
A Framework for Achieving KDM-CCA Secure

Public-Key Encryption

Fuyuki Kitagawa and Keisuke Tanaka

Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

Abstract

We propose a framework for achieving a public-key encryption (PKE) scheme that satis-
fies key dependent message security against chosen ciphertext attacks (KDM-CCA security)
based on projective hash function. Our framework can be instantiated under the deci-
sional diffie-hellman (DDH), quadratic residuosity (QR), and decisional composite residu-
osity (DCR) assumptions. The constructed schemes are KDM-CCA secure with respect to
affine functions and compatible with the amplification method shown by Applebaum (EU-
ROCRYPT 2011). Thus, they lead to PKE schemes satisfying KDM-CCA security for all
functions computable by a-priori bounded size circuits. They are the first PKE schemes
satisfying such a security notion in the standard model using neither non-interactive zero
knowledge proof nor bilinear pairing.

The above framework based on projective hash function captures only KDM-CCA secu-
rity in the single user setting. However, we can prove the KDM-CCA security in the multi
user setting of our concrete instantiations by using their algebraic structures explicitly. Es-
pecially, we prove that our DDH based scheme satisfies KDM-CCA security in the multi
user setting with the same parameter setting as in the single user setting.

Keywords: key dependent message security, chosen ciphertext security, projective hash
function.

1

Contents

1 Introduction 2
1.1 Backgrounds . 2
1.2 Our Results . 3
1.3 Technical Overview . 4

1.3.1 KDM(1)-CPA Secure PKE Based on Homomorphic Projective Hash Func-
tion . 4

1.3.2 Extension to KDM(1)-CCA Secure PKE 5
1.3.3 Instantiations . 7
1.3.4 Extension to Multi User Setting . 8

2 Preliminaries 9
2.1 Notations . 9
2.2 Leftover Hash Lemma . 9
2.3 Public Key Encryption . 9
2.4 Projective Hash Function . 11

3 KDM(1)-CCA Secure PKE Based on Homomorphic Projective Hash Function 12

4 Instantiations 16
4.1 Instantiation Based on the DDH Assumption . 16

4.1.1 Construction of H . 16
4.1.2 Construction of Ĥ . 17
4.1.3 Associated Function Class . 18

4.2 Instantiation Based on the QR Assumption . 18
4.2.1 Construction of H . 19
4.2.2 Construction of Ĥ . 20
4.2.3 Associated Function Class . 22

4.3 Instantiation Based on the DCR Assumption . 22
4.3.1 Construction of H . 23
4.3.2 Construction of Ĥ . 24
4.3.3 Associated Function Class . 26

5 KDM-CCA Security of the DDH Based Scheme 26

1 Introduction

1.1 Backgrounds

Key dependent message (KDM) security, introduced by Black, Rogaway, and Shrimpton [3],
guarantees confidentiality of communication even if an adversary can get a ciphertext of secret
keys. KDM security is useful for many practical applications including anonymous credential
systems [7] and hard disk encryption systems (e.g., BitLocker [4]). KDM security is defined with
respect to a function family F . Let n denote the number of keys and sk = (sk1, · · · , skn) be
secret keys. Informally, a PKE scheme is said to be F-KDM secure if confidentiality of messages
is protected even when an adversary can see a ciphertext of f(sk) under the k-th public key
for any f ∈ F and k ∈ {1, · · · , n}. In this paper, we focus on constructing PKE schemes
that satisfy KDM security against chosen ciphertext attacks, namely KDM-CCA security in the
standard model.

Camenisch, Chandran, and Shoup [6] proposed the first KDM-CCA secure PKE based
on the Naor-Yung paradigm [16]. They showed that for any function class F , F-KDM-CPA
secure PKE can be transformed into F-KDM-CCA secure one assuming non-interactive zero
knowledge (NIZK) proof. They also showed a concrete instantiation based on the decisional
diffie-hellman (DDH) assumption on a bilinear pairing. Subsequently, Hofheinz [10] showed
more efficient KDM-CCA secure PKE. His scheme is circular secure (KDM-CCA secure with
respect to selection functions) relying on both the DDH and decisional composite residuosity
(DCR) assumptions on a bilinear pairing.

The first KDM-CCA secure PKE using neither NIZK proof nor bilinear pairing was proposed
by Lu, Li, and Jia [14]. They claimed their scheme is KDM-CCA secure with respect to affine
functions (Faff-KDM-CCA secure) relying on both the DDH and DCR assumptions. However,
a flow on their security proof was later discovered by Han, Liu, and Lyu [9]. Han et al. also
showed a new Faff-KDM-CCA secure PKE scheme based on the construction methodology of
Lu et al. In addition, they constructed KDM-CCA secure PKE with respect to bounded degree
polynomial functions. Their schemes are efficient and secure relying on both the DDH and DCR
assumptions.

Despite the above previous efforts, it is still open whether we can construct KDM-CCA
secure PKE based on a single computational assumption using neither NIZK proof nor bilinear
pairing. All existing KDM-CCA secure PKE schemes without NIZK proof were proved to be
secure relying on both the DDH and DCR assumptions. These schemes are proposed based on a
specific algebraic structure and it is crucial to assume the hardness of both the DDH and DCR
problems on the specific algebraic structure. Thus, it seems difficult to construct KDM-CCA
secure PKE based on a single computational assumption using their techniques.

Moreover, it is also an open question whether we can construct KDM-CCA secure PKE
with respect to all functions computable by bounded size circuits (Fall-KDM-CCA secure) using
neither NIZK proof nor bilinear pairing. The only existing way to construct Fall-KDM-CCA
secure PKE is to utilize the amplification method shown by Applebaum [2]. Applebaum showed
if a PKE scheme is KDM-CCA secure with respect to projection functions, we can transform it
into a Fall-KDM-CCA secure one, where projection function is a function whose each output bit
depends on only a single bit of an input. Kitagawa, Matsuda, Hanaoka, and Tanaka [12] later
showed we can perform such a transformation even if the underlying PKE is only KDM-CCA
secure with respect to projection functions whose output is one bit.

Among existing KDM-CCA secure schemes, only Camenisch et al.’s scheme is compatible
with those transformations. Thus, a construction of Fall-KDM-CCA secure PKE using neither
NIZK proof nor bilinear pairing is not known so far.

2

1.2 Our Results

Based on the above back ground, we show the following results.

A framework achieving KDM-CCA security in the single user setting. First, we
propose a framework to construct PKE that is Faff-KDM-CCA secure in the single user setting
based on projective hash function. Our framework can be instantiated based on the DDH,
quadratic residuosity (QR), and DCR assumptions. More specifically, we obtain the following
theorem.

Theorem 1 (Informal) Under each of the DDH, QR, and DCR assumptions, there exists
PKE that is Faff-KDM-CCA secure in the single user setting.

These schemes are also KDM-CCA secure with respect to projection functions of single-
bit output thus compatible with the amplification method of Applebaum [2] and Kitagawa et
al. [12]. Thus, we obtain the following corollary.

Corollary 1 (Informal) Under each of the DDH, QR, and DCR assumptions, there exists
PKE that is Fall-KDM-CCA secure in the single user setting.

KDM-CCA secure PKE in the multi user setting. Then, we focus on KDM-CCA secu-
rity in the multi user setting. Although the above framework based on projective hash function
captures only KDM-CCA security in the single user setting, we can prove the KDM-CCA secu-
rity in the multi user setting of our concrete instantiations by using their algebraic structures
explicitly.

Our DDH based construction is an extension of the KDM-CPA secure scheme proposed by
Boneh, Halevi, Hamburg, and Ostrovsky [4]. Similarly to Boneh et al., using the self-reducibility
of the DDH problem, we can prove the KDM-CCA security in the multi user setting of our DDH
based construction with the same parameter setting as in the single user setting. Especially, we
formally prove the following theorem.

Theorem 2 (Informal) Under the DDH assumption, there exists PKE that is Faff-KDM-CCA
secure in the multi user setting.

Since the DDH based construction is compatible with the results by Applebaum [2] and
Kitagawa et al. [12], we obtain the following corollary.

Corollary 2 (Informal) Under the DDH assumption, there exists PKE that is Fall-KDM-CCA
secure in the multi user setting.

Our QR and DCR based constructions are extensions of the KDM-CPA secure scheme
proposed by Brakerski and Goldwasser [5]. If we allow the length of a secret key to depend on
the number of users, we can also prove the KDM-CCA security in the multi user setting of our
DCR and QR based schemes using a technique similar to Brakerski and Goldwasser. We briefly
explain how to prove it after the proof of multi user security of the DDH based scheme.

We summarize our results and previous results in Figure 1.

3

Scheme Functions Assumption Free of pairing Amplification Flexible parameter

[6] Affine DDH ✓ ✓
[10] Circular DDH+DCR ✓
[9]-1 Affine DDH+DCR ✓ ✓
[9]-2 polynomial DDH+DCR ✓ ✓

Ours 1 Affine DDH ✓ ✓ ✓
Ours 2 Affine QR ✓ ✓
Ours 3 Affine DCR ✓ ✓

Figure 1: Comparison of KDM-CCA secure PKE schemes. “Amplification” indicates whether
we can transform the scheme into Fall-KDM-CCA secure one using the results of Applebaum [2]
and Kitagawa et al. [12]. “Flexible parameter” indicates whether we can prove KDM-CCA
security in the multi user setting of the scheme without making the length of a secret key
depend on the number of users.

1.3 Technical Overview

Our starting point is the constructions of PKE proposed by Wee [19] that is KDM secure in
the single user setting (hereafter, KDM(1) security). He showed how to construct KDM(1)-CPA
secure PKE based on homomorphic projective hash function. His framework captures the
previous constructions proposed by Boneh et al. [4] and Brakerski and Goldwasser [5].

Projective hash function was originally introduced by Cramer and Shoup [8] to construct
PKE satisfying indistinguishability against chosen ciphertext attacks (IND-CCA security). Thus,
we have a natural question whether we can construct KDM(1)-CCA secure PKE based on pro-
jective hash function.

We answer the above question affirmatively with a simple construction. Below, we first
review the construction proposed by Wee [19].

1.3.1 KDM(1)-CPA Secure PKE Based on Homomorphic Projective Hash Func-
tion

We consider a group C and its subgroup V satisfying the subgroup indistinguishability, that is,
uniform distributions over C and V are computationally indistinguishable. Based on C and V,
we define projective hash function as follows. A projective hash function is a family H of hash
functions Λsk : C → K indexed by a key sk ∈ SK, where K is a group. Let µ be a projection
map defined over SK. We require Λsk be projective, that is, for every c ∈ V, the value of
Λsk(c) is determined by only c and pk = µ(sk). In addition, we require that there exist a public
evaluation algorithm Pub that given pk, c ∈ V, and a witness w of c ∈ V, outputs Λsk(c). Below,
we denote group operations of C and K by “·” and “+”, respectively.

Using a projective hash function H, we can naturally construct a PKE scheme Π as follows.
When generating a key pair (pk, sk), we sample random sk and compute pk = µ(sk). When
encrypting a message m ∈ K, we first sample c

r←− V with a witness w of c ∈ V. Then, we
compute d ← Pub(pk, c, w) + m and set (c, d) as a ciphertext. When decrypting (c, d), we
compute m← d− Λsk(c).

Π is IND-CPA secure if H is smooth, that is, the value of Λsk(c) is statistically chose to
uniform given pk = µ(sk) and c, where sk

r←− SK and c
r←− C.1 We prove the IND-CPA security

of Π as follows. We first switch c∗ used to encrypt the challenge message to c∗
r←− C by using

the subgroup indistinguishability. Then, the distribution of the resulting ciphertext is close to
uniform due to the smoothness and thus IND-CPA security follows.

1 More specifically, this property is called average-case smoothness in general.

4

KDM security from homomorphism. Wee [19] showed Π is also KDM(1)-CPA secure if
H is homomorphic, that is, for every c0, c1 ∈ C, it holds that Λsk(c0 · c1) = Λsk(c0) + Λsk(c1).
More precisely, Π is KDM(1)-CPA secure with respect to functions defined as fe(sk) = Λsk(e),
where e ∈ C. Note that this function class corresponds to the set of affine functions in his
instantiations.

If H is homomorphic, we can change the distribution of an encryption of fe(sk), that is
(c,Pub(pk, c, w) + Λsk(e)) as

(c,Pub(pk, c, w) + Λsk(e)) ,where c
r←− V

=(c,Λsk(c) + Λsk(e)) ,where c
r←− V (by projective property)

= (c,Λsk(c · e)) ,where c
r←− V (by homomorphism)

≈c (c,Λsk(c · e)) ,where c
r←− C (by subgroup indistinguishability)

≈s

(
c · e−1,Λsk(c)

)
,where c

r←− C (since e ∈ C)

≈c

(
c · e−1,Λsk(c)

)
,where c

r←− V (by subgroup indistinguishability)

=
(
c · e−1,Pub(pk, c, w)

)
,where c

r←− V (by projective property) ,

where w denotes a witness of c ∈ V, and ≈c and ≈s denote computational indistinguishability
and statistical indistinguishability, respectively. This means that we can simulate an encryp-
tion of fe(sk) without sk. Then, based on the standard hybrid argument, we can prove the
KDM(1)-CPA security of Π using the smoothness of H similarly to the proof for the IND-CPA
security of Π.

