
Attribute-Based Signatures for
Unbounded Languages from Standard Assumptions

Yusuke Sakai1, Shuichi Katsumata1,2, Nuttapong Attrapadung1, and Goichiro Hanaoka1

1 AIST, Japan
2 The University of Tokyo, Japan

yusuke.sakai@aist.go.jp

September 10, 2018

Abstract. Attribute-based signature (ABS) schemes are advanced signature schemes that simulta-
neously provide fine-grained authentication while protecting privacy of the signer. Previously known
expressive ABS schemes support either the class of deterministic finite automata and circuits from
standard assumptions or Turing machines from the existence of indistinguishability obfuscations.
In this paper, we propose the first ABS scheme for a very general policy class, all deterministic Turing
machines, from a standard assumption, namely, the Symmetric External Diffie-Hellman (SXDH) as-
sumption. We also propose the first ABS scheme that allows nondeterministic finite automata (NFA)
to be used as policies. Although the expressiveness of NFAs are more restricted than Turing machines,
this is the first scheme that supports nondeterministic computations as policies.
Our main idea lies in abstracting ABS constructions and presenting the concept of history of com-
putations; this allows a signer to prove possession of a policy that accepts the string associated to a
message in zero-knowledge while also hiding the policy, regardless of the computational model being
used. With this abstraction in hand, we are able to construct ABS for Turing machines and NFAs using
a surprisingly weak NIZK proof system. Essentially we only require a NIZK proof system for proving
that a (normal) signature is valid. Such a NIZK proof system together with a base signature scheme
are, in turn, possible from bilinear groups under the SXDH assumption, and hence so are our ABS
schemes.

Keywords: attribute-based signatures, Groth-Sahai proofs, structure-preserving signatures, Turing
machines, nondeterministic finite automata

1 Introduction

Attribute-based signature (ABS), initiated by Maji, Prabhakaran, and Rosulek [MPR11], is a cryp-
tographic primitive that simultaneously allows fine-grained access control on user authentication
and protection of users’ privacy. In the so-called key-policy ABS3, which is the focus of this work,
each signer is associated with his/her own policy and obtains a signing key for this policy from
an authority, who possesses the master key. Using the signing key, a signer can sign any message
associated with any attribute subjected to the condition that the policy is satisfied by this at-
tribute. ABS provides privacy in the sense that a signature hides the policy that is used to sign the
message. That is, no information on the policy beyond the fact that it is satisfied by the associated
attribute will be leaked to the verifier. ABS has many natural applications such as anonymous
credential [SSN09], attribute-based messaging [MPR11], and secret leaking [MPR11].

3 The other type is called signature-policy, where the roles of policies and attributes are swapped.

1

One of the central research themes on ABS is to expand the expressiveness of policies that
can be supported by the scheme. Results in this direction include the scheme by Okamoto
and Takashima [OT11], which supports non-monotone span programs as policies. Tang, Li, and
Liang [TLL14] proposed a scheme that supports bounded-depth circuits (albeit their scheme relies
on strong tools, namely, multilinear maps). Nandi and Pandit [NP15] proposed several schemes in-
cluding one that supports deterministic finite automata (DFA). One of the most expressive scheme
to date is the ABS scheme proposed by Sakai, Attrapadung, and Hanaoka [SAH16]; their scheme
supports unbounded-depth unbounded-size circuits and is based on bilinear maps under standard
assumptions. On the other hand, recently, ABS schemes that support policies on the opposite end
of the spectrum from circuits, namely Turing machines, were constructed by Datta, Dutta, and
Mukhopadhyay [DDM17]. However, their scheme requires the strong assumption of the existence
of indistinguishability obfuscations. Therefore, we still do not know of any ABS schemes achiev-
ing the ultimate goal of supporting Turing machines with unbounded-length inputs that rely on
a well-established assumption such as a static assumption over bilinear groups. Considering the
current situation that all the known encryption scheme counterparts of ABS (i.e., attribute-based
encryption (ABE)) seem to require the power of indistinguishability obfuscation, one may think
that it is simply out of our reach to construct ABS for Turing machines from standard assumptions.

Besides its theoretical interests, ABS for Turing machines, which naturally support unbounded
languages, has a practical benefit. Here, by unbounded languages, we mean an ABS scheme where
different signatures have attribute strings of different lengths. Policies are associated with signing
keys, and thus the policy needs to accept variable-length attribute strings. To see the benefit of this
primitive, let us suppose a company where the manager wants each employee to send an email on
behalf of the company to the customers that are assigned to this employee. An ABS for unbounded
languages provide a natural solution for this setting. In this solution, a manager of the company
possesses a master secret key of an ABS scheme. Then the manager assigns to each employee a
signing key with a policy. This policy describes what addresses the employee is allowed to submit an
email. Then the employee signs an email using the destination address of a customer as an attribute
string. The flexibility of ABS for Turing machines (or finite automata) is helpful in this scenario.
The manager can specify the policy using a regular expression such as *@division.example.com, to
restrict the employee to send an email to some division of a customer company. In this application,
Turing machines or finite automata provide an expressive way to describe a policy. Moreover,
unbounded attribute strings quite meet to this scenario, since attribute strings are set to be an
email address, which has a variable length.

1.1 Our Contribution

In this paper, we present an attribute-based signature scheme over bilinear maps that allows us
to use an arbitrary deterministic Turing machine as the policy from standard assumptions. In
particular, unlike ABS schemes for policies such as non-uniform circuits, our scheme allows one to
associate an unbounded-length string as an attribute to the message. Due to the uniform nature
of Turing machines, we depart from the conventional ABS constructions and incorporate new
ideas and techniques to cope with the unboundedness of the policies. Notably, we abstract ABS
constructions, and use the concept of history of computations to prove that the signer is in possession

2

of a Turing machine (or in general, some computational model) that accepts the string associated to
the message. Furthermore, we build on the idea which we call the locality of rewriting to prove the
above statement in zero-knowledge. These abstraction and ideas allow us to circumvent the standard
intuition that we would require a strong NIZK proof system for proving a valid computation of a
Turing machine to construct ABS schemes. Our scheme is reasonably efficient compared to other
cryptographic schemes that support Turing machine type computations (e.g., ABE for Turing
machines).

Our scheme satisfies perfect privacy and unforgeability. The scheme is proven secure under the
symmetric external Diffie-Hellman (SXDH) assumption over bilinear groups. More precisely, our
scheme is based on the Groth-Sahai proof system and a structure-preserving signature, both of
which can be proven secure under the SXDH assumption. The signature size is O(T 2) where T is
an upper bound for the running time of a Turing machine, which is specified by the signer. The size
of a signing key is O(|Q| · |Γ |4) where |Q| is the number of the states of the Turing machine and
|Γ | is the size of the tape alphabet. We emphasize that in spite of its expressiveness, our scheme
only requires a standard static assumption (SXDH) over bilinear groups. This could be a striking
contrast to the case of attribute-based encryption (ABE) for Turing machines, where available
schemes [GKP+13,AS16] require much stronger tools, such as indistinguishability obfuscation.

In addition to the above main contribution, we also present another ABS scheme whose policy
class is restricted to nondeterministic finite automata (NFA).4 This scheme is the first scheme that
supports nondeterministic computation as a policy. The policy classes of all the previously known
ABS schemes are only deterministic: (non-)monotone span programs, Boolean circuits, determin-
istic finite automata, and deterministic Turing machines. In addition, this scheme gains efficiency
compared with the main scheme. Namely, it has the signature of size O(|w|) where |w| is the length
of the input of the finite automaton. The size of a signing key is O(|Q|2 ·|Σ|) where |Q| is the number
of the states of the automaton, and |Σ| is the size of the alphabet. In particular, the dependency
on the alphabet size is down to |Σ| from |Γ |4.

1.2 Paper Organization

We dedicate the next section (Sect. 2) for describing the intuition of our schemes. We then begin
with some preliminaries and formal definitions in Sect. 3. The formal definition of Turing machines
and related notions is in Sect. 3. Our main ABS scheme for Turing machines is then presented in
Sect. 4, while its security proof is given in Sect. 5. The scheme for nondeterministic finite automata
is given in Sect. 6. Appendix A gives a survey on more related works. Appendix C presents a
formal syntax, security definitions, and security proof of our side result of an ABS scheme for
nondeterministic finite automata.

4 In terms of languages that machines accept, NFA is equivalent to a subclass of Turing machines called read-only
right-moving Turing machines. Both accept the class of regular languages.

3

2 Difficulties and Our Approach

2.1 Naive Ideas and Their Limitations

As a warm up, we provide some of the obstacles when trying to construct ABS schemes for Turing
machines from previously known tools and techniques. One of the most naive approaches may be
to base the construction on ABS schemes supporting circuits [SAH16], since theoretically, circuits
are already quite powerful. However, this idea would not work because of the differences between
the models of computations; circuits are non-uniform but Turing machines are uniform. Specifi-
cally, there is simply no easy way to embed a uniform computational model (i.e., Turing machine)
into the signing key starting from an ABS scheme that only supports non-uniform computational
models (i.e. circuits) as the key-policy. Another approach may be to base the scheme on expressive
attribute-based encryption (ABE) schemes, however, the problem of this approach is that, at least
in general, ABE schemes do not provide the anonymity property, which is an essential require-
ment for ABS schemes. Furthermore, no ABE schemes for Turing machines based on standard
assumptions are known. One may also consider starting from policy-based signatures [BF14] or
functional signatures [BGI14]. However, this does not provide a successful solution as well, since all
the known policy-based signature schemes only support pairing-product equations for describing a
policy, or if we want to support any NP relations, we need to employ general zero-knowledge. The
same holds for functional signatures, namely, it supports any NP relations, at the cost of general
zero-knowledge.

In a high level, all of the above obstacles seem to boil down to the problem of not having
any efficient NIZK proof for proving correct computation of a Turing machine. As an example,
ABS for circuits were achievable [SAH16], since Groth-Sahai proof systems can be used to prove
correct circuit computation in zero-knowledge. Indeed, if we had an efficient NIZK proof for such
an unbounded language, we could have taken another route and convert an ABE scheme for Turing
machines into its ABS scheme counterpart by proving that the secret key associated with the Turing
machine satisfies.

2.2 Our Approach

We now explain the technical overview of our ABS scheme for Turing machines and show how we
circumvent the above problem. In particular, our construction does not rely on any strong NIZK
proof system; essentially it only requires a NIZK proof system for proving that a signature is valid.
In the following, we assume some familiarity on the standard notion of Turing machines and finite
automata, which will be explained in Sect. 3 and Sect. 6.1, respectively. We first provide a high
level approach to constructing ABS schemes using the concept of history of computations. Then,
for simplicity, we explain how to use our idea for the case where the policies are “deterministic”
finite automata, and provide an overview on how to further extend it to Turing machines via an
idea we call the locality of rewriting.

Abstract Approach: Using a History of Computations. We first step back and give a high
level background on how previous ABS schemes were constructed. One of the most standard ways

4

of constructing an ABS scheme is the “certificate” method [MPR11,SAH16]. In this method, the
authority issues each signer a digital signature signed on the user’s policy, which will serve as a
certificate for the user’s signing privilege. When the signer decides to sign a message with some
attribute, the signer proves in zero-knowledge that he possesses a valid signature on some policy
in addition that the attribute satisfies that certain policy. Therefore, in theory, we can always use
general NIZKs for NP languages to construct ABS schemes at the cost of a very inefficient scheme.
In light of this, much of the efforts for constructing ABS schemes are centered around constructing
an efficient NIZK proof system for proving that a policy embedded in the signature satisfies the
attribute while also hiding the policy. In the following, we explain the abstract approach we take
for constructing such NIZK proof systems.

As we have mentioned above, the central difficulty in constructing an ABS scheme for complex
(unbounded) computational models, such as finite automata or Turing machines stems from the
fact that we do not have sufficiently expressive and efficient NIZK proof systems. Toward this end,
we take the approach of expressing a computation in a set of sufficiently simple formulae that can
be handled by a simple and efficient NIZK proof system. In particular, our key idea is to use a
history of computations to prove that the hidden policy satisfies the attribute. Here, by a history of
computations, we mean a sequence sinit, s1, . . . , sn of “snapshots” of a machine5, which expresses
how the computation proceeded in a step-by-step manner. For simplicity, for the time being, let us
assume that the policy, i.e., the machine, is public. Then, the main advantage of the above approach
is that even though it may be hard to express the actual computation of the policy into a simple
formulae, once given a history of computations sinit, s1, . . . , sn and the policy, it may be much
easier to express an algorithm that validates this sequence into a simple formulae. Note that this
abstract idea can be used for any type of computational models (bounded or unbounded) as long
as one can appropriately define the history of computations while being able to express them into
simple formulae. For example, as we show later, it may be much easier to prove that, (si−1, si) for
all i follow the (public) transition function of a machine, rather than writing out the automaton as
a very large and complex formulae.

