
Practical Attack on RaCoSS-R

Keita Xagawa

NTT Secure Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585 Japan

xagawa.keita@lab.ntt.co.jp

Abstract. RaCoSS is a signature scheme based on the syndrome decoding problem over the random linear
code and proposed by Fukushima, Roy, Xu, Kiyomoto, Morozov, and Takagi. This scheme is cryptanalyzed
Bernstein, Hülsing, Lange, and Panny (pqc-forum on 23 Dec. 2017).
Roy, Morozov, Fukushima, Kiyomoto, and Takagi recently gave a patch and call the patched scheme as
RaCoSS-R (ISEC Conf. on 25 Jul. 2018). This short note describes how to break RaCoSS-R by modifying the
forgery attack against RaCoSS.
keywords: NIST PQC, post-quantum digital signatures, cryptanalysis, coding-based cryptography

1 Introduction

RaCoSS1 is a signature scheme based on the syndrome decoding problem over a random linear code [FRXKMT17].
It is one of NIST PQC standardization candidates in Round 1 on 21 Dec. 2017. On 23 Dec. 2017, Bernstein, Hülsing,
Lange, and Panny rapidly cryptanalyzed RaCoSS and reported implementation bug, weakness of the dedicated
hash function, mathematical breaking, and no-hope [BHLP17].

Recently, Roy, Morozov, Fukushima, Kiyomoto, and Takagi recently gave a patch and call the patched scheme
as RaCoSS-R [RMFKT18]. They changed several parameters of RaCoSS in order to prevent the attacks of Bern-
stein et al. [BHLP17].

This short note describes a mathematical attack on RaCoSS-R. Our attack is a variant of the mathematical
breaking of RaCoSS by Bernstein et al. [BHLP17].

2 Review of RaCoSS and the BHLP Attack

Preliminaries: Let F := GF(2). Berτ denotes the Bernoulli distribution with parameter τ, that is,

Pr
x←Berτ

[x = 1] = τ and Pr
x←Berτ

[x = 0] = 1 − τ.

For two positive integers n,m, Bern×mτ denotes the distribution of matrices in Fn×m where each entry of the
matrix is sampled independently from Berτ .

2.1 RaCoSS

RaCoSS employed several parameters de�ned as follows: n = 2400, k = 2060, n − k = 340, ω = 48, and γ = 0.07.
We have ρ ≈ 0.057, th ≈ 1548.03, and w = 3.2 Their hash function Hash is modeled as a random oracle that on
input a string outputs an n-bit string of Hamming weight w uniformly at random.

The signature scheme is described as follows:

– Setup(): output p := H ← F(n−k)×n.
– Gen(p): sample S ← Bern×n

ω/n
and compute T := HS ∈ F(n−k)×n.

Output sk = S and vk = T .
1 an acronym of Random Code-based Signature Scheme.
2 The proposer de�ned

ρ :=

⌊
1
2

(
1 −

(
1 −

2ω
n

) bγωc)
· 1000

⌋
/1000

and th := 12nρ(1 − ρ). They also de�ne w := bγωc.

– Sign(p, sk, µ):
1. y ← Bern

ω/n
and compute v := Hy

2. c := Hash(v, µ,H).
3. compute z = Sc + y

4. output σ = (z, c)
– Vrfy(p, vk, µ, σ):

1. if Hash(Hz + Tc, µ,H) , c, then return ⊥
2. if wt(z) ≥ th, then return ⊥
3. else, return >

Notice that Hz + Tc = H(Sc + y) + Tc = HSc + Hy + Tc = Tc + Hy + Tc = Hy. In addition, the expected
value of z’ weight is w ·n · (ω/n)+n · (ω/n) = (w+1)ω = 48 ·4 = 192, much smaller than th ≈ 1548.03. Therefore,
the signature scheme is (statistically) correct.

2.2 The BHLP Attack

We review “math” attack in Lange’s mail [BHLP17].
Assume that H = [H1 | H2] with H1 ∈ GL(n − k, F). For any message µ,

1. choose arbitrary y ∈ Fn and compute v = Hy

2. compute c := Hash(v, µ,H)
3. compute z1 := H−11 · (Hy + Tc)
4. �ll z := (z1, 0, . . . , 0) ∈ Fn

5. output (z, c) as a forgery.

Apparently, wt(z) ≤ n − k = 340 < th. By the de�nition of z, we have

Hz + Tc = [H1 | H2] ·

(
z1
0

)
+ Tc = H1z1 + Tc = (Hy + Tc) + Tc = v

and Hash(Hz + Tc, µ,H) = c as we wanted. Thus, (z, c) is a valid signature on µ.

