
Improved (Almost) Tightly-Secure
Simulation-Sound QA-NIZK with Applications

Masayuki Abe1, Charanjit S. Jutla2, Miyako Ohkubo3, and Arnab Roy4

1 NTT Corporation, Japan. abe.masayuki@lab.ntt.co.jp
2 IBM T. J. Watson Research Center, USA. csjutla@us.ibm.com

3 Security Fundamentals Laboratories, CSR, NICT, Japan. m.ohkubo@nict.go.jp
4 Fujitsu Laboratories of America, USA. aroy@us.fujitsu.com

Abstract. We construct the first (almost) tightly-secure unbounded-
simulation-sound quasi-adaptive non-interactive zero -knowledge argu-
ments (USS-QA-NIZK) for linear-subspace languages with compact (num-
ber of group elements independent of the security parameter) common
reference string (CRS) and compact proofs under standard assumptions
in bilinear-pairings groups. In particular, under the SXDH assumption,
the USS-QA-NIZK proof size is only seventeen group elements with
a factor O(logQ) loss in security reduction to SXDH. The USS-QA-
NIZK primitive has many applications, including structure-preserving
signatures (SPS), CCA2-secure publicly-verifiable public-key encryption
(PKE), which in turn have applications to CCA-anonymous group sig-
natures, blind signatures and unbounded simulation-sound Groth-Sahai
NIZK proofs. We show that the almost tight security of our USS-QA-
NIZK translates into constructions of all of the above applications with
(almost) tight-security to standard assumptions such as SXDH and, more
generally, Dk-MDDH. Thus, we get the first publicly-verifiable (almost)
tightly-secure multi-user/multi-challenge CCA2-secure PKE with prac-
tical efficiency under standard bilinear assumptions. Our (almost) tight
SPS construction is also improved in the signature size over previously
known constructions.

Keywords: QA-NIZK, simulation-soundness, tight security, public-key
encryption, CCA, Structure-preserving signatures.

1 Introduction

Over the last decade, pairing-based cryptography has facilitated many new cryp-
tographic protocols and applications that are provably-secure under static as-
sumptions. Some of these static assumptions (SXDH, DLIN, MDDH) are now
considered standard, as they generalize decisional-Diffie-Hellman (DDH) as-
sumption to pairings-based groups. Some of the ground-breaking ideas include
the Groth-Sahai (GS) non-interactive zero-knowledge (NIZK) proofs [GS12],
fully-secure identity-based-encryption (IBE) [Wat09], structure-preserving sig-
natures (SPS) [AFG+10], quasi-adaptive NIZK arguments (QA-NIZK) [JR13],
and tightly-secure IBE [CW13]. In particular, structure-preserving signatures use



Groth-Sahai NIZK proof structure to enable a wide-range of privacy-preserving
applications, such as, group signatures [AHO10], blind signatures [AO09a,AFG+10],
group encryption [CLY09], among others. Recent works [JR17,JOR18] have
employed QA-NIZK to get more efficient SPS, and tightly-secure unbounded-
simulation-sound QA-NIZK (USS-QA-NIZK [LPJY14,KW15]) to get tightly-
secure CCA2-secure public-key encryption (PKE) in the multi-user and multi-
challenge setting [LPJY15].

In this work we focus on the basic primitive of USS-QA-NIZK for linear-
subspaces of vector spaces of bilinear groups, which has important implications
as a structure-preserving version of it directly implies structure-preserving signa-
tures. Further, it is already known to imply CCA2-secure PKE [LPJY15], which
in turn leads to several new applications such as CCA-anonymous group sig-
natures [AHO10], and UC-commitments [FLM11]. Further, an (almost) tightly-
secure USS-QA-NIZK implies (almost) tightly-secure version of all the above ap-
plications. While an (almost) tightly-secure USS-QA-NIZK was given in [LPJY15]
it required a large common reference string (CRS), which was of the order of
the security parameter λ. In this work, we give the first (almost) tightly-secure
USS-QA-NIZK for linear-subspaces with compact (number of group elements
independent of λ) CRS and compact proofs. Moreover, the earlier construction
only worked under the DLIN assumption in symmetric groups, and required
non-standard assumptions in the asymmetric pairing-group setting, whereas we
give a construction which is tightly-secure under the SXDH assumption in asym-
metric groups. Asymmetric groups usually allow leaner constructions, which we
validate below. At the same time, we make the CRS compact. Our construction
of USS-QA-NIZK is also structure-preserving.

Related Techniques. In [KW15], Kiltz and Wee observed that QA-NIZK can be
seen as a generalization of hash proof systems [CS98] to public-verifiability by
publishing a “partial commitment” to the secret hash-key k in the second group
G2 of a pairings-based groups (G1,G2,GT , e). Simulation of proofs of statements
then just requires hash computation using the secret hash-key k. Computational-
soundness is slightly more tricky to prove than in the hash-proof setting, but
essentially an adversary cannot generate hash proofs of false statements given
only the “partial commitment” to k and the projection-key (of the hash-proof
system). In the simulation-soundness setting, the simulation of fake proofs would
give additional information to the adversary about secret-hash key k, and hence
to obtain a USS-QA-NIZK, [KW15] encrypt the hash-proofs and employ a dual-
system [Wat09] technique to achieve soundness. This methodology should be
contrasted with the “OR” proof methodology of [LPJY15] (for USS-QA-NIZK)
and [CCS09] (for unbounded simulation-sound GS-NIZK).

While the USS-QA-NIZK of [KW15] leads to compact proofs (of size only
(2k + 2) under k-linear assumption), the security reduction to the underly-
ing hardness assumption is not tight. The reason behind this being that the
dual-system approach is itself not tight as at its heart it employs one-time
simulation-soundness along with two-universal hash-proof systems [JR15], simi-
lar to Cramer-Shoup CCA2-encryption [CS98]. A nested-version of dual-system

2



approach does lead to (almost) tight IBE [CW13], but then requires non-compact
(master) public keys.

However, the concept of identity-space partitioning introduced in [CW13]
is also applicable to signature schemes, and this technique repeatedly splits the
message space into two based on the message or a tag. This idea was further
enhanced in [Hof17] to adaptive partitioning in which the partitioning is decided
dynamically based on an encrypted partitioning-bit. [AHN+17] refined this tech-
nique by introducing new ideas using “OR” GS-NIZK systems and made the
scheme structure-preserving. Since signature schemes, especially the ones con-
sidered in the above works, usually encrypt a secret and prove in zero-knowledge
that such a secret is encrypted in the signature, the question arises if this re-
fined adaptive-partitioning methodology can be employed to the USS-QA-NIZK
of [KW15] discussed above that encrypted the hash-proofs. One main difference
between NIZK proofs embedded in signature schemes is that they need only
be “designated-prover” NIZK proofs. In other words, such NIZK proofs while
still providing public verifiability, need only give the proving capability to a
designated party, namely the CRS (or public-key) generator itself. Hence, such
designated-prover NIZK proofs are much easier to devise and it is not immedi-
ately clear if such restricted NIZK proofs can be extended to usual NIZK proofs
(especially in the tight USS-NIZK setting).

Finally, we argue that the recent constructions of tight CCA2-secure PKE
[GHK17,Hof17] (along with [CCS09]) also do not easily imply tight USS-NIZK.
[CCS09] requires proving an OR-statement where one of the disjuncts is that a
CCA2-PKE ciphertext is well-formed. For [GHK17], this statement is not Groth-
Sahai friendly as its own “qualified”-OR proof in the ciphertexts employs a map-
ping that maps group elements to Zq elements. This should be contrasted with
Cramer-Shoup CCA2-PKE, which also has such a tag, but that is publicly com-
putable from other elements in the ciphertext. This is not the case for [GHK17]
as the mapping is from private elements. As for [Hof17], it uses disjunctive hash-
proofs from [ABP15] which require the hash proof to be in the target group;
GS-proofs of such statements are only possible in the Witness-Indistinguishable
setting.

