
Finding Ordinary Cube Variables for
Keccak-MAC with Greedy Algorithm

Fukang Liu, Zhenfu Cao, and Gaoli Wang

Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science
and Software Engineering, East China Normal University, Shanghai, China

liufukangs@163.com

Abstract. In this paper, we introduce an alternative method to find
ordinary cube variables for Keccak-MAC by making full use of the key-
independent bit conditions. First, we select some potential candidates for
ordinary cube variables by properly adding key-independent bit condi-
tions, which do not multiply with the chosen conditional cube variables
in the first two rounds. Then, we carefully determine the ordinary cube
variables from the candidates to establish the conditional cube tester
with an approach inspired from the greedy algorithm. Finally, based on
our new method to recover the 128-bit key, the conditional cube attack
on 7-round Keccak-MAC-128/256/384 is improved to 271 and 6-round
Keccak-MAC-512 can be attacked with at most 240 calls to 6-round Kec-
cak internal permutation. It should be emphasized that our new approach
does not require sophisticated modeling nor usage of a solver.

Keywords: Keccak, Keccak-MAC, ordinary cube variables, conditional
cube attack, cube tester

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST) an-
nounced a public contest aiming at the selection of a new standard for a crypto-
graphic hash function after Wang et al. made a break-through in MD-SHA hash
family [14,15]. After five years of intensive scrutiny, Keccak was selected as the
new SHA-3 standard [2].

Due to the low algebraic degree of a Keccak round, algebraic cryptanalysis
has been deeply studied for Keccak, including cube attack [5], cube-attack-like
cryptanalysis [3,5,11,16], conditional cube attack [8,9,12], linear structures for
preimage attack [7], one/two/three-round connector for collision attack [4,10,13].

At Eurocrypt 2017, Huang et al. presented the conditional cube attack [8]
on round-reduced Keccak keyed modes based on the pioneer work, i.e. cube
attack [6,5] and cube tester [1]. Cube tester was first proposed by Aumasson et
al. [1], aiming at detecting the non-random behaviour e.g. the cube sums are
always equal to zero. Conditional cube tester detects a non-random behaviour
(the cube sums are zero) only when some conditions hold. Therefore, once the key
is involved in the conditions, conditional cube tester can be utilized to mount



key-recovery attack. Indeed, conditional cube tester can be viewed as a key-
dependent distinguisher. To make the conditional cube tester work, Huang et al.
developed a theorem and classified the cube variables into two types: conditional
cube variable and ordinary cube variable. The classification is based on the
multiplying relations of the cube variables in the first two rounds as follows.

• Conditional cube variables can not multiply with each other after the second
round.

• Ordinary cube variables can not multiply with each other after the first round.

• Ordinary cube variables can not multiply with conditional cube variables after
the second round.

The theorem to confirm the number of each type of the cube variables in
order to establish a conditional cube tester is specified as follows, whose proof
is based on the relations of the cube variables in the first two rounds as above.

Theorem 1. [8] For (n+2)-round Keccak sponge function (n > 0), if there
are p conditional cube variables v0, v1, ..., vp−1 and q = 2n+1 − 2p+ 1 ordinary
cube variables vp, vp+1, ..., vp+q−1, then the term v0v1...vp+q−1 will not appear
in the output polynomials of (n+ 2)-round Keccak sponge function.

Based on the new discovery, they successfully mounted key-recovery attack
on 5/6/7-round Keccak-MAC-512/384/256 by establishing a conditional cube
tester with p = 1. The reason why they could not reach more rounds for Keccak-
MAC-512/384 was that they could not find enough ordinary cube variables.
Later, an MILP-based method was proposed at Asiacrypt 2017 to find more or-
dinary cube variables for Keccak-MAC-512/384 [9] and extended the conditional
cube attack on Keccak-MAC-512/384 by one more round. However, there are
too many key-dependent conditions to slow down the propagation of the ordi-
nary cube variables in [9], thus making the time complexity of the key-recovery
attack not optimal. Very recently, Song et al. developed a new general MILP ap-
proach to find cube variables for Keccak-based primitives at Asiacrypt 2018 [12].
Compared with the modeling in [9], minimizing the number of key-dependent
bit conditions was taken into account in the modeling as well. Moreover, the or-
dinary cube variable which multiplies with the chosen conditional cube variable
only in the second round was leveraged in [12], which was abandoned in [8,9].
As a consequence, the conditional cube attack on 6-round Keccak-MAC-512 was
significantly improved. Despite that Song et al. claimed that 64-dimensional cube
variables with only 2 key-dependent bit conditions were found, the details of the
64-dimensional cube variables were not reported in [12]. For the new modeling
in [12], it seems sophisticated at the first glance. However, since more factors are
taken into account, it is more general and powerful to mount new or improved
attack on many Keccak-based constructions.

Due to the limited number of bits of Keccak-MAC-512 that can be controlled
for an attacker, it is very difficult to find 64-dimensional cube variables under
the conditional cube attack framework. However, cube-attack-like cryptanalysis
works quite well for Keccak-MAC-512 and attack on 7-round Keccak-MAC-512
was first achieved in [3], which was later slightly improved in [11].



Up till now, the improvement for [8] are all based on the MILP approach [9,12],
which sometimes requires sophisticated modeling. This motivates us to consider
whether there exist other simple approaches to find sufficient cube variables to
establish the conditional cube tester.