Now, taking into consideration that the policies must also be hidden, the following depicts our
key idea on the whole.

sinit −→ s1 −→ s2 −→ · · · −→ sn ∈ F

Here, consider the input w to the machine M to be implicitly included in the public state sinit. The
gray box indicates that the snapshots si must be hidden and F indicates the set of accepting states
of the machine M , which in some cases must be hidden since they may leak information on M . If
the above can be proven in zero-knowledge, then a verifier would be convinced that the signer is
in possession of a machine M which accepts the input w associated to the message. Now, we can
break the problem of proving possession of a valid history of computations into three sub-problems:
(i) prove that each hidden snapshots si are valid snapshots, (ii) prove that each transition of the
snapshots si to si+1 is consistent with the signer’s policy and (iii) prove that the final snapshot sn
is in the accepting states F . Finally, to use this idea of a history of computations to construct an

5 Here, one can think of the “snapshot" as the state the algorithm is in. For example, a snapshot of a Turing machine
is whatever written in the working tape, the state it is in, and the position of the head. Furthermore, we use the
term machine loosely to express some computational model such as Turing machines or automata.

5

ABS scheme, we must make sure that the above policy and accepting states F showing up in the
sub-problems (ii) and (iii), respectively, are certified by the authority. As one may think, the most
difficult part of the sub-problems will turn out to be item (ii). In the following, we first provide a
detailed explanation on how to use the above idea to construct an ABS scheme for deterministic
automata. We then build on that idea to provide an explanation for the more complex Turing
machine.

History of Computations for Finite Automata. Before getting into details, we define a finite
automaton. Informally, a finite automaton M is defined by a set of states Q, a transition function
δ : Q × Σ → Q and a set of accepting states F ⊆ Q, where Σ denotes the input alphabet. Next,
we define what a history of computations is for the case of finite automata. Since a history of
computations is simply a sequence of snapshots of the finite automaton given an attribute string
w = w1 · · ·wn, we can express this simply as a sequence of states qinit, q1, . . . , qn; the computation
starts with the automaton being at the initial state qinit, then moving to state q1 after reading w1
(i.e., q1 ← δ(qinit, w1)), then moving to state q2 after reading w2, . . . , and finally reading wn and
moving to qn, which is an accepting state. Here, note that the states Q and the accepting states F
are different for each automaton, and hence must be hidden. In particular, we use the following as
the history of computations for finite automata:

〈qinit, w1, q1 〉 −→ 〈 q1 , w2, q2 〉 −→ · · · −→ 〈 qn−1 , wn, qn 〉, qn ∈ F , (1)

where once again the gray box indicates that they are to be hidden. Informally, the previous
snapshot si now corresponds to 〈qi, wi+1, qi+1〉.

Now that we have defined what the history of computations is, we must show how to solve the
aforementioned problems: Below we look at first how to prove that each snapshot 〈qi, wi+1, qi+1〉
are valid while hiding the automaton being used and how the authority certifies the automaton
M = (Q, δ, F) to a signer. A naive approach would be to encode the transition function δ to a single
large input-output table of size |Q|× |Σ| where the entries of the table is of the form 〈q, w, q′〉, sign
this large table, and use this signature as a certificate for the signer. Then, the signer can prove
sequentially in zero-knowledge that each snapshot is included in the table by using a NIZK proof
system that supports simple vector-matrix multiplications.6 However, this table-based approach
cannot be secure because the table is variable-length. Namely, since each automaton may have
different numbers of states |Q|, the size of the tables varies with the automata. Therefore if we
use this variable-length table as a witness for the NIZK proof system, the length of the proof may
also vary. Hence the signature (i.e., the zero-knowledge proof) leaks information on the automaton.
We emphasize that the anonymity notion for ABS schemes requires that even when two automata
have different numbers of the states, signatures produced by the two different automata as policies
should be indistinguishable from each other, provided that these two automata accept the same
string.

6 In particular, it proves that the table includes an entry of the form 〈q, w, q′〉 while hiding which entry it is. This
can be accomplished by viewing the table as a matrix and using unit vectors to indicate the row to pick up.

6

Instead, we let the authority issue the signer a signing key as the set of signatures on each entry
of the table as follows:{

θq,w = Sign(sk, 〈q, w, δ(q, w)〉)
}

(q,w)∈Q×Σ ,
{
θ̄q̄ = Sign(sk, q̄)

}
q̄∈F .

Here the number of signatures is roughly |Q|×|Σ|. In particular, since Q and Γ are polynomial sizes
in the security parameter, the total number of signatures is polynomial. Now, proving knowledge of
a history of computations becomes much simpler; the signer picks the respective signatures θqi,wi+1

from the set of signatures {θq,w} and proves that they are valid signatures in zero-knowledge
and proves that the final state qn opens to some signature in {θ̄q̄}. The signer also shows that
each transition of the snapshots are consistent with the signer’s automaton by using the same
commitments for each state q ∈ Q and proving in zero knowledge that the committed signatures
are valid. Since the number of steps it takes for an automaton to terminate is the same as the
length of the input string, the aforementioned problem concerning the variable proof length is
resolved. Finally, a subtle technical detail is that in the actual construction, the authority includes
some nonce in the signatures θq,w and θ̄q̄ so that they are tied to a unique automaton to prevent
collusion attacks.

An informal intuition on the security is as follows: let us consider for a moment a situation
where a malicious signer wants to generate an attribute-based signature even though the automaton
assigned to him does not accept the attribute string w = w1 · · ·wn. In this case, since the automaton
does not accept the attribute string, we have that any sequence qinit, q1, . . . , qn leading to an
accepting state must deviate from δ. Specifically, at least one adjacent pair (qi, qi+1) must satisfy
δ(qi, wi+1) 6= qi+1. Since the signer is never issued a signature on this triple 〈qi, wi+1, qi+1〉, he will
not be able to execute the proof of knowledge.

Extending the Idea to Turing Machines. We now explain our history approach for the case
of Turing machines. Again, the goal is to let the authority certify a signer’s transition function in
such a way that the signer can efficiently prove knowledge of a history of computations.

Firstly we briefly recapitulate the notion of Turing machines. A Turing machine is specified by
a set of state Q, a transition function δ : Q × Γ → Q × Γ × {left, stay, right}, an initial state
qinit ∈ Q, and an accepting state qacc, where Γ is the tape alphabet. In the following, we assume
the initial state qinit and the accepting state qacc are set to be special symbols that are common
to all Turing machines. Specifically, the set of accepting states F can be made public. A Turing
machine starts its computation with an input w on its working tape, the head at the leftmost cell.
Then the machine moves the head left and right while rewriting the cells of the working tape one
by one. We say the Turing machine accepts input w if the Turing machine reaches the accept state
qacc.

A snapshot of a Turing machine can be identified by specifying (1) the state, (2) the contents
of the working tape, and (3) the position of the head. We encode this information by a string
uqv ∈ Γ ∗ × Q × Γ ∗ where u, v ∈ Γ ∗ and q ∈ Q. This encoding specifies that the state is q, the
contents of the working tape are uv, and the head is pointing at the leftmost symbol of v. For
example, we encode a snapshot in which (1) the machine takes the state q ∈ Q, (2) the head is on

7

the fourth symbol, and (3) the tape contents are w1w2w3w4w5w6 ∈ Γ ∗ by the encoding

s = w1w2w3 q w4w5w6.

Using this encoding, one way to define the history of computations of a Turing machine is as follows:

qinit w1w2w3w4w5w6 −→ w′1 q1 w2w3w4w5w6

−→ w′1w
′
2 q2 w3w4w5w6 −→ · · · −→ qacc w′′1w

′′
2w
′′
3w
′′
4w
′′
5w
′′
6 ∈ F.

With this history of computations in hand, we now must resolve the aforementioned three sub-
problems (i), (ii), and (iii), of which the most difficult part is problem (ii), where we have to prove
that adjacent snapshots si−1 −→ si are valid transitions. In the case of finite automata, the solution
was to sign on all possible pairs of the form 〈q, w, δ(q, w)〉, which specifies that the transition from
q to δ(q, w) is valid. Unfortunately, the simple approach of signing on all possible valid pairs of
snapshots 〈s, t〉 will not work for Turing machines. Due to the unboundedness of the model of
computation, the length of a working tape is unbounded, and hence there are an unbounded, or
even infinite, number of possible valid pairs of snapshots which the authority must sign.

“Locality of rewriting” is our key insight to overcome this difficulty. To explain this, let us
consider a snapshot s = abcdeqxfg, i.e., the current state being q, the content written on the tape
being abcdexfg, and the head pointing to x. For simplicity, in the following argument, we always
use a, b, c, d, e, f, g to denote arbitrary symbols in Γ and use x to denote the symbol which the
Turing machine reads next. Then, if the transition function satisfies δ(q, x) = (q′, x′, left), the
next snapshot would be t = abcdq′ex′fg, where q′ is the next state and x′ is the symbol written in
place of x. Observe that the symbol x′ and its position in t is determined by the two neighbors of
the corresponding positions in s, namely, q and x, as the transition function directs the machine
to rewrite x with x′ and moves the head left. Similarly, the symbol b and its position in state t is
determined by the three neighbors a, c, d in s. Namely, since none of its three neighbors are pointed
by the head in s, the symbol b is unchanged. In general, any symbol in a succeeding snapshot is
determined by the four neighbors in the current snapshot: the symbol in the same position, its
left symbol, and the two symbols on its right. Fig. 1 illustrates all the cases of the four neighbors
determining the symbols in the succeeding snapshot, in the case that the head moves to left.7 In this
figure, the upper tapes denote the preceding snapshot, while the lower tapes denote its succeeding
snapshot. The grayed boxes in the upper tapes denote the neighbors that determine the grayed box
in the lower line. Although we included both cases 1 and 2 for completeness, the grayed boxes hold
the same meaning since all the four neighbors in the preceding snapshot are constituted only from
tape symbols. In particular, there are 5 cases depending on the position of the state q is in the four
preceding neighbors.

Using this locality of rewriting, the authority signs all the possible occurring patterns of the
above grey boxes, which consists of the four neighbors in the preceding snapshot and the one symbol
in the succeeding snapshot. In more detail, in the case that δ(q, x) = (q′, x′, left), the authority

7 Similar illustrations can be obtained for the case that the head stays and moves to the right with the same idea.

8

a b c d e q x f g

a b c d q′ e x′ f g

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Snapshot s

Snapshot t

a b c d

Case 1

a b c d

b c d e

Case 2

b c d q′

c d e q

Case 3

c d q′ e

d e q x

Case 4

d q′ e x′

e q x f

Case 5

q′ e x′ f

q x f g

Case 6

e x′ f g

Fig. 1. All the patterns of “local” changes when a snapshot s becomes a snapshot t via a transition δ(q, x) =
(q′, x′, left).

signs on the following five types of tuples:
(a, b, c, d, b),
(c, d, e, q, d),
(d, e, q, x, q′),
(e, q, x, f, e),
(q, x, f, g, x′)

(2)

for all possible choices of a, b, c, d, e, f , and g ∈ Γ .8 Finally, the authority creates signatures for
all possible choices of (q, x) ∈ Q × Γ and provides the set of these signatures to the signer as the
signing key. Here, we did not need to consider the tuple (b, c, d, e, c), since this is captured by the
first tuple of Eq. (2).

With this set of signatures, the signer can prove knowledge of a history of computations

sinit −→ s1 −→ s2 −→ · · · −→ sn

8 The other two cases right and stay are done similarly.

9

in the following way. For each adjacent snapshots si−1 = u1u2 · · ·un and si = v1v2 · · · vn such that

u1u2 · · ·un −→ v1v2 · · · vn ,

the signer proves knowledge of the possession of signatures for the following tuples:

〈 ␣ , u1 , u2 , u3 , v1 〉,
〈 u1 , u2 , u3 , u4 , v2 〉,
〈 u2 , u3 , u4 , u5 , v3 〉,

... ,

〈 un−3 , un−2 , un−1 , un , vn−2 〉,

〈 un−2 , un−1 , un , ␣ , vn−1 〉,

〈 un−1 , un , ␣ , ␣ , vn , 〉.

where ␣ denotes the blank symbol included in Γ . This can be done if the transition si−1 −→ si
follows the transition function, since the signer can pick the signature on each tuple from the signa-
tures signed on the tuples in Eq. (2). This way, the signer can prove the consistency of transitions,
namely, both the fact that the cells pointed at by the head are rewrote following the transition
function and the fact that the cells not pointed at by the head are untouched. The blank symbols
on the left and right sides of u1u2 · · ·un are included in order to also treat the corner cased where
the header points to the leftmost or two rightmost cells. For a more formal discussion, we refer the
readers to the AttrSign algorithm in Sect. 4.