1.3.2 Extension to KDM(1)-CCA Secure PKE

We can construct IND-CCA secure PKE by adding 2-universal projective hash function to
the construction of Π. More precisely, we use a projective hash function Ĥ consisting of hash
functions Λ̂ŝk indexed by ŝk ∈ ŜK defined on C and V.2 Let µ̂ and ˆPub be the projection map

and public evaluation algorithm of Ĥ. We require that Ĥ be 2-universal, that is, for every
p̂k, c, c∗ ∈ C \ V, and K,K∗ ∈ K, Λ̂ŝk(c) = K holds with only negligible probability under the

condition that p̂k = µ̂
(
ŝk
)
and Λ̂ŝk(c

∗) = K∗, where ŝk
r←− ŜK.

We modify Π into IND-CCA secure Π′ as follows. When generating a key pair, in addition

to (pk, sk), we sample ŝk
r←− ŜK and compute p̂k = µ̂

(
ŝk
)
. A public key and secret key of Π′

are
(
pk, p̂k

)
and

(
sk, ŝk

)
, respectively. When encrypting a message, we first compute c and d

in the same way as Π using pk. Then, we compute π ← ˆPub
(
p̂k, c, w

)
and set (c, d, π) as the

resulting ciphertext. When decrypting (c, d, π), we first check whether π = Λ̂ŝk(c) holds and if
so decrypt a message in the same way as Π using sk. Otherwise, we output ⊥.

Since Ĥ is 2-universal, an adversary cannot compute Λ̂ŝk(c) correctly for c ∈ C \ V even if

he obtain a single hash value Λ̂ŝk (c
∗) for c∗ ∈ C \ V in the challenge ciphertext. In other words,

the adversary cannot make a valid decryption query (c, d, π) for c ∈ C \ V. Then, from the
projective property of H, the adversary cannot obtain information of sk other than pk through
decryption queries. Thus, we can reduce the IND-CCA security of Π′ to the smoothness of H.

2 In the actual construction of IND-CCA secure PKE, we need to use 2-universal projective hash function
defined on C × K and V × K. Such a primitive is called extended projective hash function [8]. For simplicity, we
ignore this issue here.

5

Problems for proving KDM(1)-CCA security. Even if H is homomorphic, we cannot
prove the KDM(1)-CCA security of Π′ straightforwardly. In the security game of KDM(1)-CCA
security, an adversary can obtain an encryption of ŝk in addition to that of sk. Thus, we need
to eliminate ŝk from the view of the adversary to use the 2-universal property of Ĥ.

Moreover, if we can do that, there is another problem. Consider functions of the form

fe

(
sk, ŝk

)
= Λsk(e) + f

(
ŝk
)
, where e ∈ C and f : ŜK → K is a function. If H is homomorphic,

using a similar argument as Wee [19], we can simulate an encryption of fe

(
sk, ŝk

)
by(

c · e−1,Pub(pk, c, w) + f
(
ŝk
)
, Λ̂ŝk

(
c · e−1

))
,

where c ∈ V and w is an witness of c ∈ V. Even if we can eliminate f
(
ŝk
)
from the second

component, the third component Λ̂ŝk

(
c · e−1

)
incurs another problem. e is an element chosen

by an adversary in the security game, and thus c · e−1 might not be included in V. Thus, the
adversary can obtain a hash value Λ̂ŝk

(
c · e−1

)
for c · e−1 /∈ V through each KDM query fe. In

this case, we cannot rely on the 2-universal property of Ĥ to argue about decryption queries
made by the adversary if he makes multiple KDM queries. Therefore, we also need to eliminate
Λ̂ŝk

(
c · e−1

)
from the view of the adversary.

Our solution: Double layered encryption. We solve the above two problems at once by
extending double layered encryption techniques originally used to expand the plaintext space
of an IND-CCA secure PKE scheme [15, 11]. More precisely, by adding an outer encryption
layer, we put the estimation of the probability that an adversary makes an “illegal” decryption
query off till the end of the sequence of games where all information about the inner layer is
eliminated from the challenge ciphertexts. We use an IND-CCA secure PKE scheme Πcca as
the outer layer encryption scheme. When encrypting a message, we first generate (c, d, π) in
the same way as Π′ and then encrypt them by Πcca. We call the resulting PKE scheme Πkdm.

Of course, if we just maintain a secret key csk of Πcca as a part of a secret-key of Πkdm, we
cannot use the IND-CCA security of Πcca. Thus, we add a modification. We maintain csk after
encrypting by H. More precisely, we modify the key generation procedure of Πkdm as follows.

We first generate (pk, sk) and
(
p̂k, ŝk

)
in the same way as Π′ and generate a key pair (cpk, csk)

of Πcca. Moreover, we sample c∗
r←− C and compute d∗

r←− Λsk(c
∗) + csk.3 The resulting public

key and secret key of Πkdm are
(
pk, p̂k, cpk

)
and

(
sk, ŝk, c∗, d∗

)
, respectively.

The overview of the security proof is as follows. Let A be an adversary for the KDM(1)-CCA
security of Πkdm. We consider functions of the form

fe

(
sk, ŝk, c∗, d∗

)
= Λsk(e) + f

(
ŝk, c∗, d∗

)
,

where e ∈ C and f : ŜK×C×K → K is a function. This set of functions includes affine functions
in the actual instantiations.

1. We first change the security game so that we do not need sk to simulate KDM queries
using the projective property and homomorphism of H and subgroup indistinguishability.
Note that we do not need the smoothness of H to make this change as explained before.

After this change, the answer to a KDM query fe is of the form

Enccpk

(
c · e−1,Pub(pk, c, w) + f

(
ŝk, c∗, d∗

)
, Λ̂ŝk

(
c · e−1

))
.

3 Without loss of generality, we assume that the secret-key space of Πcca is K.

6

2. Then, we change the security game so that a decryption query CT made by A is replied
with ⊥ if c /∈ V, where (c, d, π) ← Deccsk(CT). The probability that this change affects
the behavior of A is bounded by the probability that A makes a decryption query CT
such that c /∈ V and π = Λ̂ŝk(c), where (c, d, π)← Deccsk(CT). We call such a decryption

query a bad decryption query. Since ŝk is contained in answers to KDM queries, we cannot
estimate the probability at this point. However, as noted above, we can put the estimation
off till the end of the sequence of games, and thus we continue the sequence.

3. By the previous change on how decryption queries are replied, we can use the smoothness
of H. We eliminate csk encrypted in (c∗, d∗) using the smoothness of H.

4. Then, we can use IND-CCA security of Πcca. We change the security game so that a KDM
query made by A is replied with CT← Enccpk (0). In this game, the advantage of A is 0.

To complete the security proof, we need to estimate the probability that A makes a bad
decryption query. In the final game, ŝk is hidden from the view of A and he cannot obtain
any hash value Λ̂ŝk(c) for c /∈ V. Thus, the probability is negligible in the final game if Ĥ is

2-universal. In fact, since the universal property of Ĥ is sufficient for this argument, we use a
universal projective hash function instead of a 2-universal one in the actual construction. Then,
the remaining problem is whether the probability that A makes a bad decryption query changes
during the sequence of games.

The probability does not change by the third step since the view of A before the third step
is statistically close to that after the third step from the smoothness of H. In addition, if we
can efficiently detect a bad decryption query made by A, we can prove that the probability does
not change by the fourth step based on the IND-CCA security of Πcca. For the purpose, in this
work, we require there exist a trapdoor that enables us to efficiently check the membership of
V for projective hash function. We can complete the security proof under the existence of such
a trapdoor.

1.3.3 Instantiations

We instantiate the above framework based on the DDH, QR, and DCR assumptions by extend-
ing the instantiations of KDM(1)-CPA secure PKE by Wee [19]. Therefore, the DDH based
construction is also an extension of that proposed by Boneh et al. [4], and the QR and DCR
based constructions are also extensions of those proposed by Brakerski and Goldwasser [5]. In
all constructions, we can make a trapdoor for checking the membership of V. We briefly review
the DDH based instantiation.

The DDH based instantiation. In the DDH based instantiation, we set

C = Gℓ and V = {(gr1, . . . , grℓ) |r ∈ Zp} ,

where G is a cyclic group of order p, g1, . . . , gℓ are random generators of G, and ℓ is a parameter
determined in the analysis. The uniform distribution over C and V are computationally indis-
tinguishable based on the DDH assumption on G. Moreover, the discrete logarithms αi such
that gi = gαi for every i ∈ [ℓ] can be used as a trapdoor to efficiently decide the membership of
V, where g is another generator and [ℓ] denotes {1, . . . , ℓ}.

We construct homomorphic projective hash function H exactly in the same way as Wee [19].
A secret key sk is randomly chosen s = s1 · · · sℓ ∈ {0, 1}ℓ. The corresponding public key is
g0 =

∏
i∈[ℓ] g

si
i . When hashing c = (c1, . . . , cℓ) ∈ C, we compute

∏
i∈[ℓ] c

si
i . We see that this

7

construction satisfies the projective property and homomorphism. Moreover, we can prove the
(average-case) smoothness of it based on the leftover hash lemma by taking ℓ appropriately.

We construct a universal projective hash function Ĥ as follows. A secret key ŝk is randomly
chosen (x1, . . . , xℓ) ∈ Zℓ

p. The corresponding public key is ĝ0 =
∏

i∈[ℓ] g
xi
i . When hashing

c = (c1, . . . , cℓ) ∈ C, we compute
∏

i∈[ℓ] c
xi
i . This construction can be seen as an extension of

that proposed by Cramer and Shoup [8], and we can prove its projective property and universal
property.

The QR and DCR based instantiations. In the QR based construction, we use the same
C, V, and H as Wee [19]. However, in the QR based construction, we slightly modify how to
mask csk in the key generation. Roughly speaking, this is because a hash value of H uniformly
distributes over a group of order 2, and thus we need parallelization in order to mask csk using
the smoothness of H. In the modified version of construction, we avoid such parallelization.
However, in the construction of a universal projective hash function Ĥ, we still need a paral-
lelized construction similarly to IND-CCA secure PKE based on the QR assumption proposed
by Cramer and Shoup [8]. When we consider CCA security, if the underlying group has a small
prime factor, we need a parallelized construction.

In the DCR based construction, we also apply some modifications to the construction of C,
V, and H used by Wee. In the construction of Wee, the underlying group has a small prime
factor 2. Therefore, in a naive construction, we need parallelization. However, by defining hash
functions so that every time we compute a hash value, we first perform a squaring, we can make
the small factor useless to attack the scheme without parallelization. By this modification, the
range of hash functions become a group whose order does not have a small prime factor and we
can avoid parallelization.

Overhead of our constructions. The overhead of communicational complexity (that is,
the size of public-keys and ciphertexts) of our KDM(1)-CCA secure PKE schemes from its
KDM(1)-CPA secure counterparts [19] is very small in the DDH and DCR based constructions.
A public-key and hash value of Ĥ are just a single group element in the DDH and DCR based
constructions. Moreover, we can use highly efficient IND-CCA secure PKE schemes [17, 13] as
the outer layer scheme. In this case, the overhead of communicational complexity is only few
group elements.

1.3.4 Extension to Multi User Setting

Although the above framework based on projective hash function captures only KDM(1)-CCA
security, we can prove the KDM-CCA security in the multi user setting of concrete instantia-
tions.

As noted before, our DDH based construction is an extension of that proposed by Boneh et
al. [4], and our QR and DCR based constructions are extensions of those proposed by Brakerski
and Goldwasser [5]. In both works, they first show the KDM(1)-CPA security of their schemes,
and then prove its KDM-CPA security in the multi user setting by extending the proof for
KDM(1)-CPA security.

By using similar techniques, we can prove KDM-CCA security in the multi user setting of
our schemes. Especially, we prove the KDM-CCA security in the multi user setting of our DDH
based construction with the same parameter setting as in the single user setting. We also briefly
explain how to prove the KDM-CCA security in the multi user setting of our QR and DCR
based constructions after proving the multi user security of the DDH based construction.

8

2 Preliminaries

In this section, we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x
r←− X denotes choosing an element from a finite set X uniformly at random, and

y ← A(x) denotes assigning to y the output of an algorithm A on an input x. For bit strings x
and y, x∥y denotes the concatenation of x and y. For an integer ℓ, [ℓ] denotes the set of integers
{1, . . . , ℓ}.

λ denotes a security parameter. PPT stands for probabilistic polynomial time. A function
f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We write
f(λ) = negl(λ) to denote f(λ) being a negligible function.

2.2 Leftover Hash Lemma

We introduce the leftover hash lemma.

Lemma 1 (Leftover hash lemma) Let X, Y , and Z are sets. Let H := {h : X → Y } be a
universal hash family. Let aux : X → Z be a function. Then, the distributions (h, h(x), aux(x))

and (h, y, aux(x)) are
√

|Y ||Z|
4·|X| -close, where h

r←− H, x r←− X, and y
r←− Y .

2.3 Public Key Encryption

We define public key encryption (PKE).

Definition 1 (Public key encryption) A PKE scheme PKE is a three tuple (KG,Enc,Dec)
of PPT algorithms. Below, letM be the message space of PKE.