Our Contributions. We show that a different “OR” system than considered in
[AHN+17] (or later works such as [JOR18]) does allow one to give (almost) tight
(structure-preserving) USS-QA-NIZK for linear-subspaces with compact proof
sizes and compact CRS-es. This “OR” system can be proved in the generic
framework of [Ràf15], allowing us to obtain USS-QA-NIZKs under the SXDH
assumption in asymmetric pairings groups, which was not previously known
even for non-compact CRS. We also mention that while our structure-preserving
USS-QA-NIZK construction loses a factor of O(λ) in the security reduction, we
give another variant employing tags (and hence not structure-preserving) that
only has a O(logQ) factor loss in security reduction, where Q is the number
of adversarial requests for simulated proofs. In yet another variant, we consider
the “designated prover” setting as described above, and give a leaner structure-
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preserving construction with a tighter reduction as well, i.e. with only a O(logQ)
factor loss.

As a first application, we show that a labeled version of our tight USS-
QA-NIZK construction gives us a tight CCA2-secure publicly-verifiable labelled
PKE in the multi-user multi-challenge setting5. In Table 1, we compare our
scheme with the state of the art schemes in [GHKW16,Hof17,GHK17] with the
smallest possible assumption for each. While being practical by itself, our scheme
is not the best one in terms of efficiency. What separates our scheme from other
tightly secure schemes is the public verifiability, which allows anyone, without
knowing the secret key, to check if a ciphertext decrypts to some plaintext.
Feasibility results for publicly-verifiable tight CCA-PKE can be found in [HJ16]
and [ADKNO13], but their ciphertext overhead is hundreds or even more than a
thousand of group elements. Ours is the first practical publicly-verifiable scheme
having only 19 elements of ciphertext overhead. Our scheme is also secure under
the SXDH assumption with only a O(logQ) loss in security reduction, where Q
is the total number of (multi-challenge, multi-user) encryption-oracle requests by
the adversary. CCA2-secure PKE and its variants that encrypt long messages
have further applications, such as UC commitments, and we refer the reader
to [LPJY15] for a good introduction.

Table 1. Comparison of tightly-secure public-key encryption schemes when the un-
derlying assumptions are set to minimum ones, SXDH or DDH. Sizes count the
number of group elements and (n1, n2) denotes n1 and n2 elements in G1 and G2,
respectively. Column ‘Pairings?’ shows necessity of pairing groups. SAE stands for
symmetric authenticated encryption.

|pk| |ct| − |m| Verifiabilty Pairings? Sec. Loss Assumption
[GHKW16] O(λ) 3 private no O(λ) DDH
[Hof17] 28 6 private yes O(λ) DLIN
[GHK17] 6 3 private no O(λ) DDH+SAE
Ours §5.1 (13, 8) (13, 6) public yes O(logQ) SXDH

As a second application, we show that our designated-prover variant of
structure-preserving USS-QA-NIZK from Section 5.2 yields an SPS scheme with
the shortest signature size in the literature. Recall that unbounded simulation-
soundness guarantees that it is hard to create a valid proof for any no-instances
taken out of the legitimate subspace even after seeing simulated proofs for (also
no-) instances of one’s choice. If we look at the simulation trapdoor as a secret-
key and the simulated proofs as signatures, the USS-QA-NIZK can be considered
as a signature scheme for message space consisting of no-instances, and the notion
of unbounded simulation-soundness is exactly the same as existential unforge-
ability against adaptive chosen-message attacks. As formally proven in [AAO18],
for bringing this idea to reality, we need an efficient mapping from desired mes-

5 This requires adapting our USS-QA-NIZK to the multi-language USS-QA-NIZK
described in [LPJY15], but our scheme readily adapts to that.
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sage space to these no-instances. Since our USS-QA-NIZK allows simulation
of fake proofs and we present a simple and efficient construction of injective
mapping from a sequence of group elements to no-instances, this construction
suffers no overhead for unilateral messages. This, along with the more efficient
(designated-prover) USS-QA-NIZK gives us the shortest SPS known under the
SXDH assumption, and with only a O(logQ) factor loss in security-reduction
(see Table 2).

Table 2. Comparison with existing SPS schemes for unilateral messages when as-
sumptions are set to minimal ones. Columns labeled as |M |, |σ|, and |pk| show num-
ber of group elements in a message, a signature and a public key. For [HJ16], the
parameter d limits number of signing queries to 2d.

|M | |σ| |pk| Sec. Loss Assumption
[HJ16] 1 10d+ 6 13 8 DLIN

[ACD+12] (n1, 0) (7, 4) ( 5, n1 + 12) O(Q) SXDH, XDLIN
[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLIN

[KPW15] (n1, 0) (6, 1) ( 0, n1 + 6) O(Q2) SXDH
[JR17] (n1, 0) (5, 1) ( 0, n1 + 6) O(Q logQ) SXDH

[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH
[JOR18] (n1, 0) (11, 6) ( 7, n1 + 16) O(λ) SXDH
[GHKP18] (n1, 0) (8, 6) ( 2, n1 + 9) O(logQ) SXDH
Ours (§5.2) (n1, 0) (6, 6) (10, n1 + 5) O(logQ) SXDH

Finally, we mention some plug-in applications of our tightly-secure PKE
and SPS without details. Combining these two applications, we have the first
(almost) tightly-secure CCA-anonymous dynamic group signature scheme with
compact signature sizes and compact public keys under standard assumptions.
Also we can instantiate a generic structure-preserving blind signature scheme
of [Fis06] using our SPS to get an (almost) tight round-optimal scheme un-
der Dk-mddh with compact signature size, whereas previous schemes in stan-
dard model were based on non-static assumptions [Fuc09,AO09b]. Finally, our
(almost) tight CCA2-secure PKE scheme along with the generic construction
of [CCS09], leads to a first (almost) tightly-secure unbounded simulation-sound
Groth-Sahai NIZK proof system with compact CRS and proofs.

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A>B as
A ·B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T

5



in the target group with pairing as multiplication and target group operation as
addition.

2.1 Matrix-DDH Assumptions and Boosting

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Zl×kq which is full-ranked with overwhelming
probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Zkq and s′ ← Zlq, the tuple ([A], [As]) is computationally indis-
tinguishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by
Dk.

It was shown in [JR16] that a Dk-MDDH assumption can be boosted to
generate additional (computationally) independently random elements.

For an l× k matrix A, we denote Ā to be the top k× k square sub-matrix of
A and A to be the bottom (l − k)× k sub-matrix of A.

Theorem 1 (Boosting [JR16]). Let Dk be a matrix distribution on Z(k+1)×k
q .

Define another matrix distribution Dl,k on Zl×kq as follows: First sample matri-

ces A ← Dk and R ← Z(l−k)×k
q and then output

(
Ā
R

)
. Then the Dk-MDDH

assumption implies the Dl,k-MDDH assumption with an (l − k) security reduc-
tion.

They called boosting to be the process of stretching Dk to Dl,k as above. In
our construction we will need to boost Dk to D2k,k.

2.2 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our USS-QA-NIZK construction we will also need a property called true-
simulation-soundness. We recall the definitions of these concepts below.

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero- knowledge (QA-
NIZK) proof system for witness-relations Rη = {Rρ} with parameters sampled
from a distribution D over associated parameter language Lpar, if there exist sim-
ulators crssim and sim such that for all non-uniform PPT adversaries A1,A2,A3,
we have (in all of the following probabilistic experiments, the experiment starts
by setting η as η ← pargen(1λ), and choosing ρ as ρ← Dη):
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Quasi-Adaptive Completeness:

Pr

crs← crsgen(η, ρ)
(x,w)← A1(crs, ρ)
π ← prover(crs, x, w)

:
ver(crs, x, π) = 1 if

Rρ(x,w)

 = 1

Quasi-Adaptive Soundness:

Pr

[
crs← crsgen(η, ρ)
(x, π)← A2(crs, ρ)

:
x /∈ Lρ and

ver(crs, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
crs← crsgen(η, ρ) : Aprover(crs,·,·)3 (crs, ρ) = 1

]
≈

Pr
[
(crs, trap)← crssim(η, ρ) : Asim

∗
(crs,trap,·,·)

3 (crs, ρ) = 1
]
,

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) 6∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if soundness holds even when an adaptive adversary has ac-
cess to simulated proofs on language members. More precisely, for all PPT A,

Pr

[
(crs, trap)← crssim(η, ρ)

(x, π)← Asim(crs,trap,·,·)(crs, ρ)
:

x 6∈ Lρ and
ver(crs, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x 6∈ Lρ.