The paper is organized as follows. The preliminaries of this paper will be pre-
sented in Section 2. In Section 3, our tracing algorithm will be introduced. Then,
we will show our method to find enough ordinary cube variables for Keccak-
MAC-384 and Keccak-MAC-512 in Section 4 and Section 5 respectively. Next,
a slightly improved key-recovery method will be given in Section 6. The differ-
ence between our work and previous work is explained in Section 7. At last, we
summarize the paper in Section 8.

1.1 Our Contributions

In this paper, we present an alternative method to find ordinary cube variables
for Keccak-MAC-512/384. First, we observe that there are many potentially use-
ful key-independent conditions to slow down the propagation of ordinary cube
variables, which will help determine the candidates for ordinary cube variables.
Then, we introduce a wise way to choose the ordinary cube variables from the
candidates by considering their relations in the first round. With such a method,
sufficient ordinary cube variables can be discovered to establish the conditional
cube tester for 6-round Keccak-MAC-512 and 7-round Keccak-MAC-384. Mean-
while, the number of key-dependent bit conditions is minimum.

Moreover, we observe that there are many redundant iterations in z-axis of
the conditional cube tester in [8]. Therefore, an optimal procedure to recover
the key for 7-round Keccak-MAC-256/128 based on the conditional cube tester
in [8] is proposed and the new key-recovery attack is twice faster. Such an optimal
approach is applied to the newly discovered 64-dimensional cube variables for
7-round Keccak-MAC-384. Consequently, conditional cube attack on 7-round
Keccak-MAC-384 is improved to 271 from 275. By carefully choosing the order
to recover the key, we can recover the 128-bit key for 6-round Keccak-MAC-512
with at most 240 calls to 6-round Keccak internal permutation, while it costs
d 1283 e × 22

5+3 = d 1283 e × 235 ≈ 240.4 calls in [12]. The results are summarized in
Table 1.

Table 1. Related results of Keccak-MAC

Attack Type Capacity Rounds Time Ref.

Conditional Cube Attack

256/512 7 272 [8]
768 7 275 [9]
1024 6 240.4 [12]

256/512/768 7 271 Sect. 4
1024 6 240 Sect. 5

Cube-attack-like Cryptanalysis
1024 7 2112.6 [3]
1024 7 2111 [11]



2 Preliminaries

In this section, we will introduce the details of Keccak-MAC and some related
techniques such as cube tester and conditional cube tester.

2.1 Description of Keccak-MAC

Keccak is a family of hash functions and Keccak-MAC is based on the Keccak
internal permutations. The Keccak internal permutations denoted by Keccak-
p[b, nr] are specified by two parameters, which are the width of permutation in
bits b and the number of rounds nr. There are many choices for b, i.e. b = 25×2l

with l ∈ {0, 1, 2, 3, 4, 5, 6}. Keccak-p[b, nr] works on a b-bit state A and iter-
ates an identical round function R nr times. The state A can be viewed as a
three-dimensional array of bits, namely A[5][5][w] with w = 2l. The expression
A[x][y][z] represents the bit with (x, y, z) coordinate. At lane level, A[x][y] rep-
resents the w-bit word located at the xth column and the yth row. In this paper,
the coordinates are considered within modulo 5 for x and y and within modulo
w for z. The round function R consists of five operations R = ι ◦ χ ◦ π ◦ ρ ◦ θ as
follows.

θ : A[x][y][z] = A[x][y][z]⊕
4⊕

y′=0

A[x− 1][y′][z]⊕
4⊕

y′=0

A[x+ 1][y′][z − 1].

ρ : A[x][y][z] = A[x][y][z] ≪ r[x, y].

π : A[y][2x+ 3y] = A[x][y].

χ : A[x][y] = A[x][y]⊕ (A[x+ 1][y]
∧
A[x+ 2][y]).

ι : A[x][y] = A[x][y]⊕RC.

The construction of Keccak-MAC-n is illustrated in Figure 1. For the sake
of convenience, we denote the state A after θ, ρ, and π in round i (i ≥ 0) by
Aiθ, A

i
ρ and Aiπ respectively. The input state of round i is denoted by Ai. The

128-bit key is denoted by k, where ki represents the i-th bit of k.

Fig. 1. Construction of Keccak-MAC-n



For Keccak-MAC-n, n ∈ {128, 256, 384, 512}, the 128-bit key is placed at
A0[0][0] and A0[1][0]. Specifically, ki is placed at A0[0][0][i] and ki+64 is placed
at A0[1][0][i], where 0 ≤ i ≤ 63. Therefore, we can obtain Observation 1.

Observation 1. Based on the definition of θ operation, A0
θ[3][i] = A0[3][i]⊕⊕4

y=0A
0[2][y] ⊕

⊕4
y=0(A0[4][y] ≪ 1) for 0 ≤ i ≤ 4. Therefore, the value of

A0
θ[3][i] is independent of the 128-bit key. In other words, if we add bit conditions

on A0
θ[3][i] , all of them are key-independent.

Then, we consider the influence of π ◦ ρ operation as shown in Figure 2.
Consequently, Observation 2 can be obtained.

Fig. 2. π ◦ ρ operation

Observation 2. After π ◦ ρ operation, A0
θ[2][i] and A0

θ[4][k] are next to
A0
θ[3][j] in each row.

Our approach to determine the candidates for ordinary cube variables is much
based on the two observations.

2.2 Cube Tester

Cube tester was first proposed by Aumasson et al. at FSE 2009 [1] after Dinur
et al. introduced cube attack at Crypto 2008 [6]. Different from standard cube
attack, which aims at key extraction, cube tester performs non-randomness de-
tection. In our paper, we only concentrate on a specific non-random behaviour,
i.e. the cube sums are zero. To describe cube tester, we first recall the concept
of cube attack as follows.

