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Abstract

In this work, we demonstrate universal multi-party poisoning attacks that adapt and apply
to any multi-party learning process with arbitrary interaction pattern between the parties. More
generally, we introduce and study (k, p)-poisoning attacks in which an adversary controls k ∈ [m]
of the parties, and for each corrupted party Pi, the adversary submits some poisoned data T ′i on
behalf of Pi that is still “(1− p)-close” to the correct data Ti (e.g., 1− p fraction of T ′i is still
honestly generated). We prove that for any “bad” property B of the final trained hypothesis h
(e.g., h failing on a particular test example or having “large” risk) that has an arbitrarily small
constant probability of happening without the attack, there always is a (k, p)-poisoning attack
that increases the probability of B from µ to by µ1−p·k/m = µ+ Ω(p · k/m). Our attack only
uses clean labels, and it is online.

More generally, we prove that for any bounded function f(x1, . . . , xn) ∈ [0, 1] defined over
an n-step random process x = (x1, . . . , xn), an adversary who can override each of the n blocks
with even dependent probability p can increase the expected output by at least Ω(p ·Var[f(x)]).
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1 Introduction

Learning from a set T = {d1 = (a1, b1), . . . , dn = (an, bn)} of training examples in a way that the
predictions generalize to instances beyond T is a fundamental problem in learning theory. The
goal here is to produce a hypothesis h in such a way that h(a), with high probability, predicts the
“correct” label b, where the pair (a, b) = d is sampled from the target (test) distribution d. In the
most natural setting, the examples in the training data set T are also generated from the same
distribution d, however this is not always the case (e.g., due to noise in the data).

Poisoning attacks. Many previous works studying noise in the data allow it to be adversarial
and maliciously chosen against the learner [Val85, KL93, BEK02]. A tightly related and more
recent approach to the problem of learning under adversarial noise is the framework of so-called
poisoning (aka causative) attacks [BNS+06, BNL12, PMSW16], in which the adversary’s goal is not
necessarily to completely prevent the learning, but perhaps it simply wants to increase the risk of
the hypothesis produced by the learning process or make it more likely to fail on a particular test
instance (i.e., getting a targeted poisoning attack [BNS+06, STS16]).

Multi-party poisoning. In the distributed setting [MR17, MMR+16, BIK+17, KMY+16], the
training data T might be coming from various sources; e.g., it can be generated by m data providers
P1, . . . , Pm in an online way, while at the end a fixed algorithm, called the aggregator G, generates
the hypothesis h based on T . The goal of P1, . . . , Pm is to eventually help G construct a hypothesis
h that does well (e.g. in the case of classification) in predicting the label b of a given instance a,
where (a, b)← d is sampled from the final test distribution. The data provided by each party Pi
might even be of “different type”, so we cannot simply assume that the data provided by Pi is
necessarily sampled from the same distribution d. To model this more general setting, we let di
model the distribution from which the training data Ti (of Pi) is sampled. Poisoning attacks can
naturally be defined in the distributed setting as well [FYB18, BVH+18, BGS+17, HO18] to model
adversaries who partially control the training data T . These works, however, focus on attacking
and defending specific learning tasks. This leads us to the central question of this work.

What is the inherent provable power of poisoning attacks in the multi-party setting?

Answering the above question is critical for understanding the limits of provable security against
multi-party poisoning.

1.1 Our Contribution

We first formalize a new general model multi-party poisoning. We then prove the existence of
universal data poisoning attacks in the multi-party setting that apply to any task.

New attack model: (k, p)-poisoning attacks. our first contribution of this work is to formalize
a general notion that covers multi-party poisoning attackers that corrupt k out of m data provider
parties and furthermore, for each message sent by a corrupted party, the adversary still generates
data that is “close” to the honestly generated data. More formally, a (k, p)-poisoning attacker
Adv can first choose to corrupt k of the parties. Then, if a corrupted P̃i is supposed to send the
next message, then the adversary will sample d← d̃ for a maliciously chosen distribution d̃ that is
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guaranteed to be p to the original distribution di in total variation distance. Our (k, p)-poisoning
attacks include the so called “p-tampering” attacks of [MDM18b] as special case by letting k = m
(m is the number of parties). Moreover, (k, p)-attacks also include the standard model of k static
corruption in secure multi-party computation (in cryptography) letting p = 1. Our main result
in this works is to prove the universal power of (k, p)-poisoning as follow. We show that in any
m-party learning protocol, there exist a (k, p)-poisoning adversary that increases probability of the
produced hypothesis h having a bad property B (e.g., failing on a particular target instance known
to the adversary). For the formal version of Theorem 1.1, see Theorem 2.5.

Theorem 1.1 (Power of (k, p)-poisoning attacks–informal). Let Π = (P1, . . . , Pm) be an m-party
learning protocol for an m-party learning problem. Also let B be a bad property defined over the
output of the protocol. There is a polynomial time (k, p)-poisoning attack such that, given oracle
access to the data distribution of the parties, it can increase the probability of B from µ to µ1−kp/m.

Example. By corrupting half of the parties (i.e., p = 1, k = m/2) the adversary can increase the
probability of any bad event B from 1/100 to 1/10.

Universal nature of our attack. Our attacks are universal in the sense that they could be
applied to any learning algorithm for any learning task, and they are dimension-independent as
they applied to any data distribution. On the other hand, our universal attacks rely on an initial
vulnerability of arbitrary small constant probability that is then amplified through the poisoning
attack. As a result, although recent poisoning attacks (e.g., see [KSL18]) obtain stronger bounds in
their attack against specific defenses, our attacks apply to any algorithm with any built in defenses.

Deriving attacks on federated learning as special case. Since we allow the distribution of
each party in the multi-party case to be completely dependent on that party, our attacks cover
the case of model poisoning in federated learning [BVH+18, BCMC18], in which each party sends
something other than their plain share of data, as special case. In fact, multiple works have already
demonstrated the power of poisoning attacks and defences in the federated learning setting (e.g., see
[FYB18, BCMC18, CWCP18, CSX17, GR+18, YCRB18, TCC19, CV19, HZ19]). Some of these
attacks obtain stronger quantitative bounds in their attacks, however this is anticipated as these
works investigate attacks on specific learners, while a crucial property of our attack is that our
attacks come with provable bounds and are universal in that they apply to any learning task and
any hypothesis class (including neural nets as special case), if there is an initial Ω(1) vulnerability
(for some bad property) over the generated hypothesis.