The construction of [JR14] yielded k element proofs of any linear subspace
language membership and [KW15] generalized it to any Dk-mddh assumption.
Both constructions are true-simulation-sound.

We now define the unbounded simulation-soundness (USS) property, which
we seek to achieve in this paper. The prover and verifier can additionally accept
a label which is bound to the proof.

Definition 3 (Unbounded Simulation-Soundness). A QA-NIZK is called
(labeled) unbounded simulation sound if soundness holds even when an adap-
tive adversary has access to simulated proofs on arbitrary words of its choice.
More precisely, for all PPT A,

Pr

[
(crs, trap)← crssim(η, ρ)

(x, lbl, π)← Asim(crs,trap,·,·)(crs, ρ)
:
x 6∈ Lρ ∧ (x, lbl) /∈ Q

ver(crs, x, π) = 1

]
≈ 0,

where the set Q records (word, label) tuples queried to the simulator.
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A stronger notion called Enhanced Unbounded Simulation-Soundness in the
multi-CRS setting was formalized by [LPJY15], where soundness holds even if
the discrete logs of the language are given to the adversary and the adversary
has access to multiple CRS-es and corresponding oracles. We note that our
construction satisfies this property as well.

Our main construction is also Structure-Preserving as the CRS and proof
elements are all in the base groups of the bilinear map and verification consists
only of pairing product equations.

2.3 Public-Key Encryption Schemes

Let GEN be an algortihm that, on input security parameter λ, outputs par that
includes parameters of pairing groups.

Definition 4 (Public-key encryption). A Public-Key Encryption (PKE) scheme
consists of probabilistic polynomial-time algorithms PKE := (KeyGen,Enc,Dec):

– Key generation algorithm KeyGen(par) takes par← GEN(1λ) as input and gen-
erates a pair of public and secret keys (pk, sk). Message spaceM is determined
by pk.

– Encryption algorithm Enc(pk,M) returns a ciphertext ct.
– Decryption algorithm Dec(sk, ct) is deterministic and returns a message M.

For correctness, it must hold that, for all par← GEN(1λ), (pk, sk)← KeyGen(par),
messages M ∈M, and ct← Enc(pk,M), Dec(sk, ct) = M.

Definition 5 (IND-mCPA Security [BBM00]). A PKE scheme PKE is indis-
tinguishable against multi-instance chosen-plaintext attack (IND-mCPA-secure)
if for any qe ≥ 0 and for all ppt adversaries A with access to oracle Oe at most
qe times the following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr

[
b′ = b

∣∣∣∣par← GEN(1λ); (pk, sk)← KeyGen(par);
b← {0, 1}; b′ ← AOe(·,·)(pk)

]
− 1

2

∣∣∣∣ ,
where Oe(M0,M1) runs ct∗ ← Enc(pk,Mb), and returns ct∗ to A.

There exist public-key encryption schemes that are structure-preserving,
IND-mCPA secure, and have tight reductions based on compact assumptions. Ex-
amples are ElGamal encryption [ElG84] and Linear encryption [BBS04] based
on the DDH assumption and the Decision Linear assumption, respectively. In
particular, we will use the scheme of [EHK+13], which is based on the Dk-mddh
assumption. We will use the linear homomorphic property of this PKE in the
construction - adding the ciphertexts implicitly adds the underlying plaintexts.

We now recall the definition of IND-CCA2 secure public key encryption
scheme in the multi-challenge multi-user setting [BBM00], where the par are
shared by multiple users while generating their own keys using KeyGen.
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Definition 6 (Multi-CCA [BBM00] (or see [LPJY15])).
A public-key encryption scheme is (µ, qe)-IND-CCA secure, for integers µ, qe ∈

poly(λ), if no PPT adversary has non-negligible adavantage in the following
game:

1. The challenger first generates par ← GEN(1λ) and runs (sk(i), pk(i)) ←
KeyGen(par) for i = 1 to µ. It gives {pk(i)}µi=1 to the adversary A and

retains {sk(i)}µi=1. In addition, the challenger initializes a set D ← φ and a
counter jq ← 0. Finally, it chooses a random bit d← {0, 1}.

2. The adversary A adaptively makes queries to the following oracles on mul-
tiple occasions:
– Encryption query: A chooses an index i ∈ [1..µ] and a pair (M0,M1)

of equal length messages. If jq = qe, the oracle returns ⊥. Otherwise, it

computes C ← Enc(pk(i),Md) and returns C. In addition, it sets D :=
D ∪ {(i, C)} and jq := jq + 1.

– Decryption query: A can also invoke the decryption oracle on arbitrary
chiphertexts C and indices i ∈ [1..µ]. If (i, C) ∈ D, the oracle returns ⊥.

Otherwise, the oracle returns M ← Dec(sk(i), C), which may be ⊥ if C is
an invalid ciphertext.

3. The adversary A outputs a bit d′ and is deemed successful if d′ = d. As usual,
A’s advantage is measured as the distance Advmcca(A) = |2 Pr[d′ = d]− 1|.

2.4 Structure-Preserving Signatures

Let GEN be a common parameter generation algorithm that outputs par for
given security parameter λ.

Definition 7 (Structure-Preserving Signature). A structure-preserving sig-
nature scheme SPS is a triple of probabilistic polynomial time (PPT) algorithms
SPS = (KeyGen,Sign,Verify):

– Key generation algorithm KeyGen(par) takes common parameter par and re-
turns a public/secret key, (pk, sk), where pk ∈ Gnpk for some npk ∈ poly(λ).
It is assumed that pk implicitly defines a message space M := Gn for some
n ∈ poly(λ).

– Signing algorithm Sign(sk,M) takes secret key sk and a message M ∈ M as
input and returns a signature σ ∈ Gnσ for nσ ∈ poly(λ).

– Verification algorithm Verify(pk,M, σ) takes public key pk, message M ∈M,
and signature σ and outputs 1 or 0. It only evaluates group membership op-
erations and pairing product equations.

Perfect correctness holds if for all (pk, sk) ← KeyGen(par) and all messages
M ∈M and all σ ← Sign(sk,M) we have Verify(pk,M, σ) = 1.

Definition 8 (Existential Unforgeability against Chosen Message At-
tack). To an adversary A and scheme SPS we associate the advantage function:

Advcma
SPS(A) := Pr

par← GEN(1λ)
(pk, sk)← KeyGen(par)
(M∗, σ∗)← ASignO(·)(pk)

:
M∗ /∈ Qmsg and

Verify(pk,M∗, σ∗) = 1


9



where SignO(M) runs σ ← Sign(sk,M), adds M to Qmsg (initialized with ∅)
and returns σ to A. An SPS is said to be (unbounded) EUF-CMA-secure if for
all PPT adversaries A, Advcma

SPS(A) is negligible.

3 The New (Almost) Tightly-Secure USS-QA-NIZK

The new USS-QA-NIZK scheme is formally described in Figure 1, with the CRS
and proof simulators described in Figure 2. While a brief overview of the new
scheme was given in the introduction, we now describe it in more detail.

We essentially combine techniques from the USS-QA-NIZK scheme of Kiltz
and Wee [KW15] and the tightly secure SPS scheme of Jutla, Ohkubo and
Roy [JOR18]. Following [KW15], we encrypt a basic QA-NIZK proof of the
given word y = [Mx]1 using an augmented ElGamal encryption scheme:

ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := x>[p1]1 + r>[p2]1

Notice that unlike [KW15], we did not use an integer tag in the encryption.
This helps us keep the construction structure preserving. We also include a
QA-NIZK Π2 certifying that (ρ, ρ̂, γ) is well-formed. Now we extend this tuple
with elements which enable adaptive partitioning as in [JOR18]. This includes a
double ElGamal encryption of a bit z, along with a QA-NIZK proof of equality
of plaintexts. The final piece is an OR-NIZK proof that proves either (ρ, ρ̂) is
consistent, or that z is same as a bit x which is given encrypted in the public key.
Intuitively, in several games in the proof, the OR proof enables us to randomize
the ciphertexts in the partitions where the disjunct z = x holds, while restricting
the adversary to attempt a win only in the other partitions. Instantiations of
OR-NIZKs are given in Section 4.