Theorem 2. [6] Given a polynomial f : {0, 1}n → {0, 1} of degree d. Suppose
0 < k < d and t denotes the monomial x0...xk−1. Then, f can be written as

f = t · Pt(xk, ..., xn−1) +Qt(X),

where none of Qt(X) is divisible by t. Then the sum of f over all values of the
cube (cube sum) is

f =
∑
x′∈Ct

f(x′, xk, ..., xn−1) = Pt(xk, ..., xn−1).



If there exists such a cube Ct that the following equation always hold, then
Ct can be viewed as one type of cube tester [1], i.e. the sum over it always equals
zero.

f =
∑
x′∈Ct

f(x′, xk, ..., xn−1) = Pt(xk, ..., xn−1) = 0.

For example, consider the following polynomial f :

f(x0, x1, x2, x3) = x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

Then, the following equation always hold:∑
(x0,x3)∈{0,1}2

f(x0, x1, x2, x3) = 0.

The reason is that that none of the monomial in f(x0, x1, x2, x3) is divisible by
x0x3. However, if we sum f over all values of (x1, x2), then we can obtain the
following equation: ∑

(x1,x2)∈{0,1}2
f(x0, x1, x2, x3) = 1 + x4.

That is, the sum is dependent on the value of x4.
The aim of one type of cube tester is to detect such cube that the sum of a

black-box polynomial f over it always equals zero.

2.3 Conditional Cube Tester

Conditional cube tester was first proposed by Huang et al. [8], which was used to
detect the non-randomness of Keccak-based constructions, i.e. the cube sum is
zero. Different from the standard cube tester, conditional cube tester works only
when certain conditions hold. For example, consider the following polynomial f ,
where c is an unknown variable over GF(2).

f(x0, x1, x2, x3) = c · x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

If we have some conditions to ensure c = 0 always hold, then∑
(x0,x1)∈{0,1}2

f(x0, x1, x2, x3) = 0.

However, when c can not be controlled and is randomly chosen, then the sum of
f over all values of (x0, x1) can not be predicted and behaves randomly as well.

The aim of conditional cube tester is to discover such cube as well as its
corresponding conditions that the sum of a black-box polynomial over it always
equals zero only when these corresponding equations hold. When the conditions
are not satisfied, the cube sum behaves randomly.



3 Tracing Algorithm

Although several algorithms to determine the relations of cube variables in the
first two rounds have been presented in [8], it is difficult to directly apply them
to our new approach to find sufficient ordinary cube variables. Therefore, before
introducing how to determine the candidates for ordinary cube variables, we
firstly describe how to trace the propagation of a variable in A0

θ to A1
π.

Since θ, ρ, π are all linear transformations, an equivalent linear transfor-
mation matrix M can be derived to express these three consecutive operations
π ◦ ρ ◦ θ. From the definitions of the three operations, it can be known that for
each row of M , there are only 11 non-zero elements, whose values are all 1. To
reduce the size of M , we can only record the positions of M where the corre-
sponding value is 1 in a smaller matrix SM . Specifically, suppose M [i][J ] = 1
(J ∈ {j0, .., j10}), then we construct a smaller matrix SM where SM [i][t] = jt
for 0 ≤ t ≤ 10. Moreover, since the two consecutive operations π ◦ρ is equivalent
to a permutation of bit positions, an equivalent permutation P can be derived
to express the two consecutive operations.

To make the tracing algorithm more explicit, we should consider the internal
state as a boolean vector denoted by V rather than a three-dimensional array.
In addition, assume the internal state is an 1600-bit variable. For other sizes of
the internal state, the procedure to trace the propagation is similar. For the sake
of convenience, we denote the state V after θ, ρ, and π in round i (i ≥ 0) by V iθ ,
V iρ and V iπ respectively. The input state of round i is denoted by V i.

Now we describe how to trace the propagation of one-bit variable in A0
θ to

A1
π.

step 1. Suppose A0
θ[x][y][z] contains a variable, we record t0 = (5x+ y)×64 + z.

step 2. Calculate how the variable in V 0
θ [t0] propagates through π ◦ ρ operation

with P . Consequently, we record t1 = P [t0].
step 3. According to the definition of χ, after ι ◦ χ operation, three bits of V 1

will contain the variable from V 0
π [t1]. We denote the corresponding three

bit positions by t2, t3 and t4. Among the three bits, one bit will always
contain this variable. The other two bits contain this variable depending
on bit conditions. Then, for each of the three bits, we trace how the vari-
able in V 1[pos] (pos ∈ {t2, t3, t4}) propagates to V 1

π with Algorithm 1.
The bit positions of V 1

π containing the variable from V 1[pos] are stored
in the the array finalPosition.

Up till now, the propagation of the one-bit variable in A0
θ to A1

π is known,
i.e. the bit positions of A1

π containing the variable from A0
θ are known and are

classified into three types. At last, we only need focus on how the cube variable
in A0 propagates to A0

θ, which can be easily finished by considering the influence
of θ operation.