Note that, our attacks actually do not need the exact history of examples that are used by parties,
and only need to know the updates sent by the parties during the course of protocol. Suppose an
uncorrected party randomizes its local model (e.g., for differential privacy purposes) and shares an
update ui with the server. Knowledge of ui is enough for our attacker. One might go even further
and ask what if the updates are sent in a secure/private way? Interestingly, our attack work in that
model too as it only needs to know the effect of the updates on the central model at the end of
round i− 1 (because all the attack wants is a random continuation of the intermediate model).

It also worth mentioning that our attack requires sampling oracles from distributions of all the
parties. This might seem that we are giving the adversary too much power. However, we think the
right way to define security of federated learning is by giving the adversary everything that hat
might be leaked to them. This way of defining security is inspired by cryptography. For instance,
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when modeling the chosen plaintext security of encryption schemes, adversary is given access to an
encryption oracle, while one might question how realistic it is. Analogously, In federated learning,
the adversary can potentially gather some statistics about the distribution of other parties and
learn them over time. However, as mentioned above, we do not need to give adversary access to the
actual data of honest parties. Only the public effect of them on the shared model is needed.

Further Related Work. Recent breakthroughs of Diakonikolas et al. [DKK+16] and Lai et
al. [LRV16] demonstrated the surprising power of algorithmic robust learning over poisoned training
data with limited risk that does not depend on the dimension of the distribution (but still depends on
the fraction of poisoned data). These works led to an active line of work (e.g., see [CSV17, DKS17,
DKS18a, DKK+18, PSBR18, DKS18b, SKL17] and references therein) exploring the possibility of
robust statistics over poisoned data with algorithmic guarantees. The works of [CSV17, DKS18a],
followed by [BBV08], performed list-decodable learning, and [BDLS17, DKK+18, PSBR18] studied
supervised learning.

On the negative side, Mahloujifar, Mahmoody and Diochnos [MM17, MDM18a] studied (uni-
versal) poisoning attacks that apply to any learning task and any hypothesis class and showed
that such attacks can indeed increase the error of any classifiers for any learning problem by a
constant probability, so long as there is an initial constant error probability. The attack model used
in [MM17, MDM18a], called p-tampering, was a generalization of a similar model introduced in
Austrin et al. [ACM+14] in the bitwise setting in a cryptographic context. These attacks (like the
ones in our work) were universal in the sense that they could be applied to any learning algorithm
for any learning task, and dimension-independent as they applied to any data distribution. On
the other hand, these universal attacks rely on an initial vulnerability of arbitrary small constant
probability that is then amplified through the poisoning attack. That is why such universal attacks
(including those in the multi-party setting) are not in contradiction with the above results.

1.2 Technical Overview

Previous universal poisoning attacks of [MM17, MDM18a] for the single party case are designed in
a setting in which each training example is chosen by the adversary with independent probability p.
We first describe where exactly the ideas of these works come short of extending to the multiparty
case, and then we explain how to borrow ideas from attacks on coin-tossing protocols in cryptography
[BOL89, HO14] and obtain the desired attacks of this work.

p-tampering attacks and their shortcoming. For starters, let us assume that the adversary
gets to corrupt and control k randomly selected parties. In this case, it is easy to see that, at the
end every single message in the protocol Π between the parties P1, . . . , Pm is controlled with exactly
probability p = k/m by the adversary Adv (even though these probabilities are correlated). Thus, at
a high level it seems that we should be able to use the p-tampering attacks of [MM17, MDM18a] to
degrade the quality of the produced hypothesis. However, the catch is that the proof of p-tampering
attacks of [MM17, MDM18a] (and the bitwise version of [ACM+17]) crucially rely on the assumption
that each message (which in our context corresponds to a training example) is tamperable with
independent probability p, while corrupting k random parties, leads to tamperable messages in a
correlated way.

We prove our main results by first proving a general result about the power of “biasing”
adversaries whose goal is to increase the expected value of a random process by controlling each
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incoming “segment” (aka block) of the random process with probability q (think of q as ≈ p · k/m).
These segments/blocks correspond to single or multiple training examples shared during the learning.
As these biasing attacks generalize p-tampering attacks, we simply call them generalized p-tampering
attacks. We now describe this attack model and clarify how it can be used to obtain Theorem 1.1.

Generalized p-tampering: new model for biasing attacks. In this work we introduce
generalized p-tampering (biasing) attacks that are defined for any random process x ≡ (x1, . . . ,xn)
and a function f(x) ∈ [0, 1] defined over this process. In order to explain the attack model, first
consider the setting where there is no attacker. Now, given a prefix x1, . . . , xi−1 of the blocks, the
next block xi is simply sampled from its conditional probability distribution (xi | x1, . . . , xi−1).
(Looking ahead, think of xi as the i’th training example provided by one of the parties in the
interactive learning protocol.) Now, imagine an adversary who enters the game and whose goal
is to increase the expected value of a function f(x1, . . . ,xn) defined over the random process x
by tampering with the block-by-block sampling process of x described above. Before the attack
starts, there will be a a list S ⊆ [n] of “tamperable” blocks that is not necessarily known to the
Adv in advance, but will become clear to him as the game goes on. Indeed, this set S itself will
be first sampled according to some fixed distribution S, and the crucial condition we require is
that Pr[i ∈ S] = p holds for all i ∈ [n]. After S ← S is sampled, the sequence of blocks (x1, . . . , xn)
will be sampled block-by-block as follows. Assuming (inductively) that x1, . . . , xi−1 are already
sampled so far, if i ∈ S, then Adv gets to fully control xi and determine its value, but if i 6∈ S, then
xi is simply sampled from its original conditional distribution (xi | x1, . . . , xi−1). At the end, the
function f is computed over the (adversarially) sampled sequence.