The (almost) tight security of this scheme is proved in the next section. We
prove that this construction has an O(λ) reduction to Dk-mddh. In Section 3.2,
we provide another construction which builds upon this one and enjoys a better
O(logQ) reduction, where Q is the number of simulated proofs given out. Finally,
in Section 3.3, we describe some optimizations which reduce the size of the proofs
even further.

3.1 Security of the USS-QA-NIZK Scheme

In this section we state and prove the security of the USS-QA-NIZK scheme Π
described in Figure 1, with simulators described in Figure 2.

Theorem 2. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advussΠ (Q))
in the USS game against the scheme Π is at most

advtssΠ2
+ 12L · advtssΠ1

+ 8L · advD2k,k-mddh + (12L+ 1)advzkΠ0

+4L · advmcpa
PKE +

6L+ (Q+ 1)2 + 1

q
+
Q

2L

Here L is the least integer greater than the bit size of q and hence is O(λ).
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2).
Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2)← Zn

q × Zk
q .

Set p1 := M>k1 and p2 := B̄
>
k2

Sample (crsip,crs
i
v) ← Πi.crsgen(q,G1,G2,GT , e, [1]1, [1]2, ·) for i = 1, 2, with

parameters described below.

Sample (pki, ski)← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).

Set crsp := (crs0,crs1p,crs
2
p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).

Set crsv := (crs0,crs1v,crs
2
v, [B]1, pk1, pk2, ctx).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x):
Sample (r, r1z, r

2
z)← Zk

q × Zk
q × Zk

q .
Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := x>[p1]1 + r>[p2]1.

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs
0, (ρ, ρ̂, ct1z − ctx), (r, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set π2 := Π2.prover(crs
2
p, (y,ρ, ρ̂, γ), (x, r)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

ver (crsv, y, π) :
Check all the NIZK proofs:

Π0.ver(crs
0, (ρ, ρ̂, ct1z − ctx), π0)

and Π1.ver(crs
1
v, (ct1z, ct

2
z), π1)

and Π2.ver(crs
2
v, (y,ρ, ρ̂, γ), π2).

Languages:

Π0 is an OR-NIZK for L0
def
= {(ρ, ρ̂, ct) | ∃(r, rc) : ( ρ = [B̄r]>1 and ρ̂ =

[Br]>1 ) or ct = PKE.Enc(pk1, 0; rc)}. Instantiation is given in Fig. 5.

Π1 is a QA-NIZK for L1
def
= {(ct1z, ct2z) | ∃(z, r1z, r2z) : ct1z =

PKE.Enc(pk1, z; r
1
z) and ct2z = PKE.Enc(pk2, z; r

2
z)}, with parameters (pk1, pk2).

Instantiations as in [JR14,KW15].

Π2 is a QA-NIZK for L2
def
= {(y,ρ, ρ̂, γ) | ∃(x, r) : y = [Mx]1 and ρ =

[B̄r]>1 and ρ̂ = [Br]>1 and γ = x>[p1]1 + r>[p2]1}, with parameters
([M]1, [B]1, [p1]1, [p2]1). Instantiations as in [JR14,KW15].

Fig. 1. Tightly-secure USS-QA-NIZK Π.
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crssim (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Sample crs0 ← Π0.crsgen(q,G1,G2,GT , e, [1]1, [1]2).
Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2)← Zn

q × Zk
q .

Set p1 := M>k1 and p2 := B̄
>
k2

Sample (crs1p,crs
1
v)← Π1.crsgen(· · · ) and (crs2p,crs

2
v, trap

2)← Π2.crssim(· · · ).

Sample (pki, ski)← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).

Set crsp := (crs0,crs1p,crs
2
p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).

Set crsv := (crs0,crs1v,crs
2
v, [B]1, pk1, pk2, ctx).

Set trap := (k1, trap
2)

Return (crsp,crsv, trap).

sim (crsp, trap, y):
Sample (r, r1z, r

2
z)← Zk

q × Zk
q × Zk

q .
Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := y>k1 + r>[p2]1.

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs
0, (ρ, ρ̂, ct1z − ctx), (r, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set π2 := Π2.sim(crs2p, trap2, (y,ρ, ρ̂, γ)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

Fig. 2. CRS and Proof simulators for Π.

Remark 1. advtssΠi of a QA-NIZK Πi reduces to Dk-mddh by a factor of (n− t)
where the (affine) linear subspace language is of dimension t within a full space of

dimension n. Also, advzkΠ0
of the OR-NIZK Π0 reduces to Dk-mddh by a factor

of 1. Finally, D2k,k-mddh reduces to Dk-mddh by a factor of k by boosting (See
Section 2.1). Thus the overall reduction in Theorem 2 to Dk-mddh is O(λ).

Proof Intuition. At the highest level, we go through a sequence of games (0-4),
starting from Game 0 which is the NIZK simulator of Figure 2 playing against
a USS adversary and ending with Game 4, where the adversary has information
theoretically negligible chance of winning. Essentially, in going from Game 2 to
Game 3, the γ component is masked with an independently random element
which depends on the input word, except for a randomly chosen point τ , where
the mask is 0. Then finally in Game 4, the quantity k1 is shifted by a random vec-
tor in the kernel of the language matrix M. This still keeps the CRS unchanged
and since the simulated proofs have been masked by independently random el-
ements (except at the point τ which occurs with negligible probability), they

12



are also independent of this random kernel vector. However, the random kernel
vector shows up in the winning condition of Game 4 and makes it statistically
hard for the adversary to satisfy verification with a non-member word.

Going from Game 2 to 3 requires another set of hybrid games in which we
introduce the mask elements into the γ’s. The games proceed bit by bit based on
a random bit-string rp(y) of length L, which is obtained by applying a random
injective function rp to the input word y. In every hybrid j, which runs from
0 to L, the mask depends on the first j bits of rp(y). The mask function is
inductively defined as follows:

rfj(rp(y)|j)
def
=

{
rfj−1(rp(y)|j−1), if (rp(y)j = τj)
rf′j−1(rp(y)|j−1), if (rp(y)j 6= τj)

}
,

where rfj is a random function from {0, 1}j to Zq, except at a point τ |j , the
first j bits of τ , where its value is 0. rf′j−1 is another independently random

function from {0, 1}j−1 to Zq. The 0-th hybrids start as Game 2 with the ‘0’
mask, which is the value of rf0(ε). The L-th hybrids end in Game 3 with the
mask depending on all the bits of rp(y), hence essentially the whole word.

The adaptive partitioning technique of [Hof17] helps us switching from rfj−1

to rfj with a constant number of MDDH reductions. Essentially, in the j-th hybrid,
the j-th bit of rp(y) induces two partitions of the message space: (1) where the
bit is τj , soundness is enforced to hold in the winning condition and (2) where
the bit is 1 − τj , all such simulated proofs can be switched in one go with a
constant number of MDDH transitions. Formal details follow.

Proof. We go through a sequence of Games G0 to G4 which are described below
and summarized in Figure 3. In the following, Pri[X] will denote probability
of predicate X holding in probability space defined in game Gi and WINi will
denote the winning condition for the adversary in game Gi.

Game G0: This game exactly replicates the simulator in Figure 2 to the adver-
sary. So the adversary’s advantage in G0 (defined as WIN0 below) is the USS
advantage we seek to bound.