3 Review of RaCoSS-R

In order to prevent the BHLP attack, Roy et al. changed several parameter values as follows: Let n = 3072,
k = 1536, ω = 215, and β = 1386. Their hash function Hash : {0, 1}∗ → {0, 1}n is modeled as a random oracle.
The modi�ed scheme is described as follows:

– Setup(): output p := H ← F(n−k)×n.
– Gen(p): sample S ← Bern×n

ω/n
and compute T := HS ∈ F(n−k)×n. Output sk = S and vk = T .

– Sign(p, sk, µ):
1. y ← Bern

ω/n
and compute v := H · y

2. c := Hash(v, µ,H)
3. compute z = Sc + y

4. if wt(z) < β or wt(z) ≥ n/2, then go to step 1
5. output σ = (z, c)

– Vrfy(p, vk, µ, σ):
1. if Hash(Hy + Tc, µ,H) , c, then return ⊥
2. if wt(z) < β or wt(z) ≥ n/2, then return ⊥
3. else, return >

Roy et al. discussed that their changes prevent the BHLP attack in [RMFKT18, Sect. 4.3].

2

4 Our Attack on RaCoSS-R

In order to mount a forgery attack, we are required to compute z whose weight is in between β and n/2. We
observe that the weight of z1 is roughly (n − k)/2 in the BHLP attack and we �ll z1 with a random vector z2
instead of 0.

Let us assume that H = [H1 | H2] with H1 ∈ GL(n − k, F) and introduce a parameter l that will control the
weight of z2. The attack follows:

1. choose arbitrary y ∈ Fn and compute v = Hy

2. compute c := Hash(v, µ,H)

3. set z2 := (

k−l︷ ︸︸ ︷
0, . . . , 0,

l︷ ︸︸ ︷
1, . . . , 1) ∈ Fk

4. compute z1 := H−11 · (Hy + Tc + H2z2)
5. set z := (z1, z2) ∈ Fn
6. if wt(z) < β or wt(z) ≥ n/2, then go to step 1
7. output (z, c) as a forgery

This z satis�es

Hz + Tc = H1z1 + H2z2 + Tc = (Hy + Tc + H2z2) + H2z2 + Tc = Hy

as we wanted.

Experiment: We implemented the attack in the computer algebra system SageMath [Sage18] using the code in
section A. We set l = 700 in our experiment, because wt(z1) falls in the range [730, 800] in our preliminary
experiment.

We then ran the attack on 10 keys. On each key, we generate random 10 messages and try to forge. In our
experiment, we succeed to forge on all messages and keys and the attack took an average CPU time of 11 seconds
per key and 5.4 seconds per message on a single core of a 2.3 GHz Intel Xeon server machine.

Acknowledgment

The author would like to thank Partha Sarathi Roy and Kazuhide Fukushima for their kindness and fruitful
discussions.

References

BHLP17. Daniel J. Bernstein, Andreas Hülsing, Tanja Lange, and Lorenz Panny. Comments on RaCoSS, a submission to
NIST’s PQC competition. 23 Dec. 2017. Available at https://helaas.org/racoss/. 1, 2

FRXKMT17. Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiyomoto, Kirill Morozov, and Tsuyoshi Takagi.
RaCoSS. 21 Dec. 2017. Available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.
1

RMFKT18. Partha Sarathi Roy, Kirill Morozov, Kazuhide Fukushima, Shinsaku Kiyomoto, and Tsuyoshi Takagi. Code-Based
Signature Scheme without Trapdoors. IEICE Tech. Rep., vol. 118, no. 151, ISEC2018-15, pp. 17–22, July 2018. See also
https://www.ieice.org/ken/paper/20180725L1FF/eng/. 1, 2

Sage18. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.3), 2018. http://www.sagemath.
org. 3

A Implementation

Listing 1.1: attack.sage
forgery attack against RaCoSS -R

import hashlib

3

https://helaas.org/racoss/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.ieice.org/ken/paper/20180725L1FF/eng/
http://www.sagemath.org
http://www.sagemath.org

n = 3072; k = int(n/2); w = 215; b = 1386
F = GF(2)
def Bernoulli(w,n): return 1 if randint(0,n) < w else 0