We now explain the intuitive connection between generalized p-tampering attacks and (k, p)-
poisoning attacks. The main idea is that we will use a generalized q-tampering attack for q = p ·k/m
over the random process that lists the sequence of training data provided by the parties during the
protocol. Let S be the distribution over [n] that picks its members through the following algorithm.
First choose a set of random parties {Q1, . . . , Qk} ⊆ {P1, . . . , Pm}, and then for each message xj
that belongs to Qi, include the corresponding index j in the final sampled S ← S with independent
probability p. It is easy to see that S eventually picks every message with (marginal) probability
q = p · k/m, but it is also the case that these inclusions are not independent events. Finally, to
use the power of generalized p-tampering attacks over the described S and the random process
of messages coming from the parties to get the results of Theorem 1.1, roughly speaking, we let
a function f model the loss function applied over the produced hypothesis. Therefore, to prove
Theorem 1.1 it is sufficient to prove Theorem 1.2 below which focuses on the power of generalized
p-tampering biasing attacks.

Theorem 1.2 (Power of generalized p-tampering-informal). Suppose x ≡ (x1, . . . ,xn) is a joint
distribution such that, given any prefix, the remaining blocks could be efficiently sampled in polynomial
time. Also let f : Supp(x) 7→ [0, 1]. Then, for any set distribution S for which Pr[i ∈ S] = p for
all i, there is a polynomial-time generalized p-tampering attack (over tampered blocks in S) that
increases the average of f over its input from µ to (arbitrarily close to) µ′ = µ−p · E[f(x)1+p]. In
particular, if f is boolean function, then it hold that µ′ = µ1−p.

The formal statement of Theorem 1.2 above follows from Theorem 3.5.

Bitwise vs. blockwise attacks. It is easy to see that in the definition of generalized p-tampering
attacks, it does not matter whether we define the attack bit-by-bit or block-by-block. The reason is
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that, even if we break down each block into smaller bits, then still each bit shall eventually fall into
the set of tamperable bits, and the model allows correlation between the inclusion and exclusion of
each block/bit into the final tamperable set. This is in contrast to the p-tampering model for which
this equivalence is not true. In fact, optimal bounds achievable by bitwise p-tampering as proved
in [ACM+17] are impossible to achieve in the blockwise p-tampering setting [MM17]. Despite this
simplification, we still prefer to use a blockwise presentation of the random process, as this way of
modeling the problem allows better tracking measures for the attacker’s sample complexity.

Ideas behind the tampering attack of Theorem 1.2. To prove Theorem 1.2 we use ideas
from [HO14, BOL89] in the context of coin-tossing attacks and generalize them using new techniques
to obtain our generalized p-tampering attacks.

Rejection sampling attack. The simplified version of our attack can be described as follows.
Based on the nature of this attack, we call it the “rejection sampling” (RS) attack. For any prefix
of already sampled blocks (x1, . . . , xi−1), suppose the adversary is given the chance of controlling
the next i’th block. The RS tampering then works as follows:

1. Let x′i, . . . , x
′
n be a random continuation of the random process, conditioned on (x1, . . . , xi−1).

2. If s = f(x1, . . . , xi−1, x
′
i, . . . , x

′
n), then if s = 1 output yi, and otherwise (i.e., if s = 0) go to

Step 1 and repeat the sampling process.

The above attack is inspired by the two-party attack of [HO14]. Our main contribution is to do
the following steps. (1) First, analyze this attack in the generalized tampering setting and show
its power, which implies the multiparty case as special case. This already gives an alternative,
and in our eyes simpler, proof of the classic result of [BOL89] (2) We then extend this attack and
its analysis to the real-output setting. (3) Finally, we show how to approximate this attack in
polynomial time.

2 Multi-Party Poisoning: Definitions and Main Results

Notation. We use bold font (e.g., x,S,α) to represent random variables, and usually use same
non-bold letters for denoting samples from these distributions. We use d← d to denote the process
of sampling d from the random variable d. By E[α] we mean the expected value of α over the
randomness of α, and by V[α] we denote the variance of random variable α. We might use a
“processed” version of α, and use E[f(α)] and V[f(α)] to denote the expected value and variance,
respectively, of f(α) over the randomness of α. A learning problem (A,B,d,H) is specified by the
following components. The set A is the set of possible instances, B is the set of possible labels, d is
distribution over A× B.1 The set H ⊆ BA is called the hypothesis space or hypothesis class. An
example s is a pair s = (a, b) where x ∈ A and y ∈ B. We consider loss functions Loss : B ×B 7→ R+

where Loss(b′, b) measures how different the ‘prediction’ y′ (of some possible hypothesis h(a) = y′)
is from the true outcome y. We call a loss function bounded if it always takes values in [0, 1]. A
natural loss function for classification tasks is to use Loss(b′, b) = 0 if y = y′ and Loss(b′, b) = 1
otherwise. The risk of a hypothesis h ∈ C is the expected loss of h with respect to d, namely
Risk(h) = E(a,b)←d[Loss(h(a), b)]. The average error which quantifies the total error of the protocol
is defined as Err(d) = Prh←Π,(a,b)←d[Loss(h(a), b)].

1By using joint distributions over A×B, we jointly model a set of distributions over A and a concept class mapping
A to B (perhaps with noise and uncertainty).
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Definition 2.1 (Multi-party learning protocols). An m-party learning protocol Π for the m-party
learning problem (D,H) consists of an aggregator function G and m (interactive) data providers
P = {P1, . . . , Pm}. For each data provider Pi, there is a distribution di ∈ D that models the (honest)
distribution of labeled samples generated by Pi, and there is a final (test) distribution d that P, G
want to learn jointly. The protocol runs in r rounds and at each round, based on the protocol Π,
one particular data owner Pi broadcasts a single labeled example (a, b)← di.

2 In the last round, the
aggregator function G maps the the messages to an output hypothesis h ∈ H.

Now, we define poisoning attackers that target multi-party protocols. We formalize a more
general notion that includes p-tampering attacks and k-party corruption as special case.