Once knowing and recording how a variable propagates in the first tow rounds
with or without bit conditions to slow down this propagation, it is quite easy
to determine their multiplying relations in the first two rounds. For example,



Algorithm 1 Tracing the influenced bit positions after π ◦ ρ ◦ θ operation

Input: SM , pos Output: finalPosition

1: for row in (0...1599) do
2: for col in (0...10) do
3: if SM [row][col] = pos then
4: finalPosition.push back(row)
5: break

suppose we know that A0
π[x][y][z] contains a variable v′ and A0

π[x− 1][y][z] con-
tains a different variable v′′, then v′′ will multiply with v′ after the first round.
In the same way, suppose we know that A1

π[x][y][z] contains a variable v′ and
A1
π[x−1][y][z] contains a different variable v′′, then v′′ will multiply with v′ after

the second round.

4 Finding Ordinary Cube Variables for Keccak-MAC-384

In this section, we will expand on the procedure to find sufficient ordinary cube
variables for Kecccak-MAC-384. First, the potential candidates for ordinary cube
variables will be determined by carefully adding key-independent bit conditions
to slow down its propagation. Then, we consider the multiplying relations of these
candidates after the first round and deduce some contradictions. Indeed, these
contradictions can be converted into inequalities and solved with a solver with
MILP method. However, this is not what we will do even though such a procedure
is quite simple and straightforward after obtaining these contradictions. As will
be shown, from these contradictions, we can efficiently determine how many
ordinary cube variables can eventually survive. As a consequence, no modeling
nor usage of the solver are needed in our work.

4.1 Determining Candidates for Keccak-MAC-384

The initial state of Keccak-MAC-384 is shown in Figure 3 with 12 lanes set
to 0. In the same way as [8,9,12], A[2][0][0] = A[2][1][0] = v0 is chosen as the
conditional cube variable with four bit conditions (A0

θ[1][4][60] = 1, A0
θ[1][0][5] =

1, A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0) to slow down its propagation. Then, the
ordinary cube variables are set in the CP kernel. The complete procedure is as
follows.

• For the first column, we exhaust all 64 possible variables A[0][1][i] = A[0][2][i]
(0 ≤ i ≤ 63). Based on Observation 1 and 2, if we add bit conditions to
slow down the propagation of the variables in this case, all of them are key-
dependent bit conditions. Therefore, we do not impose bit conditions. For
these 64 possible variables, only those are selected as candidates that they
do not multiply with v0 in the first two rounds.

• For the second column, we exhaust all 64 possible variables A[1][1][i] =
A[1][2][i] (0 ≤ i ≤ 63) and process in the same way as the first column.



Fig. 3. Keccak-MAC-384

• For the third column, we exhaust 63×3 possible variablesA[2][0][i] = A[2][1][i],
A[2][0][i] = A[2][2][i] and A[2][1][i] = A[2][2][i] (1 ≤ i ≤ 63). Based on Ob-
servation 1 and 2, we can add key-independent bit conditions on A0

θ[3][k]
(0 ≤ k ≤ 4) to slow down the propagation of the variables. To remove the
redundant conditions, we impose a condition only when it is necessary. In
other words, if such a condition is not added and the variable satisfies the
required relation with v0 in the first two rounds, this condition is not nec-
essary and redundant. Moreover, if such a condition is added, the variable
still does not satisfy the requirement, we filter this variable.

• For the forth column, we exhaust all 64 possible variablesA[3][0][i] = A[3][1][i]
(0 ≤ i ≤ 63) and process in the same way as the first column since there are
no key-independent bit conditions to slow the propagation of variables.

• For the fifth column, we exhaust 64 possible variables A[4][0][i] = A[4][1][i]
(0 ≤ i ≤ 63). Based on Observation 1 and 2, we can add key-independent
bit conditions to slow down the propagation of variables as the third column.

The candidates found with our method are presented in Table 2.

4.2 Discussion

Imposing some bit conditions on A0
θ[3][k] (0 ≤ k ≤ 4) as described above will

cause the following bad cases.

Case 1: Contradiction of conditions will occur. Specifically, for the third colum-
n, the bit condition on a certain bit i of A0

θ[3][k0] is A0
θ[3][k0][i] = 0.

However, for the fifth column, the bit condition on a certain bit j of
A0
θ[3][k1] is A0

θ[3][k1][j] = 1. If i = j and k0 = k1, the contradiction of
conditions is detected. In other words, we can not choose both of their
corresponding variables as the final ordinary cube variables. Moreover,
if A0

θ[3][y0][z0] and A0
θ[3][y1][z0] are imposed different bit conditions for

y0 > 1, y1 > 1, this is also a contradiction since A[3][y][z0] is set to a
constant 0 for Keccak-MAC-384 for y > 1.

Case 2: Contradiction between conditions and ordinary cube variables will oc-
cur. Specifically, for the forth column, some of A[3][0][i] = A[3][1][i] (0 ≤
i ≤ 63) will be chosen as candidates. The bad case is that A[3][0][t] =
A[3][1][t] is chosen as a candidate and A0

θ[3][0][t] or A0
θ[3][1][t] is imposed

a condition.



Table 2. Candidates for Keccak-MAC-384, where c is an adjustable constant
over GF(2) for each variable.