WIN0
4
= (y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y

∗, π∗)

Game G0
′: In Game G0

′, the challenger lazily simulates (by maintaining a
table) a random function rp from Gn1 to {0, 1}L. Define Col to be the predicate
which returns true when there is a collision, i.e., when any pair of message vectors
from the set of signature queries union the adversarial response message at the
end get mapped to the same output L-bit string. In this game, the adversary is
allowed to win outright if Col is true at the end:

WIN′0
4
= Col or ((y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y

∗, π∗))

The difference in advantage is at most the collision probability, which is
bounded by (Q+ 1)2/q.
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crssim() : · · ·

Games 0-1 crs0 ← Π0.crsgen()

Games 2-4 (crs0, trap0)← Π0.crssim()

Game 0 crs2 ← Π2.crsgen()

Games 1-4 (crs2, trap2)← Π2.crssim()

Sample (k′1, u)← Zn
q × Zn−t

q

Games 1-3 Set k1 := k′1

Game 4 Set k1 := k′1 + M⊥u

· · ·

sim(yi ∈ Gn
1 ) :

Set (ρi, ρ̂i, γi) :=

Games 0-2 ([B̄ri]>1 , [Bri]>1 , yi>k1 + ρik2)

Game 3 ([B̄ri]>1 , [Bri]>1 , yi>k1 + [rfL(νi)]1 + ρik2)

Game 4 ([B̄ri]>1 , [Bri]>1 , yi>k′1 + yi>M⊥u + [rfL(νi)]1 + ρik2)

· · ·

WIN
def
=

Games 0’-4 if (Col) return true; else

π∗ = (ρ∗, ρ̂∗, γ∗, ct1∗z , ct
2∗
z , π

∗
0 , π
∗
1 , π
∗
2) :

(y∗ /∈ {yi}i ∪ span([M]1)) and ver(crsv, y∗, π∗)

Games 1-3 and γ∗ = y∗>k1 + ρ∗k2

Game 4 and γ∗ = y∗>k′1 + y∗>M⊥u + ρ∗k2

Games 1-4 and (ρ∗‖ρ̂∗)> ∈ span([B]1)

Fig. 3. Top level games and winning conditions

Game G1: In this game the CRS of Π2 is generated in the simulation mode
and the trapdoor is kept by the challenger to generate simulated proofs. The
challenge-response in this game is the same as G0. The winning condition is
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now defined as:

WIN1
4
= Col or

WIN0 and π∗ = (ρ∗, ρ̂∗, γ∗, ct1∗z , ct
2∗
z , π

∗
0 , π
∗
1 , π
∗
2) s.t.

(γ∗ = y∗>k1 + ρ∗k2) and (ρ∗‖ρ̂∗)> ∈ span([B]1)

The difference in advantages of the adversary is upper bounded by the un-
bounded true-simulation-soundness of Π2:

|Pr1[WIN1]− Pr0[WIN0]| ≤ advtssΠ2
(1)

Game G2: In this game, the OR-NIZK CRS is generated as a simulation CRS
and the witness of (ρi, ρ̂i, ct1iz −ctx) ∈ L0, is switched to (0, r1iz −rx). The winning
condition WIN2 remains the same as WIN1.

|Pr2[WIN2]− Pr1[WIN1]| ≤ advzkΠ0
(2)

Game G3: In this game, the challenger first chooses a uniformly random string
τ ∈ {0, 1}L and also lazily maintains a function rfL mapping {0, 1}L to Zq. The
function rfL has the property that it is a random and independent function from
{0, 1}L to Zq, except at τ where its value is 0. In G3, each signature component
γi is generated as yi>k1 +[rfL(rp(yi))]1 +ρik2, instead of yi>k1 +ρik2. For ease
of exposition, we will denote rp(yi) as νi. The winning condition WIN3 remains
the same as WIN2.

Lemma 1. |Pr3[WIN3]− Pr2[WIN2]| ≤

12L · advtssΠ1
+ 8L · advD2k,k-mddh

+12L · advzkΠ0
+ 4L · advmcpa

PKE +
6L

q

We prove this lemma in the full paper by going through a finer set of hybrid
games.

Game G4: In this game, the challenger samples (k′1,u) ← Znq × Zn−tq , and

generates k1 differently as k′1 + M⊥u, where M⊥ is a Zt×(n−t)
q matrix such

that M>M⊥ = 0t×(n−t). Observe that the public key component [p]1 becomes
[M>k1]1 = [M>k′1]1. So u does not show up in the public key.

Consequently, the computations of γi’s are changed to yi>k′1 + yi>M⊥u +
[rfL(νi)]1+ρik2. Also, the winning condition check on γ∗ is modified accordingly
to γ∗ = y∗>k′1 + y∗>M⊥u + ρ∗k2.

We now claim that Pr4[WIN4] ≤ 1
q + Q

2L
. To see this, recall that rf maps

any element of {0, 1}L to a uniformly random element of Zq, except τ , which it
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maps to 0. Now, if none of the adversary queries is actually mapped to τ by rp,
no information about it is leaked to the adversary. The probability that for any
i, rp(yi) = τ , is upper bounded by Q

2L
.

Now, in the case that rp(yi) is not τ for any i, we have that rf(rp(yi)) is
uniformly random and independent of everything else. This means that it com-
pletely hides the term yi>M⊥u in the γi components of the signature responses.

As for the adversary’s forged proof, y∗>M⊥ is non-zero if y∗ is not in the
span of [M]1. Also, u is not shown in any public key and as we reasoned in the
last paragraph, it doesn’t show up (whp) in any signature either. Consequently,
y∗>M⊥u is uniformly random in Zq and independent of the adversary’s view.

Therefore, the probability of satisfying γ∗ − y∗>k′1 − ρ∗k2 = y∗>M⊥u is upper
bounded by 1/q. This proves the claim.

3.2 USS-QA-NIZK Scheme with O(logQ) Reduction

The scheme is given in Figure 4 and the top level proof game table is given in
the full paper. Since this scheme is very similar to the one given earlier, we only
point out the essential points of difference in the construction and proof.

The scheme uses a similar augmented ElGamal encryption of a basic QA-
NIZK proof:

ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := x>[p1]1 + r>[p2 + τp3]1

The additional part is a tagged component reminiscent of the Cramer-Shoup
CCA2 encryption scheme [CS02], where τ is a collision resistant hash on rest
of the proof components. Rest of it is fairly similar to the earlier construction.
Unfortunately, this construction is no longer structure-preserving due to the tag
computation.

To proveO(logQ) reduction, we follow the partitioning strategy of [GHKP18],
where the partition is done on the bits of the query index i, instead of a random
function applied to the argument. This strategy did not work for our earlier
construction because rf mapped to 0 at one point of it’s domain and the proof
relied on the fact that such a point is exponentially hard to determine since the
domain size is exponential in λ.

In the proof of security of this construction, we take account of the fact
that rf could map to 0 at a point which can non-negligibly occur in a query. We
instead argue that since the tag of such a query response would be different from
the tag of the adversary’s output proof, the response can still be randomized due
to pairwise independence. A detailed proof will be in the full version of the paper.

Theorem 3. For any efficient adversary A, which makes at most Q simulator
queries before attempting a forged proof, its probability of success (advussΠ′ (Q))
in the USS game against the scheme Π ′ is at most (Here L is logQ):

advtssΠ2
+ 12L · advtssΠ1

+ 8L · advD2k,k-mddh + (12L+ 1)advzkΠ0

+4L · advmcpa
PKE +

6L+ (Q+ 1)2 + 1

q
.
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crsgen (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ) :

Sample crs0 ← Π0.crsgen().
Boost the given distribution Dk+1,k to D2k,k.
Sample B← D2k,k-mddh and (k1, k2, k3)← Zn

q × Zk
q × Zk

q .

Set p1 := M>k1, p2 := B̄
>
k2 and p3 := B̄

>
k3.

Sample (crsip,crs
i
v)← Πi.crsgen() for i = 1, 2.

Sample (pki, ski)← PKE.KeyGen(G1) for i = 1, 2.
Sample rx ← Zk

q . Set x := 0 and ctx := PKE.Enc(pk1, x; rx).
Let crh be a collision resistant hash from {0, 1}∗ to Zq.

Set crsp := (crs0,crs1p,crs
2
p, [B]1, [p1]1, [p2]1, pk1, pk2, ctx).

Set crsv := (crs0,crs1v,crs
2
v, [B]1, pk1, pk2, ctx).

Return (crsp,crsv).

prover (crsp, y = [Mx]1, x, label lbl):
Sample (r, r1z, r

2
z)← Zk

q × Zk
q × Zk

q .
Set ρ := [B̄r]>1 , ρ̂ := [Br]>1 .

Set z := 0, ct1z := PKE.Enc(pk1, z; r
1
z) and ct2z := PKE.Enc(pk2, z; r

2
z).

Set π0 := Π0.prover(crs
0, (ρ, ρ̂, ct1z − ctx), (r, 0)).

Set π1 := Π1.prover(crs
1
p, (ct1z, ct

2
z), (0, r1z, r

2
z)).

Set τ := crh(ρ, ρ̂, ct1z, ct
2
z, π0, π1, lbl).