Definition 2.2 (Multi-party (k, p)-poisoning attacks). A (k, p)-poisoning attack against an m-party
learning protocol Π is defined by an adversary Adv who can control a subset C ⊆ [m] of the parties
where |C| = k. The attacker Adv shall pick the set C at the beginning. At each round j of the
protocol, if a data provider Pi ∈ C is supposed to broadcast the next example from its distribution
di, the adversary can partially control this sample using the tampered distribution d̃ such that
|d̃− di| ≤ p in total variation distance. Note that the distribution d̃ can depend on the history of
examples broadcast so far, but the requirement is that, conditioned on this history, the malicious
message of adversary modeled by distribution d̃, is at most p-statistically far from di. We use ΠAdv

to denote the protocol in presence of Adv. We also define the following notions. Adv is a plausible
adversary, if it always holds that Supp(d̃) ⊆ Supp(di). Adv is efficient if it runs in polynomial time
in the total length of the messages exchanged during the protocol (from the beginning till end).

Remark 2.3 (Static vs. adaptive corruption). Definition 2.2 focuses on corrupting k parties
statically. A natural extension of this definition in which the set C is chosen adaptively [CFGN96]
while the protocol is being executed can also be defined naturally. However, here we focus on static
corruption and leave the possibility of improving our results in the adaptive case for future work.

Remark 2.4 (Plausible vs. clean-label attacks). In recent years, the term clean-label is used for
data-poisoning attacks that must use the correct label for the poison data. This definition is special
case of plausibility as one can define the support set to be the all images with their correct label.
However, our definition is more general and can be used for model poisoning attacks against federated
learning as well. For example, the distribution d could be the distribution of gradients at a certain
round. Being plausible in this setting means that the gradient must be calculated based on a real
input and cannot be arbitrary.

We now formally state our result about the power of (k, p)-poisoning attacks.

Theorem 2.5 (Power of efficient multi-party poisoning). In any m-party protocol Π for parties
P = {P1, . . . , Pm}, for any p ∈ [0, 1] and k ∈ [m], the following hold where M is the total length of
the messages exchanged.

1. For any bad property B : H → {0, 1}, there is a plausible (k, p)-poisoning attack Adv that
runs in time poly(M/ε) and increases the probability of B from µ (in the no-attack setting) to

µ′ ≥ µ1−p − ε.
2We can directly model settings where more data is exchanged in one round, however, we stick to the simpler

definition w.l.o.g.
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2. If the (normalized) loss function is bounded (i.e., it outputs in [0, 1]), then there is a plausible,
(k, p)-poisoning Adv that runs in time poly(M/ε) and increases the average error of the
protocol as

ErrAdv(d) ≥ Err(d)−p · E
h←Π

[Risk(h,d)1+p]

≥ Err(d) +
p · k
2m
· ν − ε

where ν = Vh←Π[Risk(h,d)] and V[·] is the variance.

Allowing different distributions in different rounds. In Definition 2.2, we restrict the
adversary to remain “close” to di for each message sent out by one of the corrupted parties. A natural
question is: what happens if we allow the parties distributions to be different in different rounds. For

example, in a round j, a party Pi might send multiple training examples D(j) =
(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
,

and we want to limit the total statistical distance between the distribution of the larger message
D(j) from dki (i.e., k iid samples from di).

3 We emphasize that, our results extend to this more
general setting as well. In particular, the proof of Theorem 2.5 directly extends to a more general
setting where we can allow the honest distribution di of each party i to also depend on the round j

in which these messages are sent. Thus, we can use a round-specific distribution d
(j)
i to model the

joint distribution of multiple samples D(j) =
(
d

(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
that are sent out in the j’th round

by the party Pi. This way, we can obtain the stronger form of attacks that remain statistically close
to the joint (correct) distribution of the (multi-sample) messages sent in a round. In fact, as we will
discuss shortly D(j) might be of completely different type.

Allowing randomized aggregation. The aggregator G is a simple function that maps the
transcript of the exchanged messages to a hypothesis h. A natural question is: what happens if we
generalize this to the setting where G is allowed to be randomized. We note that in Theorem 2.5,
Part 2 can allow G to be randomized, but Parts 1 and 3 need deterministic aggregation. The
reason is that for those parts, we need the transcript to determine the confidence and average error
functions. One general way to make up for randomized aggregation is to allow the parties to inject
randomness into the transcript as they run the protocol by sending messages that are not necessarily
learning samples from their distribution di. As described above, our attacks extend to this more
general setting as well. Otherwise, we will need the adversary to be able to also depend on the
randomness of G, but that is also a reasonable assumption if the aggregation is used using public
beacon that could be obtained by the adversary as well.

Before proving Theorem 2.5, we need to develop our main result about the power of generalized p-
tampering attacks. In Section 3, we prove such result, and then in Section 3.2 we prove Theorem 2.5.

3 Multi-Party Poisoning via Generalized p-Tampering

To prove our Theorem 2.5 we interpret the multi-party learning protocol as a coin tossing protocol
in which the final bit is 1 if h has the (bad) property B. We define a corresponding attack model

3Note that, even if each block in
(
d
(j)
1 , d

(j)
2 , . . . , d

(j)
k

)
remains p-close to di, their joint distribution could be quite

far from dk
i .
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in coin tossing protocols that can be directly used to obtain the desired goal; this model is called
generalized p-tampering. Below, we formally state our main result about the power of generalized
p-tampering attacks. We start by formalizing some notation and definitions.

Notation. By x ≡ y we denote that the random variables x and y have the same distributions.
Unless stated otherwise, by using a bar over a variable, we emphasize that it is a vector. By
x ≡ (x1,x2, . . . ,xn) we refer to a joint distribution over vectors with n components. For a joint
distribution x ≡ (x1, . . . ,xn), we use x≤i to denote the joint distribution of the first i variables
x ≡ (x1, . . . ,xi). Also, for a vector x = (x1 . . . xn) we use x≤i to denote the prefix (x1, . . . , xi). For
a randomized algorithm L(·), by y ← L(x) we denote the randomized execution of L on input x
outputting y. For a distribution (x,y), by (x | y) we denote the conditional distribution (x | y = y).
By Supp(d) = {d | Pr[d = d] > 0} we denote the support set of d. By Td(·) we denote an algorithm
T (·) with oracle access to a sampler for d that upon every query returns fresh samples from d. By
dn we denote the distribution that returns n iid samples from d.

Definition 3.1 (Valid prefixes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution. We call
x≤i = (x1, . . . , xi) a valid prefix for x if there exist xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(x).
ValPref(x) denotes the set of all valid prefixes of x.