A[0][1][i] = A[0][2][i] + c

i 15 22 28 34 37 46 47 58 59

Variable v1 v2 v3 v4 v5 v6 v7 v8 v9

A[1][1][i] = A[1][2][i] + c

i 7 15 20 26 30 38 39 40 52 54 57

Variable v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63

Variable v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3][1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57

Variable v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52

A[4][0][i] = A[4][1][i] + c

i 3 5 8 10 12 14 20 22 25 30 31 35 38 41 47 57 58 62 63

Variable v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69 v70 v71
Condition i=3: A0

θ[3][0][59] = 1 i=8: A0
θ[3][0][0] = 1

i=20: A0
θ[3][0][12] = 1 i=22: A0

θ[3][0][14] = 1
i=25: A0

θ[3][0][17] = 1 i=30: A0
θ[3][4][1] = 1, A0

θ[3][0][22] = 1
i=35: A0

θ[3][4][6] = 1, A0
θ[3][0][27] = 1 i=38: A0

θ[3][4][9] = 1
i=41: A0

θ[3][0][33] = 1 i=57: A0
θ[3][0][49] = 1

A[2][0][i] = A[2][2][i] + c

i 1 5 6 14 15 16 20 21 27 30 33 38 39 40 41 46 51 52 57 61 62

Variable v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92
Condition i=1: A0

θ[3][3][23] = 0 i=14: A0
θ[3][1][21] = 0, A0

θ[3][3][36] = 0
i=15: A0

θ[3][1][22] = 0 i=20: A0
θ[3][3][42] = 0

i=30: A0
θ[3][1][37] = 0 i=33: A0

θ[3][3][55] = 0
i=38: A0

θ[3][1][45] = 0 i=40: A0
θ[3][1][47] = 0

i=46: A0
θ[3][1][53] = 0 i=52: A0

θ[3][1][59] = 0
i=57: A0

θ[3][1][0] = 0 i=62: A0
θ[3][3][20] = 0

A[2][1][i] = A[2][2][i] + c

i 1 11 14 15 18 19 20 24 41 52 56 58 61 62

Variable v93 v94 v95 v96 v97 v98 v99 v100 v101 v102 v103 v104 v105 v106
Condition i=1: A0

θ[3][2][46] = 0, A0
θ[3][3][23] = 0 i=14: A0

θ[3][3][36] = 0
i=18: A0

θ[3][2][63] = 0 i=20: A0
θ[3][3][42] = 0

i=56: A0
θ[3][3][14] = 0 i=62: A0

θ[3][3][20] = 0



Indeed, the second case can be processed in a simple way. After the candidates
are determined, if a contradiction in the second case is detected, it implies that
two ordinary variables multiplies with each other in the first round. For example,
supposing A0

θ[3][0][t] is imposed a condition and A[3][0][t] = A[3][1][t] is chosen
as a candidate, it implies a variables set in A[2][4] or A[4][1] is chosen as a
candidate, which will multiply with the variable set to A[3][0][t] after the first
round. This can be seen from the π ◦ ρ operation in Figure 2. Thus, the second
case is equivalent to the case that two ordinary cube variables multiply with
each other in the first round. Benefiting from this new property, we do not have
to process the second bad case and only need concentrate on the relation of the
candidates in the first round as well as the contradiction caused by conditions.

4.3 Deducing Contradictions

The contradictions of candidates are deduced from two cases. The first case is
that variables multiply with each other in the first round. The second case is that
there is contradiction of conditions. The contradictions deduced are displayed
in Table 3. In this table, vi{vj0 , ..., vjn} means vi can not be chosen with any of
{vj0 , ..., vjn} as the final candidates at the same time. We count the times that
each variable appears in these contradictions and do not choose the one which
appears more than one time as marked in red and blue. However, although
some variables appear two times as marked in green in this table, we can still
choose them. Therefore, for the obtained contradictions, at most 28 variables
can be derived. Moreover, there are 56 fully free variables, i.e. there are no
contradictions on them. Actually, these contradictions can be trivially converted
into inequalities with MILP method and solved with a solver as well.

Table 3. Contradictions of candidates

v1{v70} v2{v54, v63} v3{v19} v5{v59} v7{v62}
v8{v12, v53, v66} v11{v77} v12{v79} v13{v80} v15{v84}
v16{v85} v17{v86, v101} v20{v104} v22{v44} v27{v46}
v29{v47} v34{v52} v37{v41} v41{v57, v91} v43{v74}
v45{v63, v77} v46{v65} v48{v67} v49{v82} v50{v84}

Observe that we consider the third column under three cases, which will cause
two problems. Specifically, if A[2][0][t] = A[2][1][t] + c, A[2][0][t] = A[2][2][t] + c
and A[2][1][t] = A[2][2][t]+c are chosen simultaneously, only two variables rather
than three variables can be obtained. In this case, we should change the variables
as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c. This is due to that
the ordinary cube variables are set in the CP kernel. According to Table 2, there
are 8 possible values for t and they are {1, 14, 15, 20, 41, 52, 61, 62}. Therefore, for
the worst case, we can finally obtain 28+56-8=76 ordinary cube variables, which
is much larger than the required number (63) to mount key-recovery attack on
7-round Keccak-MAC-384.



On the other hand, if two of A[2][0][t] = A[2][1][t] + c, A[2][0][t] = A[2][2][t] +
c, A[2][1][t] = A[2][2][t] + c are chosen simultaneously, we should change the
variables as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c.

One choice of the 64-dimensional cube variables to establish the conditional
cube tester is displayed in Table 4.

Table 4. One choice of ordinary cube variables for Keccak-MAC-384

Free ordinary cube variables v4, v6, v9, v10, v14, v18, v21, v23, v24, v25,
(56-6=50 in total) v26, v28, v30, v31, v32, v33, v35, v36, v38, v39,

v40, v42, v51, v55, v56, v58, v60, v61, v64, v68,
v69, v71, v72, v73, v75, v76, v78, v81, v83, v87,
v88, v89, v90, v92, v93, v94, v95, v96, v97, v98,
v99, v100, v102, v103, v105, v106.
{v21, v72, v93}, {v24, v75, v95}, {v25, v76, v96}
{v26, v78, v99}, {v35, v89, v102} and {v38, v92, v106}
provide two variables respectively.