• The key generation algorithm KG, given a security parameter 1λ, outputs a public key pk
and a secret key sk.

• The encryption algorithm Enc, given a public key pk and message m ∈ M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a secret key sk and ciphertext c, outputs a message
m̃ ∈ {⊥} ∪M.

Correctness We require Dec(sk,Enc(pk,m)) = m for every m ∈M and (pk, sk)← KG(1λ).

We introduce indistinguishability against chosen ciphertext attacks (IND-CCA security) for
PKE.

Definition 2 (IND-CCA security) Let PKE be a PKE scheme. We define the IND-CCA
game between a challenger and an adversary A as follows. We let M be the message space of
PKE.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates a

key pair (pk, sk)← KG(1λ) and sends pk to A.
At any step of the game, A can make decryption queries.

9

Decryption queries A sends CT to the challenger. The challenger returns m← Dec(sk,CT)
to A.

2. A sends
(
m0,m1

)
∈ M2 to the challenger. We require that

∣∣m0
∣∣ = ∣∣m1

∣∣. The challenger
computes CT∗ ← Enc

(
pk,mb

)
and returns CT to A.

Below, A is not allowed to query CT∗ as a decryption query.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is IND-CCA secure if for any PPT adversary A, we have AdvindccaPKE,A(λ) =∣∣Pr[b = b′]− 1
2

∣∣ = negl(λ).

Next, we define key dependent message security against chosen ciphertext attacks (KDM-
CCA security) for PKE.

Definition 3 (KDM-CCA security) Let PKE be a PKE scheme, F function family, and n
the number of keys. We define the F-KDM(n)-CCA game between a challenger and an adversary
A as follows. Let SK andM be the secret key space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger generates

n key pairs (pkk, skk) ← KG(1λ) (k ∈ [n]). The challenger sets sk := (sk1, . . . , skn) and
sends (pk1, . . . , pkn) to A. Finally, the challenger prepares a list Lkdm which is initially
empty.

2. A may adaptively make the following queries polynomially many times.

KDM queries A sends (j, f0, f1) ∈ [n] × F × F to the challenger. We require that
f0 and f1 be functions such that f : SKn → M. The challenger returns CT ←
Enc

(
pkj , f

b(sk)
)
to A. Finally, the challenger adds (j,CT) to Lkdm.

Decryption queries A sends (j,CT) to the challenger. If (j,CT) ∈ Lkdm, the challenger
returns ⊥ to A. Otherwise, the challenger returns m← Dec (skj ,CT) to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM(n)-CCA secure if for any PPT adversary A, we have Advkdmcca
PKE,F ,A,n(λ) =∣∣Pr[b = b′]− 1

2

∣∣ = negl(λ).

In addition, we say that PKE is F-KDM-CCA secure if it is F-KDM(n)-CCA secure for any
polynomial n = n(λ).

Remark 1 (Difference with the previous definitions) In the original definition of KDM
security defined by Black et al. [3], an adversary is required to distinguish an encryption of f(sk)
from that of some constant message such as 0, where f is a function chosen by the adversary.

In our definition of KDM-CCA security, an adversary chooses two functions (f0, f1) and
is required to distinguish an encryption of f0(sk) from that of f1(sk). Such a definition was
previously used by Alperin-sheriff and Peikert [1] when they defined KDM security for identity-
based encryption to simplify their security proof. We also adopt this definition to simplify our
security proofs.

These two types of definitions are equivalent if the function class F contains a constant
function. This is the case for affine functions and projection functions that we focus on.

10

2.4 Projective Hash Function

We review the notion of projective hash function introduced by Cramer and Shoup [8] after
introducing the notion of subset membership problem.

Definition 4 (Subset membership problem) Let C be a group and V be a subgroup of C.
We say that subset membership problem (C,V) is hard if for any PPT adversary A, it holds that

Advsmp
(C,V),A(λ) =

∣∣∣Pr[A(c) = 1 : c
r←− C]− Pr[A(c) = 1 : c

r←− V]
∣∣∣ = negl(λ) .

In this work, for a subset membership problem (C,V), we require that there exist a trapdoor
that enables us to efficiently check the membership of V. Moreover, we require that we can
efficiently sample c from V with a witness of c ∈ V.

Definition 5 (Projective hash function) A projective hash function H is a tuple (C,V,K,SK,PK,Λ, µ).

• C and K are groups and V is a subgroup of C. SK and PK are sets.

• The hash function Λsk indexed by sk ∈ SK, given c ∈ C, outputs a hash value K ∈ K.

• The projection map µ, given sk ∈ SK, outputs pk ∈ PK.

Projective property We require that for any sk ∈ SK and c ∈ V, the value of Λsk(c) is
determined only by c and pk = µ(sk). In addition, we require that there exist a public
evaluation algorithm Pub, given pk = µ(sk), c ∈ V, and a witness w that c ∈ V, outputs
Λsk(c), where sk ∈ SK.

In addition, if H satisfies the following homomorphism, H is said to be a homomorphic
projective hash family.

Homomorphism Let “·” and “+” denote operations in C and K, respectively. For all sk ∈ SK
and c0, c1 ∈ C, it holds that Λsk(c0 · c1) = Λsk(c0) + Λsk(c1).

We define two security notions for projective hash function.

Definition 6 (Average-case smoothness) Let H = (C,V,K,SK,PK,Λ, µ) be a projective
hash function. We say that H is average-case smooth if the distributions

(pk, c,Λsk(c)) and (pk, c,K)

are statistically close, where sk
r←− SK, pk = µ(sk), c

r←− C, and K
r←− K.

Definition 7 (Universal property) Let H = (C,V,K,SK,PK,Λ, µ) be a projective hash
function. We say that H is universal if for any pk ∈ PK , c ∈ C \ V, K ∈ K, we have

Pr
sk

r←−SK
[Λsk(c) = K|µ(sk) = pk] = negl(λ) .

11

3 KDM(1)-CCA Secure PKE Based on Homomorphic Projec-
tive Hash Function

In this section, we show a framework for achieving KDM(1)-CCA secure PKE based on homo-
morphic projective hash function.

Let H = (C,V,K,SK,PK,Λ, µ) be a homomorphic projective hash function with a public
evaluation algorithm Pub. We denote the group operations of C and K by “·” and “+”, respec-

tively. Let Ĥ =
(
C,V, K̂, ŜK, P̂K, Λ̂, µ̂

)
be a projective hash function with a public evaluation

algorithm ˆPub. Let Πcca = (KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-
key space of Πcca is K for simplicity. Using these building blocks, we construct the following
PKE scheme Πkdm = (KGkdm,Enckdm,Deckdm). The message space of Πkdm is M. We use an
invertible map ϕ :M→K in the construction.

KGkdm(1
λ) :

• Generate sk
r←− SK and compute pk← µ(sk).

• Generate ŝk
r←− ŜK and compute p̂k← µ̂

(
ŝk
)
.

• Generate (cpk, csk)← KGcca(1
λ).

• Generate c∗
r←− C and compute d∗ ← Λsk(c

∗) + csk.

• Return PK :=
(
pk, p̂k, cpk

)
and SK :=

(
sk, ŝk, c∗, d∗

)
.

Enckdm(PK,m) :

• Parse
(
pk, p̂k, cpk

)
← PK.

• Generate c
r←− V with an witness w of c ∈ V.

• Compute K← Pub(pk, c, w) and d← K+ ϕ(m).

• Compute π ← ˆPub
(
p̂k, c, w

)
.

• Return CT← Enccca (cpk, (c, d, π)).

Deckdm(SK,CT) :

• Parse
(
sk, ŝk, c∗, d∗

)
← SK.

• Compute csk← d∗ − Λsk(c
∗).

• Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in C × K × K̂,
return ⊥. Otherwise, compute as follows.

• If π ̸= Λ̂ŝk(c), return ⊥. Otherwise, return m← ϕ−1 (d− Λsk(c)).

Correctness. We have Pub(pk, c, w) = Λsk(c) and ˆPub
(
p̂k, c, w

)
= Λ̂ŝk(c) for c ∈ V, where w

is a witness of c ∈ V. Then, the correctness of Πkdm follows from that of Πcca.

Πkdm is KDM-CCA secure with respect to the function family Fphf consisting of functions
described as

fe

(
sk, ŝk, c∗, d∗

)
= ϕ−1

(
Λsk(e) + ϕ

(
f
(
ŝk, c∗, d∗

)))
,

where e ∈ C and f : ŜK × C × K → M is a function. This class corresponds to affine and
projection functions in the instantiations. Formally, we prove the following theorem.

12

Theorem 3 Let the subset membership problem (C,V) be hard. Let H be average-case smooth
and Ĥ universal. Let Πcca be IND-CCA secure. Then, Πkdm is Fphf-KDM(1)-CCA secure.

Proof of Theorem 3. Let A be an adversary that attacks the Fphf-KDM(1)-CCA security
of Πkdm. We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 8}, let SUCt be
the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original Fphf-KDM(1)-CCA game regarding Πkdm. We have Advkdmcca
Πkdm,Fphf ,A,1(λ) =∣∣Pr[SUC0]− 1

2

∣∣. The detailed description is as follows.

1. The challenger chooses a challenge bit b
r←− {0, 1}, and runs as follows.

(a) Generate sk
r←− SK and compute pk← µ(sk).

(b) Generate ŝk
r←− ŜK and compute p̂k← µ̂

(
ŝk
)
.

(c) Generate (cpk, csk)← KGcca

(
1λ
)
.

(d) Generate c∗
r←− C and compute d∗ ← Λsk(c

∗) + csk.

(e) Send PK :=
(
pk, p̂k, cpk

)
to A and prepare a list Lkdm.

2. The challenger responds to queries made by A.
For a KDM query ((e0, f0), (e1, f1)) made by A, the challenger responds as follows.

(a) Generate c
r←− V with a witness w of c ∈ V.

(b) Compute K← Pub(pk, c, w) and d← K+ Λsk(e
b) + ϕ

(
f b

(
ŝk, c∗, d∗

))
.

(c) Compute π ← ˆPub
(
p̂k, c, w

)
.

(d) Return CT← Enccca (cpk, (c, d, π)) to A and add CT to Lkdm.

For a decryption query CT made by A, the challenger returns ⊥ to A if CT ∈ Lkdm,
and otherwise responds as follows.

(a) Compute (c, d, π)← Deccca(csk,CT). If the decryption result is not in C×K×K̂,
return ⊥ to A. Otherwise, responds as follows.

(b) Return ⊥ if π ̸= Λ̂ŝk(c) and m← ϕ−1 (d− Λsk(c)) otherwise.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except that when A makes a KDM query, the challenger com-

putes K ← Λsk(c) and π ← Λ̂ŝk(c) instead of K ← Pub(pk, c, w) and π ← ˆPub
(
p̂k, c, w

)
,

respectively.

Due to the projective property of H and Ĥ, this change is only conceptual and thus we have
|Pr[SUC0]− Pr[SUC1]| = 0.

Game 2: Same as Game 1 except that when A makes a KDM query, the challenger generates
c

r←− C.

We have |Pr[SUC1]− Pr[SUC2]| = negl(λ) by the hardness of the subset membership problem
(C,V).

Game 3: Same as Game 2 except that when A makes a KDM query ((e0, f0), (e1, f1)), the
challenger generates c

r←− C and uses c′ = c · (eb)−1 instead of c.

13

We have |Pr[SUC2]− Pr[SUC3]| = 0 since if c uniformly distributes over C, then so does
c · (eb)−1.

By this change, the answer to a KDM query ((e0, f0), (e1, f1)) in Game 3 is Enccca (cpk, (c
′, d, π)),

where

c′ = c · (eb)−1, d = Λsk(c · (eb)−1) + Λsk(e
b) + ϕ

(
f b

(
ŝk, c∗, d∗

))
, π = Λ̂ŝk

(
c′
)

,

and c
r←− C. Moreover, by the homomorphism of H, d = Λsk(c) + ϕ

(
f b

(
ŝk, c∗, d∗

))
holds.

Game 4: Same as Game 3 except that when A makes a KDM query, the challenger generates
c

r←− V with a witness w of c ∈ V.

We have |Pr[SUC3]− Pr[SUC4]| = negl(λ) by the hardness of the subset membership problem
(C,V).

Game 5: Same as Game 4 except that when A makes a KDM query, the challenger computes

d ← Pub(pk, c, w) + ϕ
(
f b

(
ŝk, c∗, d∗

))
. Note that the challenger still computes π with

π ← Λ̂ŝk(c
′).

Due to the projective property of H, this change is only conceptual and thus we have
|Pr[SUC4]− Pr[SUC5]| = 0.

At this point, sk is not needed to compute answers to KDM queries. More precisely, the
answer to a KDM query ((e0, f0), (e1, f1)) is Enccca (cpk, (c

′, d, π)), where

c′ = c · (eb)−1, d = Pub(pk, c, w) + ϕ
(
f b

(
ŝk, c∗, d∗

))
, π = Λ̂ŝk

(
c′
)

,

c
r←− V, and w is a witness of c ∈ V.

Game 6: Same as Game 5 except how the challenger responds decryption queries made by A.
In this game, the challenger returns ⊥ for a decryption query related to c /∈ V. More
precisely, the challenger responds as follows.