An intuition on the security is similar to the case of finite automata. Let us suppose that a
malicious signer whose Turing machine does not accept an attribute string tries to produce the
above zero-knowledge proof. In this case, for any choice of a history of computations, at least
one adjacent snapshots si−1 = u1 · · ·un and si = v1 · · · vn deviate from the transition function.
Informally, this would imply that, at least for some vi, the tuple 〈ui−1, ui, ui+1, ui+2, vi〉 does not
match any of the tuples in Eq. (2). Therefore, the malicious signer is not issued a signature on such
a tuple, hence he would not be able to execute the zero-knowledge proof. The actual proof will be
more contrived since we add nonces in multiple places to prevent mix-and-match attacks.

Applying the Idea to Nondeterministic Finite Automata. Our approach can be extended to
support nondeterministic finite automata (NFA). Before we explain how to do so, we first state some
difficulty of obtaining ABS for NFA. A naive idea of converting an NFA into a deterministic finite
automaton (DFA) and then using ABS for DFA (e.g.,[NP15]) would not work since the equivalent
DFA would suffer an exponential blowup in the number of states (see, for example, [Sip96]). Again
we cannot rely on expressive zero-knowledge proofs that can express nondeterministic computation,
because such proofs would be quite expensive, if possible at all.

Instead, we proceed with our idea of a history of computations. In our history approach, the
authority issues a signature for each transition q −→ δ(q, w). Recall that in a nondeterministic
finite automaton, there are multiple choices of transitions and the actual choice will be chosen

10

nondeterministically. Let us consider a signer whose automaton has two choices of transition q′

and q′′ when the automaton is in state q and reading w. Nondeterminism means that if at least
one choice of q′ or q′′ leads to an accepting state, the automaton accepts the input. Then, if the
signer has two signatures on both 〈q, w, q′〉 and 〈q, w, q′′〉, then the signer can build a history of
computations, together with a signature as in Eq. (1), by choosing either a signature on 〈q, w, q′〉
or a signature on 〈q, w, q′′〉 depending on which choice of the transition leads to an accepting
state. Based on this idea, our scheme for nondeterministic finite automata lets the authority issue
signatures on 〈q, w, q′〉 and 〈q, w, q′′〉 for both q′ or q′′. This way, to sign with a nondeterministic
finite automata, the signer firstly computes a history of computations nondeterministically, then
picks the signatures that correspond to the nondeterministic transition, and proves the knowledge
of such signatures.

The size of signing key is O(|Q|2 · |Σ|), where |Q| is the number of the states of the automaton,
and |Σ| is the size of the alphabet. The factor |Q| · |Σ| corresponds to the fact that there are |Q| · |Σ|
entries for the transition function, and the other factor |Q| corresponds to the fact that there are
at most |Q| nondeterministic choices for each entry.

3 Preliminaries

We say that a function f : N → R is negligible if for any c ∈ N there exists x0 satisfying that for
any x ≤ x0 it holds that f(x) ≤ 1/xc. We denote by ε the empty string. For a string u we denote
by |u| the length of u. For two strings u and v we denote by uv the concatenation of u and v. For
a set S, we denote by P(S) the powerset of S.

Turing Machines. We give the definition of Turing machines. We consider deterministic Turing
machines in this paper, but will often omit the word ‘deterministic’.

Definition 1. A Turing machine over the input alphabet {0, 1} is a tuple (Q,Γ, δ, qinit, qacc, qrej)
where

– Q is a finite set of the states,
– Γ is a finite set of the tape alphabet which contains symbols 0 and 1, a left endmarker $, and a

blank symbol ␣.
– δ : Q× Γ → Q× Γ × {left, stay, right} is a transition function,
– qinit ∈ Q is the initial state,
– qacc ∈ Q is the accept state, and
– qrej ∈ Q is the reject state, qrej 6= qacc.

We require that the states and the tape alphabet do not intersect, namely, Q ∩ Γ = ∅. We also
require that all Turing machines do not rewrite the left endmarker $ with another symbol and do
not move the head beyond the endmarker. Formally, we require that the transition function satisfies
δ(q, $) = (q′, $, right) or δ(q, $) = (q′, $, stay) for any q and some q′. Furthermore, we require that
once the machine reaches to either the accept state qacc or the reject state qrej, the machine never
moves to another state, namely, δ(qacc, x) = (qacc, x, stay) and δ(qrej, x) = (qrej, x, stay) for any
x ∈ Γ .

11

We define the notion of a configuration. A configuration describes the entire snapshot of the
machine and the tape, including the state q ∈ Q, the contents of the tape, and the position of the
head. Formally, we say that a string t ∈ Γ ∗ × Q × Γ ∗ is a configuration of a Turing machine. In
a configuration t, the string obtained by removing the unique q ∈ Q describes the contents of the
tape. The occurrence of q simultaneously describes the state of the machine and the position of
the head. The occurrence q specifies q as the current state of the machine, and also specifies the
symbol at the right of q as the position of the head.

We then formally define the notion of transition.

Definition 2. Let M = (Q,Γ, δ, qinit, qacc, qrej) be a Turing machine and s = uzqxv be a configu-
ration for it, where u, v ∈ Γ ∗, z ∈ Γ ∪ {ε}, and q ∈ Q. We denote s −→

M
t if one of the followings

holds.

1. δ(q, x) = (q′, x′, left) and t = uq′zx′v,
2. δ(q, x) = (q′, x′, stay) and t = uzq′x′v,
3. δ(q, x) = (q′, x′, right), and t = uzx′q′v.

We denote by −→
M

∗ the reflexive transitive closure of −→
M

. We say that a Turing machine M =
(Q,Γ, δ, qinit, qacc, qrej) accepts w ∈ {0, 1}∗ if

qinit$w␣ · · · ␣ −→
M

∗ qaccv

for some v ∈ Γ ∗ and sufficiently long ␣ · · · ␣.9 Here we assume that all Turing machines halt after
moving its head to the leftmost symbol.

During the computation of a Turing machine M , if the current configuration t is uqxv where u,
v ∈ Γ ∗, x ∈ Γ , and q ∈ Q, we say that the machine reads the symbol x, or the symbol x is being
read. Furthermore, if the machine makes a transition uqv −→

M
u′q′v′, where u, v, u′, v′ ∈ Γ ∗ and q,

q′ ∈ Q, then we say that the machine moves from the state q to the state q′.

Attribute-Based Signatures. We then define the syntax of attribute-based signatures for Turing
machines. A formal treatment on Turing machines can be found in Section 3. An attribute-based
signature scheme for Turing machines consists of the following four algorithms.

AttrSetup(1k)→ (pp,msk). The setup algorithm takes as an input a security parameter 1k and
outputs a public parameter pp and a master secret key msk.

AttrGen(pp,msk,M)→ sk. The key generation algorithm takes as inputs a public parameter pp, a
master secret key msk, and a description of a Turing machine M and outputs a signing key sk.

AttrSign(pp, sk, T, w,m)→ σ. The signing algorithm takes as inputs a public parameter pp, a sign-
ing key sk, an upper bound T for the running time of the Turing machine, a string w ∈ {0, 1}∗,
and a message m ∈ {0, 1}∗ and outputs a signature σ.

9 Since our definition of transition does not automatically expand the tape with blank symbols, we need to explicitly
pad with blank symbols. The length can be bounded by the number of the steps until the machine halts.

12

AttrVerify(pp, T, w,m, σ)→ 1/0. The verification algorithm takes as inputs a public parameter pp,
an upper bound T for the running time, a string w, and a message m and outputs a bit 1 or 0.

As the correctness condition, we require that for any k ∈ N, any (pp,msk) ← AttrSetup(1k),
any Turing machine M , any sk← AttrGen(pp,msk,M), any T ∈ N, any string w ∈ {0, 1}∗ which is
accepted by M within T steps, any message m ∈ {0, 1}∗, and any σ ← AttrSign(pp, sk, T, w,m) it
holds that AttrVerify(pp, T, w,m, σ) = 1.

We then define two security requirements for attribute-based signature schemes. The first re-
quirement is anonymity, which requires that no information on the Turing machine used to generate
a signature does leak. The other requirement is unforgeability. It requires that no collusion can gen-
erate a signature under attributes, if their policies do not accept the attributes.

Definition 3. An attribute-based signature scheme is perfectly anonymous, if for any k ∈ N, any
(pp,msk)← AttrSetup(1k), any Turing machines M0 and M1, any sk0 ← AttrGen(pp,msk,M0) and
sk1 ← AttrGen(pp,msk,M1), any T ∈ N, any string w ∈ {0, 1}∗ which is accepted within T steps
by both M0 and M1, and any message m ∈ {0, 1}∗, the distributions AttrSign(pp, sk0, T, w,m) and
AttrSign(pp, sk1, T, w,m) are identical, where the probability is taken over the randomness of the
AttrSign algorithm.

Definition 4. An attribute-based signature scheme is unforgeable if for any probabilistic
polynomial-time adversary A the probability that the adversary A wins in the following game against
a challenger is negligible in k.

1. The challenger generates a public parameter pp and a master secret key msk by running
(pp,msk) ← AttrSetup(1k). The challenger maintains a set of pairs of the form (M, sk) where
M is a Turing machine and sk is a signing key. It is initially set to ∅. The challenger sends pp
to the adversary A.

2. Then the adversary A is allowed to issue key generation queries and signing queries.
– For a key generation query M , the challenger searches for a tuple (M, sk) in the set. If it is

not found, the challenger generates a signing key sk by running sk ← AttrGen(pp,msk,M)
and stores (M, sk) in the set. The challenger returns sk to the adversary A.

– For a signing query (M,T,w,m), the challenger verifies that M terminates within T steps
on input w. If not, it returns ⊥. Then the challenger searches for a tuple (M, sk) in
the set. If it is not found, the challenger generates a signing key sk by running sk ←
AttrGen(pp,msk,M) and stores (M, sk) in the set. The challenger generates a signature
by running σ ← AttrSign(pp, sk, T, w,m) and returns σ to the adversary A.

3. The adversary A outputs (T ∗, w∗,m∗, σ∗) and halts.
4. The adversary A wins the game if the following conditions hold: (i)

AttrVerify(pp, T ∗, w∗,m∗, σ∗) = 1; (ii) the adversary A did not issue any key generation
M which accepts w∗ within time T ∗; (iii) the adversary A did not issue a signing query
(M,T ∗, w∗,m∗) for any M .

Bilinear Groups. A bilinear group parameter generation algorithm G takes a security parameter
1k as an input and outputs a bilinear group parameter gk = (p,G1,G2,GT , e, g, g̃) where p is a

13

prime, G1, G2, and GT are order-p multiplicative groups, e : G1 × G2 → GT is a non-degenerate
bilinear map, and g and g̃ is generators ofG1 andG2. Our concrete scheme is based on the symmetric
external Diffie-Hellman (SXDH) assumption. We postpone the formal definitions of this assumption
to Appendix B.

Groth-Sahai Proofs. The Groth-Sahai proof system [GS12] is a non-interactive proof system
which can prove the satisfiability of algebraic equations over bilinear groups called pairing product
equations. A pairing product equation has a form of

n∏
i=1

e(Ai,Yi)
m∏
i=1

e(Xj ,Bj)
n∏
i=1

m∏
j=1

e(Xi,Yj)γi,j = T,

where Ai ∈ G1, Bj ∈ G2, γi,j ∈ Zp, and T ∈ GT are public constants, and Xj ∈ G1 and Yi ∈ G2
are secret assignments.

The Groth-Sahai proof system consists of the five algorithms WISetup, WIProve, WIVerify,
ExtSetup, and Extract. The common reference string generation algorithm WISetup takes as an
input a bilinear group parameter gk and outputs a common reference string crs. The proof algo-
rithm WIProve takes as inputs a common reference string crs, a statement (public constants) x,
and a witness (secret assignments) w, and outputs a proof π. The verification algorithm WIVerify
takes as inputs a common reference string crs, a statement x, and a proof π and outputs a bit 1
or 0. The extractable common reference string generation algorithm takes as an input a bilinear
group parameter gk and outputs an extractable common reference string crs and an extraction key
ek. The extraction algorithm Extract takes as inputs an extractable common reference string crs,
an extraction key ek, a statement x, and a proof π and outputs a witness w. As the correctness
condition, we require that for any k ∈ N, any gk ← G(1k), any crs ← WISetup(gk) any statement
x and its witness w, it holds that WIVerify(crs, x,WIProve(crs, x, w)) = 1. The formal definitions of
the security of proof systems are postponed to Appendix B.