Ordinary cube variables v1, v54, v63, v3, v5, v7, v53, v66, v11, v79,
derived from contradictions v13, v15, v16
(13 in total)

Conditional cube variable v0
Key-dependent conditions A0

θ[1][4][60] = 1, A0
θ[1][0][5] = 1.

Key-independent conditions for v0 A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0.

Other key-independent conditions Refer to Table 3 according to the chosen variables.
for ordinary cube variables

5 Finding Ordinary Cube Variables for Keccak-MAC-512

Similarly, we discovered 32 candidates for ordinary cube variables as displayed
in Table 5. The corresponding contradictions are as follows.

v2{v24}, v7{v26}, v9{v27}, v14{v32}, v17{v21}.

Therefore, there will be 32-5=27 possible ordinary cube variables in total if
the ordinary cube variables are set only in the CP kernel. As a result, we can
not mount key-recovery attack on 6-round Keccak-MAC-512, which requires 31
ordinary cube variables if only v0 is chosen to be the conditional cube variable.

Based on [12], the variables which multiply with v0 only in the second round
can be leveraged as well. For an intuitive example, suppose one variable vx0

multiplies with v0 only in the second round and the multiplying bit position is
p0. If another variable vx1

multiplies with v0 only in the second round and the
multiplying bit position is p0 as well, then setting vx0

= vx1
will cause the already

filtered two variables become one possible variable. Then, the goal becomes how
to find these possible variables.



Table 5. Candidates for Keccak-MAC-512, where c is an adjustable constant
over GF(2) for each variable.

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63

Variable v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3]1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57

Variable v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32

Suppose A0
θ[i][j][k] contains a variable, then after χ operation, three bits will

contain this variable. Based on the definition of χ operation, among the three
bits, one bit will always contain this variable and the other two bits contains
this variable depending on the conditions. We classify the three bits into three
types.

Type-1: It always contains this variable.

Type-2: It contains this variable depending on a key-independent bit condition.

Type-3: It contains this variable depending on a key-dependent bit condition.

Then, we trace how the three bits propagates to the second round with the
tracing algorithm. Specifically, we trace the Type-1 bit and record the influenced
bits of A1

π multiplying with v0 in the second round. For the Type-2 and Type-
3 bits, we process in the same way. The recorded bits for Type-1, Type-2
and Type-3 are defined as core bits, independent-key bits and key-dependent
bits. Since our focus is the minimal independent-key conditions, once the key-
dependent bits are detected, the corresponding variable should not be chosen as
a candidate.

With the above method, we reconsider the filtered ordinary cube variables
set in the CP kernel. Besides, the variables set to a single bit are also considered.
The final result obtained is displayed in Table 6.

For a better understanding of this table, we take the variable A[3][1][8] as
instance. For the first column, it means A[3][1][8] is set to be a variable. For
the second column, it means 5 bits of A1

π will multiply with v0 only in the
second round. For the third column, {656,1003} means the two bits of A1

π, i.e.
A1
π[0][2][16] and A1

π[0][3][43], will multiply with v0 only in the second round
depending on the same key-independent bit condition. The last column means
A[3][1][8] can not be chosen as a variable with any of v1 and v31 in Table 5
simultaneously.



According to Table 6, at most three more possible ordinary cube variables
can be obtained. One choice is as follows:

A[3][0][58] = A[3][1][58] = A[2][0][24] = A[2][1][24] = ve0 ,

A[3][0][61] = ve1 , A[3][1][61] = ve2 ,

A[2][0][26] = A[2][1][26] = ve3 , ve3 = ve2 + ve1

A[2][0][46] = A[2][1][46] = ve2 .

Condition : A0
θ[3][3][20] = 0, A0

θ[3][4][21] = 0, A0
θ[3][1][53] = 0.

According to Table 6, adding A[2][0][37] = A[2][1][37] = ve2 to the above
variables and converting the bit condition A0

θ[3][1][53] = 0 into A0
θ[3][1][53] = 1 is

also possible. However, it can not help improve the number of possible variables.
In fact, there are many interesting cases. For example, if A[3][0][60] = A[3][1][60]
does not multiply with v16 in the first round, we can obtain one more candidate.
For the third row, if {652,1109} does not depend on the same condition, then
we can add one key-independent bit condition to prevent the propagation to the
652-th bit and another key-independent bit condition to allow the propagation
to the 1109-th bit of A1

π.
Then we test whether vei (0 ≤ i ≤ 3) multiplies with each other in the first

round and check whether the three bit conditions to slow down the propagation
of ve1 and ve2 are contradict with the conditions in Table 5. It is shown that
the three variables are all valid. Therefore, we can obtain at most 32-5+3=30
ordinary cube variables without key-dependent bit conditions. It reveals in a
way why [12] can only discovered the same number of such ordinary variables
with a solver. However, to mount key-recovery attack on 6-round Keccak-MAC-
512, 31 ordinary cube variables are necessary. Thus, we try to search ordinary
cube variables set in the CP kernel with only one key-dependent bit condition,
which satisfy the required relation with v0 and the chosen 32+4=36 candidates
for ordinary cube variables. Our searching result is displayed in Table 7. Thus,
there are many possible choices for 31 ordinary cube variables, i.e. at least 25 ×
12. The verification can be found at https://github.com/Crypt-CNS/Keccak_
ConditionalCubeAttack.git.

