section we discuss election fairness and fairness towards
users in Helix. In the following section we analyze the third
type of fairness, selection fairness, which thrives to achieve a
blockchain in which the representation of nodes (according to
their etxs) is proportional to their transaction rate.

Election fairness

In blockchain protocols, nodes (sometimes referred to as
miners) compete in a lottery to find blocks, where a node can
increase her probability of winning, if she has more resources.
We consider this lottery as fair if a node’s probability of
winning a block (or being given the right to propose a block)
is proportional to her holdings in the resource. We denote node
i’s resource holdings in term r as resri and her proportionate
share as repri =

resri∑
j res

r
j

.

Definition 16 (Election fairness) A blockchain protocol, where
nodes are randomly elected to propose blocks according to
a resource holdings rep, is said to be election-fair if the
probability of node i to be elected as the composer of the
block in term r is repri .

Nakamoto consensus for example is not election-fair—
selfish mining attacks are possible by a strong adversary with
pa ≥ 0.25, increasing her probability to find a block over pa
as was shown in [34], [35]. Another example is Algorand [8],
which falls a bit short—there, a leader knows before the
network what the next random seed would be in case her block
is accepted. Thus, she can choose between two options—either
to propose a block or not to. This introduces an advantage to
the leader, even if small. The main goal in this section is to
prove the following claim:

Claim 17 (Election fairness) Helix is election-fair with respect
to reputation as the resource, assuming at most f nodes are
Byzantine (i.e., deviate from the protocol).

We note that in the context of Helix, election fairness is
more relevant to consider in terms of committee membership
rather than leader election. We proceed to prove claim 17 with
the following argument: since Cmapr is determined by RSr,
it is enough to show that RSr serves as a randomness beacon.
That is, the adversary (or any other node) cannot manipulate
or foresee RSr prior to its “global” disclosure. Put formally,

Lemma 18 A set of nodes running Helix can use RSr as
a common and unpredictable string of bits. Specifically, for
every r:

1) Two correct nodes i and j with RSri and RSrj have
RSri = RSrj .

27In PoW systems, the resource is proportional to the computational ability
to solve partial hash-collision puzzles. In PoS systems, the resource is
proportional to stake in the system. In Helix, reputation is a concept that
reflects how aligned a node is with the protocol’s instructions.
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2) Prior to EBr being committed by at least one correct
node, none of the bits in RSr can be predicted with
probability greater than 1/2 by the adversary (with non-
negligible probability).

Before the proof, we recall the fact that a valid Eblock must
contain exactly t+1 signed (and distinct) eses (see Sec. IV-C).

Proof.

1) The first item follows directly from Helix’s safety.
2) Regarding the second item, consider the adversary that

wishes to predict RSr given a candidate valid EBr

(considering a non-valid Eblock is irrelevant as it would
never be committed) that has not yet been committed by
even a single correct node. EBr must contain exactly
t + 1 distinct eses and the adversary needs to predict
RSr = ser0⊕· · ·⊕ sert . We show that none of the bits in
RSr can be predicted with probability grater than 1/2.
Pick an arbitrary bit in RSr, z = z0 ⊕ · · · ⊕ zt where
zi is the corresponding bit in seri . Before EBr being
committed, the adversary has access to eser0, . . . , ese

r
t .

From the assumption that at most f < t + 1 nodes are
controlled by the adversary, and from the security of the
encryption scheme, the adversary knows at most t zis
(the adversary knows the (t + 1)th zi with negligible
probability). Without loss of generality, be these bits
z0, . . . , zt−1. This implies that zt is sampled by an
honest node, i.e., in the eyes of the adversary zt can
be modeled as an unbiased Bernoulli random variable.
Additionally, the encryption scheme used by Helix is
non-malleable [22], which means the adversary cannot
correlate her eses to eset such that the corresponding ses
are related. This implies that (again, from the eyes of the
adversary) zt is sampled independently from any other zi
for 0 ≤ i ≤ t− 1. To conclude, the adversary can denote
z = w ⊕ zt, where w is known and zt is an unbiased
Bernoulli random variable sampled independently from
w. It is a well-known fact that due to the XOR operation
z can also be regarded as an unbiased Bernoulli random
variable, which completes the proof.

We are now ready to prove claim 17.