Definition 3.2 (Tampering with random processes). Let x ≡ (x1, . . . ,xn) be an arbitrary joint
distribution. We call a (potentially randomized and possibly computationally unbounded) algorithm
T an (online) tampering algorithm for x if given any prefix x≤i−1 ∈ ValPref(x), we have

Pr
xi←T(x≤i−1)

[x≤i ∈ ValPref(x)] = 1 .

Namely, T(x≤i−1) outputs xi such that x≤i is again a valid prefix. We call T an efficient tampering
algorithm for x if it runs in time poly(N) where N is the bit length of x ∈ Supp(x).

Definition 3.3 (Online samplers). We call OnSam an online sampler for x ≡ (x1, . . . ,xn) if for all
x≤i−1 ∈ ValPref(x), OnSam(n, x≤i−1) ≡ xi. Moreover, we call x ≡ (x1, . . . ,xn) online samplable if
it has an online sampler that runs in time poly(N) where N is the bit length of x ∈ Supp(x).

Notation for tampering distributions. Let x ≡ (x1, . . . ,xn) be an arbitrary joint distribution
and T a tampering algorithm for x. For any subset S ⊆ [n], we define y ≡ 〈x ‖T, S〉 to be the
joint distribution that is the result of online tampering of T over set S, where y ≡ (y1, . . . ,yn) is
sampled inductively as follows. For every i ∈ [n], suppose y≤i−1 is the previously sampled block.
If i ∈ S, then the ith block yi is generated by the tampering algorithm T(y≤i−1), and otherwise,
yi is sampled from (xi | xi−1 = y≤i−1). For any distribution S over subsets of [n], by 〈x ‖T,S〉 we
denote the random variable that can be sampled by first sampling S ← S and then y ← 〈x ‖T, S〉.

Definition 3.4 (p-covering). Let S be a distribution over the subsets of [n]. We call S a p-
covering distribution on [n] (or simply p-covering, when n is clear from the context), if for all
i ∈ [n],PrS←S[i ∈ S] = p.

The following theorem states the power of generalized p-tampering attacks.
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Theorem 3.5 (Biasing of bounded functions through generalizing p-tampering). Let S be a p-
covering distribution on [n], x ≡ (x1, . . . ,xn) be a joint distribution, f : Supp(x) 7→ [0, 1], and
µ = E[f(x)]. Then, for any ε ∈ [0, 1], there exists a tampering algorithm Tε that, given oracle access
to f and any online sampler OnSam for x, it runs in time poly(N/ε), where N is the bit length of

any x← x, and for yε ≡ 〈x ‖T
f,OnSam
ε ,S〉, it holds that

E [f(yε)] ≥ µ−p · E
[
f(x)1+p

]
− ε .

Special case of Boolean functions. When the function f is Boolean, we get µ−p ·E[f(x)1+p] =
µ1−p ≥ µ(1 + Ωµ(p)), which matches the bound proved in [BOL89] for the special case of p = k/n
for integer k ∈ [n] and for S that is uniformly random subset of [n] of size k. (The same bound for
the case of 2 parties was proved in [HO14] with extra properties). Even for this case, compared to
[BOL89, HO14] our result is more general, as we can allow S with arbitrary p ∈ [0, 1] and achieve a
polynomial time attack given oracle access to an online sampler for x. The work of [HO14] also
deals with polynomial time attackers for the special case of 2 parties, but their efficient attackers use
a different oracle (i.e., OWF inverter), and it is not clear whether or not their attack extend to the
case of more then 2 parties. Finally, both [BOL89, HO14] prove their bound for the geometric mean
of the averages for different S ← S, while we do so for their arithmetic mean, but we emphasize
that this is enough for all of our applications.

The bounds of Theorem 3.5 relies on the quantity µ′ = µ−p · E[f(x)1+p]. A natural question is:
how large is µ′ compared to µ? As discussed above, for the case of Boolean f , we already know that
µ′ ≥ µ, but that argument does not apply to the real-output f . A simple application of Jensen’s
inequality shows that µ ≤ µ′ in general, but that still does not mean that µ′ � µ.

General case of real-output functions: relating the bias to the variance. If V[f(x)] = 0,
then no tampering attack can achieve any bias, so any the minimum bias of all attacks should
somehow depend on the variance of f(x). In the following, we show that this gap does exist and that
µ′ − µ ≥ Ω(p ·V[f(x)]). Similar results relating the bias the the variance of the original distribution
were previously proved [MDM18a, MM17, ACM+14] for the special case of p-tampering attacks
(i.e., S chooses every i ∈ [n] independently with probability p). Here, we obtain a more general
result for any p-covering set structure S.

Corollary 3.6. If ν = V[f(x)], then the computationally bounded attack of Theorem 3.5 achieves

E [f(yε)]− E [f(x)] ≥ p · (p+ 1)

2 · µp
· ν − ε ≥ p

2
· ν − ε .

We prove this corollary in Appendix A.1 by proving a connection between the bound of Theorem
3.5 and the variance ν.

3.1 Proving Theorem 3.5

Here, we first prove the power of computationally unbounded adversaries. Then, we show how we
can “approximate” this attack with a polynomial-time adversary and get almost the same bias.
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3.1.1 Warm up: Computationally Unbounded Adversaries

The construction below describes a computationally unbounded biasing algorithm that achieves the
bounds of Theorem 3.5.

Construction 3.7 (Rejection-sampling tampering). Let x ≡ (x1, . . . ,xn) and f : Supp(x) 7→ [0, 1].
The rejection sampling tampering algorithm RejSamf works as follows. Given the valid prefix
y≤i−1 ∈ ValPref(x), the tampering algorithm would do the following:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. If s = f(y1, . . . , yn), then with probability s output yi, otherwise go to Step 1 and repeat.

We will first prove a property of the rejection sampling algorithm when applied on every block.

Definition 3.8 (Notation for partial expectations of functions). Suppose f : Supp(x) 7→ R is defined
over a joint distribution x ≡ (x1, . . . ,xn), i ∈ [n], and x≤i ∈ ValPref(x). Then, using a small hat,
we define the notation f̂(x≤i) = Ex←(x|x≤i)[f(x)]. E.g., for x = x[n], we have f̂(x) = f(x).