6 Recovering the Key

In this section, a new slightly improved way to recover 128-bit key for Keccak-
MAC is presented by removing redundant iterations of conditional cube tester.
In [8], 64 iterations in z-axis of the conditional cube tester were used to recover
the 128-bit key for Keccak-MAC-256. For each iteration, it costs 264+2 = 266 to
recover 2-bit key. Observe that once there are only a few key bits to be recovered,
there is no need to iterate the conditional cube tester since each iteration is costly
and only 2 bits are recovered.

Taking Keccak-MAC-128/256 for instance, for the 64-dimensional cube vari-
able [8], after 31 iterations in z-axis of the conditional cube tester, 62 bits of key
can be recovered. Then, the remaining 66 bits can be recovered by brute force.

https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git
https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git


Table 6. Possible candidates for Keccak-MAC-512

Possible Variables Core Bits Key-independent Contradictions
Bits

A[2][0][4] = A[2][1][4] 1540

A[2][0][5] = A[2][1][5] 1109 {652,1109}
A[2][0][9] = A[2][1][9] 848,467 {656,1003}

A[2][0][13] = A[2][1][13] 652,1109

A[2][0][16] = A[2][1][16] 1472 515 v25
A[2][0][24] = A[2][1][24] 515

A[2][0][26] = A[2][1][26] 665

A[2][0][29] = A[2][1][29] 71,1032 241

A[2][0][33] = A[2][1][33] 491 v29
A[2][0][35] = A[2][1][35] 1131,42 1242

A[2][0][37] = A[2][1][37] 1040

A[2][0][46] = A[2][1][46] 903 1040

A[2][0][51] = A[2][1][51] 767,1160

A[2][0][54] = A[2][1][54] 1510

A[2][0][57] = A[2][1][57] 170 205

A[2][0][60] = A[2][1][60] 1280 1540 v20
A[3][0][41] = A[3][1][41] 113

A[3][0][43] = A[3][1][43] 848

A[3][0][50] = A[3][1][50] 42 v12
A[3][0][58] = A[3][1][58] 515

A[3][0][60] = A[3][1][60] 665 v16
A[3][0][61] = A[3][1][61] 903

A[3][1][8] 170,848,467,1382,1003 {656,1003},{903},{1237} v1, v31
A[3][0][32] 491,903,1382 {13},{848},{775} v29
A[3][0][61] 665 {42},{1348}
A[3][1][61] 903,665 {42},{1348}

Table 7. Candidates for Keccak-MAC-512 with one key-dependent bit condition

Variable Conditions

A[2][0][11] = A[2][1][11] A0
θ[1][4][7] = 1

A[2][0][19] = A[2][1][19] A0
θ[1][4][15] = 1

A[2][0][21] = A[2][1][21] A0
θ[1][0][26] = 1, A0

θ[3][2][2] = 0

A[2][0][22] = A[2][1][22] A0
θ[1][0][27] = 1

A[2][0][30] = A[2][1][30] A0
θ[3][1][37] = 0, A0

θ[1][0][35] = 1

A[2][0][34] = A[2][1][34] A0
θ[1][0][39] = 1, A0

θ[3][2][15] = 0

A[2][0][44] = A[2][1][44] A0
θ[3][1][51] = 0, A0

θ[1][0][49] = 1

A[2][0][56] = A[2][1][56] A0
θ[1][4][52] = 1, A0

θ[3][1][63] = 0

A[3][0][12] = A[3][1][12] A0
θ[4][1][20] = 0

A[3][0][20] = A[3][1][20] A0
θ[4][2][36] = 0

A[3][0][29] = A[3][1][29] A0
θ[2][4][60] = 1

A[3][0][34] = A[3][1][34] A0
θ[2][4][1] = 1



Therefore, the time complexity is improved to 266 × 31 + 266 = 271 from 272.
Similarly, for the 64-dimensional cube variables in Table 4, we can recover the
128-bit key for 7-round Keccak-MAC-384 with time complexity is 271.

For the conditional cube attack on 6-round Keccak-MAC-512, we choose
A[2][0][11] = A[2][1][11] in Table 7 as the ordinary cube variable with one key-
dependent bit condition A0

θ[1][4][7] = 1, while A[2][0][19] = A[2][1][19] is chosen
in [12]. For our choice, only 31 iterations in z-axis is enough. Then, 3× 31 = 93
bits can be recovered with time complexity 232+3×31 = 235×31. The remaining
128− 93 = 35 bits can be recovered by brute force. The order to recover 93 bits
of key with conditional cube tester is shown in Table 8. Therefore, the total
time complexity becomes 235 × 31 + 235 = 240. However, the time complexity
is estimated as d 1283 e × 22

5+3 = d 1283 e × 235 = 240.4 in [12], which implies 64
iterations of the conditional cube tester are used to recover the 128-bit key.

Table 8. The order to recover 93 bits of key with conditional cube tester

(k0, k53, k62 + k126), (k1, k54, k63 + k127), (k2, k55, k0 + k64), (k3, k56, k1 + k65),
(k4, k57, k2 + k66), (k5, k58, k3 + k67), (k6, k59, k4 + k68), (k7, k60, k5 + k69),
(k8, k61, k6 + k70), (k9, k62, k7 + k71), (k10, k63, k8 + k72), (k22, k11, k20 + k84),
(k23, k12, k21 + k85), (k24, k13, k22 + k86), (k25, k14, k23 + k87), (k26, k15, k24 + k88),
(k27, k16, k25 + k89), (k28, k17, k26 + k90), (k29, k18, k27 + k91), (k30, k19, k28 + k92),
(k31, k20, k29 + k93), (k32, k21, k30 + k94), (k44, k33, k42 + k106), (k45, k34, k43 + k107),
(k46, k35, k44 + k108), (k47, k36, k45 + k109), (k48, k37, k46 + k110), (k49, k38, k47 + k111),
(k50, k39, k48 + k112), (k51, k40, k49 + k113), (k52, k41, k50 + k114).