The Groth-Sahai proof system proves the satisfiability of the pairing product equations in the
following way. Firstly, the proof algorithm generates commitments to each element of the satisfying
assignment. Secondly, it generates proof components which prove the satisfying assignments behind
the commitments surely satisfies the statement in question. We call these commitments generated in
the proving process Groth-Sahai commitments. The Groth-Sahai proof system can be instantiated
from the SXDH assumption. In this case, a Groth-Sahai commitment is constituted by two source
group elements for each witness element, and a proof component is constituted by eight group
elements for each pairing product equation. See [GS12] for further details.

Structure-Preserving Signatures. A structure-preserving signature scheme consists of the three
algorithms Kg, Sign, and Verify. The key generation algorithm takes as an input a bilinear group
parameter gk and a message-length 1n and outputs a verification key vk and a signing key sk. The
signing algorithm Sign takes as inputs a signing key sk and a message m ∈ G1

n and outputs a
signature θ. The verification algorithm Verify takes as inputs a verification key vk, a message m,
and a signature θ and outputs a bit 1 or 0. As the correctness condition, we require that for any

14

k ∈ N, any n ∈ N, any gk ← G(1k), any (vk, sk) ← Kg(gk), and any m ∈ G1
n, it holds that

Verify(vk,m,Sign(sk,m)) = 1. In addition, we require that the verification algorithm consist of the
set of pairing-product equations, which enables us to prove the knowledge of signatures on either
public or secret messages. Such a structure-preserving signature scheme can be instantiated from
the SXDH assumption [KPW15]. The formal definition of unforgeability and an instantiation of a
structure-preserving signature scheme from the SXDH assumption will appear in Appendix B.

Collision-Resistant Hash Functions. A hash function family consists of the two algorithms
H and Hash. The hashing key generation algorithm H takes as an input a security parameter 1k
and outputs a hashing key hk. The deterministic hashing algorithm Hash takes as inputs a hashing
key hk and a message m ∈ {0, 1}∗ and outputs a hash value h. We say that a hash function
family is collision resistant if for any probabilistic polynomial-time algorithm A the probability
Pr[hk ← H(1k); (m,m′) ← A(hk) : Hash(hk,m) = Hash(hk,m′)] is negligible in k. We assume that
the length of a hash value h is determined only from a security parameter k. We denote by ` this
length of a hash value.

4 Attribute-Based Signatures for Turing Machines

Notations. In our scheme, given a Turing machine that describes a policy, we need to modify this
Turing machine slightly in order to resist chosen-message attacks. The input of the modified Turing
machine consists of two parts. The first is the hash value of the message to be signed, while the
other is an actual input to the original (unmodified) Turing machine. The modified Turing machine
ignores the first part and accepts the input if and only if the original Turing machine accepts the
latter part of the input.

The formal definition is as follows. For a Turing machine M , we denote by M another Turing
machine obtained by the following modifications to M . Let h = h1 · · ·h` ∈ {0, 1}` be a string (a
hash value) of length `. Let w be the original input to M .

– M begins with the configuration qinit$hw.
– It skips the input h. More precisely, in the notation of configurations, it runs the computations

in the following sequence:

qinit$h1 · · ·h`w −→
M

$q1h1 · · ·h`w −→
M

· · · −→
M

$h1h2 · · ·h`−1q`h`w.

– It rewrites h` with $. More formally,

$h1h2 · · ·h`−1q`h`w −→
M

$h1h2 · · ·h`−1q`+1$w

where q`+1 serves as a simulated M ’s initial state.
– It starts the simulation of M using the new $ as M ’s endmarker and w as M ’s input.
– If the simulated M accepts w, M moves the head to its endmarker $ as

qacc$h1 · · ·h`−1$u.

for some u and accepts hw. Otherwise M rejects hw.

15

Construction. In the construction of our scheme, we assume that the tape alphabet is a subset
of {0, 1, . . . , (p − 1)/2}, and the set of states is a subset of {−1,−2, . . . ,−(p − 1)/2}, where p is
the order of the underlying bilinear groups. Furthermore, we assume that the initial state qinit, the
accept state qacc, and the reject state qrej is respectively equal to −1, −2, and −3. For brevity, we
denote a group element [a]1 ∈ G1 as [a]. The description of our scheme is as follows.

AttrSetup(1k). Given the security parameter 1k, generate a bilinear group parameter gk ← G(1k),
a witness-indistinguishable common reference string for Groth-Sahai proofs crs←WISetup(gk),
two key pairs of the structure-preserving signature scheme (vk, sk)← Kg(gk, 16), and a hashing
key hk← H(1k). Set pp← (gk, crs, vk, hk) and msk← sk, and output (pp,msk).

AttrGen(pp,msk,M). Given a public parameter pp, a master secret key msk, and a description M
of a Turing machine, let M = (Q,Γ, δ, qinit, qacc, qrej) be the modified Turing machine as defined
above. Choose a random integer τ ← Zp.10 Then generate the following set of signatures.11

– For all a, b, c, and d ∈ Γ , generate

θJa, b, c, dK← Sign(sk, ([τ], [a], [b], [c], [d], [b])). (3)

– For all c, d, e ∈ Γ , and q ∈ Q, generate

θJc, d, e, qK← Sign(sk, ([τ], [c], [d], [e], [q], [d])). (4)

– For all q ∈ Q and x, d, e, f , and g ∈ Γ , generate the following signatures.
• If δ(q, x) = (q′, x′, left), generate

θJd, e, q, xK← Sign(sk, ([τ], [d], [e], [q], [x], [q′])), (5)
θJe, q, x, fK← Sign(sk, ([τ], [e], [q], [x], [f], [e])), (6)
θJq, x, f, gK← Sign(sk, ([τ], [q], [x], [f], [g], [x′])). (7)

• If δ(q, x) = (q′, x′, stay), generate

θJd, e, q, xK← Sign(sk, ([τ], [d], [e], [q], [x], [e])),
θJe, q, x, fK← Sign(sk, ([τ], [e], [q], [x], [f], [q′]),
θJq, x, f, gK← Sign(sk, ([τ], [q], [x], [f], [g], [x′]).

• If δ(q, x) = (q′, x′, right), generate

θJd, e, q, xK← Sign(sk, ([τ], [d], [e], [q], [x], [e]),
θJe, q, x, fK← Sign(sk, ([τ], [e], [q], [x], [f], [x′]),
θJq, x, f, gK← Sign(sk, ([τ], [q], [x], [f], [g], [q′]).

10 This extra component of the messages is for resisting collusion attacks. Without this component, colluding signers
may produce a forgery of the attribute-based signature scheme by mixing their certificates and forming a history
of transitions that is not allowed to each of the signers.

11 See Fig. 1 and Eq. (2) for intuition. The five tuples in Eq. (2) are implemented in Eqs. (3)–(7) for the case that
the head moves to left. The other two cases are implemented similarly.

16

Output the signing key sk as

sk = (M, τ, (θJa, b, c, dK)(a,b,c,d)∈Γ×Γ×Γ×Γ ,

(θJc, d, e, qK)(c,d,e,q)∈Γ×Γ×Γ×Q,

(θJd, e, q, xK)(d,e,q,x)∈Γ×Γ×Q×Γ ,

(θJe, q, x, fK)(e,q,x,f)∈Γ×Q×Γ×Γ ,

(θJq, x, f, gK)(q,x,f,g)∈Q×Γ×Γ×Γ).

AttrSign(pp, sk, T, w,m). Let T̃ be the upper bound of M ’s required steps for simulating M ’s com-
putation up to T steps.
1. Compute h← Hash(hk, 〈T,w,m〉).
2. Let t0 = qinit$hw(␣)T̃−|h|−|w|. Compute the sequence of configurations of M as

t0 −→
M

t1 −→
M
· · · −→

M
tT̃

that reaches to the accept state qacc, where tT̃ = qaccu for some u. Let ti = ti,0 · · · ti,T̃+1. Let
ti,−1 = ti,T̃+2 = ti,T̃+3 = ␣ for each i ∈ {0, . . . , T̃}.

3. Let

θi,j ← θJti,j−1, ti,j , ti,j+1, ti,j+2K

for each i ∈ {0, . . . , T̃ − 1} and each j ∈ {0, . . . , T̃ + 1}.
4. Compute

– a Groth-Sahai commitment ψ(τ) to [τ],
– Groth-Sahai commitments ψ(t)

i,j to [ti,j] for all12 i ∈ {1, . . . , T̃} and j ∈ {0, . . . , T̃ + 1}
except for tT̃ ,0, which is equal to qacc and thus treated as a public constant, and

– Groth-Sahai commitments ψ(θ)
i,j to θi,j for all13 i ∈ {0, . . . , T̃ − 1} and j ∈ {0, . . . , T̃ + 1}.

5. Generate a Groth-Sahai proof πi,j for the equation

Verify(vk, ([τ], [ti,j−1], [ti,j], [ti,j+1], [ti,j+2], [ti+1,j]), θi,j) = 1

for each i ∈ {0, . . . , T̃ − 1} and j ∈ {0, . . . , T̃ + 1}.
6. Output the signature σ as

σ =
(
ψ(τ), (ψ(t)

i,j)(i,j)∈{1,...,T̃}×{0,...,T̃+1}\{(T̃ ,0)},

(ψ(θ)
i,j)(i,j)∈{0,...,T̃−1}×{0,...,T̃+1},

(πi,j)(i,j)∈{0,...,T̃−1}×{0,...,T̃+1}

)
.

12 We do not need ψ(t)
i,j for i = 0, since these cases correspond to the initial configuration, which is public.

13 We do not need ψ
(θ)
i,j for i = T̃ , since these commitments are used to bind a configuration ti and the next

configuration ti+1, but tT̃ is the last configuration.

17

AttrVerify(pp, T, w,m, σ). Compute h ← Hash(hk, 〈T,w,m〉) and verify all the proofs in σ under
this T , w, m, and h. Here to verify that the initial configuration is valid and that the last
state is qacc, the initial configuration t0 = qinit$hw(␣)T̃−|h|−|w| and the state qacc of the last
configuration are treated as public constants in the proofs. If all the proofs are verified as valid,
output 1. Otherwise output 0.

5 Security of Our Scheme

In this section, we provide the security proof of our main scheme.
Before the proof of the main theorem, we introduce a notion of an authorized pair of configu-

rations and present a lemma related to authorized pairs.

Definition 5. Let M = (Q,Γ, δ, qinit, qacc, qrej) be a Turing machine. Let s = s0 · · · sT̃+1 and t =
t0 · · · tT̃+1 be strings of alphabets Q∪Γ such that s ∈ Γ ∗×Q×Γ ∗. Let s−1 = sT̃+2 = sT̃+3 = t−1 =
tT̃+2 = tT̃+3 = ␣. Let q be the state of s and let x be the symbols that the head is reading in s. We
say that the pair (s, t) is authorized at position j with respect to M if

– It holds that δ(q, x) = (q′, x′, left) and (sj−1, sj , sj+1, sj+2, tj) is equal to either of the following:

(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, q′), (e, q, x, f, e) or (q, x, f, g, x′)

for some a, b, c, d, e, f , and g ∈ Γ .
– It holds that δ(q, x) = (q′, x′, stay) and (sj−1, sj , sj+1, sj+2, tj) is equal to either of the following:

(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, e), (e, q, x, f, q′), or (q, x, f, g, x′)

for some a, b, c, d, e, f , and g ∈ Γ .
– It holds that δ(q, x) = (q′, x′, right) and (sj−1, sj , sj+1, sj+2, tj) is equal to either of the follow-

ing:
(a, b, c, d, b), (c, d, e, q, d), (d, e, q, x, e), (e, q, x, f, x′), or (q, x, f, g, q′)

for some a, b, c, d, e, f , and g ∈ Γ .

When (s, t) is authorized at position j with respect to M due to one of the tuples of the above forms,
we also say that the symbol tj is authorized by that tuple.

The following lemma plays an important role during the security proof. At a high level, it allows
us to argue about valid transitions by only considering authorized configuration pairs.

Lemma 1. Let M be a Turing machine and let s = s0 · · · sT̃+1 and t = t0 · · · tT̃+1 be strings in
(Q∪Γ)∗. If s X−→

M
t and s ∈ Γ ∗×Q×Γ ∗, then there is a position j such that (s, t) is not authorized

at position j with respect to M .