Set γ := x>[p1]1 + r>[p2 + τp3]1.
Set π2 := Π2.prover(crs

2
p, (y,ρ, ρ̂, γ, tag = τ), (x, r)).

Return π := (ρ, ρ̂, γ, ct1z, ct
2
z, π0, π1, π2).

ver (crsv, y, π, lbl) :
Set τ := crh(ρ, ρ̂, ct1z, ct

2
z, π0, π1, lbl).

Check all the NIZK proofs:
Π0.ver(crs

0, (ρ, ρ̂, ct1z − ctx), π0)
and Π1.ver(crs

1
v, (ct1z, ct

2
z), π1)

and Π2.ver(crs
2
v, (y,ρ, ρ̂, γ, tag = τ), π2).

Languages:

Π0 is an OR-NIZK for L0
def
= {(ρ, ρ̂, ct) | ∃(r, rc) : ( ρ = [B̄r]>1 and ρ̂ =

[Br]>1 ) or ct = PKE.Enc(pk1, 0; rc)}.

Π1 is a QA-NIZK for L1
def
= {(ct1z, ct2z) | ∃(z, r1z, r2z) : ct1z =

PKE.Enc(pk1, z; r
1
z) and ct2z = PKE.Enc(pk2, z; r

2
z)}, with parameters (pk1, pk2).

Π2 is a QA-NIZK for L2
def
= {(y,ρ, ρ̂, γ, tag = τ) | ∃(x, r) : y = [Mx]1 and ρ =

[B̄r]>1 and ρ̂ = [Br]1 and γ = x>[p1]1 + r>[p2 + τp3]1}, with parameters
([M]1, [B]1, [p1]1, [p2]1, [p]3).

Fig. 4. Labeled Tightly-secure USS-QA-NIZK Π ′, with O(logQ) reduction to
Dk-mddh.
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3.3 Optimizations

In this section, we describe two optimizations which reduce the size of the proofs
further by 2k elements under the Dk-mddh assumption.

ElGamal Encryption with Common Randomness. As described in [AHN+17],
the randomnesses r1z and r2z of ciphertexts ct1z and ct2z can be shared and merged
into a single k-element rz. In more details, let’s say ct1z = ([Ā1r1z]1, [z + A1r

1
z]1)

and ct2z = ([Ā2r2z]1, [z + A2r
2
z]1), which are encryptions of z under public keys

[A1]1 and [A2]1. Then instead of computing the ciphertexts independently, we
can merge them into ([Ā1rz]1, [z+A1rz]1), [z+A2rz]1). This saves us k elements.
Importantly, we can still enable transitions where we can hold the decryption
key of one system, while switching the plaintext of the other.

Merge QA-NIZKs in the Same Group. The reason we did not combine Π1 and
Π2 is that we needed to use the true-simulation-soundness of one system, while
producing proofs over fake instances with the other. However, we show in the full
paper, that we can still merge the proofs into one proof over the combined linear
system, and still be independently able to use the true-simulation-soundness of
its parts. This saves us k elements from Π.

In more details, let the combined language be defined by the matrix M =(
Mn1×t

1

Mn2×t
2

)
, where both n1 and n2 are greater than t. What we show is, pro-

vided the words corresponding to [M1]1 are not faked then even if the words
corresponding to [M2]1 are faked, true-simulation-soundness holds for the [M1]1
components.

4 NIZK for Disjunction of Linear Subspaces

We have critically used an “OR”-NIZK in our USS-QA-NIZK construction. In
this section we describe three flavors of OR-NIZKs. The first one is a standard
NIZK where both the prover and verifier are public algorithms. The second one
is a designated prover system where only the verifier is public - this flavor is use-
ful for signature schemes where the signing key is held private. The final one is a
designated verifier system where the prover is public, but the verifier is private -
this is useful in public-key encryption schemes where the public encryption algo-
rithm is required to prove consistency, but only the private decryption algorithm
needs to check a proof.

4.1 Public CRS Setting

In this section we describe a NIZK proof system for languages of the following
type:

L∨
def
=

{
([x0]1, [x1]1) ∈ Gn0

1 ×Gn1
1 |

∃r0 ∈ Zt0q : [x0]1 = [A0]1r0 or ∃r1 ∈ Zt1q : [x1]1 = [A1]1r1

}
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The system is described in Figure 5 and is based on [Ràf15] with syntax
based on [GHKP18]. The proofs of completeness, zero-knowledge and soundness
are similar to these papers. We only give a sketch below.

OR Languages :

Let L∨
def
=

{
([x0]1, [x1]1) ∈ Gn0

1 ×Gn1
1 |

∃r0 ∈ Zt0
q : x0 = [A0r0]1 or ∃r1 ∈ Zt1

q : [x1]1 = [A1r1]1

}
.

crsgen (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D← Dk-mddh and z← Zk+1

q \ span(D).
Return crs := ([D]2, [z]2).

prover (crs, ([x0]1, [x1]1), (j, rj)):
Sample (v, S0,S1)← Zk

q × Zt0×k
q × Zt1×k

q .

Set [z1−j ]2 := [D]2v and [zj ]2 := [z]2 − [z1−j ]2.

Set [Cj ]2 := Sj [D]>2 + rj [zj ]
>
2 and [Pj ]1 := [Aj ]1Sj .

Set [C1−j ]2 := S1−j [D]>2 and [P1−j ]1 := [A1−j ]1S1−j − [xj ]1v
>.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1) ∈ G(n0+n1)k
1 ×G(t0+t1+1)(k+1)

2 .

ver (crs, ([x0]1, [x1]1), π) :
Set [z1]2 := [z]2 − [z0]2.
Check the following equations for all j ∈ {0, 1}:

e([Aj ]1, [Cj ]2) = e([Pj ]1, [D]>2 ) · e([xj ]1, [zj ]>2 ).

crssim (q,G1,G2,GT , e, [1]1, [1]2) :
Sample D← Dk-mddh and u← Zk

q .
Set z := Du
Return crs := ([D]2, [z]2) and trap := u.

sim (crs, trap, ([x0]1, [x1]1)):
Sample (v, S0,S1)← Zk

q × Zt0×k
q × Zt1×k

q .

Set [z0]2 := [D]2v and [z1]2 := [z]2 − [z0]2.

Set [C0]2 := S0[D]>2 and [P0]1 := [A0]1S0 − [x0]1v
>.

Set [C1]2 := S1[D]>2 and [P1]1 := [A1]1S1 − [x1]1(u− v)>.

Return π := ([z0]2, [C0]2, [P0]1, [C1]2, [P1]1).

Fig. 5. NIZK for OR languages based on [Ràf15].
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The completeness of the system is straightforward. Zero-knowledge is proved
by transitioning to a different way of generating the CRS along with a trapdoor.
The transition is enabled by the Dk-mddh assumption on ([D]1, [z]1) and the
resulting CRS and proof simulators are also given in the same figure.

We now prove perfect soundness. Since z0 + z1 = z /∈ span(D), at least one
of z0 and z1 should be outside the span of D. WLOG, let this be z0. Therefore,
there should be a vector d⊥ ∈ Zk+1

q , such that D>d⊥ = 0 and z>0 d
⊥ = 1. Right

multiplying this vector to the verification equation A0C0 = P0D
> + x0z>0 gives

us A0C0d
⊥ = x0. This means r0

def
= C0d

⊥ satisfies the disjunct x0 = A0r0.

4.2 Designated Prover Setting

In Figure 5 we saw an efficient NIZK proof for the “OR” language of Figure 1,
where one of the disjuncts was a predicate on group elements in the CRS of
the USS-QA-NIZK, namely that ctx was a binding commitment to x (using
randomness rx). The quantity rx cannot be made public in this general setting
as proving simulation-soundness requires us to hide x from the public. However,
in the application of USS-QA-NIZK to build SPS, the quantity rx can indeed
be given to a “designated” prover, i.e. the signer, and the quantity still remains
private. In particular, in a forgery attempt, the adversary does not have access
to rx, as the signer is an honest party. In such a situation, i.e. where rx in the
commitment to x is available to the designated prover, we can give an even
more efficient NIZK. For ease of exposition, we will restrict ourselves to the
SXDH asymmetric pairings-group setting in this section. The results can easily
be generalized to Dk-mddh setting.