For a decryption query CT made by A, the challenger returns ⊥ to A if CT ∈ Lkdm, and
otherwise responds as follows.

1. Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in V × K × K̂,
return ⊥ to A. Otherwise, respond as follows.

2. Return ⊥ if π ̸= Λ̂ŝk(c) and m← ϕ−1 (d− Λsk(c)) otherwise.

We define the following event in Game t (t = 5, · · · , 8).

BDQt: A makes a decryption query CT /∈ Lkdm which satisfies c ∈ C \ V and π = Λ̂ŝk(c), where
(c, d, π)← Deccca(csk,CT). We call such a decryption query a “bad decryption query”.

Games 5 and 6 are identical games unless A makes a bad decryption query in each game.
Therefore, we have |Pr[SUC5]− Pr[SUC6]| ≤ Pr[BDQ6].

Below, we let td be a trapdoor for efficiently deciding the membership of V.

Game 7: Same as Game 6 except that the challenger generates d∗
r←− K.

14

By the previous change, A cannot obtain information of sk other than pk through decryption
queries in Games 6 and 7. Moreover, as noted above, KDM queries are replied without using
sk in Games 6 and 7. Thus, the view of A in Games 6 and 7 can be perfectly simulated by
(pk, c∗,Λsk(c

∗)) and (pk, c∗, d∗), respectively, where sk
r←− SK, pk← µ(sk), c∗

r←− C, and d∗
r←− K.

Therefore, we have |Pr[SUC6]− Pr[SUC7]| = negl(λ) and |Pr[BDQ6]− Pr[BDQ7]| = negl(λ) from
the average-case smoothness of H.4

csk is now eliminated from the view of A. Thus, we can use IND-CCA security of Πcca.

Game 8: Same as Game 7 except that when A makes a KDM query, the challenger computes
CT← Enccca

(
cpk,

(
1C , 1K, 1K̂

))
, where 1C , 1K, and 1K̂ are identity elements of C, K, and

K̂, respectively.

From the IND-CCA security of Πcca, we have |Pr[SUC7]− Pr[SUC8]| = negl(λ).
Moreover, since reduction algorithms for IND-CCA security of Πcca can detect a bad decryp-

tion query made byA by utilizing decryption queries, td, and ŝk, we obtain |Pr[BDQ7]− Pr[BDQ8]| =
negl(λ) from the IND-CCA security of Πcca.

We see that the value of b is information theoretically hidden from the view of A in Game 8.
Thus, we have

∣∣Pr[SUC8]− 1
2

∣∣ = 0.

We estimate Pr[BDQ8]. In Game 8, ŝk is hidden from the view of A except p̂k. Moreover, A
cannot obtain any hash value Λ̂ŝk(c) for c ∈ C \V since an answer to a KDM query is computed

as CT← Enccca
(
cpk,

(
1C , 1K, 1K̂

))
in Game 8. Therefore, from the universal property of Ĥ, we

obtain Pr[BDQ8] = negl(λ).5

From the above arguments, we see that

Advkdmcca
Πkdm,Fphf ,A,1(λ) =

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
=

7∑
t=0

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC8]− 1

2

∣∣∣∣
=

∑
t∈{0,...,7},t̸=5

|Pr[SUCt]− Pr[SUCt+1]|+ |Pr[SUC5]− Pr[SUC6]|

=
∑

t∈{0,...,7},t̸=5

|Pr[SUCt]− Pr[SUCt+1]|+
7∑

t=6

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ8]

= negl(λ) .

Since the choice of A is arbitrary, Πkdm is Fphf-KDM(1)-CCA secure. □ (Theorem 3)

Remark 2 (Shrink secret keys) We do not need to require any structure and homomor-
phism for ŝk and csk. Then, we can shrink them into a single pseudorandom function key Kprf

4 In terms of reduction, we can construct a computationally unbounded adversary B that given (pk, c∗, d∗),

distinguishes whether d∗ ← Λsk(c
∗) or d∗

r←− K using A. The only non-trivial part of the construction of B is how
B responds to decryption queries made by A. After Game 6, bad decryption queries made by A are replied with
⊥. In addition, if a decryption query is not a bad decryption query, computationally unbounded B can reply to
the decryption query correctly without using sk. This is done by extracting a witness related to the decryption
query and computing the hash value with Pub.

5 Similarly to the estimation of |Pr[SUC6]− Pr[SUC7]|, in terms of reduction, we can construct a computationally
unbounded reduction that responds a decryption query from A correctly without knowing ŝk by extracting a
witness and using ˆPub.

15

and modify the construction so that Λsk (c
∗) masks Kprf . Moreover, we can maintain c∗ and

d∗ = Λsk (c
∗) +Kprf as a part of the corresponding public key. If we do so, the resulting secret

key is just sk.

4 Instantiations

We show concrete instantiations of our framework described in Section 3.

4.1 Instantiation Based on the DDH Assumption

Definition 8 (DDH assumption) Let G be a cyclic group of order p. Let g be a random
generator of G. For any PPT algorithm A, we have

|Pr[A(p, g, gx, gy, gxy) = 1]− Pr[A(p, g, gx, gy, gz) = 1] = negl(λ)| ,

where x, y, z
r←− Zp.

Let G be a cyclic group of order p and g1, . . . , gℓ random generators of G, where ℓ is deter-
mined later. We define C and V as

C = Gℓ, and V = {(gr1, . . . , grℓ) |r ∈ Zp} .

V is a subgroup of C and subset membership problem (C,V) is hard under the DDH assumption
on G [4, 19]. Let g be another generator of G. Then, there exists αi ∈ Z∗

p such that gαi = gi
for every i ∈ [ℓ]. The trapdoor for checking the membership of V is {αi}i∈[ℓ].

For (C,V) defined above, we construct two projective hash functionsH = (C,V,K,SK,PK,Λ, µ)
and Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, µ̂

)
. The construction of H is the same as that of projective hash

function based on the DDH assumption proposed by Wee [19] thus is a generalization of the
KDM-CPA secure PKE scheme proposed by Boneh et al. [4].

4.1.1 Construction of H

We define SK = {0, 1}ℓ, PK = G, and K = G. For every sk = s1 · · · sℓ ∈ {0, 1}ℓ and c =
(c1, . . . , cℓ) ∈ C, we also define µ and Λ as

µ(sk) =
∏
i∈[ℓ]

gsii and Λsk(c) =
∏
i∈[ℓ]

csii .

Projective property. For every sk = s1 · · · sℓ ∈ {0, 1}ℓ, pk =
∏

i∈[ℓ] g
si
i , and c = (gr1, . . . , g

r
ℓ),

where r ∈ Zp, we define the public evaluation algorithm Pub as

Pub(pk, c, r) = pkr .

We see that

pkr =

∏
i∈[ℓ]

gsii

r

=
∏
i∈[ℓ]

(gri)
si = Λsk(c)

and thus H satisfies projective property.

16

Homomorphism. For every sk = s1 · · · sℓ ∈ {0, 1}ℓ, c = (c1, . . . , cℓ) ∈ C, and c′ = (c′1, . . . , c
′
ℓ) ∈

C, we have

Λsk(c) · Λsk(c
′) =

∏
i∈[ℓ]

csii ·
∏
i∈[ℓ]

(c′i)
si =

∏
i∈[ℓ]

(ci · c′i)si = Λsk(c · c′)

and thus H is homomorphic.

Average-case smoothness. The leftover hash lemma implies that the following two distri-
butions c,

∏
i∈[ℓ]

csii ,
∏
i∈[ℓ]

gsii

 and

c,K,
∏
i∈[ℓ]

gsii


are

√
p·p
4·2ℓ -close, where sk = s1 · · · sℓ

r←− {0, 1}ℓ, c = (c1, . . . , cℓ)
r←− C, and K

r←− K. Therefore, by
setting ℓ = 3 log p, H satisfies average-case smoothness.

4.1.2 Construction of Ĥ

We define ŜK = Zℓ
p, P̂K = G, and K̂ = G. For every ŝk = (x1, . . . , xℓ) ∈ ŜK and c =

(c1, . . . , cℓ) ∈ C, we also define µ̂ and Λ̂ as

µ̂
(
ŝk
)
=

∏
i∈[ℓ]

gxi
i and Λ̂ŝk(c) =

∏
i∈[ℓ]

cxi
i .

Projective property. For every ŝk = (x1, . . . , xℓ) ∈ Zℓ
p, p̂k =

∏
i∈[ℓ] g

xi
i , and c = (gr1, . . . , g

r
ℓ),

where r ∈ Zp, we define the public evaluation algorithm ˆPub as

ˆPub
(
p̂k, c, r

)
= p̂k

r
.

Similarly to H, we see that Ĥ satisfies projective property.

Universal property. For every p̂k ∈ P̂K, c =
(
gr11 , . . . , grℓℓ

)
∈ C \ V, and π ∈ K̂, we consider

the following probability

Pr
xi

r←−Zp

∏
i∈[ℓ]

cxi
i = π

∣∣∣∣∣∣
∏
i∈[ℓ]

gxi
i = p̂k

 . (1)

Let g be a generator of G. There exists αi ∈ Z∗
p such that gi = gαi for every i ∈ [ℓ]. Then, the

above probability of Equation 1 is the same as

Pr
xi

r←−Zp

∑
i∈[ℓ]

αixiri mod p = logg π

∣∣∣∣∣∣
∑
i∈[ℓ]

αixi mod p = logg p̂k

 .

Since c /∈ V, there exist i1, i2 ∈ [ℓ] such that ri1 ̸= ri2 . Therefore, two equations∑
i∈[ℓ]

αixiri mod p = logg π and
∑
i∈[ℓ]

αixi mod p = logg p̂k

are linearly independent. Thus, the probability of Equation 1 is 1
p . This means that Ĥ is

universal.

17

4.1.3 Associated Function Class

The message space of the DDH based construction is {0, 1}. We define ϕ(m) = gm. Since we
restrict the message space to {0, 1}, we can compute ϕ−1 in the brute-force manner. Let Fddh

be a function family consisting of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= ϕ−1

(
Λsk (g

e1 , . . . , geℓ) · ϕ
(
f
(
ŝk, c∗, d∗

)))
= ϕ−1

(
g
∑

i∈[ℓ] eisi+f(ŝk,c∗,d∗)
)

=
∑
i∈[ℓ]

eisi + f
(
ŝk, c∗, d∗

)
,

where ei ∈ {0, 1} for every i ∈ [ℓ] and f is a function of single-bit output such that
∑

i∈[ℓ] eisi+

f
(
ŝk, c∗, d∗

)
∈ {0, 1} for all sk, ŝk, c∗, and d∗. The DDH based construction is Fddh-KDM(1)-CCA

secure. In the construction, we can maintain ŝk, c∗, and d∗ as bit strings. In this case, the above
function class includes projection functions of single-bit output.

Remark 3 (Extension to affine functions) We can construct a DDH based PKE scheme
that is KDM-CCA secure with respect to affine functions by applying the following modifications
to the above construction. We set the message space as G. Let SK ∈ {0, 1}L be a bit string

that is a concatenation of sk and bit representation of
(
ŝk, c∗, d∗

)
. We maintain a secret-key

SK = s1 · · · sL as (gs1 , . . . , gsL). Then, the construction is Faff-KDM(1)-CCA secure, where Faff

is a function class consisting of functions described as

f(gs1 , . . . , gsL) =

∏
i∈[L]

(gsi)ai

 · a0 ,

where a0 ∈ G and a1, . . . , aL ∈ Zp. This class is exactly the class of affine functions defined by
Boneh et al. [4].

4.2 Instantiation Based on the QR Assumption

Definition 9 (QR assumption) Let N = PQ be a Blum integer for λ-bit safe primes P,Q ≡
3 (mod 4) such that P = 2p+1 and Q = 2q+1 for primes p and q. Let n = pq. We use JN to
denote the set of elements in Z∗

N with Jacobi symbol 1. We also use QRN to denote the set of

quadratic residues modulo N . JN and QRN are multiplicative groups of order φ(N)
2 = 2n and

φ(N)
4 = n, respectively.
We say that the QR assumption holds if for any PPT algorithm A, we have∣∣Pr[A(N, y) = 1]− Pr[A(N, y′) = 1] = negl(λ)

∣∣ ,

where y
r←− JN and y′

r←− QRN .

We define N , JN , and QRN as in Definition 9. Then, we can decompose JN as an internal
direct product ⟨−1⟩ ⊗ QRN , and QRN is a cyclic group, where ⟨−1⟩ is the subgroup of Z∗

N

generated by −1 mod N . Let g1, . . . , gℓ be random generators of QRN , where ℓ is determined
later. We can generate a random generator g of QRN by generating µ

r←− Z∗
N and setting

g = µ2 mod N . Then, g is a generator of QRN with overwhelming probability.

18

We define C and V as

C =
{(

(−1)d1 · gr1, . . . , (−1)dℓ · grℓ
)∣∣∣d1, . . . , dℓ ∈ Z2, r ∈ Zn

}
, and

V = {(gr1, . . . , grℓ) |r ∈ Zn} .