Proof. We prove the contraposition. Namely, assuming (s, t) is authorized at all positions j ∈
{0, . . . , T̃ + 1} with respect to M , we will prove that either s X−→

M
t or s 6∈ Γ ∗ × Q × Γ ∗ holds.

18

Toward this end we assume that (s, t) is authorized at all positions j ∈ {0, . . . , T̃ + 1} with respect
to M and that s ∈ Γ ∗ ×Q× Γ ∗ and will prove that s −→

M
t.

Let us set
s = uzqxv

where u ∈ Γ ∗, z ∈ Γ ∪ {ε}, q ∈ Q, x ∈ Γ , and v ∈ Γ ∗. Without loss of generality we assume that if
u = ε, then z = ε. Since (s, t) is authorized by M , we have that |s| = |t|. Thus we can set

t = u′ζηχv′

where |u′| = |u|, |ζ| = |z|, |η| = 1, |χ| = 1, |v′| = |v|. Similarly, we assume that if ζ = ε, then u′ = ε.

– Suppose δ(q, x) = (q′, x′, left). Firstly it does not occur that (u, z) = (ε, ε), since in this case
the head does not move left. Hence we have that z 6= ε.
• All the symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d), and hence u′ = u.
• The symbol ζ is authorized by (d, e, q, x, q′), and hence ζ = q′.
• The symbol η is authorized by (e, q, x, f, e), and hence η = z.
• The symbol χ is authorized by (q, x, f, g, x′), and hence χ = x′.
• All the symbols in v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uq′zx′v, and thus s −→
M

t.
– Suppose δ(q, x) = (q′, x′, stay).
• All symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d), and hence u′ = u.
• The symbol ζ is authorized by (d, e, q, x, e), and hence ζ = z.
• The symbol η is authorized by (e, q, x, f, q′), and hence η = q′.
• The symbol χ is authorized by (q, x, f, g, x′), and hence χ = x′.
• All the symbols in v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uzq′x′v, and thus s −→
M

t.
– Suppose δ(q, x) = (q′, x′, right).
• All symbols in u′ are authorized by either (a, b, c, d, b) or (c, d, e, q, d), and hence u′ = u.
• The symbol ζ is authorized by (d, e, q, x, e), and hence ζ = z.
• The symbol η is authorized by (e, q, x, f, x′), and hence η = x′.
• The symbol χ is authorized by (q, x′, f, g, q′), and hence χ = q′.
• All the symbols v′ are authorized by (a, b, c, d, b), and hence v′ = v.

Therefore we have that t = uzx′q′v, and thus s −→
M

t.

Hence, since we have s −→
M

t for all cases, the lemma holds. ut

The main theorem is as follows.

Theorem 1. Assuming the Groth-Sahai proof system is perfectly witness indistinguishable and
computationally extractable, the structure-preserving signature scheme is existentially unforgeable,
and the hash function family is collision resistant, the attribute-based signature scheme is perfectly
anonymous and unforgeable.

19

Instantiating all the primitives from the SXDH assumption, we have the following as a corollary.

Corollary 1. If the SXDH assumption holds for G, our instantiation is perfectly anonymous and
unforgeable.

We then prove the main theorem.

Theorem 2. Assuming the Groth-Sahai proof system is perfectly witness indistinguishable, the
attribute-based signature scheme is perfectly anonymous.

Proof. The theorem immediately follows from the witness indistinguishability of the proof system.
Fix two Turing machines M0 and M1 that accept a string w ∈ {0, 1}∗ within T steps. Since both
machines accept the same string, and both M0 and M1 halt with the same time T̃ , we have two
sequences of configurations

t0 −→
M0

t1 −→
M0
· · · −→

M0
tT̃

for M0 and
s0 −→

M1
s1 −→

M1
· · · −→

M1
sT̃

for M1, in which t0 = s0. Since the public constants in the proofs, in particular the initial con-
figuration and the accept state qacc, are determined by t0 for M0 and s0 for M1, the two proofs
share the same public constants. Therefore, thanks to the witness indistinguishability of the proof
system, both proofs are equally distributed. ut

Theorem 3. Assuming the Groth-Sahai proof system is perfectly witness indistinguishable and
computationally extractable, the structure-preserving signature scheme is existentially unforgeable,
and the hash function family is collision resistant, the attribute-based signature scheme is unforge-
able.

Proof. For a given hash value h ∈ {0, 1}`, we define a Turing machine M [h] as follows: It compares
the first ` symbols of the input with the hardwired hash value h; if they are identical, it moves its
head to the endmarker and accepts the input, otherwise rejects the input.

Let us consider the following sequence of games.

Game 0. This is identical to the game in the definition of unforgeability.
Game 1. In the response to each signing query (M,T,w,m), the challenger uses the Turing ma-

chine M [h] where h ← Hash(hk, 〈T,w,m〉) instead of M . Namely, every time (M,T,w,m) is
queried, the challenger generates a signing key for M [h] and use this signing key to generate
a signature to be returned to the adversary. The signing key for M [h] will be generated every
time a query is issued, and will not be reused.

Game 2. In this game, we add the following additional clause to the winning condition: (iv) the
adversary A did not issue any signing query (M,T,w,m) that satisfies Hash(hk, 〈T,w,m〉) =
Hash(hk, 〈T ∗, w∗,m∗〉).

Game 3. In the response to either key generation queries or signing queries, the random integer
τ ← Zp is equal to any of the responses to the previous queries, the challenger returns ⊥.

20

Game 4. In this game the challenger replaces the common reference string crs in the public pa-
rameter pp with the extractable one crs← ExtSetup(gk).

Let us denote by Wi the event that the winning conditions are satisfied in Game i. From the
triangle inequality, we have that

Pr[W0] =
4∑
i=1

(Pr[Wi−1]− Pr[Wi]) + Pr[W4] ≤
4∑
i=1
|Pr[Wi−1]− Pr[Wi]|+ Pr[W4]. (8)

To complete the proof, we then need to bound each term in this inequality.

Lemma 2. Assuming the witness indistinguishability of the Groth-Sahai proof system, |Pr[W0] −
Pr[W1]| = 0.

Proof (of Lemma 2). Observe that in both games the challenger proves the same set of equalities
regardless of which Turing machine is used to generate a signing key. Therefore, due to the perfect
witness indistinguishability of the proof system, the challenger’s responses are equally distributed.
Thus the lemma holds. ut

Lemma 3. Assuming the collision resistance of the hash function family, we have that |Pr[W1]−
Pr[W2]| is negligible.

Proof (of Lemma 3). Let F2 be the event that the winning conditions (i), (ii), and (iii) are satisfied
but the condition (iv) is not satisfied. From the difference lemma we have that |Pr[W1]−Pr[W2]| ≤
Pr[F2]. To bound this probability, we construct an algorithm which attacks the collision resis-
tance of the hash function family. The construction is as follows: The algorithm takes as input
a hashing key hk; using this hashing key, the algorithm sets up the rest of the components of
pp and sends it to A; the algorithm keeps the signing key of the structure-preserving signa-
ture scheme; key generation queries and signing queries are dealt with as in the description of
the games using the signing key of the structure-preserving signature scheme; when the adver-
sary halts with an output (T ∗, w∗,m∗, σ∗), the algorithm searches for a signing query (T,w,m)
that satisfies Hash(hk, 〈T,w,m〉) = Hash(hk, 〈T ∗, w∗,m∗〉); if a query is found, the algorithms
outputs (〈T,w,m〉, 〈T ∗, w∗,m∗〉) as a collision. Let us argue that whenever F2 occurs the algo-
rithm breaks the collision resistance of the hash function family. Since we have that the win-
ning condition (iv) is not met, the algorithm successfully finds a query (T,w,m) that satisfies
Hash(hk, 〈T,w,m〉) = Hash(hk, 〈T ∗, w∗,m∗〉). Since we also have that the winning condition (iii)
is met, we have that 〈T,w,m〉 6= 〈T ∗, w∗,m∗〉. Therefore, we have that whenever F2 occurs, the
algorithm successfully breaks the collision resistance of the hash function family. This implies that
the probability Pr[F2] is negligible. ut

Lemma 4. The quantity |Pr[W2]− Pr[W3]| is negligible.

Proof (of Lemma 4). Let F3 be the event that any of the integers τ generated in either key genera-
tion queries or signing queries is equal to any of the integers generated in the previous queries. From
the difference lemma we have that |Pr[W2]−Pr[W3]| ≤ Pr[F3]. Let F3,i be the event that the integer

21

in the i-th (key generation or signing) query is equal to any of the integers in the previous queries.
Hence F3 = F3,1 ∨ · · · ∨ F3,q where q is the total of the numbers of the key generation and signing
queries. Then we have that Pr[F3] ≤

∑q
i=1 Pr[F3,i] =

∑p
i=1

i−1
p = q(q−1)

2p , which is negligible. ut

Lemma 5. Assuming the computational extractability of the Groth-Sahai proof system, we have
that |Pr[W3]− Pr[W4]| is negligible.

Proof (of Lemma 5). Given an adversary A that plays either Game 3 or Game 4, we can construct
an algorithm B that distinguishes a witness-indistinguishable common reference string from an
extractable one. The construction of B is as follows: B is given a common reference string crs, and
then it sets up all the other components of the public parameter pp; B runs the adversary A with
its input pp; when A issues a key generation or a signing query, it responds as described in the
games using the signing key of the structure-preserving signature, which was generated by B itself;
when A halts, B outputs a bit 1 if the winning conditions are satisfied, otherwise outputs 0. Since
the simulation of Game 3 and Game 4 is perfect, and then by the extractability of the Groth-Sahai
proof system, |Pr[W3]− Pr[W4]| is negligible. ut

Finally, we bound the probability Pr[W4].

Lemma 6. Assuming the unforgeability of the structure-preserving signature scheme, we have that
Pr[W4] is negligible.

Proof (of Lemma 6). In Game 4, let us consider having the challenger extract the witness behind
the forgery (T ∗, w∗,m∗, σ∗). Let us denote this witness as

[τ∗], ([t∗i,j])(i,j)∈{1,...,T̃ ∗}×{0,...,T̃ ∗+1}\{(T̃ ∗,0)}, ([θ
∗
i,j])(i,j)∈{0,...,T̃ ∗−1}×{0,...,T̃ ∗+1}, (9)

where T̃ ∗ is the upper bound for the running time determined by T ∗.
Given this notion, let us consider the following algorithm B which internally simulates Game 4

and attacks the existential unforgeability of the structure-preserving signature scheme: Given a
verification key vk of the signature scheme as an input, B sets up the rest of the public parameter
pp of the attribute-based signature scheme as in Game 4; then B runs A providing pp as A’s
input; when A issues a key generation query or a signing query, B issues signing queries to its
own challenger, and using the challenger’s responses to answer A’s query as described in Game 4;
once A halts with a forgery (T ∗, w∗,m∗, σ∗), B extracts an entire witness from this forgery; finally,
B searches the set of the witness for a forgery of the structure-preserving signature scheme; if a
forgery is found, B outputs this forgery, otherwise outputs ⊥.

Notice that in this construction of B, due to the computational extractability of the Groth-
Sahai proof system, whenever A satisfies the winning condition, B successfully obtains a witness
that satisfies the proved equations. Therefore, to complete the proof, we argue that whenever B
successfully obtains a witness, B successfully outputs a forgery against the structure-preserving
signature scheme. This implies that Pr[W4] is negligible, which concludes the proof.

The argument proceeds with a case analysis. Let us consider the following conditions.

1. The extracted τ∗ is equal to one of the random integer τ generated in a response to a key
generation query.

22

2. The extracted τ∗ is equal to one of the random integer τ generated in a response to a signing
query.

3. The extracted τ∗ is equal to none of the above two types of τ ’s.

These three cases are clearly comprehensive. In the last case, any of the witness θ∗i,j , that is a part
of the extracted witness as above, serves as a valid forgery against the underlying signature scheme,
since B only issues signing queries which do not include τ∗ in the messages.