Claim 3.9. If 〈x ‖RejSamf , [n]〉 ≡ y[n] ≡ (y1, . . . ,yn). Then, for every valid y≤i ∈ ValPref[x],

Pr[y≤i = y≤i]

Pr[x≤i = y≤i]
=
f̂(y≤i)

µ
.

Proof. Based on the description of RejSamf , for any y≤i ∈ ValPref(x) the following equation holds
for the probability of sampling yi conditioned on prefix y≤i−1.

Pr[yi = yi | y≤i−1] = Pr[xi = yi | y≤i−1] · f̂(y≤i)

+ (1− f̂(y≤i−1)) · Pr[yi = yi | y≤i−1].

The first term in this equation corresponds to the probability of selecting and accepting in the first
round of sampling and the second term corresponds to the probability of selecting and accepting in
any round except the first round. Therefore we have

Pr[yi = yi | y≤i−1] =
f̂(y≤i)

f̂(y≤i−1)
· Pr[xi = yi | y≤i−1] ,

which implies that

Pr[y≤i = y≤i] =
∏
j∈[i]

(
f̂(y≤j)

f̂(y≤j−1)

)
· Pr[x≤i = y≤i]

=
f̂(y≤i)

µ
· Pr[x≤i = y≤i] .

Now, we prove two properties for any tampering algorithm (not just rejection sampling) over a
p-covering distribution.
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Lemma 3.10. Let S be p-covering for [n] and y ∈ Supp(x). For any S ∈ Supp(S) and an arbitrary
tampering algorithm T for x, let yS ≡ 〈x ‖T, S〉. Then,

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. For every y≤i ∈ ValPref(y[n]) ⊆ ValPref(x) define ρ[y≤i] as

ρ[y≤i] =
Pr[y

[n]
i = xi | y[n]

≤i−1 = y≤i−1]

Pr[xi = xi | x≤i−1 = y≤i−1]
.

Then, for all y ∈ ValPref(yS) ⊆ ValPref(x) we have

Pr[yS = y] = Pr[x = y] ·
∏
i∈S

ρ[y≤i] .

Therefore we have

∏
S∈2[n]

(
Pr[yS = y]

Pr[x = y]

)Pr[S=S]

=

∏
i∈[n]

ρ[y≤i]

p

.

Claim 3.11. Suppose S is p-covering on [n], yS ≡ 〈x ‖T, S〉 for any S ← S, and y ≡ 〈x ‖T,S〉
for an arbitrary tampering algorithm T for x. Then, it holds that

E[f(y)] ≥
∑

y∈Supp(x)

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.

Proof. Let hS,y = Pr[yS=y]
Pr[x=y] . Also let Z ⊆ Supp(x). Note that Supp(yS) ⊆ Z for any S ⊆ [n].

Therefore, we have E[f(y)] = ES←S Ey←yS [f(y)] is equal to∑
S∈2[n]

Pr[S = S] ·
∑
y∈Z

Pr[yS = y] · f(y)

=
∑
S∈2[n]

Pr[S = S] ·
∑
y∈Z

hS,y · Pr[x = y] · f(y)

=
∑
y∈Z

Pr[x = y] · f(y) ·
∑
S∈2[n]

Pr[S = S] · hS,y

(by AM-GM inequality)

≥
∑
y∈Z

Pr[x = y] · f(y) ·
∏
S∈2[n]

h
Pr[S=S]
S,y

(by p-covering of S and Lemma 3.10)

=
∑
y∈Z

Pr[x = y] · f(y) ·

(
Pr[y[n] = y]

Pr[x = y]

)p
.
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We now prove the main result using the one-rejection sampling tampering algorithm and also
relying on the p-covering property of S. In particular, if y ≡ 〈x ‖RejSamf ,S〉, then by Claims 3.11
and 3.9 we have

E[f(y)] ≥
∑

y∈Supp(x)

(
Pr[y[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 3.9)

=
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)

= µ−p ·
∑

y∈Supp(x)

Pr[x = y] · f(y)1+p

= µ−p · E[f(x)1+p] .

3.1.2 Proving Theorem 3.5 for Polynomially Bounded Attacks

In this section, we prove the second item of Theorem 3.5. Namely, we show an efficient tampering
algorithm whose average is ε-close to the average of RejSam. We define this attack as follows:

Construction 3.12 (k-rejection-sampling tampering). Let x = (x1, . . . ,xn) be a joint distribution

and f : Supp(x) 7→ [0, 1]. The k-rejection sampling tampering algorithm RejSamf
k works as follows.

Given the valid prefix y≤i−1 ∈ ValPref(x), the tampering algorithm would do the following for k
times:

1. Sample y≥i ← (x≥i | y≤i−1) by using the online sampler for f .

2. Let s = f(y1, . . . , yn); with probability s output yi, otherwise go to Step 1.

If no yi was output during any of the above k iterations then output a fresh sample yi ← (xi | y≤i−1).

The output distribution of RejSamk on any input, converges to the rejections sampling tampering
algorithm RejSam for sufficiently large k →∞.

Notation. Below, use the notation z = 〈x ‖RejSamf
k , S〉 and µk = E[f(z)].

We will prove the following claim which will directly completes the proof of second part of
Theorem 3.5.

Claim 3.13. Let x = (x1, . . . ,xn) be a joint distribution and f : Supp(x) 7→ [0, 1]. For any ε ∈ [0, 1],

let k ≥ 16 ln(2n/ε)
ε2µ2

. Then RejSamk runs in time O(k) = poly(N/(ε · µ)), where N ≥ n is the total

bit-length of representing x, and for z ≡ 〈x ‖RejSamf,OnSam
k ,S〉 it holds that

E[f(z)] ≥ µ−p · E[f(x)1+p]− ε .

Proof. It is easy to see why RejSamk runs in time O(k) and thus we will focus on proving the
expected value of the output of the k-rejection sampling tampering algorithm. To that end, we start
by providing some definitions relevant to our analysis.
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Definition 3.14. For δ ≥ 0, let

High(δ) = {x | x ∈ Supp(x) ∧ ∀i ∈ [n], f̂(x≤i−1) ≥ δ}, Low(δ) = Supp(x) \High(δ) ,

Big(δ) = {x | x ∈ Supp(x) ∧ f(x) ≥ δ}, and Small(δ) = Supp(x) \ Big(δ) .