V is a subgroup of C and subset membership problem of (C,V) is hard under the QR assump-
tion [5, 19]. Let g be another generator of QRN . Then, there exists αi ∈ Z∗

n such that gαi = gi
for every i ∈ [ℓ]. The trapdoor for checking the membership of V is P , Q, and {αi}i∈[ℓ].

When sampling a random element c = (c1, . . . , cℓ) from V, we randomly choose r
r←− ZN−1

4

and set ci ← gri for every i ∈ [ℓ]. The distribution of c is statistically close to the uniform
distribution over V. Moreover, r is a witness of c ∈ V. We can sample a random element from
C in a similar fashion.

For (C,V) defined above, we construct two projective hash functionsH = (C,V,K,SK,PK,Λ, µ)
and Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, µ̂

)
. The construction of H is the same as that of projective hash

function based on the QR assumption proposed by Wee [19] thus is a generalization of the
KDM-CPA secure PKE scheme proposed by Brakerski and Goldwasser [5].

4.2.1 Construction of H

We define SK = {0, 1}ℓ, PK = QRN , and K = JN . For every sk = s1 · · · sℓ ∈ {0, 1}ℓ and
c = (c1, . . . , cℓ) ∈ C, we also define µ and Λ as

µ(sk) =
∏
i∈[ℓ]

gsii and Λsk(c) =
∏
i∈[ℓ]

csii .

Projective property. Let sk = s1 · · · sℓ ∈ {0, 1}ℓ, pk =
∏

i∈[ℓ] g
si
i , and c = (gr1, . . . , g

r
ℓ), where

r ∈ Zn. We define the public evaluation algorithm Pub as

Pub(pk, c, r) = pkr .

We see that

pkr =

∏
i∈[ℓ]

gsii

r

=
∏
i∈[ℓ]

(gri)
si = Λsk(c)

and thus H satisfies projective property.

Homomorphism. For every sk = s1 · · · sℓ ∈ {0, 1}ℓ, c = (c1, . . . , cℓ) ∈ C, and c′ = (c′1, . . . , c
′
ℓ) ∈

C, we have

Λsk(c) · Λsk(c
′) =

∏
i∈[ℓ]

csii ·
∏
i∈[ℓ]

(c′i)
si =

∏
i∈[ℓ]

(ci · c′i)si = Λsk(c · c′)

and thus H is homomorphic.

Average-case smoothness. For an element e = (−1)d · gr ∈ JN , we define e mod QRN =
(−1)d. Similarly to Wee [19], we can prove a weaker property that Λsk(c) mod QRN uniformly
distributes over ⟨−1⟩ using leftover hash lemma.

19

In our construction, to mask a secret key of Πcca relying on this property, we need to use
several instances of H in parallel. However, we have another option which is more efficient than
the parallel construction. Below, we show it.

Without loss of generality, we assume that the secret-key space of Πcca is QRN . When
mask csk in the key generation, we generate c∗ = (c∗1, . . . , c

∗
ℓ)

r←− QRℓ
N and computes d∗ ←(∏

i∈[ℓ] (c
∗
i)

si
)
· csk.

The leftover hash lemma implies that the following two distributionsc∗,
∏
i∈[ℓ]

(ci
∗)si , pk =

∏
i∈[ℓ]

gsii

 and

c∗,K, pk =
∏
i∈[ℓ]

gsii


are

√
n·n
4·2ℓ -close, where s1 · · · sℓ

r←− {0, 1}ℓ and K
r←− QRN . Therefore, by setting ℓ = 3 log n, we

can statistically hide csk from the view of an adversary in the proof of KDM(1)-CCA security.

4.2.2 Construction of Ĥ

We define ŜK = Zλ×ℓ
2n ,6 P̂K = QRλ

N , and K̂ = JλN . For every

ŝk =

x11, . . . , x1ℓ
...

xλ1, . . . , xλℓ

 ∈ ŜK
and c = (c1, . . . , cℓ) ∈ C, we also define µ̂ and Λ̂ as

µ̂
(
ŝk
)
=


∏

i∈[ℓ] g
x1i
i

...∏
i∈[ℓ] g

xλi
i

 and Λ̂ŝk(c) =


∏

i∈[ℓ] c
x1i
i

...∏
i∈[ℓ] c

xλi
i

 .

Projective property. Let

ŝk =

x11, . . . , x1ℓ
...

xλ1, . . . , xλℓ

 ∈ ŜK , p̂k =

p̂k1
...

p̂kλ

 =


∏

i∈[ℓ] g
x1i
i

...∏
i∈[ℓ] g

xλi
i

 ∈ P̂K
and c = (gr1, . . . , g

r
ℓ), where r ∈ Zn. We define the public evaluation algorithm ˆPub as

ˆPub
(
p̂k, c, r

)
=


(
p̂k1

)r

...(
p̂kλ

)r

 .

Similarly to H, we see that Ĥ satisfies projective property.

6 In the actual construction, we sample ŝk from Zλ×ℓ
N−1

2

to sample ŝk without knowing n. The uniform distri-

butions over Zλ×ℓ
2n and Zλ×ℓ

N−1
2

are statistically close.

20

Universal property. We need to prove that the universal property holds not only for all
c ∈ C \ V but also all c ∈ JℓN \ C. This is because we cannot efficiently check the membership of
C. Note that we can check the membership of JN by computing Jacobi symbol with respect to
N , and Jacobi symbol with respect to N can be computed without factorizations of N , that is
P and Q [18, Section 12.3].

For every c = (c1, . . . , cℓ) ∈ JℓN \ C, we define Λ̂ŝk(c) in the same way as above. For every

p̂k =
(
p̂k1, . . . , p̂kλ

)
∈ P̂K, c = (c1, . . . , cℓ) ∈ JℓN , and (π1, . . . , πλ) ∈ K̂, we consider the

following probability

Pr
xji

r←−Z2n

∏
i∈[ℓ]

c
xji

i = πj for all j ∈ [λ]

∣∣∣∣∣∣
∏
i∈[ℓ]

g
xji

i = p̂kj for all j ∈ [λ]


=

∏
j∈[λ]

Pr
xji

r←−Z2n

∏
i∈[ℓ]

c
xji

i = πj

∣∣∣∣∣∣
∏
i∈[ℓ]

g
xji mod n
i = p̂kj

 . (2)

We first consider the case where at least one element of c = (c1, . . . , cℓ) is not in QRN .
Suppose that ci∗ ∈ JN \QRN for some i∗ ∈ [ℓ].

For two elements e0, e1 ∈ JN , we write e0 ≡ e1 mod QRN to denote that e0 mod QRN =
e1 mod QRN . For two elements e0, e1 ∈ JN , if e0 = e1 holds, then so does e0 ≡ e1 mod QRN .
Thus, the probability of Equation 2 is bounded by

∏
j∈[λ]

Pr
xji

r←−Z2n

∏
i∈[ℓ]

c
xji

i ≡ πj mod QRN

∣∣∣∣∣∣
∏
i∈[ℓ]

g
xji mod n
i = p̂kj

 .

For every i ∈ [ℓ] and j ∈ [λ], c
xji

i mod QRN is determined by only xji mod 2 and independent
of xji mod n from the Chinese Remainder Theorem since 2 and n = pq are relatively prime.
Therefore, the above probability is

∏
j∈[λ]

Pr
xji

r←−Z2n

∏
i∈[ℓ]

c
xji

i ≡ πj mod QRN

 .

Since ci∗ /∈ QRN , we can write ci∗ = −gri∗ , where ri∗ ∈ Zn. For every j ∈ [λ], we have

c
xji∗
i∗ = (−1)xji∗ mod 2 · (gri∗)xji∗ mod n .

Then, the above probability is

∏
j∈[λ]

Pr
xji

r←−Z2n

(−1)xji∗ mod 2 = πj ·

 ∏
i∈[ℓ],i ̸=i∗

c
xji

i

−1

mod QRN

 =
1

2λ
.

Thus, in this case, the probability of Equation 2 is negligible in λ.
We next consider the case where all elements of c = (c1, . . . , cℓ) /∈ V are in QRN . In this

case, we can write c =
(
gr11 , . . . , grℓℓ

)
, where r1, . . . , rℓ ∈ Zn and there exist i1, i2 ∈ [ℓ] such that

ri1 ̸= ri2 . Let g be a generator of QRN . Since gi is a generator of QRN , there exists αi ∈ Z∗
n

such that gi = gαi for every i ∈ [ℓ]. The probability of Equation 2 is 0 if πj /∈ QRN for some
j ∈ [λ], and thus we consider the case where πj ∈ QRN for every j ∈ [λ]. Then, the probability
of Equation 2 is the same as

∏
j∈[λ]

Pr
xji

r←−Zn

∑
i∈[ℓ]

αirixji ≡ logg πj mod n

∣∣∣∣∣∣
∑
i∈[ℓ]

αixji ≡ logg p̂kj mod n

 .

21

Since ri1 ̸≡ ri2 mod n, either ri1 ̸≡ ri2 mod p or ri1 ̸≡ ri2 mod q holds. Without loss of generality,
we assume that ri1 ̸≡ ri2 mod p. Since p and q are primes, the above probability is bounded by

∏
j∈[λ]

Pr
xji

r←−Zn

∑
i∈[ℓ]

αirixji ≡ logg πj mod p

∣∣∣∣∣∣
∑
i∈[ℓ]

αixji ≡ logg p̂kj mod p

 .

Since ri1 ̸≡ ri2 mod p, two equations∑
i∈[ℓ]

αirixji ≡ logg πj mod p and
∑
i∈[ℓ]

αixji ≡ logg p̂kj mod p

are linearly independent. Thus, the above probability is 1
pλ
.

From the above, for every c ∈ JℓN \ V, the probability of Equation 2 is negligible in λ.

4.2.3 Associated Function Class

The message space of the QR based construction is {0, 1}. We define ϕ(m ∈ {0, 1}) = (−1)m.
Let Fqr be a family of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= ϕ−1

(
Λsk ((−1)e1 , . . . , (−1)eℓ) + ϕ

(
f
(
ŝk, c∗, d∗

)))
= ϕ−1

(
(−1)

∑
i∈[ℓ] eisi+f(ŝk,c∗,d∗)

)
=

∑
i∈[ℓ]

eisi + f
(
ŝk, c∗, d∗

) mod 2 ,

where ei ∈ Z2 for every i ∈ [ℓ] and f is a function of single-bit output. The QR based
construction is Fqr-KDM(1)-CCA secure. In the construction, we can maintain ŝk, c∗, and d∗

as bit strings. In this case, the above function class includes affine functions and projection
functions.

4.3 Instantiation Based on the DCR Assumption

Definition 10 (DCR assumption) Let N = PQ be a Blum integer for λ-bit safe primes
P,Q ≡ 3 mod 4 such that P = 2p+ 1 and Q = 2q + 1 for primes p and q. Let n = pq. We can
decompose Z∗

N2 as an internal direct product GN ⊗⟨−1⟩⊗Gn⊗G2, where ⟨−1⟩ is the subgroup
of Z∗

N2 generated by −1 mod N2, and GN , Gn, and G2 are cyclic groups of order N , n, and 2,
respectively. Let T = 1 +N ∈ Z∗

N2. T has order N , and thus it generates GN .
We say that the DCR assumption holds if for any PPT algorithm A, we have

|Pr[A(N, y) = 1]− Pr[A(N, y′) = 1]| = negl(λ) ,

where y
r←− GN ⊗ ⟨−1⟩ ⊗Gn and y′

r←− ⟨−1⟩ ⊗Gn.

We define N , GN , Gn, ⟨−1⟩, and T as in Definition 10. Let g1, . . . , gℓ be random generators
of Gn, where ℓ is determined later. We can generate a random generator g of Gn by generating
µ

r←− Z∗
N2 and setting g = µ2N mod N2. Then, g is a generator of Gn with high probability.

We define C and V as

C =
{(

T d1 · (−1)γ1 · gr1, . . . , T dℓ · (−1)γℓ · grℓ
)

|d1, . . . , dℓ ∈ ZN , γ1, . . . , γℓ ∈ Z2, r ∈ Zn

}
, and

V = {((−1)γ1 · gr1, . . . , (−1)γℓ · grℓ) |γ1, . . . , γℓ ∈ Z2, r ∈ Zn} .

22

V is a subgroup of C and subset membership problem of (C,V) is hard under the DCR assump-
tion. As shown by previous works [5, 19], two distributions

{
T di · (−gi)r

}
i∈[ℓ] and {(−gi)

r}i∈[ℓ]
are computationally indistinguishable under the DCR assumption, where di

r←− ZN for every
i ∈ [ℓ] and r

r←− Z2n. We see that uniform distributions over C and V are also computationally
indistinguishable under the DCR assumption.

Let g be another generator of Gn. Then, there exists αi ∈ Z∗
n such that gαi = gi for every

i ∈ [ℓ]. The trapdoor for checking the membership of V is P , Q, and {αi}i∈[ℓ].
When sampling a random element c = (c1, . . . , cℓ) from V, we randomly choose r

r←− ZN−1
4

and γi
r←− Z2 for every i ∈ [ℓ], and set ci ← (−1)γi · gri for every i ∈ [ℓ]. The distribution of c is

statistically close to the uniform distribution over V. Moreover, r is a witness of c ∈ V. We can
sample a random element from C in a similar fashion.