7 Comparison with Previous Work

Our work is much based on [8]. However, Huang et al. did not consider the
potentially useful key-independent bit conditions to slow down the propagation
of ordinary cube variables [8].

As for [9], it seems that the key-independent bit conditions have been con-
sidered. However, it is strange that Li et al. found 63 ordinary cube variables
with 6 key-dependent bit conditions for Keccak-MAC-384, while we can find
much more ordinary cube variables without key-dependent bit conditions, i.e. at
least 76 variables. Besides, Li et al. only found 25 ordinary cube variables set in
the CP kernel for Keccak-MAC-512, while we can find 32-5=27 ordinary cube
variables set in the CP kernel. Therefore, we guess that the key-independent bit
conditions were not fully leveraged in [9].

As for [12], minimum key-dependent bit conditions is considered in the model.
In that paper, one instance of 31 ordinary cube variables for Keccak-MAC-
512 was presented, which is almost the same with what we found. However, it
is strange that there are 18 key-independent bit conditions to slow down the
propagation of the ordinary cube variables. With our approach, there are at



most 10+3+1=14 key-independent bit conditions for ordinary cube variables.
If we choose the same cube variables as [12], only 9+3=12 key-independent bit
conditions are sufficient. Indeed, we can reach the minimum key-independent bit
conditions, which is 8+3=11. Thus, we guess the redundancy in key-independent
bit conditions are not well processed in the modeling in [12].

In addition, a new slightly improved approach to recover the 128-bit key
are introduced. This is based on the observation that many iterations of the
conditional cube tester are costly once a few bits of key are left. Consequently,
we improve the conditional cube attack on 7-round Keccak-MAC-128/256/384
and 6-round Keccak-MAC-512.

8 Conclusion

Inspired from greedy algorithm, we firstly determine some potential ordinary
cube variable by making full use of the key-independent bit conditions. Then,
we further filter these candidates by considering their relations after the first
round with an efficient approach. In this way, no modeling nor usage of a solver
are needed, while sufficient ordinary cube variables can be discovered to establish
the conditional cube tester. Combined with the new slightly improved way to
recover the key, the time complexity of the conditional cube attack on 7-round
Keccak-MAC-128/256/384 and 6-round Keccak-MAC-512 are improved to 271

and 240 respectively.

References

1. Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and trivium. In Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February
22-25, 2009, Revised Selected Papers, pages 1–22, 2009.

2. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The keccak
reference, 2011. http://keccak.noekeon.org.

3. Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. Milp-aided
cube-attack-like cryptanalysis on keccak keyed modes. Cryptology ePrint Archive,
Report 2018/075, 2018. https://eprint.iacr.org/2018/075.

4. Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on keccak-224 and
keccak-256. In Fast Software Encryption - 19th International Workshop, FSE
2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, pages
442–461, 2012.

5. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal S-
traus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced kec-
cak sponge function. In Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 733–761,
2015.

6. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomial-
s. In Advances in Cryptology - EUROCRYPT 2009, 28th Annual International

http://keccak.noekeon.org
https://eprint.iacr.org/2018/075


Conference on the Theory and Applications of Cryptographic Techniques, Cologne,
Germany, April 26-30, 2009. Proceedings, pages 278–299, 2009.

7. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to crypt-
analysis of round-reduced keccak. In Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
pages 249–274, 2016.

8. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.
Conditional cube attack on reduced-round keccak sponge function. In Advances in
Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II, pages 259–288, 2017.

9. Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved conditional
cube attacks on keccak keyed modes with MILP method. In Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Hong Kong, China, December 3-7,
2017, Proceedings, Part I, pages 99–127, 2017.

10. Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New collision attacks on
round-reduced keccak. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III, pages
216–243, 2017.

11. Ling Song and Jian Guo. Cube-attack-like cryptanalysis of round-reduced keccak
using milp. Cryptology ePrint Archive, Report 2018/810, 2018. https://eprint.
iacr.org/2018/810.

12. Ling Song, Jian Guo, Danping Shi, and San Ling. New milp modeling: Improved
conditional cube attacks to keccak-based constructions. Cryptology ePrint Archive,
Report 2017/1030, 2017. https://eprint.iacr.org/2017/1030.

13. Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Applications
to collision attacks on round-reduced keccak. In Advances in Cryptology - CRYP-
TO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, pages 428–451, 2017.

14. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Advances in Cryptology - CRYPTO 2005: 25th Annual Internation-
al Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005,
Proceedings, pages 17–36, 2005.

15. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash function-
s. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, pages 19–35, 2005.

16. Chen-Dong Ye and Tian Tian. New insights into divide-and-conquer attacks on
the round-reduced keccak-mac. Cryptology ePrint Archive, Report 2018/059, 2018.
https://eprint.iacr.org/2018/059.

https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2018/810
https://eprint.iacr.org/2017/1030
https://eprint.iacr.org/2018/059

	Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm
	Fukang Liu, Zhenfu Cao, and Gaoli Wang