Claim 3.15. For δ1 · δ2 = δ, it holds that

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)] ≤ δ2 .

As a result, it holds that Prx←x[x ∈ Big(δ1) ∧ x ∈ Low(δ)] ≤ δ2, and so∑
x∈Big(δ1)∩Low(δ)

Pr[x = x] ≤ δ2 .

Proof. Let t : Low(δ)→ ValPref(x) be such that t(x) is the smallest prefix x≤i such that f̂(x≤i) ≤ δ.
Now consider the set T = {t(x) | x ∈ Low(δ)}. For any w ∈ T we have

δ ≥ f̂(w) ≥ Pr
x←x

[x ∈ Big(δ1) | t(x) = w] · δ1 ,

which implies
Pr
x←x

[x ∈ Big(δ1) | t(x) = w] ≤ δ2 .

Thus, we have

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) ∧ t(x) = w | x ∈ Low(δ)]

=
∑
w∈T

Pr
x←x

[x ∈ Big(δ1) | x ∈ Low(δ) ∧ t(x) = w] · Pr
x←x

[t(x) = w | x ∈ Low(δ)]

≤
∑
w∈T

δ2 · Pr
x←x

[t(x) = w | x ∈ Low(δ)] ≤ δ2 .

Claim 3.16. Let x ∈ High(δ), then we have

Pr[z = y] ≥ (1− (1− δ)k)n · f(y)

µ
· Pr[x = y] .

Proof. Consider Ek,y≤i
to be the event that RejSamk outputs one of its first k samples, when

performed on y≤i. Then, it holds that

Pr[Ek,y≤i
] = 1− (1− f̂(y≤i))

k ≥ 1− (1− δ)k .

On the other hand, we know that Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i
] = Pr[yi+1 = yi+1 | y≤i]. Thus, we

have

Pr[zi+1 = yi+1 | y≤i] ≥ Pr[zi+1 = yi+1 | y≤i ∧ Ek,y≤i
] · Pr[Ek,y≤i

]

= Pr[yi+1 = yi+1 | y≤i] · Pr[Ek,y≤i
]

≥ Pr[yi+1 = yi+1 | y≤i] · (1− (1− δ)k)n.

By multiplying these inequalities for i ∈ [n] we get Pr[z = y] ≥ (1− (1− δ)k)n · Pr[y = x] .
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Claim 3.17. For δ1 · δ2 = δ, it holds that

µk ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k .

Proof. Let

µ′ =
∑

y∈Low(δ)∩Small(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) ,

and µ′′ =
∑

y∈Low(δ)∩Big(δ1)

(
f(y)

µ

)p
· Pr[x = y] · f(y) .

By Claim, 3.11 we have

E[f(z)] ≥
∑

y∈Supp(x)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

≥
∑

y∈High(δ)

(
Pr[z[n] = y]

Pr[x = y]

)p
· Pr[x = y] · f(y)

(by Claim 3.16) ≥
∑

y∈High(δ)

(1− (1− δ)k)n·p ·
(
f(y)

µ

)p
· Pr[x = y] · f(y)

= (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− µ′ − µ′′

 .

We have µ′ ≤ δ1+p
1 /µp ≤ δ1/µ, because f(y) ≤ δ1 for all y ∈ Small(δ1). Also, by Claim 3.15, we get

µ′′ ≤
∑

y∈Low(δ)∩Big(δ1)

(
1

µ

)p
· Pr[x = y] ≤ δ2

µp
≤ δ2

µ
.

Therefore, we have

E[f(z)] ≥ (1− (1− δ)k)n·p ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


(by Bernoulli inequality) ≥ (1− n·(1− δ)k) ·

 ∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ


≥

∑
y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− δ1 + δ2

µ
− n · (1− δ)k.

15



In order to conclude the proof of Claim 3.13, we can set δ1 = δ2 =
√
δ and let δ ≤ (εµ/4)2.

Then, given that we have k ≥ 16 ln(2n/ε)
ε2µ2

, we get

E[f(z)] ≥
∑

y∈Supp(x)

(
f(y)

µ

)p
· Pr[x = y] · f(y)− ε

2
− ε

2
.

3.2 Obtaining (k, p)-Poisoning: Proof of Theorem 2.5 using Theorem 3.5

In this section, we formally prove Theorem 2.5 using Theorems 3.5. We first prove the first part of
theorem about the boolean property.

Proof of Theorem 2.5, Part 1. For a subset C ⊆ [m] let PC = {Pi; i ∈ C} and RC be the subset
of rounds where one of the parties in PC sends an example. Also for a subset S ⊆ [n], we define
Bion(S, p) to be a distribution over all the subsets of S, where each subset S′ ⊆ S hast the
probability p|S

′| · (1 − p)|S|−|S′|. Now, consider the covering S of the set [n] which is distributed
equivalent to the following process. First sample a uniform subset C of [m] of size k. Then sample
and output a set S sampled from Bion(RC , p). S is clearly a (p · km)-covering. We use this covering
to prove the theorem. For j ∈ [n] let w(j) be the index of the provider at round j and let dw(j) be
the designated distribution of the jth round and let x = dw(1) × · · · × dw(n).

We define a function f : Supp(x)→ {0, 1}, which is a Boolean function and is 1 if the output of
the protocol has the property B, and otherwise it is 0. Now we use Theorem 3.5. We know that S
is a (p · km)-covering for [n]. Therefore of Theorem 3.5, there exist an poly(m/ε) time tampering

algorithm Tε that changes x to y ≡ 〈x ‖Tf,OnSam
ε ,S〉 where E[f(y)] ≥ E[f(y)]1−pk/m − ε.

By an averaging argument, we can conclude that there exist a set C ∈ [m] of size k for which
the distribution Bion(RC , p) produces average output at least E[f(y)]1−pk/m − ε. Note that the
measure of empty set in Bion(RC , p) is exactly equal to 1 − p which means with probability
1 − p the adversary will not tamper with any of the blocks, therefore, the statistical distance
|x− 〈x ‖Tf,OnSam

ε ,Bion(RC , p)〉| is at most p. This concludes the proof.

Now we prove the second part using Theorem 3.5 and Lemma A.3.