For (C,V) defined above, we construct two projective hash functionsH = (C,V,K,SK,PK,Λ, µ)
and Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, µ̂

)
. The construction of H is a slightly modified version of projec-

tive hash function based on the DCR assumption proposed by Wee [19] thus is a generalization
of the KDM-CPA secure PKE scheme proposed by Brakerski and Goldwasser [5]. For the reason
we need a modification, see Remark 4 after the constructions.

4.3.1 Construction of H

We define QRNs = GNs−1⊗Gn and JNs = GNs−1⊗⟨−1⟩⊗Gn = ⟨−1⟩⊗QRNs . We define SK =
{0, 1}ℓ, PK = Gn, and K = QRNs . For every sk = s1 · · · sℓ ∈ {0, 1}ℓ and c = (c1, . . . , cℓ) ∈ C,
we also define µ and Λ as

µ(sk) =
∏
i∈[ℓ]

g2sii and Λsk(c) =
∏
i∈[ℓ]

c2sii .

Projective property. Let sk = s1 · · · sℓ ∈ {0, 1}ℓ, pk =
∏

i∈[ℓ] g
2si
i , and c = ((−1)γ1 · gr1, . . . , (−1)γℓ · grℓ),

where r ∈ Zn and γi ∈ Z2 for every i ∈ [ℓ]. We define the public evaluation algorithm Pub as

Pub(pk, c, r) = pkr .

We see that

pkr =

∏
i∈[ℓ]

g2sii

r

=
∏
i∈[ℓ]

(gri)
2si =

∏
i∈[ℓ]

((−1)γi · gri)
2si = Λsk(c)

and thus H satisfies projective property.

Homomorphism. For every sk = s1 · · · sℓ ∈ {0, 1}ℓ, c = (c1, . . . , cℓ) ∈ C, and c′ = (c′1, . . . , c
′
ℓ) ∈

C, we have

Λsk(c) · Λsk(c
′) =

∏
i∈[ℓ]

c2sii ·
∏
i∈[ℓ]

(c′i)
2si =

∏
i∈[ℓ]

(ci · c′i)2si = Λsk(c · c′)

and thus H is homomorphic.

23

Average-case smoothness. Similarly to Wee [19], we prove a weaker property that is suffi-
cient for our construction.

For an element e = T d · gr ∈ QRNs , we define e mod Gn = T d. Let c = (c1, . . . , cℓ) =(
T d1 · (−1)γ1 · gr1, . . . , T dℓ · (−1)γℓ · grℓ

)
, where d1, . . . , dℓ ∈ ZN , γ1, . . . , γℓ ∈ Z2, and r ∈ Zn. We

have

Λsk(c) mod Gn =
∏
i∈[ℓ]

(
T di · gri

)2si
mod Gn = T 2

∑
i∈[ℓ] disi mod N .

The leftover hash lemma implies that the following two distributionsc,
∑
i∈[ℓ]

disi mod N,
∏
i∈[ℓ]

g2sii

 and

c,K,
∏
i∈[ℓ]

g2sii


are

√
N ·n
4·2ℓ -close, where sk = s1 · · · sℓ

r←− {0, 1}ℓ, c = (c1, . . . , cℓ)
r←− C, and K

r←− ZN . Moreover, if

K is uniformly at random over ZN , then so does 2K mod N . Therefore, by setting ℓ = 3 logN ,
the distribution of Λsk(c) mod Gn is statistically close to uniform over GN .

4.3.2 Construction of Ĥ

We define ŜK = Zℓ
Nn,

7 P̂K = Gn, and K̂ = QRNs . For every ŝk = (x1, . . . , xℓ) ∈ ŜK and

c = (c1, . . . , cℓ) ∈ C, we also define µ̂ and Λ̂ as

µ̂
(
ŝk
)
=

∏
i∈[ℓ]

g2xi
i and Λ̂ŝk(c) =

∏
i∈[ℓ]

c2xi
i .

Projective property. For every ŝk = (x1, . . . , xℓ) ∈ ŜK, p̂k =
∏

i∈[ℓ] g
2xi
i , and c =

((−1)γ1 · gr1, . . . , (−1)γℓ · grℓ), where r ∈ Zn and γi ∈ Z2 for every i ∈ [ℓ], we define the public

evaluation algorithm ˆPub as

ˆPub
(
p̂k, c, r

)
= p̂k

r
.

Similarly to H, we see that Ĥ satisfies projective property.

Universal property. We need to prove that the universal property holds not only for all
c ∈ C \ V but also all c ∈ JℓNs \ C. This is because we cannot efficiently check the membership
of C. Note that we can check the membership of JNs by computing Jacobi symbol with respect
to N , and Jacobi symbol with respect to N can be computed without factorizations of N , that
is P and Q [18, Section 12.3].

For every c ∈ JℓNs \ C, we define Λ̂ŝk(c) in the same way as above. For every p̂k ∈ P̂K,
c = (c1, . . . , cℓ) ∈ JℓNs , and π ∈ K̂, we consider the following probability

Pr
xi

r←−ZNn

∏
i∈[ℓ]

c2xi
i = π

∣∣∣∣∣∣
∏
i∈[ℓ]

g2xi
i = p̂k


= Pr

xi
r←−ZNn

∏
i∈[ℓ]

c2xi
i = π

∣∣∣∣∣∣
∏
i∈[ℓ]

g
2(xi mod n)
i = p̂k

 . (3)

7 In the actual construction, we sample ŝk from Zλ×ℓ
N(N−1)

4

to sample ŝk without knowing n. The uniform

distributions over Zλ×ℓ
Nn and Zλ×ℓ

N(N−1)
4

are statistically close.

24

We first consider the case where at least one element of c = (c1, . . . , cℓ) is not in ⟨−1⟩ ⊗Gn.
Suppose that ci∗ ∈ JNs \ ⟨−1⟩ ⊗Gn for some i∗ ∈ [ℓ].

For two elements e0, e1 ∈ QRNs , we write e0 ≡ e1 mod Gn to denote that e0 mod Gn =
e1 mod Gn. For two elements e0, e1 ∈ QRNs , if e0 = e1 holds, then so does e0 ≡ e1 mod Gn.
Thus, the probability of Equation 3 is bounded by

Pr
xi

r←−ZNn

∏
i∈[ℓ]

c2xi
i ≡ π mod Gn

∣∣∣∣∣∣
∏
i∈[ℓ]

g
2(xi mod n)
i = p̂k

 .

For every i ∈ [ℓ], c2xi
i mod Gn is determined by only xi mod N and independent of xi mod n from

the Chinese Remainder Theorem since N = PQ and n = pq are relatively prime. Therefore,
the above probability is

Pr
xi

r←−ZNn

∏
i∈[ℓ]

c2xi
i ≡ π mod Gn

 .

Since ci∗ /∈ ⟨−1⟩⊗Gn, we can write ci∗ = T di∗ · (−1)γi∗ · gri∗ , where di∗ ∈ ZN such that di∗ ̸= 0,
γi∗ ∈ Z2, and ri∗ ∈ Zn. We have

c
2xi∗
i∗ = T 2di∗ (xi∗ mod N) · g2ri∗ (xi∗ mod n) .

Then, the above probability is the same as

Pr
xi

r←−ZNn

T 2di∗ (xi∗ mod N) ≡ π ·

 ∏
i∈[ℓ],i ̸=i∗

c2xi
i

−1

mod Gn

 .

This probability is smaller than 1
P or 1

Q . Thus, in this case, the probability of Equation 3 is
negligible in λ.

We next consider the case where all elements of c = (c1, . . . , cℓ) /∈ V are in ⟨−1⟩ ⊗ Gn. In
this case, we can write ci = (−1)γi ·grii , where γi ∈ Z2 and ri ∈ Zn for every i ∈ [ℓ]. Since c /∈ V,
there exist i1, i2 ∈ [ℓ] such that ri1 ̸= ri2 . Let g be a generator of Gn. Since gi is a generator of
Gn, there exists αi ∈ Z∗

n such that gi = gαi for every i ∈ [ℓ]. The probability of Equation 3 is
0 if π /∈ Gn, and thus we consider cases of π ∈ Gn. Then, the probability of Equation 3 is the
same as

Pr
xi

r←−Zn

2∑
i∈[ℓ]

αirixi ≡ logg π mod n

∣∣∣∣∣∣2
∑
i∈[ℓ]

αixi ≡ logg p̂k mod n

 .

Since r1 ̸≡ r2 mod n, either ri1 ̸≡ ri2 mod p or ri1 ̸≡ ri2 mod q holds. Without loss of generality,
we assume that ri1 ̸≡ ri2 mod p. Since p and q are primes, the above probability is bounded by

Pr
xi

r←−Zn

∑
i∈[ℓ]

αirixi ≡ 2−1 · logg π mod p

∣∣∣∣∣∣
∑
i∈[ℓ]

αixi ≡ 2−1 · logg p̂k mod p

 .

Since ri1 ̸≡ ri2 mod p, two equations∑
i∈[ℓ]

αirixi ≡ 2−1 · logg π mod p , and
∑
i∈[ℓ]

αixi ≡ 2−1 · logg p̂k mod p

are linearly independent. Therefore, the above probability is 1
p .

Thus, for every c ∈ JℓNs \ V, the probability of Equation 3 is negligible in λ.

25

Remark 4 (Difference with previous works [5, 19]) The difference between our construc-
tion and previous works is that when we compute a hash value of c, we first square each element
of c. By this operation, the ranges of H and Ĥ are QRNs = GN ·Gn.

If we do not perform squaring, the ranges will be JNs = GN · ⟨−1⟩ · Gn and hash values
of some elements can be predicted with high probability since the order of ⟨−1⟩ is 2. In fact,
we can correctly guess the hash value of (−1, . . . ,−1) ∈ ⟨−1⟩ℓ with probability at least 1

2 . In

this case, to achieve universal property of Ĥ, we need parallelization similarly to the QR based
construction.

One might think we have another option where C and V are defined as subgroups of QRNs

and Gn, respectively. This option is not working. The reason is that we cannot efficiently check
the membership of QRNs . Therefore, if we use such C and V, we still need to take elements of
JNs into account, and thus we need squaring.

4.3.3 Associated Function Class

The message space of the DCR based construction is ZN . We define ϕ(m ∈ ZN) = Tm. Let
Fdcr be a family of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= ϕ−1

(
Λsk

(
T e1/2, . . . , T eℓ/2

)
+ ϕ

(
f
(
ŝk, c∗, d∗

)))
= ϕ−1

(
T
∑

i∈[ℓ] eisi+f(ŝk,c∗,d∗)
)

=

∑
i∈[ℓ]

eisi + f
(
ŝk, c∗, d∗

) mod N ,

where 1
2 denotes the inverse of 2 modulo N , ei ∈ ZN for every i ∈ [ℓ], and f is a function whose

range is ZN . The DCR based construction is Fdcr-KDM(1)-CCA secure. In the construction,
we can maintain ŝk, c∗, and d∗ as bit strings. In this case, the above function class includes
affine functions and projection functions.

5 KDM-CCA Security of the DDH Based Scheme

Although our framework shown in Section 3 captures only KDM(1)-CCA security, we can prove
the KDM-CCA security of concrete instantiations. In this section, we prove that our concrete
instantiation based on the DDH assumption is KDM-CCA secure. We also briefly explain how
to prove the multi user security of our QR and DCR based schemes in Remark 5 at the end of
this section.

Let G be a cyclic group of prime order p and g a random generator of G. Let Πcca =
(KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-key space of Πcca is G
for simplicity. We construct the following PKE scheme Πddh = (KGddh,Encddh,Decddh). The
message space of Πddh is {0, 1}.

KGddh(1
λ) :

• Generate g1, . . . , gℓ
r←− G.

• Generate s = s1 · · · sℓ
r←− {0, 1}ℓ and x1, . . . , xℓ

r←− Zp.

• Compute g0 ←
∏

i∈[ℓ] g
si
i and ĝ0 ←

∏
i∈[ℓ] g

xi
i .

• Generate (cpk, csk)← KGcca(1
λ).

26

• Generate wi
r←− Zp and set ei ← gwi

i for every i ∈ [ℓ].

• Compute e0 ←
∏

i∈[ℓ] e
si
i and u← e0 · csk.

• Set v := {xi}i∈[ℓ] ∥ {ei}i∈[ℓ] ∥u.

• Return PK :=
(
{gi}i∈[ℓ] , g0, ĝ0, cpk

)
and SK := (s, v).

Encddh(PK,m) :

• Parse
(
{gi}i∈[ℓ] , g0, ĝ0, cpk

)
← PK.

• Generate r
r←− Zp and compute ci ← gri for every i ∈ [ℓ].

• Compute d← gm · gr0 and π ← ĝr0.

• Return CT← Enccca
(
cpk,

(
{ci}i∈[ℓ] , d, π

))
.

Decddh(SK,CT) :

• Parse
(
s, {xi}i∈[ℓ] ∥ {ei}i∈[ℓ] ∥u

)
← SK.

• Compute csk← u ·
(∏

i∈[ℓ] e
si
i

)−1
.

• Compute
(
{ci}i∈[ℓ] , d, π

)
← Deccca(csk,CT). If the decryption result is not in Gℓ+2,

returns ⊥. Otherwise, compute as follows.