Consider the “OR” language,

L =

{
α, α̂,x | ∃r, rx ∈ Zq :

(α = r[1]1 and α̂ = r[b]1) or x = com(0; rx)

}
where com(x; rx) is a binding commitment to x using randomness rx (e.g. a
GS-commitment or ElGamal encryption), and [b]1 is public.

It is not difficult to see that the above is implied by the following (i.e. L1 ⊆ L)

L1 =

{
α, α̂,x | ∃x, rx, x̂ ∈ Zq :

α̂ · x− [b]1 · x̂ = 0 and [1]1 · x̂−α · x = 0 and x = com(x; rx)

}
since if x 6= 0 in L1, one can take r = x̂/x, and otherwise x is commitment to
zero with rx. Thus soundness of NIZK proof of L1 implies the tuple is in L.

Now, consider another language L2,

L2 =

{
α, α̂,x | ∃r, x, rx ∈ Zq :

((α = r[1]1 and α̂ = r[b]1) or (x = 0)) and x = com(x; rx)

}
Thus, in the language the value x is always a commitment to x under rx. First
note that L2 implies L1, i.e. L2 ⊆ L1. This is so because if x = 0 in L2, then we
just set x̂ = 0 as well, and if there is a good r, then we set x̂ = r · x.
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Since the “designated”prover always knows x and rx in the commitment x,
then if it has an (r, x) which satisfies the “or” part of L2, it can generate the
witnesses required to satisfy membership in L1 and hence give a valid NIZK
proof.

Under the SXDH assumption, L1 can be proved by using two group elements
and in addition two elements for commitment to x̂ (and not counting the two for
x which is commitment to x) using the technique by Escala and Groth in [EG14].
Namely, the size of π0 is (2, 2). For this to work, we also need to sample public
keys pk1 of ElGamal encryption (i.e. com) from G2. Furthermore, pk1 is taken
from crs1 (see Figure 1). We note that this dependency of pk1 to crs1 does not
affect the security proof since we can use ciphertext with respect to pk2 when
crs1 is set to the simulation mode. We further optimize ct1z and ct2z by applying
the common randomness technique from Section 3.3. With these modifications,
ct1z and ct2z together consist of (0, 3) elements, and proof π1 is a single element
in G2 (rather than in G1 in the original construction). Other components, ρ, ρ̂,
γ, and π2 are unchanged; each of them is represented by a single element in G1.
In total, the proof size will be (6, 6). Under general Dk-mddh assumption, the
optimized proof will consist of (5k + 1, 4k + 2) elements.

Finally we note that in the designated prover setting, the scheme Π1 can
be made O(logQ)-reduction secure, while maintaining its structure-preserving
property. Essentially we add an affine constant to γ as done in [JOR18]. In the
split-CRS QA-NIZK setting, this constant would only appear in the prover CRS.
This still lets the security proof go through as the adversary’s view at the final
game would be independent of this affine constant.

4.3 Designated Verifier Setting

As the most expensive part (from the size of USS-QA-NIZK perspective and
applications) is the size of the “OR”-proof considered in our general construc-
tion, we now consider the designated-verifier setting [ES02]. In the designated-
verifier setting of a NIZK, the CRS is split into two parts, crsp and crsv,
and only a designated-verifier gets access to crsv and the public information is
only crsp (required by the prover). Alternatively, one can think of designated-
verifier NIZKs as hash-proof systems, as the crsv is just the secret hash-key,
and crsp is the projection hash-key – by the fact that hash-proofs can be gen-
erated without the witness (but using the secret hash-key), zero-knowledge is
automatic; further, soundness is information-theoretic. Since hash-proofs for lin-
ear subspace languages are well known [CS98], and we even have hash-proofs for
“OR”-languages [ABP15], so we have designated-verifier NIZK proofs for our
“OR”-language used in the USS-QA-NIZK construction. Consequently, we have
smaller sized (almost) tightly-secure designated-verifier USS-QA-NIZKs.

For this idea to work, we instantiate PKE in G2 in our construction so that
the OR-language consists of relations from both G1 and G2. This allows us to
use the hash proof system of [ABP15]. The downside of such a construction is
that we have more G2 elements in the proof and the USS-QA-NIZK is itself in
the target group GT , as the construction of [ABP15] generates hashes in the
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target group. Since these elements require much longer representation we give
a more precise estimation. In the original construction of our USS-QA-NIZK
with optimizations in Section 3.3, a proof consists of (11, 6) elements in the
SXDH setting, of which (3, 6) are for proof π0. In remaining (8, 0) elements,
(4, 0) are the ciphertext of PKE and proof π1. Moving the (4, 0) elements to
G2 and replacing (3, 6) of π0 with a target group element, the proof size of
our designated-verifier USS-QA-NIZK will be (4, 4) source group elements and
1 target group element. Thus it saves (7, 2) elements in exchange of having an
extra target group element. Since the target group element is computed from a
product of four pairings, it can also be represented by randomized (4, 4) group
elements by using the PPE randomization technique of [AFG+16]. However,
either representation requires larger space than original (7, 2) elements. Thus,
the known approach with [ABP15] does not seem to yield shorter proofs than
our original construction in the designated verifier setting.

5 Applications

In this section, we demonstrate that our tightly secure USS-QA-NIZK can be
used to develop CCA2-secure public key encryption and structure-preserving
signatures (SPS). Besides being (almost) tightly secure under standard matrix
assumptions in bilinear groups, these applications have particular advantage over
previous constructions. Our CCA2-secure public-key encryption is publicly veri-
fiable and our SPS scheme yields the shortest signatures. By plugging our CCA2-
secure public key encryption and SPS into the generic frameworks of blind sig-
natures [Fis06], group signatures [Gro07], and simulation-sound NIZKs [CCS09]
we have blind SPS, group SPS, and simulation-sound Groth-Sahai proofs, all of
which have (almost) tight reduction to standard matrix assumptions in bilin-
ear groups and efficiency improvements over known schemes. Details for these
plug-in applications are given in the full version of this paper.

5.1 (Almost) Tight CCA2-Secure PKE Scheme

In this section we show that the labelled (enhanced) USS-QANIZK for linear-
subspaces can be used to build a publicly verifiable labeled CCA-secure public-
key encryption (PKE) scheme (described in Fig. 6) which is (almost) tightly-
secure in the multi-user, multi-challenge setting. The security reduction to USS-
QANIZK is tight and is independent of the number of decryption-oracle requests
of the CCA2 adversary.

Theorem 4. Under the Dk-MDDH assumption, and using the labeled USS-
QANIZK Π ′ of Fig. 4, the public-key encryption scheme described in Fig 6 is
(µ, qe) IND-CCA secure with Adversary’s advantage A upper-bounded by

2 · advtssΠ′ + 6k · advDk-mddh + 2 · advussΠ′ (qe) +O(1/q).

The proof of this theorem can be found in the full paper.
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KeyGen (q,G1,G2,GT , e, [1]1, [1]2) :
[Boost distribution Dk+1,k to D2k,k.]
Sample B← D2k,k-MDDH and k← Zk

q ,
Sample (crsp,crsv)← Π ′.crsgen(〈q,G1,G2,GT , e, [1]1, [1]2〉, [B]1),

Set p := B̄
>
k, pk := (crsp, [B]1, [p]1), sk := (crsv, k).

Return (pk, sk).

Enc (pk = (crsp, [B], [p]1), M ∈ G1, lbl):
Sample r← Zk

q , and set ρ := [B̄r]>1 , ρ̂ := [Br]>1 , γ := M + r>[p]1,
π := Π ′.prover(crsp, 〈ρ, ρ̂〉, 〈γ, lbl〉; r).

Return ctxt := (ρ, ρ̂, γ, π).

Dec (sk = (crsv, k), ctxt = (ρ, ρ̂, γ, π), lbl) :
If the NIZK proof verification

Π ′.ver(crsv, 〈ρ, ρ̂〉, 〈γ, lbl〉, π)
returns true then return γ − ρk else return ⊥.

Language for Π ′:

L
def
= {(ρ, ρ̂) | ∃r : ρ = [B̄r]>1 and ρ̂ = [Br]>1 } with parameters ([B]1).

Fig. 6. CCA2 Public-Key Encryption using labelled (strong) USS-QA-NIZK.