Proof. Recall that node i’s value in Cmapr is defined as
follows:

vr+1
i :=

H(RSr, r + 1, pki)

repr+1
i

and that the m nodes with the minimal values are the
committee members in term r + 1. Since RSr serves as a
non-manipulable source of randomness, we conclude that the
values

{
H(RSr, r + 1, pki)

}n−1
i=0

induce a random ordering
of the nodes, and the values {vr+1

i }n−1i=0 , induce a random
ordering weighted by reputation.

We draw the reader’s attention to a nice benefit of the ran-
dom seed in Helix, namely that RSr is independent of RSr−1.

This is rather surprising as RSr is constructed iteratively (or
rather, we are exposed to its values iteratively).

Fairness towards users

This section describes the problem of fairness towards users
in high-level and illustrates Helix’s approach. In general, nodes
and users are very different entities in blockchain protocols.
Users are the entities issuing the transactions but they cannot
directly append them to the blockchain. Users depend on their
nodes for write operations. Nodes proposing blocks can use
this power in malicious ways—they can order transactions in
a block according to their will, censor certain transactions, etc.

The key factor in reducing nodes’ ability to manipulate the
blockchain is etx indistinguishability. Ideally, two etxs prop-
agated through the network are indistinguishable—in terms
of their issuer nodes, sizes, or any other criteria (of course,
a node knows which etxs she issued). Thereby, using a
suitable encryption scheme that hides transaction information
is necessary28. This is realized in Helix using two mechanisms:
• A threshold encryption scheme that takes place on the

user end, concealing the actual content of transactions
from nodes. The content is revealed only after the in-
clusion of the transaction in a block is finalized and its
location in the blockchain can no longer be altered.

• etxs are forwarded in Helix in a manner that maximizes
the sender’s anonymity such that nodes are not aware who
is the owner node of a transaction they receive.

We further illustrate how reducing nodes’ information re-
garding transactions plays a role in Helix’s resilience to a few
common attacks against users:
• Payment censorship. In this attack, any transaction aimed

to “pay” a certain user is denied and not processed. This
attack is impossible in Helix as the nodes have no clue
who is the payee in an etx29.

• Service censorship. In this attack, any transaction issued
by a certain user is denied service and never added to
the blockchain. In case an owner node can identify an
etx issuer, she can refuse to propagate it or add it to
Eblocks she proposes. This problem can be mitigated
quite simply by allowing users to have multiple owner
nodes, forwarding etxs to all of them30.

• Ordering manipulation. In this attack, later transactions
are processed before earlier ones. This can be considered
an attack only if the system should be order-fair in some
sense. Bitcoin for example is not order-fair in any sense,

28Note that such indistinguishability facilitates spam attacks. To mitigate
this problem, we intend on using a scheme that allows a subset of the nodes
to trace the issuer of any etx in question. Such a scheme can be realized via
group signatures with distributed traceability [36], [37].

29During this article we tried to disregard any semantics attributed to
transactions, this item is exceptional in that sense and assumes transactions
have two sides—payers and payees.

30An alternative solution is to have another dedicated service: a transaction-
forwarding service. For the time being Helix handles both—the forwarding
and the ordering services. Although this might change in the future as means
to align subtle issues with the incentive structure and the mentioned attack.
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and as a matter of fact, this is considered one of Bitcoin’s
strengths—a high-priority later transaction can “bypass”
earlier low-priority transactions by offering a higher fee.
In a distributed system as Helix, the seemingly simple
notion of tx1 is earlier then tx2 (denoted tx1 < tx2) is
not easy to define. A proper example of such a definition
is given in Hashgraph [38]. Hashgraph is shown to be
order-fair in the sense that the ledger’s order reflects the
order by which transactions reached a certain fraction of
the entire network. Helix is not fair in this sense, but
suggests another concept of fairness in terms of ordering
transactions. Intuitively, if an entity orders transactions
she cannot relate any semantics to, there is nothing she
can do other then ordering them randomly. In this spirit,
we refer to an ordering of two transactions tx1 and tx2
as fair, if at the time of ordering, the ordering entity
could not have determined which order is more profitable
for her. Helix is order-fair in this sense when the more
profitable order—tx1 < tx2 or tx2 < tx1, depends on
the content of both tx1 and tx2. Assuming at least one
of these transactions was issued by a user, the ordering
node is familiar only with the corresponding etx and
cannot extract any useful information from it. Thus, in
this scenario, we conclude that the order of transactions
Helix produces is fair. The best example to illustrate
Helix’s resilience to order manipulation in this regard is
front-running31. In the next section we show that Helix
is also fair in regards to another ordering manipulation
where nodes service etxs owned by them prior to other
nodes’ etxs. This ordering manipulation does not depend
on the content of transactions, but only on the ability
to classify a transaction as owned by a specific node.
It is crucial (and non-trivial) for Helix to be resilient to
such manipulations under the incentive structure Helix
assumes. We refer to this as selection fairness.