• Return ⊥ if π ̸=
∏

i∈[ℓ] c
xi
i and m← logg

(
d ·

(∏
i∈[ℓ] c

si
i

)−1
)

otherwise.

Correctness. In the decryption algorithm, we need to compute discrete logarithm on G.
We can efficiently perform this operation since we restrict the message space to {0, 1}. The

decryption algorithm returns ⊥ if d ·
(∏

i∈[ℓ] c
si
i

)−1
/∈ {1, g}. Then, the correctness of Πddh

follows from that of Πcca.

Let n be the number of key pairs in the security game. We define Fddh as a function family
consisting of functions described as

f ′
(
{sk, vk}k∈[n]

)
=

∑
k∈[n]

⟨ak, sk⟩+ f
(
{vk}k∈[n]

)
,

where ⟨·, ·⟩ denotes inner product over Z, ak ∈ {0, 1}ℓ, and f is a function such that
∑

k∈[n] ⟨ak, sk⟩+

f
(
{vk}k∈[n]

)
∈ {0, 1} for every {sk}k∈[n] and {vk}k∈[n]. By maintaining {vk}k∈[n] as bit strings,

Fddh includes projection functions of single-bit output. Πkdm is KDM-CCA secure with respect
to Fddh. Formally, we prove the following theorem.

Theorem 4 Let Πcca be IND-CCA secure. Assuming the DDH problem is hard on G, Πddh is
Fddh-KDM-CCA secure.

As noted in Section 4.1.3, we can construct a PKE scheme that is KDM-CCA secure with
respect to affine functions defined by Boneh et al. [4] by some simple modifications.

27

Proof of Theorem 4. Let n be the number of keys. Let A be an adversary that attacks the
Fddh-KDM-CCA security of Πddh. We proceed the proof via a sequence of games. For every
t ∈ {0, . . . , 11}, let SUCt be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original Fddh-KDM(n)-CCA game regarding Πddh. We have Advkdmcca
Πddh,Fddh,A,n(λ) =∣∣Pr[SUC0]− 1

2

∣∣. The detailed description is as follows.

1. The challenger chooses b
r←− {0, 1} and generates (PKk,SKk) for every k ∈ [n] as

follows.

(a) Generate gk1, . . . , gkℓ
r←− G.

(b) Generate sk = sk1 · · · skℓ
r←− {0, 1}ℓ and xk1, . . . , xkℓ

r←− Zp.

(c) Compute gk0 ←
∏

i∈[ℓ] (gki)
ski and ĝk0 ←

∏
i∈[ℓ] (gki)

xki .

(d) Generate (cpkk, cskk)← KGcca(1
λ).

(e) Generate wki
r←− Zp and set eki ← (gki)

wki for every i ∈ [ℓ].

(f) Compute ek0 ←
∏

i∈[ℓ] (eki)
ski and uk ← ek0 · cskk.

(g) Set vk := {xki}i∈[ℓ] ∥ {eki}i∈[ℓ] ∥uk.

(h) Set PKk :=
(
cpkk, {gki}i∈[ℓ] , gk0, ĝk0

)
and SKk := (sk, vk).

The challenger sends {PKk}k∈[n] to A and prepares a list Lkdm.

2. The challenger responds to queries made by A.
For a KDM query

(
j,
({

a0k
}
k∈[n] , f

0
)
,
({

a1k
}
k∈[n] , f

1
))

made by A, the challenger

responds as follows.

(a) Set m :=
∑

k∈[n]
⟨
abk, sk

⟩
+ f b

(
{vk}k∈[n]

)
.

(b) Generate r
r←− Zp and compute ci ← (gji)

r for every i ∈ [ℓ].

(c) Compute d← gm · (gj0)r and π ← (ĝj0)
r.

(d) Return CT← Enccca
(
cpkj ,

(
{ci}i∈[ℓ] , d, π

))
and add (j,CT) to Lkdm.

For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if (j,CT) ∈
Lkdm, and otherwise responds as follows.

(a) Compute
(
{ci}i∈[ℓ] , d, π

)
← Deccca(cskj ,CT). If the decryption result is not in

Gℓ+2, return ⊥ and otherwise respond as follows.

(b) Return ⊥ if π ̸=
∏

i∈[ℓ] c
xji

i and m← logg

(
d ·

(∏
i∈[ℓ] c

sji
i

)−1
)

otherwise.

3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except how the challenger computes {eki}i∈[ℓ],k∈[n]. The challenger

generates wi
r←− Zp for every i ∈ [ℓ] and computes eki ← (gki)

wi for every i ∈ [ℓ] and
k ∈ [n].

We have |Pr[SUC0]− Pr[SUC1]| = negl(λ) since ((g1i)
w1i , . . . , (gni)

wni) and ((g1i)
wi , . . . , (gni)

wi)
are computationally indistinguishable by the DDH assumption for every i ∈ [ℓ].

Game 2: Same as Game 1 except how the challenger generates {sk}k∈[n] and {gki}i∈[ℓ],k∈[n].
The challenger first generates s = s1 · · · sℓ

r←− {0, 1}ℓ and g1, . . . gℓ
r←− G. Then, for every

k ∈ [n], the challenger generates ∆k
r←− {0, 1}ℓ and computes sk ← s ⊕∆k. In addition,

for every i ∈ [ℓ] and k ∈ [n], the challenger generates γki
r←− Zp and computes gki ← gγkii .

28

|Pr[SUC1]− Pr[SUC2]| = 0 holds since the difference between Game 1 and 2 is only conceptual.
From Game 3 to 7, we change the game so that we do not need s to respond to KDM queries

made by A.
In Game 2, we have

gk0 =
∏
i∈[ℓ]

(gki)
ski =

∏
i∈[ℓ]

(gγkii)
si⊕∆ki ,

where ∆ki is the i-th bit of ∆k for every i ∈ [ℓ]. For every i ∈ [ℓ] and k ∈ [n], we have

si ⊕∆ki =

{
si (∆ki = 0)

1− si (∆ki = 1)
.

Thus, by defining

δki =

{
1 (∆ki = 0)

−1 (∆ki = 1)
, (4)

for every i ∈ [ℓ] and k ∈ [n], we have

gk0 =
∏
i∈∆k

gγkii ·
∏
i∈[ℓ]

gδkiγkisii =
∏
i∈∆k

gki ·
∏
i∈[ℓ]

gδkiγkisii

for every k ∈ [n], where
∏

i∈∆k
Xi denotes

∏
i∈[ℓ]X

∆ki
i .8

Game 3: Same as Game 2 except that the challenger uses δkiγki instead of γki for every i ∈ [ℓ]

and k ∈ [n]. More precisely, the challenger computes gki ← gδkiγkii for every i ∈ [ℓ] and
k ∈ [n], and gk0 ←

∏
i∈∆k

gki ·
∏

i∈[ℓ] g
γkisi
i for every k ∈ [n]. Note that δki · δki = 1 for

every i ∈ [ℓ] and k ∈ [n].

If γki distributes uniformly at random, then so does δkiγki for every i ∈ [ℓ] and k ∈ [n].
Therefore, we have |Pr[SUC2]− Pr[SUC3]| = 0.

Game 4: Same as Game 3 except how the challenger computes gk0, gk1, . . . , gkℓ for every k ∈ [n].

The challenger generates γk for every k ∈ [n] and computes gki ← gγkδkii for every i ∈ [ℓ]
and k ∈ [n]. Moreover, the challenger computes gk0 ←

∏
i∈∆k

gki ·
∏

i∈[ℓ] g
γksi
i for every

k ∈ [n].

|Pr[SUC3]− Pr[SUC4]| = negl(λ) holds since
(
gγk11 , . . . , gγkℓℓ

)
and

(
gγk1 , . . . , gγkℓ

)
are computa-

tionally indistinguishable by the DDH assumption for every k ∈ [n].

Below, we let g0 =
∏

i∈[ℓ] g
si
i . In Game 4, for every k ∈ [n], we have

gki = gγkδkii (i ∈ [ℓ]) , and

gk0 =
∏
i∈∆k

gki ·
∏
i∈[ℓ]

gγksii =

 ∏
i∈∆k

gki

 · gγk0 .

8 That is,
∏

i∈∆k
Xi denotes the summation of Xi over positions i such that ∆ki = 1.

29

Then, the answer to a KDM query
(
j,
({

a0k
}
k∈[n] , f

0
)
,
({

a1k
}
k∈[n] , f

1
))

in Game 4 is

Enccca
(
cpkj ,

(
{ci}i∈[ℓ] , d, π

))
, where

ci = (gji)
r = (gri)

γjδji (i ∈ [ℓ]) , d = g
∑

k∈[k]⟨abk,sk⟩+fb({vk}k∈[n]) · (gj0)r ,

π = (ĝj0)
r =

∏
i∈[ℓ]

c
xji

i , and r
r←− Zp .

We also have∑
k∈[n]

⟨
abk, sk

⟩
=

∑
k∈[n]

⟨
abk, s⊕∆k

⟩
=

∑
k∈[n]

∑
i∈∆k

abki +
∑
k∈[n]

∑
i∈[ℓ]

abkiδkisi ,

where summation is done over Z and abki is the i-th bit of abk for every i ∈ [ℓ]. Thus, by defining

Y b =
∑
k∈[n]

∑
i∈∆k

abki + f b
(
{vk}k∈[n]

)
and µb

i =
∑
k∈[n]

abkiδki (i ∈ [ℓ]) , (5)

we have

d = gY
b+

∑
i∈[ℓ] µ

b
isi ·

 ∏
i∈∆j

gji

r

·

∏
i∈[ℓ]

gsii

γjr

= gY
b ·

∏
i∈∆j

ci ·
∏
i∈[ℓ]

(
gµ

b
i · (gri)

γj
)si

.

Note that Y b and
{
µb
i

}
i∈[ℓ] are computed from

({
abk
}
k∈[n] , f

b
)
and {δki}i∈[ℓ],k∈[n].

Hereafter, we show the difference from the previous game by colored parts.

Game 5: Same as Game 4 except how the challenger responds to KDM queries.

For a KDM query
(
j,
({

a0k
}
k∈[n] , f

0
)
,
({

a1k
}
k∈[n] , f

1
))

made by A, the challenger re-

sponds as follows.

1. Compute Y b and
{
µb
i

}
i∈[ℓ] as Equation 5.

2. Generate r1, . . . , rℓ
r←− Zp.

3. Compute ci ← (grii)γjδji for every i ∈ [ℓ].

4. Compute d← gY
b ·

∏
i∈∆j

ci ·
∏

i∈[ℓ]

(
gµ

b
i · (grii)γj

)si
.

5. Compute π ←
∏

i∈[ℓ] c
xji

i .

6. Return CT← Enccca
(
cpkj ,

(
{ci}i∈[ℓ] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr1, . . . , g
r
ℓ) and

(
gr11 , . . . , grℓℓ

)
are computationally indistinguish-

able. Thus, we have |Pr[SUC4]− Pr[SUC5]| = negl(λ).

Game 6: Same as Game 5 except how the challenger responds to KDM queries.

For a KDM query
(
j,
({

a0k
}
k∈[n] , f

0
)
,
({

a1k
}
k∈[n] , f

1
))

made by A, the challenger re-

sponds as follows.

30

1. Compute Y b and
{
µb
i

}
i∈[ℓ] as Equation 5.

2. Generate r1, . . . , rℓ
r←− Zp.

3. Compute ci ←
(
g−µb

i · grii
)δji

for every i ∈ [ℓ].

4. Compute d← gY
b ·

∏
i∈∆j

ci ·
∏

i∈[ℓ] g
risi
i .

5. Compute π ←
∏

i∈[ℓ] c
xji

i .

6. Return CT← Enccca
(
cpkj ,

(
{ci}i∈[ℓ] , d, π

))
and add (j,CT) to Lkdm.

We can make this change in two steps. We first replace g
riγj
i with grii . We then replace grii

with g−µb
i ·grii . Since ri is uniformly at random for every i ∈ [ℓ], the answer to a KDM query made

by A identically distributes between Game 5 and 6. Thus, we have |Pr[SUC5]− Pr[SUC6]| = 0.

Game 7: Same as Game 6 except how the challenger responds to KDM queries.

For a KDM query
(
j,
({

a0k
}
k∈[n] , f

0
)
,
({

a1k
}
k∈[n] , f

1
))

made by A, the challenger re-

sponds as follows.

1. Compute Y b and
{
µb
i

}
i∈[ℓ] as Equation 5.

2. Generate r
r←− Zp.

3. Compute ci ←
(
g−µb

i · gri
)δji

for every i ∈ [ℓ].

4. Compute d← gY
b ·

∏
i∈∆j

ci ·
∏

i∈[ℓ] g
rsi
i .

5. Compute π ←
∏

i∈[ℓ] c
xji

i .

6. Return CT← Enccca
(
cpkj ,

(
{ci}i∈[ℓ] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr1, . . . , g
r
ℓ) and

(
gr11 , . . . , grℓℓ

)
are computationally indistinguish-

able. Thus, |Pr[SUC6]− Pr[SUC7]| = negl(λ) holds.
In Game 7, d generated to respond to a KDM query is of the form

d = gY
b ·

∏
i∈∆j

ci ·
∏
i∈[ℓ]

grsii = gY
b ·

 ∏
i∈∆j

ci

 · gr0 .