This hash funciton returns n-dim vector such that
ded_hash(dat ,n) = sha512(0,dat) || sha512(1,dat) || ... || sha512(n/512,dat)
We assume 512 | n.
def ded_hash(dat ,n):

h = hashlib.sha512 ()
t = ""
for i in range(int(n/512)):

h.update ((str(i)+dat). encode ())
t += h.hexdigest ()

z = ('{:b}'.format(int(t ,16))). zfill(n)
v = vector(F,map(int ,list(z)))
return v

def ded_str(H,M):
h = hashlib.sha512 ()
h.update(str(H))
pkdigest = h.hexdigest ()
ded_digest = M+pkdigest
return ded_digest

We ignore a transpose op.
def pargen (): return Matrix(F,n-k,n,lambda i,j: randint (0,2))
def skgen (): return Matrix(F,n,n,lambda i,j: Bernoulli(w,n))
def pkgen(H,S): return H*S

def inner_sign(S,H,ded_digest):
y = vector(F,[Bernoulli(w,n) for _ in range(n)])
c = ded_hash(str(H*y)+ded_digest ,n)
z = S*c+y
return z, c

def sign(S,T,H,M):
ded_digest = ded_str(H,M)
z = vector(F,[0 for _ in range(n)])
while z.hamming_weight () < b or n/2 <= z.hamming_weight ():

z, c = inner_sign(S,H,ded_digest)
return z, c

def vrfy(H,T,M,z,c):
ded_digest = ded_str(H,M)
ctilde = ded_hash(str(H*z+T*c)+ded_digest ,n)
if c != ctilde:

return False
elif z.hamming_weight () < b:

return False
elif z.hamming_weight () >= n/2:

return False
else:

return True

##########
forgery attack against RaCoSS -R
##########

return P, H1, H2 s.t. H * P = [H1 | H2] with invertible H1
we assume that H.rank() = n-k.

4

def find_PH(H):
if H.rank() != n-k:

raise ValueError("error! H.rank() != n-k")
L = list(H.pivots ())
P = identity_matrix(n)
for i,v in enumerate(L):

P.swap_columns(i,v)
H1 = (H*P)[:,0:n-k]
H2 = (H*P)[:,n-k:n]
H1inv = H1.inverse ()
return P, H1, H2, H1inv

def attack(H,T,P,H1,H2,H1inv ,M):
this l is hueristic
l = 700
ded_digest = ded_str(H,M)
z = vector(F,[0 for _ in range(n)])
t = 0
while z.hamming_weight () < b or n/2 <= z.hamming_weight ():

y = vector(F,[randint (0,2) for _ in range(n)])
c = ded_hash(str(H*y)+ ded_digest ,n)
z21 = vector(F,[0 for _ in range(k-l)])
z22 = vector(F,[1 for _ in range(l)])
z2 = vector(F,list(z21)+list(z22))
z1 = H1inv * (H*y + T*c + H2*z2)
print "wt(z1)=", z1.hamming_weight ()
z = P * vector(F,list(z1)+list(z2))
t += 1

return z, c, t

def attack_test(keys = 10, messages = 10, debug = false):
tot_time_ext = 0.0
tot_time_forge = 0.0
tot_keys = 0
tot_tries = 0.0
nkey = 0
tm = cputime(subprocesses=True)

print "----- Start -----"
while tot_keys <= keys:

print "----- Key pair %d -----" % (nkey)
H = pargen ()
S = skgen()
T = pkgen(H,S)
nkey += 1
if H.rank() != n-k:

break
else:

tot_keys += 1
print "attack"
tm = cputime(subprocesses=True)
P,H1,H2,H1inv = find_PH(H)
tot_time_ext += float(cputime(tm))

for message in range(messages):
M = "RaCoSS -R is broken" + str(randint (0 ,2**10))
tm = cputime(subprocesses=True)
z,c,t = attack(H,T,P,H1,H2,H1inv ,M)
tot_time_forge += float(cputime(tm))
tot_tries += t

5

if debug:
print "M = ", M
print "t = ", t
print "vrfy(p,M,(z,c)) = ", vrfy(H,T,M,z,c)

print "===== Results ====="
print "Total time for extraction: %f seconds." % (tot_time_ext)
print "Average time for extraction: %f seconds." % (tot_time_ext/keys)
print "----- Forgery -----"
print "Total time: %f seconds." % (tot_time_forge)
print "Average time: %f seconds." % (tot_time_forge/messages/keys)
print "Average tries: %f tries." % (tot_tries/messages/keys)

attack_test (10,10, False)

6

	Practical Attack on RaCoSS-R