VI. SELECTION FAIRNESS VIA CORRELATED SAMPLING

Thus far we discussed Helix’s mechanisms for combating
transaction censorship and ensuring fair primary (and com-
mittee) election. We now turn to the more subtle procedure of
constructing blocks from the pool of pending transactions.

In typical blockchain protocols, nodes (such as Bitcoin’s
miners) have the freedom to select which transactions to
include in their blocks. Normally, when transactions come
along with a fee determined by the issuer, this results in a
fee market that drives fees unnecessarily high at times of high
demand. While we do not elaborate on Helix’s fee structure,
we emphasize that Helix is designed such that fees do not

31Front-running is a form of market manipulation practice where an entity
with non-public information exploits it to produce an unfair profit. Consider
the following example, a user sends a transaction with an order to buy a large
amount of shares of some stock. Since the buy order will drive the price of the
stock up, the node receiving the transaction can push her own buy transaction
beforehand, where she can buy the stock’s shares before the price rises. Later,
the node releases the user’s transaction and sells her recently bought shares
at a higher price.

play a role in etx selection32. This design choice makes sense
when fees are not needed as the main motivation of nodes
to include transactions in blocks. Indeed, our presumption in
Helix is that nodes have inherent interest in processing their
own transactions33. Under these circumstances, the main goal
of this section is to describe Helix’s mechanism for selecting
etxs in a fair manner. Fairness in this regard should be
reflected by the blockchain, representing each node according
to the proportion of etxs she owns34.

An important aspect in the context of fair sampling is the
relation between the rate at which etxs are issued and the rate
at which they are appended to the blockchain. An epoch at
which the issuance rate is smaller than the maximal append
rate (allowed by the system) is relatively easy to analyze—
all transactions are processed within a small time frame. A
more involved case is when the issuance rate is (temporarily)
greater than the append rate. During such epochs, there are
many etxs pending to be added to the blockchain, and the
decision of which etxs to include in Eblocks is subject to
manipulation. The core aspect of selection fairness is to ensure
that the average waiting time of an etx depends solely on the
number of pending transactions, rather than on its owner node
or on any other characteristic.

In high-load epochs, we adapt a strategy of correlated
sampling that restricts the freedom a primary has in selecting
which etxs to include in her Eblock. Correlated sampling,
considered in [13], [39], [40] (see also [41] for a review
and optimality result), refers to the problem in which there
are two players having different distributions over the same
domain (in our case the set of issued etxs) and access to
shared randomness (in our case the random seed). Each player
wishes to output a single element, sampled according to her
distribution while minimizing the probability that the outputs
differ. In the work of [13], a MinHash strategy was used for
performing correlated sampling for the case that the distribu-
tions are uniform over a subset of the domain (analogous to
Epools in our setting). In [42], Rivest applied the MinHash
strategy sequentially in order to sample many elements from
the domain, possibly with repetitions. However, to the best of
our knowledge the scenario of correlated sampling of many
elements without repetitions has not been analyzed before.

Instead of dictating an Eblock construction strategy that
might not be aligned with primaries’ selfish interests and
might be difficult to validate, we suggest an Eblock validation
procedure that is better aligned with nodes’ interests. In the
following section we describe the Eblock validation procedure
applied in Helix in accordance with the correlated sampling
scheme. We then show that strategies with substantial prob-

32This design choice enables a variety of fee mechanisms e.g., constant
fee per transaction, periodic subscription fees, and models in which fees are
determined after processing.

33For instance, nodes run consumer applications and wish to service their
end-users by processing the transactions they issue.

34Under such notion of fairness nodes may be encouraged to artificially
produce many self-owned transactions in order to get more block real-estate.
Carefully designed fee mechanisms could disincentive such behavior, e.g.,
paying increased fee for failing transactions.
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ability of passing validation remain close to the construction
dictated by the correlated sampling scheme. Throughout this
section we restrict ourselves to high-load epochs by assuming
that the total number of pending etxs is Γb for some Γ > 1
(where b is the maximal number of etxs in a valid Eblock).