Thus, we can reply to a KDM query made by A using g0 instead of s in Game 7.
Next, we eliminate secret keys of Πcca from the view of A. For this aim, we make ek0 that

is used to mask cskk uniformly at random for every k ∈ [n]. We first change how the challenger
responds to decryption queries made by A.

Game 8: Same as Game 7 except how the challenger responds to decryption queries.

For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if (j,CT) ∈ Lkdm,
and otherwise responds as follows.

1. Compute
(
{ci}i∈[ℓ] , d, π

)
← Deccca (cskj ,CT). If the decryption result is not in Gℓ+2,

return ⊥. Otherwise, compute as follows.

31

2. Let ci = (gji)
ri for every i ∈ [ℓ].9 If there exists i′ ∈ {2, . . . , ℓ} such that r1 ̸= ri′ ,

return ⊥. Otherwise, respond as follows.

3. Return ⊥ if π ̸=
∏

i∈[ℓ] c
xji

i and otherwise m← logg

(
d ·

(∏
i∈[ℓ] c

sji
i

)−1
)
.

We define the following event in Game i (i = 7, . . . , 11).

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following conditions, where(
{ci}i∈[ℓ] , d, π

)
← Deccca (cskj ,CT).

•
(
{ci}i∈[ℓ] , d, π

)
∈ Gℓ+2. Then, let ci = griji , where ri ∈ Zp for every i ∈ [ℓ].

• There exists i′ ∈ {2, . . . , ℓ} such that r1 ̸= ri′ .

• π =
∏

i∈[ℓ] c
xji

i .

We call such a decryption query a “bad decryption query”.

Games 7 and 8 are identical games unless A make a bad decryption query in each game.
Therefore, we have |Pr[SUC7]− Pr[SUC8]| ≤ Pr[BDQ8].

For every k ∈ [n], we have

eki = (gki)
wi = (gwi

i)γkδki (i ∈ [ℓ])

ek0 =
∏
i∈[ℓ]

(eki)
ski =

 ∏
i∈∆k

eki

 ∏
i∈[ℓ]

(eki)
δkisi =

 ∏
i∈∆k

eki

∏
i∈[ℓ]

gwisi
i

γk

.

Note that δki · δki = 1 for every i ∈ [ℓ] and k ∈ [n].

Game 9: Same as Game 8 except that e0
r←− G is used instead of

∏
i∈[ℓ] g

wisi
i .

The view of A in Games 8 and 9 can be perfectly simulated byg1, . . . , gℓ, g
w1
1 , . . . , gwℓ

ℓ ,
∏
i∈[ℓ]

gwisi
i , g0

 and
(
g1, . . . , gℓ, g

w1
1 , . . . , gwℓ

ℓ , e0, g0
)

,

respectively, where gi
r←− G and wi

r←− Zp for every i ∈ [ℓ], s = s1 · · · sℓ
r←− {0, 1}ℓ, e0

r←− G, and

g0 =
∏

i∈[ℓ] g
si
i . By the leftover hash lemma, the view of A in Game 8 is 2−

ℓ−2λ
2 -close to that in

Game 9. Thus, by setting ℓ = 3λ, |Pr[SUC8]− Pr[SUC9]| = negl(λ) and |Pr[BDQ8]− Pr[BDQ9]| =
negl(λ) hold.

There exists αi ∈ Zp such that gαi = gi for every i ∈ [ℓ]. Then, for every k ∈ [n], we have

gki = gαiγkδki = (gγk)αiδki (i ∈ [ℓ]) , gk0 =
∏
i∈[ℓ]

(gki)
ski

eki = (gki)
wi (i ∈ [ℓ]) , and ek0 =

 ∏
i∈∆k

eki

 eγk0 .

9 Note that such ri exists unless gji is the identity element since ci ∈ G for every i ∈ [ℓ]. The probability that
gji is the identity element is negligible. Thus, we ignore this issue for simplicity.

32

Game 10: Same as Game 9 except that for every k ∈ [n], the challenger generates ek0 ←(∏
i∈∆k

eki

)
ezk0 , where zk

r←− Zp.

|Pr[SUC9]− Pr[SUC10]| = negl(λ) holds since (g, e0, g
γk , eγk0) and (g, e0, g

γk , ezk0) are computa-
tionally indistinguishable by the DDH assumption for every k ∈ [n].

Moreover, we can efficiently check whether A makes a bad decryption query or not by
using {cskk}k∈[n], {αi}i∈[ℓ], and {xki}i∈[ℓ],k∈[n]. Therefore, we also have |Pr[BDQ9]− Pr[BDQ10]| =
negl(λ) by the DDH assumption.

In Game 10, ek0 distributes uniformly at random for every k ∈ [n]. Therefore, A cannot
obtain any information of cskk from uk = ek0 · cskk for every k ∈ [n], and thus we can use
IND-CCA security of Πcca.

Game 11: Same as Game 10 except that the challenger responds to KDM queries made by A
with CT← Enccca

(
cpkj , 0

(ℓ+2)·|g|).
By the IND-CCA security of Πcca, we obtain |Pr[SUC10]− Pr[SUC11]| = negl(λ).
Moreover, we can efficiently check whether A makes a bad decryption query or not by using

decryption queries for Πcca, {αi}i∈[ℓ], and {xki}i∈[ℓ],k∈[n]. Thus, |Pr[BDQ10]− Pr[BDQ11]| = negl(λ)
also holds by the IND-CCA security of Πcca.

The value of b is information theoretically hidden from the view of A in Game 11. Thus, we
have

∣∣Pr[SUC11]− 1
2

∣∣ = 0.
In Game 11, xk1, . . . , xkℓ are hidden from the view of A except ĝk0 =

∏
i∈[ℓ] (gki)

xki for
every k ∈ [n]. Note that A cannot obtain information of xk1, . . . , xkℓ other than ĝk0 through
decryption queries for every k ∈ [n]. The reason is as follows. If a decryption query (j,CT)
made by A is not a bad decryption query, there exists r1 ∈ Zp such that ci = (gji)

r1 for every

i ∈ [ℓ], where
(
{ci}i∈[ℓ] , d, π

)
← Deccca (cskj ,CT). Then, we have

∏
i∈[ℓ]

c
xji

i =
∏
i∈[ℓ]

(gji)
r1xji =

∏
i∈[ℓ]

(gji)
xji

r1

= (ĝj0)
r1 .

In addition, bad decryption queries made by A are replied with ⊥ in Game 11. This means that
for every k ∈ [n], A cannot obtain information of xk1, . . . , xkℓ other than ĝk0 through decryption
queries.

We estimate Pr[BDQ11]. Let (j,CT) be a decryption query made byA and let
(
{ci}i∈[ℓ] , d, π

)
←

Deccca (cskj ,CT). Suppose that
(
{ci}i∈[ℓ] , d, π

)
∈ Gℓ+2, ci = (gji)

ri for every i ∈ [ℓ], and there

exists i′ ∈ {2, . . . , ℓ} such that r1 ̸= ri′ . The probability that this query is a bad decryption
query is

Pr
xji

r←−Zp

∏
i∈[ℓ]

c
xji

i = π

∣∣∣∣∣∣
∏
i∈[ℓ]

(gji)
xji = ĝj0

 . (6)

This probability is the same as

Pr
xji

r←−Zp

∑
i∈[ℓ]

αiγjδjirixji = logg π mod p

∣∣∣∣∣∣
∑
i∈[ℓ]

αiγjδjixji = logg ĝj0 mod p

 .

33

αi ̸= 0 and γj ̸= 0 holds for every i ∈ [ℓ] and j ∈ [n] with high probability and thus we assume
so. Then, two equations∑

i∈[ℓ]

αiγjδjirixji = logg π mod p and
∑
i∈[ℓ]

αiγjδjixji = logg ĝj0 mod p

are linearly independent, and thus the probability shown in Equation 6 is 1
p . Therefore, we

obtain Pr[BDQ11] = negl(λ).

From the above arguments, we have

Advkdmcca
Πddh,Fddh,A,n(λ) =

∣∣∣∣Pr[SUC0]− 1

2

∣∣∣∣
=

10∑
t=0

|Pr[SUCt]− Pr[SUCt+1]|+
∣∣∣∣Pr[SUC11]− 1

2

∣∣∣∣
=

∑
t∈{0,...,10},t̸=7

|Pr[SUCt]− Pr[SUCt+1]|+ |Pr[SUC7]− Pr[SUC8]|

=
∑

t∈{0,...,10},t̸=7

|Pr[SUCt]− Pr[SUCt+1]|+
10∑
t=8

|Pr[BDQt]− Pr[BDQt+1]|+ Pr[BDQ11]

= negl(λ) .

Since the choice of A and n is arbitrary, Πddh is Fddh-KDM-CCA secure. □ (Theorem 4)

Remark 5 (The multi user security of the QR and DCR based schemes) Our QR and
DCR based constructions are based on those proposed by Brakerski and Goldwasser [5]. If we
allow the length of secret keys to depend on the number of users n, we can prove that our QR
and DCR based constructions are KDM(n)-CCA secure using a technique similar to Brakerski
and Goldwasser.

To prove KDM(n)-CCA security, we need to eliminate encrypted n secret keys of the outer
IND-CCA secure PKE scheme contained in secret keys of the KDM-CCA secure scheme. In
the above proof of DDH based scheme, by using the self reducibility of the DDH problem, we
complete such a task by making a single group element

∏
i∈[ℓ] g

wisi
i random using the leftover

hash lemma.
However, when proving the KDM(n)-CCA security of the QR and DCR based constructions,

to complete such a task, we need to make n group elements random using the leftover hash
lemma. Therefore, in that case, we need to set the length of secret keys depending on n similarly
to the proof of KDM(n)-CPA security by Brakerski and Goldwasser.

References

[1] J. Alperin-Sheriff and C. Peikert. Circular and KDM security for identity-based encryption.
PKC 2012, LNCS 7293, pp. 334–352. 2012.

[2] B. Applebaum. Key-dependent message security: Generic amplification and completeness.
EUROCRYPT 2011, LNCS 6632, pp. 527–546. 2011.

[3] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. SAC 2002, LNCS 2595, pp. 62–75. 2003.

34

[4] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky. Circular-secure encryption from
decision Diffie-Hellman. CRYPTO 2008, LNCS 5157, pp. 108–125. 2008.

[5] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key encryption under
subgroup indistinguishability - (or: Quadratic residuosity strikes back). CRYPTO 2010,
LNCS 6223, pp. 1–20. 2010.

[6] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks. EURO-
CRYPT 2009, LNCS 5479, pp. 351–368. 2009.

[7] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. EUROCRYPT 2001, LNCS 2045, pp.
93–118. 2001.

[8] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. EUROCRYPT 2002, LNCS 2332, pp. 45–64.
2002.

[9] S. Han, S. Liu, and L. Lyu. Efficient KDM-CCA secure public-key encryption for polyno-
mial functions. ASIACRYPT 2016, Part II, LNCS 10032, pp. 307–338. 2016.

[10] D. Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. EURO-
CRYPT 2013, LNCS 7881, pp. 520–536. 2013.

[11] S. Hohenberger, A. B. Lewko, and B. Waters. Detecting dangerous queries: A new approach
for chosen ciphertext security. EUROCRYPT 2012, LNCS 7237, pp. 663–681. 2012.

[12] F. Kitagawa, T. Matsuda, G. Hanaoka, and K. Tanaka. Completeness of single-bit
projection-KDM security for public key encryption. CT-RSA 2015, LNCS 9048, pp. 201–
219. 2015.

[13] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme.
CRYPTO 2004, LNCS 3152, pp. 426–442. 2004.

[14] X. Lu, B. Li, and D. Jia. KDM-CCA security from RKA secure authenticated encryption.
EUROCRYPT 2015, Part I, LNCS 9056, pp. 559–583. 2015.

[15] S. Myers and a. shelat. Bit encryption is complete. In 50th FOCS, pp. 607–616. 2009.

[16] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pp. 427–437. 1990.

[17] V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. EURO-
CRYPT 2000, LNCS 1807, pp. 275–288. 2000.

[18] V. Shoup. A computational introduction to number theory and algebra. Cambridge Uni-
versity Press, 2006.

[19] H. Wee. KDM-security via homomorphic smooth projective hashing. PKC 2016, Part II,
LNCS 9615, pp. 159–179. 2016.

35

	Introduction
	Backgrounds
	Our Results
	Technical Overview
	KDM(1)-CPA Secure PKE Based on Homomorphic Projective Hash Function
	Extension to KDM(1)-CCA Secure PKE
	Instantiations
	Extension to Multi User Setting

	Preliminaries
	Notations
	Leftover Hash Lemma
	Public Key Encryption
	Projective Hash Function

	KDM(1)-CCA Secure PKE Based on Homomorphic Projective Hash Function
	Instantiations
	Instantiation Based on the DDH Assumption
	Construction of H
	Construction of
	Associated Function Class

	Instantiation Based on the QR Assumption
	Construction of H
	Construction of
	Associated Function Class

	Instantiation Based on the DCR Assumption
	Construction of H
	Construction of
	Associated Function Class

	KDM-CCA Security of the DDH Based Scheme