Next, we argue that in the first two cases B successfully outputs a forgery.
Let us set h∗ = Hash(hk, 〈T ∗, w∗,m∗〉). Suppose the first case has occurred. LetM be the Turing

machine that is used in the response to the key generation query whose random integer τ is equal
to τ∗. Due to the change introduced in Game 3, there is a unique key generation query that satisfies
this. Because of the winning condition (ii), we have thatM does not accept w∗ in time T ∗, henceM
does not accepts h∗w∗ in time T̃ ∗ where T̃ ∗ is the upper bound of the running time ofM constructed
from M . In this case, B issues a set of signing queries that corresponds to the transition function
of M , which B then provides as the signing key to A. Suppose the second case has occurred. Let
(M,T,w,m) be the signing query where B uses τ∗ as the random integer to create the signature.
By the change we made in Game 3, there exists at most one signing query that satisfies this. In
this case, owing to the change we made in Game 1, to respond to this signing query, B uses the
Turing machine M [h] where h = Hash(hk, 〈T,w,m〉). Due to the winning conditions (iii) and (iv),
the Turing machine M [h] does not accept h∗w∗, since M [h] accepts h∗w∗ only when h∗ = h, but
h∗ 6= h. Note that similarly to the first case, B issues a set of signing queries that corresponds to
the transition function of M [h] to its own challenger.

In any case, B only issues a set of signing queries which correspond to some Turing machine
M∗ (which is either M or M [h] mentioned above) that does not accept h∗w∗. From now on we will
argue that in these cases there is a signature θ∗ in the extracted θ∗i,j ’s whose message is not issued
by B as a signing query to its own challenger.

Let t∗i = t∗i,0 · · · t∗i,T̃ ∗+1 for all i ∈ {0, . . . , T̃}. Notice that t∗0 is the valid initial configuration of
M∗ with input h∗w∗, and t∗

T̃ ∗
is the configuration whose state is qacc. Then sinceM∗ does not accept

h∗w∗, there exists i that satisfies t∗i X−→
M∗

t∗i+1. Let i∗ be the smallest index satisfying t∗i∗ X−→
M∗

t∗i∗+1.
Observe that t∗0 ∈ Γ ∗ × Q × Γ ∗ and that t∗0 −→

M∗
t∗1 −→

M∗
· · · −→

M∗
t∗i∗ . It is trivial to check that, if

s −→
M∗

t, and s ∈ Γ ∗ ×Q× Γ ∗, then t ∈ Γ ∗ ×Q× Γ ∗, since a state cannot split into two states as
long as s −→

M∗
t. Therefore, we have that t∗i∗ ∈ Γ ∗ × Q × Γ ∗ and that t∗i∗ X−→

M∗
t∗i∗+1, and hence we

can apply Lemma 1. Lemma 1 ensures that the pair (t∗i∗ , t∗i∗+1) is not authorized at some position
j∗ with respect to M∗. Since B only issues signing queries of the forms that appear in Definition 5,
the tuple (τ∗, t∗i∗,j∗−1, t

∗
i∗,j∗ , t

∗
i∗,j∗+1, t

∗
i∗,j∗+2, t

∗
i∗+1,j∗) is never issued as a signing query by B. Thus

θ∗i∗,j∗ is a valid forgery for the structure-preserving signature scheme.
To sum up, in any case, that A satisfies the winning conditions, B successfully finds a forgery.

Therefore, the probability Pr[W4] is negligible due to the unforgeability of the structure-preserving
signature scheme. ut

Finally, we have that all the terms in Eq. (8) are negligible, which implies that Pr[W0] is
negligible. ut

23

6 Attribute-Based Signature Scheme for Nondeterministic Finite Automata

In this section, we present an attribute-based signature scheme for nondeterministic finite automata.
As mentioned in the introduction, this is the first scheme supporting nondeterministic computation
as the policy. The syntax and security definitions are similar to those of Turing machines, thus we
defer those definitions to Appendix C.

6.1 Nondeterministic Finite Automata

We give a syntactic definition of finite automata. Let Σ be a finite set of alphabet.

Definition 6. A nondeterministic finite automaton (NFA) over Σ is defined by the tuple M =
(Q, δ, q0, F) where: (1) Q is a finite set of states, (2) δ : Q × Σ → P(Q) is a transition function,
(3) q0 ∈ Q is the initial state, and (4) F ⊆ Q is a set of accepting states. We say that a non-
deterministic finite automaton M = (Q, δ, q0, F) accepts a string w = w1 · · ·wn if there exists a
sequence (r0, r1, . . . , rn) of states satisfying (1) r0 = q0, (2) δ(ri−1, wi) 3 ri for all i ∈ {1, . . . , n},
and (3) rn ∈ F .

We remark that the above definition does not allow an automaton to have ε-transitions, i.e., a
transition which moves to a new state without reading a symbol. However, it is well known that
we can convert any nondeterministic finite automata having ε-transitions into a nondeterministic
finite automaton which falls into the above definition, without increasing the number of the states.

For self-containment and ease of understanding, we provide an example of NFA in Fig. 2. This
NFA accepts all strings over {0, 1} containing a 1 in the third position from the last. It is well
known that any NFA can be converted into an equivalent DFA but with an exponential blowup in
the number of states (see, for example, [Sip96]). We provide in Fig. 3 such an equivalent DFA to
the NFA of Fig. 2. These examples are copied almost verbatim from Sipser’s book [Sip96].

6.2 Notations

We define some notations. For an alphabet Σ, let Σ̂ be Σ ∪ {−1,−2}. We assume that the hash
function Hash has as its range {−1,−2}` instead of {0, 1}` to separate the alphabet for hash
values from the alphabet for attribute strings. For an NFA M = (Q, δ, q0, F), we define an NFA
M̂ = (Q, δ̂, q0, F) over Σ̂ as follows:

δ̂(q, w) =
{
δ(q, w) (w ∈ Σ),
{q} (w ∈ {−1,−2}).

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

Fig. 2. An example of NFA: it accepts all strings over {0, 1} containing a 1 in the third position from the last.

24

6.3 The Scheme

The construction of our scheme is as follows.

AttrSetup(1k, 1N). Given a security parameter 1k and the size 1N of an alphabet, generate a
bilinear group parameter gk = (p,G1,G2,GT , e, g, g̃) ← G(1k), a common reference string
crs ← WISetup(gk), two key pairs (vkδ, skδ) ← Kg(gk, 14) and (vkF , skF) ← Kg(gk, 12) of the
structure-preserving signature, and a hashing key hk← H(1k). Let pp← (N, gk, crs, vkδ, vkF , hk)
and msk← (skδ, skF) and output (pp,msk).

AttrGen(pp,msk,M). Let M̂ be (Q, δ̂, q0, F). Choose a random integer t ← Zp. For all q ∈ Q, all
w ∈ Σ̂, and all q′ ∈ δ̂(q, w) generate a structure-preserving signature θJq, w, q′K on the message

([t], [q], [w], [q′])

by running θJq, w, q′K ← Sign(vkδ, skδ, ([t], [q], [w], [q′])). For all q ∈ F generate a structure-
preserving signature ρJqK on the message

([t], [q])

by running ρJqK← Sign(vkρ, skρ, ([t], [q])). Let sk be

(M, t, (θJq, w, q′K)q∈Q,w∈Σ̂,q′∈δ̂(q,w), (ρJqK)q∈F)

and output sk.
AttrSign(pp, sk, w,m). Let w1 · · ·wn be w.

1. Compute h← Hash(hk, 〈w,m〉). Let ŵ = ŵ1 · · · ŵn+` be wh.
2. Let (q̂0, q̂1, . . . , q̂n+`) be one of the sequence of the states that M̂ takes when M̂ accepts ŵ.
3. Let θ̂i be θJq̂i−1, ŵi, q̂iK for each i ∈ {1, . . . , n+ `}.
4. Let ρ̂ be ρ̂Jq̂n+`K.
5. Compute

– a Groth-Sahai commitment ψ(t) to [t],
– a Groth-Sahai commitment ψ(q)

i to [q̂i] for each i ∈ {1, . . . , n+ `},

q000 q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Fig. 3. The smallest DFA that is equivalent to the NFA of Fig. 2.

25

– a Groth-Sahai commitment ψ(θ)
i to θ̂i for each i ∈ {1, . . . , n+ `}, and

– a Groth-Sahai commitment ψ(ρ) to ρ̂.
6. Compute a proof π(θ)

i of the equation

Verify(vkδ, ([t], [q̂i−1], [ŵi], [q̂i]), θ̂i) = 1

for each i ∈ {1, . . . , n+ `}.
7. Compute a proof π(ρ) of the equation

Verify(vkF , ([t], [q̂n+`]), ρ̂) = 1.

8. Let σ be
(ψ(t), ψ

(q)
1 , . . . , ψ

(q)
n+`, ψ

(θ)
1 , . . . , ψ

(θ)
n+`, ψ

(ρ), π
(θ)
1 , . . . , π

(θ)
n+`, π

(ρ))

and output σ.
AttrVerify(pp, w,m, σ). Compute h ← Hash(hk, 〈w,m〉) and let ŵ be wh. Under this ŵ verify all

the proofs included in σ where the initial state q0 is treated as a public constant in the non-
interactive proofs. If all the proofs are verified as valid, output 1. Otherwise output 0.

The security of the scheme is described in Appendix C.

7 Conclusion

In this paper, we formalize a new cryptographic primitive, attribute-based signatures for Turing
machines. We also present an efficient instantiation of this primitive using the Groth-Sahai proof
system, a structure-preserving signature scheme, and a collision-resistant hash function family. In
addition, we present an attribute-based signature scheme for NFA, which is more efficient than our
first scheme, while less expressive. These two schemes provide a trade-off between efficiency and
expressiveness.

Acknowledgment. The first author is supported by JSPS KAKENHI Grant Number 18K18055.
The second author was partially supported by JST CREST Grant Number JPMJCR1302 and JSPS
KAKENHI Grant Number 17J05603.

References

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs. In ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 575–601. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for Turing machines. In TCC (A1),
volume 9562 of LNCS, pages 125–153. Springer, 2016.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure
functional encryption for regular languages, and more. In EUROCRYPT 2014, volume 8441 of LNCS,
pages 557–577. Springer Berlin Heidelberg, 2014.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. Journal of Cryptology, 21(2):149–177, September 2008.

26

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In PKC 2014, volume 8383 of LNCS, pages
520–537. Springer Berlin Heidelberg, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, volume 8383 of LNCS, pages 501–519. Springer Berlin Heidelberg, 2014.

[CCL+13] Cheng Chen, Jie Chen, Hoon Wei Lim, Zhenfeng Zhang, Dengguo Feng, San Ling, and Huaxiong Wang.
Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures. In
CT-RSA 2013, volume 7779 of LNCS, pages 50–67. Springer Berlin Heidelberg, 2013.

[DDM17] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Attribute-based signatures for Turing machines.
Cryptology ePrint Archive, Report 2017/801, 2017. http://eprint.iacr.org/2017/801.

[EGK14] Ali El Kaafarani, Essam Ghadafi, and Dalia Khader. Decentralized traceable attribute-based signatures.
In CT-RSA 2014, volume 8366 of LNCS, pages 327–348. Springer Berlin Heidelberg, 2014.

[EHM11] Alex Escala, Javier Herranz, and Paz Morillo. Revocable attribute-based signatures with adaptive security
in the standard model. In AFRICACRYPT 2011, volume 6737 of LNCS, pages 224–241. Springer Berlin
Heidelberg, 2011.

[EK18] Ali El Kaafarani and Shuichi Katsumata. Attribute-based signatures for unbounded circuits in the ROM
and efficient instantiations from lattices. In PKC 2018, volume 10770 of LNCS, pages 89–119. Springer
International Publishing, 2018.

[Gha15] Essam Ghadafi. Stronger security notions for decentralized traceable attribute-based signatures and more
efficient constructions. In CT-RSA 2015, volume 9048 of LNCS, pages 391–409. Springer Berlin Heidelberg,
2015.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
How to run Turing machines on encrypted data. In CRYPTO (2), volume 8043 of LNCS, pages 536–553.
Springer, 2013.

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, October 2012.

[HLLR12] Javier Herranz, Fabien Laguillaumie, Benoît Libert, and Carla Ràfols. Short attribute-based signatures for
threshold predicates. In CT-RSA 2012, volume 7178 of LNCS, pages 51–67. Springer Berlin Heidelberg,
2012.

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signatures from standard assumptions,
revisited. In CRYPTO 2015, Part II, volume 9216 of LNCS. Springer Berlin Heidelberg, 2015.

[LAS+10] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. Attribute-based signature and its ap-
plications. In Proceedings of the 5th ACM Symposium on Information, Computer and Communications
Security, pages 60–69. ACM, 2010.

[LK08] Jin Li and Kwangjo Kim. Attribute-based ring signatures. Cryptology ePrint Archive, Report 2008/394,
2008. http://eprint.iacr.org/.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures. In CT-RSA 2011,
volume 6558 of LNCS, pages 376–392. Springer Berlin Heidelberg, 2011.