A. Eblock validation

The Helix correlated sampling scheme uses a hash function
in order to serialize candidate etxs for the next Eblock. The
hash function is tweaked with a random seed to eliminate its
predictability, yielding a common, random and unpredictable
serialization of the etxs. Formally, when considering the
Eblock in term r, the nodes order the pending etxs according
to the values H(RSr−1, etx), and refer to these values as the
hash values of the etxs. We denote H(etx) for brevity.

To ensure unpredictability, we introduce the notion of lock-
ing time. We denote by EP τi node i’s locked Epool at time τ ,
which is a snapshot of the etxs in i’s Epool at time τ 35. We
denote by τ ′i the time at which node i revealed DBr−1, and
define the locking time of node i to be τi := τ ′i − 2∆ (recall
the definition of ∆ from Sec. III-D as the upper bound on the
dissemination time between any pair of nodes).

In the validation procedure, nodes are asked to consider the
serialized etxs in their Epool at locking time. The choice of τi
was made such that nodes cannot quickly tailor etxs with low
hash values after revealing the random seed, but before the rest
of the network does. Indeed, due to network latency it could be
the case that RSr−1 is revealed to some node before the rest
of the network—by at most 2∆ time. Without the notion of
locking time nodes could have exploited this time to generate
and forward tailored etxs, detracting from the randomness of
the common ordering. Restricting nodes to consider only etxs
which were known to them prior to time τ ′i−2∆ prevents this
kind of attack. From now on by writing EPi we mean EP τii ,
unless stated otherwise.

Due to network latency and inherent properties of Helix, we
cannot expect EPi and EPj to be identical, even if i and j are
correct nodes. However, as locking times are similar, we may
assume a measure of similarity between two correct Epools at
locking times. To model this similarity, we use a probabilistic
model satisfying the following property. For any two correct
nodes i, j each etx in EPi is in EPj with probability at least
α. We refer to α as the similarity parameter of the network.

Upon receiving a proposed Eblock, EBp, from primary
p, correct committee member i validates it by performing
the validation procedure presented in Sec. IV-C. In addi-
tion, she checks two conditions regarding the size of the
proposed Eblock and the size of its overlap with a set
of transactions calculated according to her own Epool. We
define Tp be the maximal hash of an etx in EBp, i.e.,
Tp := max{H(etx)|etx ∈ EBp}. Likewise, we denote by
EB′i := {etx ∈ EPi|H(etx) ≤ Tp} the set of etxs in EPi

35This can be implemented by attaching a timestamp to each etx at the
time it was received.
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Figure 4: Illustration of the correlated sampling validation
process. In each Epool, etxs are sorted based on their hash
values. A threshold Tp is determined by the maximal hash
value of an etx in the EBlock EBp proposed by the primary p.
A correct committee member i examines the overlap between
EBp and the set of etxs in EPi which hash below Tp.

with hash values lower than Tp, and bi := max{|EB′i|, b}. We
further denote by b′ the size of EB′p = {etx ∈ EPp|H(etx) ≤
Tp} and say that EBp was constructed under a b′-construction.
This illustrates the fact that EBp was selected as a subset of
size b among the b′ lowest hashed etxs in EPp such that the
b′th etx was included. The setting is illustrated in Fig. 4.

Under these notations, the validation checks (in the con-
text of selection fairness) performed by correct node i upon
receiving a proposed Eblock, EBp (from primary p), are:

1) |EBp| = b
2) |EBp ∩ EB′i| ≥ βα(bi) for βα(bi) := αbi −

√
10bi

The second condition encourages primaries to construct
Eblocks with low b′. The minimal value of b′ is b; in the
event that the value of b′ is in fact b, the selection scheme
is perfectly fair. Intuitively, a larger b′ allows the primary
more freedom in the selection of EBp (rather than selecting
it as the b minimal etxs). However, since we can expect
|EB′p| ≈ |EB′i|, large b′ yields large bi and accordingly
large βα(bi), reducing the chances of EBp to pass validation.
βα(bi) is the maximal value for which Eblocks constructed
with b′ = b pass validation w.o.p., as implied by Hoeffding’s
bound. This is shown formally in the next section.

B. Liveness under b-construction

The extra validation process dictated by the correlated sam-
pling scheme bears risk to the liveness of the protocol. Blocks
that would have passed validation might get rejected once
correlated sampling validation is enforced. We thus prove that
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an Eblock compliant with the b-construction passes validation
of any correct committee member w.o.p.