Remark. The public-key encryption construction in Fig. 6, during encryption,
uses randomness r to construct ρ. Then, it calls USS-QA-NIZK prover in a black-
box manner to obtain π. The USS-QANIZK construction itself picks another s
and constructs its own ρ. We remark that in a non-black box construction of
tight CCA2-secure public key encryption scheme, i.e. by utilizing the USS-QA-
NIZK construction in a non-black fashion, one can use the same B̄ matrix in the
PKE construction above and the USS-QANIZK construction, while keeping B
matrices sampled ranomly and independently. This leads to a savings of k group
elements. The proof of the (almost) tight security of this scheme combines the
proof given in the full paper with the proof of the USS-QANIZK tight-security
(Theorem 2).

5.2 Direct Construction of Tight SPS from Tight USS-QA-NIZK

Recall that unbounded simulation-soundness assures that, after having simu-
lated proofs for any instances of adversary’s choice, it is hard for the adver-
sary to find a valid proof for any fresh no-instances. This corresponds to the
notion of unforgeability against adaptive chosen message attacks of a signature
scheme where no adversary can find a valid signature for any fresh messages after
seeing signatures for any chosen messages. Indeed, syntactically, an unbounded
simulation-sound NIZK system can be seen as a signature scheme whose key gen-
eration, signature generation, and signature verification functions correspond to
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CRS simulation, proof simulation, and proof verification functions of the NIZK
system, respectively. For this translation to work in reality, it is required that
the NIZK system allows simulation for any no-instance in a certain set and there
exists a collision resistant mapping (ideally injection) from the desired message
space for the signature scheme to the set of no-instances. In [AAO18], this intu-
ition is proven formally in a more general setting (allowing errors in correctness,
etc). We use the simplest form of their result with adjustment to the syntax of
USS-QA-NIZK.

Let Π := (pargen, crsgen, prover, ver, crssim, sim) be a designated prover USS-
QANIZK system for L := span([M]1) ⊂ Gn1 with soundness advantage AdvussΠ (A).
We assume that Π is perfectly no-instance simulation correct with respect to C :=
Gn1 \span([M]1) which means that, for any crsv and trap generated by Π .crssim,
y ∈ C, π ← Π .sim(trap, y), 1← Π .ver(crsv, y , π) holds with probability 1.

Let [M]1 ← Gn×t1 denote a sampling where matrix M is chosen uniformly
with constraint that its upper square sub-matrix is full rank. For message space
M := Gt1 and n ≥ 2t+1, we construct a function H :M→ C as follows. Choose
c uniformly from Gn−t1 . Then define H(M ) for M ∈ Gt1 as M ||c. For any M and
M ∈ Gt1, with probability at least 1 − 1/q over the choice of c, there exists no
x that satisfies (M ||c)> = [Mx]1. Thus H is an efficiently computable injection
from M to C. Following this idea, we construct a signature scheme as shown in
Figure 7.

Theorem 5. With the above USS-QA-NIZK system Π , SIG in Figure 7 is a
signature scheme for message space M := Gt1. It is tightly unforgeable against
adaptive chosen message attacks, i.e., for every ppt adversary A breaking the
unforgeability of SIG with a chosen message attack with advantage Advcma

SIG (A),
there exists a ppt algorithm B that breaks the unbounded simulation soundness
of Π with advantage AdvussΠ (B) ≥ Advcma

SIG (A)− 1/q and almost the same running
time as A. Furthermore, if Π is structure preserving, so is SIG.

Proof. To show unforgeability, we construct B using A as black-box as follows.
Given crs, [M]1, B picks c← Gn−t1 and send pk := (crs, c) to A. For message M
queried from A, B sends y := M ||c to its oracle, receives a simulated proof π, and
returns σ := π to A. Given a forgery M ∗, σ∗ from A, B outputs y∗ := M ∗||c and
π∗ := σ∗. Since H(M ) := M ||c is an injection to Gn1 \span([M]1) with probability
at least 1− 1/q, y∗ is a fresh instance not in span([M]1), and (y∗, π∗) passes the
verification whenever A succeeds. Hence we have AdvussΠ (B) ≥ Advcma

SIG (A)− 1/q.
Running time of B is the same as A except for performing concatenation and
parsing. Structure-preserving property is obvious from the construction.

We remark that we can remove the negligible 1/q term in the above bound
in an enhanced model [LPJY15,JR13] where M is given to the adversary playing
the simulation soundness game.

In Figure 8 we present an instantiation of SIG in Figure 7 using our op-
timized designated prover USS-QA-NIZK from Section 4.2 under the SXDH
assumption. Designated prover is sufficient in this application as the signing key
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is private. The signature size is exactly the same as the proof size of the un-
derlying USS-QA-NIZK and it retains structure preserving property. Hence the
signature scheme in Figure 8 is an SPS scheme having signatures consisting of
(6, 6) elements for unilateral messages. (Under Dk-mddh assumption, the signa-
ture size will be (5k + 1, 4k + 2)). For bilateral messages (M1,M2) ∈ Gt11 × Gt22
where t1 = t − 1, we follow a generic construction in [ACD+16, Sec. 6.3] that
combines partially one-time signature for a part of messages in G2. It requires
extra (0, t2) public-key elements, and the signature size increases by (1, 2) ele-
ments sacrificing one group element in the message space Gt11 . A signature thus
consists of (7, 8) elements for a bilateral message.

Common parameters: par := (q,G1,G2,GT , e, [1]1, [1]2, [M]1 ∈ Gn×t
1 ).

KeyGen(1m) :
λ := (q,G1,G2,GT , e, [1]1, [1]2)← Π .pargen(1m)
[M]1 ← Gn×t

1

c← Gn−t
1

(crs, trap)← Π .crssim(λ, [M]1)
pk := (crs, c), sk := (trap, c)
return(pk, sk)

Sign(sk,M ) :
(trap, c)← sk
y := M ||c
σ ← Π .sim(trap, y)
return(σ)

Verify(pk,M , σ) :
(crs, c)← pk
y := M ||c
b← Π .ver(crsv, y , σ)
return(b)

Fig. 7. Signature scheme SIG for unilateral messages in Gt
1 based on USS-QA-NIZK Π

for a linear subspace language.
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2
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0, (ρ, ρ̂, Eδ, Rδ), (x, rδ, x̂)).
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Π0.ver(crs

0, (ρ, ρ̂, Eδ, Rδ), π0)
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v, (E1

z , E
2
z , Rz), π1)

and Π2.ver(crs
2
v, (y, ρ, ρ̂, γ), π2).

Languages:

Π0 is a NIZK proof for OR-language L0
def
= {(ρ, ρ̂, Eδ, Rδ) | ∃x, rδ, x̂ ∈ Zq : x ρ̂ − x̂ [B]1 =

[0]1 and x̂ [1]1 − x ρ = [0]1 and (Eδ, Rδ) = com2(x; rδ)} by Escala-Groth proof system for
multi scalar multiplication equations.

Π1 is a QA-NIZK for linear language L1
def
= {(E1

z , E
2
z , Rz) | ∃(z, rz) : E1

z := [z]2 +

rz pk1 and E2
z := [z]2 + rz pk2} with parameters (pk1, pk2).
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[B̄r]>1 and ρ̂ = [Br]>1 and γ = x>[p1]1 + r>[p2]1} with parameters ([M]1, [B]1, [p1]1, [p2]1).

Fig. 8. An SPS constructed directly by using the customized USS-QA-NIZK with
designated prover(in Section 4.2) with optimizations from Section 3.3.
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An algebraic framework for Diffie-Hellman assumptions. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 129–147. Springer, Heidelberg, August 2013.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In G. R. Blakley and David Chaum, editors,
CRYPTO’84, volume 196 of LNCS, pages 10–18. Springer, Heidelberg, Au-
gust 1984.

[ES02] Edith Elkind and Amit Sahai. A unified methodology for con-
structing public-key encryption schemes secure against adaptive chosen-
ciphertext attack. Cryptology ePrint Archive, Report 2002/042, 2002.
http://eprint.iacr.org/2002/042.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 233–253. Springer, Heidelberg, August 2015.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of LNCS, pages 60–77. Springer, Heidelberg, August 2006.
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