Proof of Theorem 2.5 part 2. Now we prove the second part. The second part is very similar to
first part except that the function that we define here is a real valued function. Consider the
function f2 : Supp(x) → [0, 1] which is defined to be the risk of the output hypotheses. Now by
Theorem 3.5 and Lemma A.3, we know that there is tampering algorithm Tε that changes x to
y ≡ 〈x ‖Tf2,OnSam

ε ,S〉 such that

E[f2(y)] ≥ µ2 +
p · k
2m
· ν − ε.

By a similar averaging argument we can conclude the proof.
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[KMY+16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
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A Some Useful Inequalities

The following well-known variant of the inequality for the arithmetic mean and the geometric mean
could be derived from the Jensen’s inequality.

Lemma A.1 (Weighted AM-GM inequality). For any n ∈ N, let z1, ..., zn be a sequence of non-
negative real numbers and let w1, ..., wn be such that wi ≥ 0 for every i ∈ [n] and

∑n
i=1wi = 1.

Then, it holds that

n∑
i=1

wizi ≥
n∏
i=1

zwi
i .

The following lemma provides a tool for lower bounding the gap between the two sides of Jensen’s
inequality, also known as the Jensen gap.

Lemma A.2 (Lower bound for Jensen gap [LB17]). Let α be a real-valued random variable,

Supp(α) ⊆ [0, 1], and E[α] = µ. Let ϕ(·) be twice differentiable on [0, 1], and let hb(a) = ϕ(a)−ϕ(b)
(a−b)2 −

ϕ′(a)
a−b . Then,

E[ϕ(α)]− ϕ(µ) ≥ V[α] · inf
a∈[0,1]

{hµ(a)} .

A.1 Relating the Bias to the Variance

We first prove a lemma that shows the connection of bias to variance. Then, using this lemma we
immediately get a Ω(p · V[f(x)]) lower bounds for the bias achieved by the attacker of Theorem 3.5
for the general case of real-valued functions and arbitrary p-covering set distribution S.
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Lemma A.3. Let α be any real-valued random variable over Supp(α) ⊆ [0, 1], and p ∈ [0, 1]. Let
µ = E[α] be the expected value of α, ν = V[α] be the variance of α. Then, it holds that

µ−p · E[α1+p]− µ ≥ p · (p+ 1)

2 · µp
· ν ≥ p

2
· ν .

Proof. We use Lemma A.2 by letting ϕ(x) = x1+p. Thus, we have to minimize the following function
on x ∈ [0, 1],

gµ(x) =
(
x1+p − µ1+p − (1 + p) · µp · (x− µ)

)
/(x− µ)2 .

We now prove that the minimum happens on x = 1. Note that the function gµ(x) is continues on
[0, µ) and (µ, 0] and the limit exists at x = µ and is equal to 1/2 · p · (1 + p) · µ−1+p. Therefore if we
show that g′µ is negative for x ∈ [0, µ) ∪ (µ, 1] it implies that, ∀x ∈ [0, 1]g(x) ≥ g(1). We have

g′µ(x) =
(p− 1) · µp+1 − (p+ 1) · x · µp + (p+ 1) · µ · xp − (p− 1) · xp+1

(µ− x)3

(using c = x/µ) = µp−2 · (p− 1)− (p+ 1) · c+ (p+ 1) · cp − (p− 1) · cp+1

(1− c)3
.

We prove that the numerator q(c) = (p− 1)− (p+ 1) · c+ (p+ 1) · cp − (p− 1) · cp+1 is positive for
c > 1 and negative for 0 < c < 1. For c > 0, we have

q′(c) = −(1 + p) + (p+ 1) · p · cp−1 + (1− p) · (p+ 1) · cp

= (1 + p) · (p · cp−1 + (1− p) · cp − 1)

(by AM-GM inequality of Lemma A.1) ≥ (1 + p) · (cp·(p−1) · c(1−p)·p − 1)

= 0 .

Therefore, q is increasing for c > 0 which implies ∀c ∈ [0, 1], q(c) < q(1) = 0 and ∀c > 1, q(c) >
q(1) = 0. We have ∀x ∈ [0, µ) ∪ (µ, 1], g′(x) ≤ 0. Therefore we have

∀x ∈ [0, 1], gu(x) ≥ gu(1) . (1)

Now we prove that gµ(1) ≥ p(1+p)
2 . Consider the following function,

w(µ) = gµ(1) =
(
1− µ1+p − (1 + p) · µp · (1− µ)

)
/(1− µ)2 .

We will show that q is a decreasing function for µ ∈ [0, 1]. We have

w′(µ) =
p · (1− µ2) · µp−1 + p2(1− µ)2 · µp−1 + 2 · (µp − 1))

(−1 + µ)3
.

We will show that the numerator s(µ) = p · (1−µ2) ·µp−1 + p2(1−µ)2 ·µp−1 + 2 · (µp− 1) is negative
for µ ∈ [0, 1] . We have s′(µ) = p(p2− 1) · (1−µ)2 ·µp−2 which is negative for µ ∈ [0, 1]. This implies
that ∀µ ∈ [0, 1], s(µ) ≥ s(1) = 0. Therefore, w is a decreasing function, and we obtain

∀µ ∈ [0, 1], gµ(1) = w(µ) ≥ lim
u→1

w(u) =
p(1 + p)

2
. (2)
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Now, we conclude that

µ−p · E[α1+p]− µ = µ−p
(
E[α1+p]− µ1+p

)
(by Lemma A.2) ≥ µ−p

(
inf

x∈[0,1]
{gµ(x)} · ν

)
(by Inequality 1) ≥ µ−p · gµ(1) · ν

(by Inequality 2) ≥ p · (1 + p)

2 · µp
· ν .

Now, using Lemma A.3 and 3.5, we immidiately get Corollary 3.6

22


	Introduction
	Our Contribution
	Technical Overview

	Multi-Party Poisoning: Definitions and Main Results
	Multi-Party Poisoning via Generalized p-Tampering
	Proving Theorem 3.5
	Warm up: Computationally Unbounded Adversaries
	Proving Theorem 3.5 for Polynomially Bounded Attacks

	Obtaining (k,p)-Poisoning: Proof of Theorem 2.5 using Theorem 3.5

	Some Useful Inequalities
	Relating the Bias to the Variance