[NP15] Mridul Nandi and Tapas Pandit. On the power of pair encodings: Frameworks for predicate cryptographic
primitives. Cryptology ePrint Archive, Report 2015/955, 2015. http://eprint.iacr.org/.

[OT11] Tatsuaki Okamoto and Katsuyuki Takashima. Efficient attribute-based signatures for non-monotone pred-
icates in the standard model. In PKC 2011, volume 6571 of LNCS, pages 35–52. Springer Berlin Heidelberg,
2011.

[SAH16] Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. Attribute-based signatures for circuits
from bilinear map. In PKC 2016, volume 9614 of LNCS, pages 283–300. Springer Berlin Heidelberg, 2016.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition,
1996.

[SSN09] Siamak F. Shahandashti and Reihaneh Safavi-Naini. Threshold attribute-based signatures and their appli-
cation to anonymous credential systems. In AFRICACRYPT 2009, volume 5580 of LNCS, pages 198–216.
Springer Berlin Heidelberg, 2009.

[TLL14] Fei Tang, Hongda Li, and Bei Liang. Attribute-based signatures for circuits from multilinear maps. In
ISC 2014, volume 8783 of LNCS, pages 54–71. Springer Berlin Heidelberg, 2014.

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and
new constructions for both. In TCC 2017, volume 10678 of LNCS, pages 489–518. Springer International
Publishing, 2017.

27

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT 2005, volume
3494 of LNCS, pages 114–127. Springer Berlin Heidelberg, 2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In CRYPTO 2012, volume 7417 of LNCS,
pages 218–235. Springer Berlin Heidelberg, 2012.

[WC15] Qingbin Wang and Shaozhen Chen. Attribute-based signature for threshold predicates from lattices.
Security and Communication Networks, 8(5):811–821, March 2015.

A More Related Work

In this appendix, we provide a more detailed survey on ABS and related works, postponed from
the introduction.

The notion of ABS was proposed by Maji, Prabhakaran, and Rosulek [MPR11], where they pro-
posed proposed three instantiations: the first two schemes use the Groth-Sahai proof system [GS12]
and are based on Boneh-Boyen [BB08] and Waters [Wat05] signatures, respectively, while the third
scheme is a direct construction in the generic group model. Li and Kim [LK08], Shahandashti
and Safavi-Naini [SSN09], and Li et al. [LAS+10] proposed (selectively secure) ABS supporting
conjunction predicates. Escala, Herranz, and Morillo [EHM11] presented a scheme with adaptive
security. Okamoto and Takashima [OT11] showed that a scheme which supports non-monotone
span programs as a policy. Herranz et al. [HLLR12] and Chen et al. [CCL+13] presented a scheme
with constant-size signatures (selectively and adaptively secure, respectively), albeit for threshold
policies. Attrapadung et al. [AHY15] presented ABS with constant-size signatures for monotone
span programs. Wang and Chen [WC15] proposed an ABS scheme from a lattice-based assumption.
Tang, Li, and Liang [TLL14] proposed an ABS scheme for bounded-depth circuits from multilin-
ear maps. Nandi and Pandit [NP15] proposed several ABS schemes including a scheme supporting
Boolean formulae and a scheme supporting DFA. Sakai et al. [SAH16] proposed an ABS scheme for
unbounded-depth circuits. Tsabary proposed an ABS scheme for bounded circuits from lattices in
the standard model [Tsa17]. El Kaafarani and Katsumata proposed an ABS scheme for unbounded
circuits from lattices in the random oracle model [EK18].

Escala, Herranz, and Morillo [EHM11] presented a traceable ABS scheme, which allows a des-
ignated authority to identify the signer of a signature. Okamoto and Takashima presented a de-
centralized ABS scheme, in which any trusted setup is removed from the system. El Kaafarani,
Ghadafi, and Khader [EGK14] proposed a decentralized traceable ABS scheme. Ghadafi [Gha15]
reconsidered the security notion of decentralized traceable signatures, and defined a new security
notion called non-frameability.

Bellare and Fuchsbauer [BF14] introduced a primitive called policy-based signatures (PBS).
They then proposed a generic construction for any NP relation via general NIZK, and specific but
more efficient PBS/ABS constructions for more confined policy classes. Their generic construction
would yield inefficient ABS due to the use of general NIZK (as described in Sect. 2.1). Alternatively,
their efficient construction could yield an efficient ABS scheme for Turing machine or NFA if we
were able to base our idea (of expressing computation of TM/NFA in pairing-product equations)
on their PBS scheme. Nevertheless, this is on its own a non-trivial task. Hence, for simplicity,
we choose to base our idea directly on the Groth-Sahai proof system, but not to do that via the
PBS scheme. Furthermore, our ABS substantially enlarges the class of policies compared with their

28

ABS instantiation (which is for monotone Boolean functions). Boyle, Goldwasser, and Ivan [BGI14]
introduced the primitive named functional signatures. This signature scheme allows a signer to
generate a delegated signing key with an associated function. This delegated signing key allows the
delegatee to sign a message which is in the image of the associated function. Their instantiation
supports arbitrary polynomial-time computable functions, but it is not as efficient as ours due to
a Karp reduction to an NP-complete language.

Waters [Wat12] and Attrapadung [Att14] presented ABE schemes for DFA (with selective and
adaptive security, respectively). In his paper, Waters [Wat12] stated the difficulty in dealing with
an NFA in ABE. In fact even among ABE/ABS, there is no known efficient scheme supporting
NFA; constructing such a scheme was left as an open problem.

B Omitted Definitions

We give the definitions and notations postponed in the main part.

B.1 The Symmetric External Diffie-Hellman Assumption
We give the definition of the SXDH assumption. We say that the symmetric external Diffie-Hellman
(SXDH) assumption holds if the followings hold: (1) for any probabilistic polynomial-time algorithm
A

|Pr[gk← G(1k);x, y ← Zp : A(gk, gx, gy, gxy) = 1]
− Pr[gk← G(1k);x, y, z ← Zp : A(gk, gx, gy, gz) = 1]|

is negligible in k, and (2) for any probabilistic polynomial-time algorithm A

|Pr[gk← G(1k);x, y ← Zp : A(gk, g̃x, g̃y, g̃xy) = 1]
− Pr[gk← G(1k);x, y, z ← Zp : A(gk, g̃x, g̃y, g̃z) = 1]|.

is negligible in k, where gk = (p,G1,G2,GT , e, g, g̃).

B.2 Structure-Preserving Signatures
We give the definition of existential unforgeability of a signature scheme. We say that a structure-
preserving signature scheme is existentially unforgeable, if for any probabilistic polynomial-time
algorithm A and any n ∈ N, the probability that A wins in the following game against a challenger
is negligible in k:
1. The challenger generates a bilinear group parameter by running gk ← G(1k) and generates a

verification key and a signing key by running (vk, sk)← Kg(gk, 1n). The challenger sends vk to
the adversary A.

2. Then the adversary A is allowed to issue signing queries: For a signing query m ∈ G1
n, the

challenger generates a signature θ ← Sign(sk,m) and sends θ to the adversary A.
3. The adversary A halts with output (m∗, θ∗).
4. The adversary wins if the following conditions hold: (i) Verify(vk,m∗, θ∗) = 1; (ii) the adversary
A did not issue a signing query m∗.

29

B.3 Non-interactive Zero-knowledge Proofs

We give the formal definitions of non-interactive proof systems.
We require the proof system to be perfectly witness-indistinguishable and computationally

extractable. We say that the proof system is perfectly witness-indistinguishable if for any k ∈ N,
any gk ← G(1k), any crs ← WISetup(gk), any public constants x, and their witnesses w0 and w1,
the distributions WIProve(crs, x, w0) and WIProve(crs, x, w1) are distributed identically where the
probability is taken over the internal randomness of WIProve. We say that the proof system is
computationally extractable if the following two conditions are satisfied: (1) for any probabilistic
polynomial-time algorithm A,

|Pr[gk← G(1k); crs←WISetup(gk) : A(crs) = 1]
− Pr[gk← G(1k); (crs, ek)← ExtSetup(1k) : A(crs) = 1]|

is negligible in k; (2) for any algorithm A it holds that

Pr[gk← G(1k); (crs, ek)← ExtSetup(1k);
(x, π)← A(crs);w ← Extract(crs, ek, x, π)

: WIVerify(crs, x, π) = 1 ∧ w does not satisfy x] = 0.

C An Attribute-Based Signature Scheme for NFA

In this appendix, we present the formal definitions for attribute-based signature schemes and its
security. We also provide the security proof for our attribute-based signature scheme for NFA.

C.1 Attribute-Based Signatures for NFA

An attribute-based signature scheme for NFA can be defined analogously to ABS for Turing
machines. However, for self-containment, we explicitly write the definitions for it. An attribute-
based signature scheme for nondeterministic finite automaton consists of the four algorithms
AttrSetup, AttrGen, AttrSign, and AttrVerify. Hereafter we assume that the set of alphabet has
a form Σ = {0, . . . , |Σ|−1}, that the set of states has a form Q = {0, . . . , |Q|−1}, and that q0 = 0.

AttrSetup(1k, 1N)→ (pp,msk). The setup algorithm takes as inputs a security parameter 1k and a
size of alphabet 1N and outputs a public parameter pp and a master secret key msk.

AttrGen(pp,msk,M)→ skM . The key generation algorithm takes as inputs a public parameter pp,
a master secret key msk, and a description of an NFA M and outputs a signing key skM .

AttrSign(pp, sk, w,m)→ σ. The signing algorithm takes as inputs a public parameter pp, a signing
key sk, a string w, and a message m and outputs a signature σ.

AttrVerify(pp, w,m, σ)→ 1/0. The verification algorithm takes as inputs a public parameter pp, a
string w, a message m, and a signature σ and outputs a bit 1 or 0.

30

As the correctness condition, we require an attribute-based signature scheme to satisfy the
following: For any k ∈ N, any N ∈ N, any (pp,msk) ← AttrSetup(1k, 1N), any NFA M , any
skM ← AttrGen(pp,msk,M), any w ∈ Σ∗ which M accepts, any m ∈ {0, 1}∗, and any σ ←
AttrSign(pp, skM , w,m), it holds that AttrVerify(pp, w,m, σ) = 1.

Two security requirements are given explicitly below.

Definition 7. An attribute-based signature scheme is said to satisfy perfect anonymity if for any
k ∈ N, any N ∈ N, any (pp,msk)← AttrSetup(1k, 1N), any NFA M0, M1, any w accepted by both
M0 andM1, any sk0 ← AttrGen(pp,msk,M0), any sk1 ← AttrGen(pp,msk,M1), and any message m,
the distribution AttrSign(pp, sk0, w,m) and AttrSign(pp, sk1, w,m) are distributed identically where
the probability is taken over the randomness of the AttrSign algorithm.

Definition 8. An attribute-based signature scheme is said to satisfy unforgeability if for any prob-
abilistic polynomial-time adversary A and any N ∈ N, the probability that A wins in the following
game against a challenger is negligible in k.

1. The challenger generates a public parameter and a master secret key by running (pp,msk) ←
AttrSetup(1k, 1N) and send pp to the adversary A.

2. Then the adversary A is allowed to issue key generation queries and signing queries.
– For a key generation query M , if a signing key skM for M is not recorded, the challenger

generates a signing key skM by running skM ← AttrGen(pp,msk,M) and records this signing
key. Then the challenger sends skM to the adversary A.

– For a signing query (M,w,m), if a signing key skM for M is not recorded, the challenger
generates a signing key skM by running skM ← AttrGen(pp,msk,M) and records this signing
key. Then the challenge generates a signature σ by running σ ← AttrSign(pp, skM , w,m) and
sends σ to the adversary A.

3. The adversary A halts with output (w∗,m∗, σ∗).
4. The adversary wins if the following conditions hold: (i) AttrVerify(pp, w∗,m∗, σ∗) = 1; (ii) the

adversary A did not issue a key generation query M that accepts w∗; (iii) the adversary A did
not issue a signing query (M,w∗,m∗) for any M .

C.2 Security of Our ABS Scheme for NFA

The security of our ABS scheme for NFA is as follows.

Theorem 4. Provided that the Groth-Sahai proof system is perfectly witness-indistinguishable, we
have that the attribute-based signature scheme is perfectly anonymous.