Claim 19 (Liveness under b-construction.) Let EBp be an
Eblock constructed according to the b-construction, i be a
correct committee member. Then, EBp passes i’s validation
w.o.p. (under the assumption that α bounds from below the
similarity parameter of the network)

We use the following lemma.

Lemma 20 For two correct nodes k, l and a general set A ⊂
EPl, |A ∩EPk| > βα(|A|) with probability greater then 1−
2 exp(−20), where βα(x) := αx−

√
10x.

Proof. Denote Y := |A ∩ EPk|. We can write Y =∑
etx∈A Yetx, where Yetx are indicator random variables,

Yetx =

{
1 if etx ∈ EPk
0 otherwise

By definition, these random variables are i.i.d. Bernoulli
variables, with success probability (at least) α. This is true
from the similarity assumption. By Hoeffding’s inequality, for
any δ ≥ 0

Pr

(
1

|A|
|Y − E(Y )| > δ

)
≤ 2 exp(−2|A|δ2)

The expected value of Y is bounded from below by α|A|,
thus taking δ =

√
10
|A| and plugging this into the left-hand

side of Hoeffding’s inequality, we get that with probability
> 1− 2 exp(−20)

|A ∩ EPi| = Y > E(Y )− |A|δ
≥ α · |A| −

√
10|A| =: β(|A|)

We now turn to prove claim 19.

Proof. Node i’s validation comprises of two checks. Check
number 1 is that |EBp| = b, which passes with probability 1.
For clarity of the proof, we break check number 2 into two:
2.1 |EBp ∩ EB′i| ≥ βα(b)
2.2 |EBp ∩ EB′i| ≥ βα(|EB′i|)

For 2.1, take A = EBp ⊂ EPp. For a correct primary, this
is simply a general random set of transactions of size b. The
above lemma can be used as |EBp ∩ EB′i| = |EBp ∩ EPi|,
yielding that the probability for failing this condition is at
most 2 exp(−20). The argument for condition 2.2 is similar,
only this time A = EB′i ⊂ EPi and we use the equality
|EB′i ∩ EBp| = |EB′i ∩ EPp|. The latter equality is derived
from the assumption that EBp is a b-construction, which
implies EBp = EB′p = {etx ∈ EPp|H(etx) ≤ Tp}. Now,
the equality is easily derived from the definition of EB′i.

The claim establishes the fact that a primary following the
b-construction would pass validation w.o.p., thus keeping the
protocol live. In the next section we generalize the analysis
above, considering Eblocks admitting b′-constructions for b′ >
b.

C. Selection fairness

Under conditions where all nodes follow the b-construction,
the core aspect of selection fairness is an immediate result—
an etx is included in the next Eblock with probability 1/Γ.
However, as nodes are assumed to prioritize their own etxs
and act to shorten their average waiting time, they might
choose to follow a different strategy. The inevitable “room for
error” permitted in the validation process (due to potentially
non-identical Epools), prohibits such behavior from being
completely eliminated. In this section we analyze the extent
to which the validation scheme suggested above can guarantee
selection fairness and a fair average waiting time.

We consider two distinct methods to manipulate the selec-
tion process. The first is by tailoring etxs in order to hash them
to low values. The second method is through b′-constructions,
for b′ > b. We study the dependency between b′ and the
certainty of an Eblock to pass validation.

We start with a high-level analysis of the tailoring approach.
While the locking mechanism discussed earlier eliminates the
advantage of revealing the random seed prior to the rest of
the network, tailoring etxs can still be a worthwhile strategy.
Issuing many tailored copies of the same transaction and
forwarding them to the network would increase the probability
of one copy to be processed quickly. In order to avoid such
behavior, suitable fee models are needed36.

Alternatively, nodes may keep their tailored etxs hidden
from the network and include them only when construct-
ing Eblocks. the Helix Eblock validation process prevents
over-exploiting this strategy. Specifically, since tailored etxs
are clearly not in EPi, including many of them reduces
|EBp ∩ EB′i|, while in order to pass validation, the size of
this intersection must be at least βα(b).

We continue with a formal analysis of the b′-construction.
According to this strategy, the primary first looks at EB′p
which contains the lowest b′ etxs in EPp. Of those, she
selects the b etxs she prefers. Our analysis ignores this choice
and is applicable to any subset of b etxs from EB′p (that
includes the b′th etx). Typically, when b′ ≥ b the validation
condition becomes |EBp ∩ EB′i| ≥ β(|EB′i|). Both sides of
this inequality grow with b′, but while the left-hand side grows
slowly, and is bounded by b, the right-hand side grows faster
and is effectively unbounded. Thus, a large b′ decreases the
probability of EBp to pass validation. A quantitative analysis
is given hereafter.