Proof. This immediately follows from the witness indistinguishability of the Groth-Sahai proof
system. Fix NFAs M0 and M1, a string w, and a message m. Then let us consider the distributions
AttrSign(pp, skM0 , w,m) and AttrSign(pp, skM1 , w,m). Both of the distributions prove the exactly
same equations regardless of the signing key, and they only differ from the other in the witness used
for generating the proofs. Hence the witness indistinguishability ensures that these two distributions
are distributed identically. ut

31

0 1 2 3 4

w ∈ Σ

−2 −1 −1 −2

Fig. 4. The NFA Mh (` = 4, h = 1001).

Theorem 5. Provided that the Groth-Sahai proof system is perfectly witness-indistinguishable and
computationally extractable, the structure-preserving signature scheme is existentially unforgeable,
and the hash function family is collision resistant, we have that the attribute-based signature scheme
is unforgeable.

Proof. For a given alphabet Σ and a hash value h = h1 · · ·h` ∈ {−1,−2}` we define an NFA
Mh = (Qh, δh, qh0 , F h) over Σ̂ as follows (Fig. 4):

Qh = {0, 1, . . . , `},

δh(q, w) =

{0} (q = 0, w ∈ Σ),
{q + 1} (0 ≤ q ≤ `− 1, w = hq+1),
∅ (otherwise),

qh0 = 0,
F h = {`}.

Let A be an adversary which attacks the unforgeability of our attribute-based signature scheme.
Let us consider the following sequence of games.

Game 0. The unforgeability game for the attribute-based signature scheme.
Game 1. In this game, we add the following clause as the winning condition: (iv) the adversary A

does not issue a signing query (M,w,m) satisfying that Hash(hk, 〈w,m〉) = Hash(hk, 〈w∗,m∗〉).
Game 2. In this game, we modify the response to each signing query as follows: Given a signing

query (M,w,m) the challenger generates a signing key for Mh where h ← Hash(hk, 〈w,m〉),
generates a signature σ using this signing key, and sends this signature to the adversary A;
here, the challenger does not record this signing key, and each time A issues a signing query,
the challenger generates a new signing key and computes a signature.

Game 3. In this game, when generating a signing key in response to either a key generation query
or a signing query, if the random integer t generated for this new signing key is equal to the
previous random integers t’s, the challenger responds with ⊥.

Game 4. In this game, the challenger generates the common reference string using the ExtSetup
algorithm.

32

Let us denote by Wi the event that the winning condition is satisfied. Then we have that

Pr[W0] =
4∑
i=1

(Pr[Wi−1]− Pr[Wi]) + Pr[W4]

≤
4∑
i=1
|Pr[Wi−1]− Pr[Wi]|+ Pr[W4].

(10)

We prove that every term is negligible.

Lemma 7. Provided that the hash function family is collision resistant, |Pr[W0]− Pr[W1]| is neg-
ligible.

Proof (of Lemma 7). Let E1 be the event that the adversary satisfies the clause (i), (ii), (iii) of the
winning condition but not (iv). Then from the difference lemma we have that |Pr[W0]−Pr[W1]| ≤
Pr[E1].

Let us consider the following algorithm B for the collision resistance of the hash function family:
Given a hash key hk, B sets up all the other components of pp and msk following the construction of
the scheme; then B runs A with input pp; B responds to all the queries from A as in the description
of the game; when A halts and outputs a forgery (w∗,m∗, σ∗) without satisfying the clause (iv), B
searches for a query (M,w,m) satisfying

Hash(hk〈w,m〉) = Hash(hk, 〈w∗,m∗〉) (11)

and outputs (〈w,m〉, 〈w∗,m∗〉); otherwise B outputs (⊥,⊥).
We argue that if E1 occurs, then A successfully outputs a collision. Let us assume the event

E1 occurs. Since the clause (iv) is not satisfied, B successfully finds a query (M,w,m) satisfying
Eq. (11). Since the clause (iii) is satisfied, we have that (w,m) 6= (w∗,m∗). Therefore, we have that
whenever E1 occurs, B successfully outputs a collision. Now since we are assuming the collision
resistance of the hash function family, we have that Pr[E1] is negligible. ut

Lemma 8. Provided that the Groth-Sahai proof system is perfectly witness-indistinguishable,
|Pr[W1]− Pr[W2]| is negligible.

Proof (of Lemma 8). Due to the witness indistinguishability of the Groth-Sahai proof system, the
responses to the signing queries are equally distributed in Game 1 and Game 2. Then we have that
Pr[W1] = Pr[W2].

Lemma 9. |Pr[W2]− Pr[W3]| is negligible.

Proof (of Lemma 9). Let us denote by q the total number of the key generation queries and the
signing queries issued by A. Let ti be the random exponent t generated in the response to the
i-th key generation query or signing query. Let us denote by E3,i the event that ti = tj for some

33

j ≤ i− 1, and by E3 the event that E3,1 ∨ · · · ∨E3,q. Then, from the difference lemma we have that
|Pr[W2]− Pr[W3]| ≤ Pr[E3] happens. Furthermore, we have that

Pr[E3] ≤
q∑
i=1

Pr[E3,i] =
q∑
i=1

i− 1
p

= q(q − 1)
2p .

Hence Pr[E3] is negligible. ut

Lemma 10. Provided that the Groth-Sahai proof system is computationally extractable, |Pr[W3]−
Pr[W4]| is negligible.

Proof (of Lemma 10). Let us consider the following algorithm B that distinguishes a real common
reference string and an extractable one: Given a common reference string crs, B sets up all the
other components of pp and msk following the description of Game 3; then B runs A with input
pp; B responses to all the queries from A following the description of Game 3; if A halts satisfying
the winning condition, B outputs 1; otherwise B outputs 0.

We have that B’s simulation of either Game 3 or Game 4 is perfect. From this and the compu-
tational extractability, we have that |Pr[W3]− Pr[W4]| is negligible. ut

We then define the following three events in Game 4. Let us assume that the challenger extracts
a witness from the forgery (w∗,m∗, σ∗), and denote this witness by

[t∗], [q̂∗1], . . . , [q̂∗n+`], θ̂∗1, . . . , θ̂∗n+`, ρ̂∗ (12)

where n = |w∗|. We define the following events.

– C: The extracted [t∗] is not equal to any of [t]’s used in responding to the key generation queries
or the signing queries.

– K: The extracted [t∗] is equal to one of [t]’s used in responding to the key generation queries.
Notice that such [t] is uniquely determined.

– S: The extracted [t∗] is equal to one of [t]’s used in responding to the signing queries. Such [t]
is again uniquely determined.

Then we have that
W4 = (W4 ∧ C) ∨ (W4 ∧K) ∨ (W4 ∧ S).

Let h∗ = Hash(hk, 〈w∗,m∗〉) and ŵ∗ = w∗h∗ = ŵ∗1 · · · ŵ∗n+`. We then define the following four
events.

– K1: The event K occurs and at least for some i ∈ {1, . . . , n+`} the challenger does not generate
a signature on ([t∗], [q̂∗i−1], [ŵ∗i], [q̂∗i]) valid under the verification key vkδ.

– K2: The event K occurs and the challenger does not generate a signature on ([t∗], [q̂∗n+`]) valid
under the verification key vkF .

– S1: The event S occurs and at least for some i ∈ {1, . . . , n+ `} the challenger does not generate
a signature on ([t∗], [q̂∗i−1], [w∗i], [q̂∗i]) valid under the verification key vkδ.

34

– S2: The event S occurs and the challenger does not generate a signature on ([t∗], [q̂∗n+`]) valid
under the verification key vkF .

We then show the following two lemmas.

Lemma 11. W4 ∧K = W4 ∧ (K1 ∨K2).

Proof (of Lemma 11). Since W4 ∧ (K1 ∨K2) immediately implies W4 ∧K, it is sufficient to show
that if W4 ∧ K ∧ ¬K1 occurs, then K2 must occur. Let M = (Q, δ, q0, F) be the key generation
query where the random exponent t chosen in response to that query is equal to t∗. Let M̂ be
(Q, δ̂, q0, F). Since we are assuming ¬K1, for any i ∈ {1, . . . , n + `} the challenger generates a
signature on ([t], [q̂∗i−1], [ŵi], [q̂∗i]) under the verification key vkδ. Due to the definition of Game 4,
we have that δ̂(q̂∗i−1, ŵi) 3 q̂∗i . Now since the clause (ii) of the winning condition implies that M
does not accept w∗, we have that M̂ does not accept ŵ∗ = w∗h∗. Therefore, it should hold that
q̂n+` 6∈ F . Again due to the definition of Game 4, the challenger does not generate a signature on
([t], [q̂∗n+`]) under the verification key vkF . Thus K2 occurs. ut

Lemma 12. W4 ∧ S = W4 ∧ (S1 ∨ S2).

Proof (of Lemma 12). Similarly to the proof of Lemma 11, it is sufficient to show that ifW4∧S∧¬S1
occurs, then S2 must occur. Let (M,w,m) be the signing query where the random exponent t chosen
in response to that query is equal to t∗. Let h be Hash(hk, 〈w,m〉) and Mh be (Qh, δh, qh0 , F h).
Since we are assuming ¬S1, for any i ∈ {1, . . . , n + `} the challenger generates a signature on
([t], [q̂i−1], [ŵi], [q̂∗i]) under the verification key vkδ. Due to the definition of Game 4, we have that
δh(q̂∗i−1, ŵ

∗
i) 3 q̂∗i . Now since the clause (iv) of the winning condition implies that h 6= h∗, we have

that Mh does not accept ŵ∗ = w∗h∗. Therefore, it should hold that q̂n+` 6∈ F h. Again due to the
definition of Game 4, the challenger does not generate a signature on ([t], [q̂∗n+`]) under the vkF .
Thus S2 occurs. ut

From Lemma 11 and 12, we have that

(W4 ∧ C) ∨ (W4 ∧K) ∨ (W4 ∧ S) = (W4 ∧ (K1 ∨ S1)) ∨ (W4 ∧ (C ∨K2 ∨ S2)).

Finally showing the following two lemmas completes the proof.

Lemma 13. Provided that the structure-preserving signature scheme is existentially unforgeable,
Pr[W4 ∧ (K1 ∨ S1)] is negligible.

Proof. Let us consider the following algorithm B attacking the unforgeability of the structure-
preserving signature scheme: Given a verification key vk as the input, B sets vkδ = vk and generates
all the other components of pp and msk except for skδ; then B runs A with an input pp; when A
issues a key generation query or a signing query, B issues the signing query if needed, and responds
in the exactly same way as Game 4 does; if A outputs a forgery and halts, B extracts a witness (as
Eq. (12)) from the forgery; then B examines whether the events K1 or S1 occurs; if K1 occurs B
outputs a signature θ∗i the message of which is not signed during the game; if S1 occurs again B
outputs a signature θ∗i the message of which is not signed; otherwise B outputs (⊥,⊥) and halts.

35

We argue that if the event W4 ∧ (K1 ∨ S1) occurs, B successfully outputs a forgery. Since W4
occurs, the extracted θ∗i ’s are valid signatures on corresponding messages. If K1 occurs, there is
some i satisfying that a signature θ∗i on ([t∗], [q̂∗i−1], [ŵ∗i], [q̂∗i]) is not generated during the game.
Hence B successfully finds a forgery. Similarly, if S1 occurs, B successfully finds a forgery. Therefore
Pr[W4 ∧ (K1 ∨ S1)] is negligible. ut

Lemma 14. Provided that the structure-preserving signature scheme is existentially unforgeable,
Pr[W4 ∧ (C ∨K2 ∨ S2)] is negligible.

Proof. We can prove the lemma by a similar argument to the proof of Lemma 13. Let us consider
the following algorithm B attacking the unforgeability of the structure-preserving signature scheme:
Given a verification key vk as the input, B sets vkF = vk and generates all the other components of
pp and msk except for skF ; then B runs A with input pp; for any key generation queries and signing
queries, B responds to these queries as defined in the game; to do that B issues its own signing
queries; when A terminates with a forgery, B extracts a witness (as Eq. (12)); then B examines
whether the events C, K2, or S2 occur; in any case of these events, B outputs (([t∗], [q̂∗n+`]), ρ∗); if
these events do not occur, B outputs (⊥,⊥).

We then argue that whenever W4 ∧ (C ∨ K2 ∨ S2) occurs, B successfully outputs a forgery.
Let us assume C occurs. Then B never queries ([t∗], [q]) for any q, hence B satisfies the winning
condition. If K2 occurs, the message ([t∗], [q̂∗n+`]) is not signed during the game, hence B’s output
is a successful forgery. Similarly, if S2 occurs, again B’s output is a successful forgery. Therefore
Pr[W4 ∧ (C ∨K2 ∨ S2)] is negligible. ut

Finally, combining all the lemmas, we have that all the terms in Eq. (10) is negligible. This
concludes the proof. ut

36