We fix some b′ > b and consider EBp constructed via the b′-
construction. We calculate the probability q = q(b′) in which
EBp passes a single validation. Denote this event by A =
A(b′).

Before continuing, we make a simplifying (average-case)
assumption. Clearly, |EBp ∩EB′i| is bounded from above by

36For example, one such fee model can be realized by a system rule that
dictates an increased fee for failed transactions. In UtxO-based architectures
(like Bitcoin), such an approach would be easier to enforce. In account-
based architectures that support rich scripting languages (like Ethereum),
circumventing such rules would be considerably impractical.
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b, and we will assume that it is exactly αb, as the probability
of an etx ∈ EPp to be in EPi is (at least) α. Under this
assumption, Pr(A) becomes Pr (αb ≥ βα(bi)). Calculating
for which bi this condition holds gives rise to a quadratic
inequality, whose solution yields Pr(A) = Pr(bi ≤ M) for

M =

(√
10+
√
10+4α2b
2α

)2

. Clearly, M satisfies αb = βα(M)

and M > b. Recall that bi = max{b, |EB′i|}, which implies
Pr(bi ≤M) = Pr(|EB′i| ≤M).

We use the Chernoff inequality to bound Pr(|EB′i| ≤ M)
from below. For this, we use the expected value of |EB′i|,
which can be approximated using a simple symmetry argument
(based on the even dissemination of messages in the network),
yielding E[|EB′i|] = |EB′p| = b′. Our goal now is to find, for
any desired probability to pass validation q, the maximal b′

for which Pr(|EB′i| ≤ M) ≥ q. The Chernoff inequality for
the complement event yields

Pr(|EB′i| > M) = Pr
(
|EB′i| > (1 + δ)b′

)
≤ exp(−δ2b′/3)

where, δ = M
b′ −1. Chernoff requires δ ∈ [0, 1], which implies

b′ ≤ M ≤ 2b′ must hold. We are thus led to compute the
maximal b′ ≤M for which f(b′) := exp(−δ2b′/3) = 1− q.

Solving this equation, Table I illustrates maximal b′ = b′(q)
values (note that for b′ ≤M , the function f is monotonically
increasing) for various passing validation probabilities q, and
various Eblock sizes b, while keeping α = 0.95 (which yields
different M values). Notice that as q increases, the primary
has to be more careful and b′ decreases. The fact that b′(q)/b
is very close to 1 indicates that the freedom a primary has to
act unfairly in constructing EBp is rather limited.

Table I: For Eblock size b and a desired probability to pass a
single validation q, we find the maximal b′(q) for which we
can guarantee that the b′(q)-construction would pass validation
with probability at least q. The fact that the b′(q)/b values are
close to 1 suggests fairness in etx selection.

b M q b′(q) b′(q)/b
1000 1111 0.95 1016 1.0154
1000 1111 0.75 1046 1.0450
1000 1111 0.5 1064 1.0639
1000 1111 0.1 1093 1.0924
2500 2673 0.95 2523 1.0089
2500 2673 0.75 2570 1.0278
2500 2673 0.5 2600 1.0397
2500 2673 0.1 2645 1.0576
5000 5241 0.95 5029 1.0056
5000 5241 0.75 5096 1.0190
5000 5241 0.5 5138 1.0275
5000 5241 0.1 5201 1.0400

We clarify the motivation behind the analysis above. From
the point of view of a primary that wants to construct an
Eblock with a b′-construction, a prominent question is what b′

to choose given she wants to pass validation with probability
q. The above analysis bounds b′ from below given b and α.

To conclude this section, we analyze to what extent a b′-
construction allows a primary to promote her etxs. Given b′, a
primary would first include all etxs (among the first b′ ones)

she wishes to promote, and then complete the Eblock space
randomly (this is a direct result of the indistinguishability of
the encrypted transactions). The deviation of this construction
from simply taking the minimal b etxs depends on the fraction
of etxs a node chooses to promote (e.g., the fraction of
transactions she issued). We denote this fraction by ξp, and
turn to compute the probability of an etx to be included in an
Eblock constructed according to the b′-construction described
above.

Lemma 21 Let etx ∈ EPp and b′ ≥ b. Suppose EBp
is constructed according to a b′-construction with ξp, the
fraction of promoted etxs among all pending etxs in EPp.
The probability that an arbitrary etx is included in EBp is

Pr(etx ∈ EBp) =

{
b′

|EPp| if etx is promoted
b−ξp·b′

|EPp|·(1−ξp) otherwise

Proof. First, all promoted etxs which are among the lowest b′

etxs are included in EBp. The probability of an etx to admit
this condition is b′

|EPp| , which explains the first case. In case
the etx is not promoted by the primary, it would be included
if and only if both following conditions hold: it is hashed
among the lowest b′ etxs; and it is selected by the primary
among the remaining etxs. The probability to meet the first
condition is again b′

|EPp| , whereas for the second condition we
can only give an average case estimation. In average, there
are ξp · b′ promoted etxs among the lowest b′. Thus there are
b− ξpb′ slots left in EBp. The probability to get selected for
these slots is b−ξpb′

b′−ξpb′ . Multiplying these probabilities yields the
result.

D. Experimental results

To examine selection fairness beyond the theoretical bounds,
we conduct simulation-based experiments that reflect Helix’s
fairness properties in practice. We isolate specific elements
within the system and inspect their effect on fairness. We
simulate primaries that follow the b′-construction strategy and
measure fairness as the ratio b′/b. Our open-source code is
available online [43].

To obtain probabilistic results we repeat the same experi-
ment a thousand times and give an average case analysis. In
our experiments a pair of nodes, a primary p and a committee
member i, construct and validate a block respectively. We
model their Epools at locking time, EPp and EPi, by sampling
random etxs, where the total number of pending etxs is 10b
and |EPp∩EPi| = α ·10b. The block size is set to b = 1000.

Fig. 5 illustrates our first experiment. We set α = 0.95, and
check the relation between the primary’s desired probability
to pass a single validation, q, and the maximal b′ she can use.
We compare the theoretical lower bound to the experimental
results. It is interesting to note that the practical results indicate
a very moderate decent from q = 0.95 to q = 0.5 where b′

increases by roughly 20 etxs. This should imply that rational
primaries would use b′ < 1100 (and avoid unnecessary risks).
Note that within these (less than) 100 extra etxs there is only
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Figure 5: The ratio b′/b vs. the desired probability to pass a
single validation.
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Figure 6: Impact of network similarity parameter on fairness—
larger α values enhance fairness.

a fraction of promoted ones, see Fig. 7. In case we take larger
bs or αs the relative amount of feasible manipulation further
reduces.

In a real system, the Chernoff bound could serve as “advice”
to the primary, as to what b′ she can use and still pass vali-
dation with her desired probability. An upper bound analysis,
that would indicate the maximal b′ a primary might use and
still pass a single validation with a desired probability, is left
for future work.

Fig. 6 illustrates the second experiment which checks the
effect of α on selection fairness. It clearly shows that larger
α yields smaller b′/b ratio. Intuitively, large α values allow
the validator to know more about the primary’s Epool thus
yielding stricter validation conditions (i.e., larger β), resulting
in enhanced fairness.

Finally, Fig. 7 takes into account the analysis in Lemma 21
and the fraction of etxs the primary wishes to promote in
order to give a realistic estimation of the possible manipulation
in b′-constructions. We choose b′ values arising from the
simulations presented in Fig. 5. For non-promoted etxs, the
graph shows the ratio between the probability of getting
included in b′-constructions, to that in the b-construction.
We plot these ratios with respect to different fractions of
etxs, ξp, the primary wishes to promote. The fact that the
observed ratios are very close to 1 (even for small q values)
demonstrates that in practice, selection fairness in Helix is
maintained even under a b′ > b manipulation.

However, the main insight from the experiment section is
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Figure 7: The ratio between the expected waiting time of
a non-promoted etx in the b-construction, and that in a b′-
construction. In both curves α = 0.95.

that, surprisingly, the effectiveness of the selection fairness
scheme is quite indifferent to the similarity parameter α.
Between α = 0.95 and α = 0.6, the ratio b′/b and the expected
waiting time of non-promoted etxs does not differ by much.
Thus, in practice, a system that uses our selection fairness
mechanism should not make a special effort to increase α.

We note however that in the experiments above, the parame-
ter α used for validation matched the actual overlap of Epools.
We believe that a loose estimation of α would enable primaries
to manipulate Helix’s selection fairness, e.g., by tailoring many
etxs. It is left for future work to find methods to reduce the
importance of estimating α accurately.

VII. FAST SYNCS

The following section illustrates an algorithm for syncing
a node to the present state of the system (loosely speaking,
the state of the system relates to the blockchain up to the
term number of the most advanced correct node). It is desired
to perform the syncing procedure as fast as possible, without
sacrificing Helix’s safety. Intuitively, having a quick syncing
mechanism, reduces the effective time a node is considered
faulty (sleepy) and thus, helps in reducing f . Reducing the
number of faulty nodes enhances the performance of the
system.

A straightforward way for a node (i) to sync is by sending
some node (j) a request to sync that contains the highest term
for which she has a Dblock (DBr). If j has higher term
committed Eblocks, she sends i tuples of the form (EBq ,
BP q , SBq0 , . . . , SBqt ) for q > r in an incrementing manner.
Upon receiving the (r + 1)-term tuple, i verifies BP r+1

as a valid Block-proof for EBr+1 under the (r + 1)-term
committee (as determined by DBr). i then appends EBr+1

and reveals DBr+1 and the committee for term r + 2 (using
SBr+1

0 , . . . , SBr+1
t ). This process is performed repeatedly

until j completes sending all its blockchain. If j itself is in-
sync with the network, then once the process is terminated, i
is successfully synced. The downside of this method is that it
might take a node a long time to sync (especially when syncing
after a long downtime) during which the node is considered
faulty and cannot participate in committees.

The Helix fast sync algorithm enables a node to actively
participate while the previously described syncing procedure
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is taking place. A node i constantly listens to the network
and learns the current term number, r, from the received
messages. Upon receiving a message that contains a Block-
proof and a matching Eblock (i.e., 〈EBr, BP r〉) i validates
BP r. Particularly, in the fast sync optimization, i drops the
Cmap brief-validation check as defined in Sec. IV-C. If found
valid, we claim that i is safe to append EBr to her blockchain,
even though i does not have DBr−1 and can not calculate
locally Cmapr (or the committee in term r) and relies on
EBr’s header for it.

We emphasize that if i receives segment 4 messages (i.e.,
committee-related messages such as pre-prepare, prepare, etc.)
she may assume that it is in the r-term PBFT committee. But
since i does not have the previous Dblock yet, she cannot
reassure it and thus cannot participate. Thus, in this term, i
still counts as faulty. In particular, if i is primary in this term,
she would lose her turn.

We now turn to prove that Helix is safe when nodes apply
the fast sync optimization.

Claim 22 (Fast syncing safety) Let 0, . . . , n− 1 be the nodes
running Helix with the fast syncing optimization. In term r,
let EBri and EBrj be Eblocks appended by correct nodes
i, j ∈ [n − 1], respectively, to their local blockchains. Then,
EBri = EBrj .

Proof. The proof is very similar to the original safety proof
given in Sec. V-A. It relies on PBFT’s safety which suffices
as long as the committee in term r is a well-defined set of
m nodes, which is agreed upon by all nodes. Let Cr be
the committee that arises from DBr−1. As in the original
safety proof, an inductive argument convinces that DBr−1 is
agreed-upon and thus Cr is indeed well-defined. This is not
enough though, as the fast sync optimization enables nodes
to deduce the committee of term r from EBr (rather than
learn it locally from DBr−1). However, for a correct node to
deduce the committee of term r from EBr, the latter must
be accompanied by a valid Block-proof. Since correct nodes
would contribute their signatures to a Block-proof only if they
can calculate Cr locally and validate that it matches EBr’s
Cmap, no Block-proof for a term-r Eblock that contradicts
Cr can be generated. This concludes that Cr is indeed well-
defined and PBFT’s safety proof is now applicable.

VIII. CONCLUSION

We presented Helix, a Byzantine fault tolerant consensus
protocol for ordering transactions that ensures the resulting
order was fairly determined. We believe that our work is highly
suitable for ledger implementations in which transaction fees
are not the sole motivation for processing transactions, such as
decentralized ledgers whose nodes are operated by companies,
each wishing to service its own users. Indeed, such use-case
requires the protocol to achieve a fair ordering of transactions,
where all participants experience an equal level of service
(transaction confirmation time, throughput, etc.). Helix is
providing this property while keeping the decentralized control

of the ledger in the hands of the participating nodes; the
capability to scale the transaction throughput; and a Byzantine
fault tolerant engine. Helix ensures the end-users enhanced
protection from censorship and discrimination relative to other
typical solutions, while requiring them to utilize a negligible
amount of resources. It can therefore be seen as a fair protocol
towards end-users as well.
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