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Abstract. We present threshold ring multi-signatures (thring signatures) for collabo-
rative computation of ring signatures, discuss a game of existential forgery for thring
signatures, and discuss the uses of thring signatures in digital currencies, includ-
ing spender-ambiguous cross-chain atomic swaps for confidential amounts without
a trusted set-up. We present an implementation of thring signatures inspired by
the works of [13], [20], [14], [1], [18], [15] we call linkable spontaneous threshold
anonymous group (LSTAG) signatures, and we prove the implementation existentially
unforgeable.
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1 Introduction
Cryptocurrencies and e-cash schemes critically rely upon unforgeable digital signatures, and
many use cases exist for threshold signatures in these settings, ranging from multi-factor
authentication in transaction approval to cross-chain atomic swaps. The idea is simple:
a group of collaborating users decide upon a threshold and some members of the group
can collaborate to compute signatures just so long as more group members agree to a
computation than the threshold. Upon inception, Bitcoin used ECDSA on secp256k1 for
signatures, but this is by no means the only option available to cryptocurrency engineers.
More recently, Schnorr signatures [22] have gained popularity and functionality, including
threshold multi-signatures as presented in [15], and Okamoto signatures [19] have also
been investigated for use in multi-signatures in cryptocurrencies [10]. Other options, like
ring signatures [13] or zerocoin-style accumulators [16] allow for signer-ambiguous message
authentication, where verifiers can check that a member of an anonymity set authenticates
a message, and yet have a negligible advantage in determining which member.

In the cryptocurrency setting, signer-ambiguous message authentication is necessary
for spender ambiguity. We interpret this ambiguity as a property regarding plausible
deniability in the history of transactions: financial systems employing these options allow
for publicly verifiable ledgers yet allow users the ability to at least plausibly deny their
involvement in any one transaction (or some small set of them). It is therefore natural
to seek threshold extensions to ambiguous message authentication like ring signatures.
These ring signatures can also be exploited to construct ring confidential transactions
in a digital currency. Multi-signature functionality in a digital currency also allows, for
example, cross-chain atomic swaps. Hence, a thresholdized ring signature scheme can
allow for spender-ambiguous cross-chain atomic swaps for confidential amounts without a
trusted set-up.

We refer to thresholdized ring signatures as thring signatures. Previous proposals
for thring signatures (e.g. [9], [12], [23]) are leaky (They reveal properties of the signing
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coalition such as the number of signers, or even publish the list of signing public keys with
signatures), or use key computations akin to those presented in [3], which are vulnerable
to rogue key attacks. For these reasons, we find these proposals to be inappropriate for
use in privacy-focused digital currencies.

We construct a thring signature implementation using a Musig-style approach applied to
the linkable spontaneous anonymous group (LSAG) signatures of [13], taking into account
the modifications presented in [1] and [18] intended for use in digital currency applications.
The Musig approach from [15] aggregates keys with an approach first proposed in [20]
that is resistant to rogue-key attacks. As is usual for multisignature schemes, we replace
the random data for use in signing with sums of data selected by participants, which is
revealed in a commit-and-reveal phase. Lastly, like the Musig approach, we include signing
keys in signature challenge computation which prevents oracle queries in the proof of
existential unforgeability from taking place in a bad order.

1.1 Our contribution
We present an LSTAG signature scheme, which resembles the Musig multi-signatures
from [15], and is a thresholdized version of LSAG signatures. We present a definition of
existential unforgeability in the ring signature setting and prove the scheme secure under
this definition. We also make remarks on the difference between our scheme and ostensible
applications for cryptocurrency purposes.

The scheme we present is n-of-n but can be extended to m-of-n threshold schemes
using standard techniques, and can be extended to a multi-layered scheme for use in
ring confidential transactions. The scheme is aggregate-keyed, in the sense that signature
verification does not require knowledge of the signing threshold. Signature sizes are not
dependent upon the number of colluding signers. The security proof is under the plain
public key model. We use the same three-step process of Musig, and verification of the
signatures proceeds identically to usual LSAG signatures.

In Section 2, we explain our notation, assumptions, and other pre-requisites. In Section
3, we loosely explain how LSAG signatures presently work in Monero, how to apply the
Musig thresholdizing heuristic to them to obtain LSTAGs, and applications of LSTAGs for
use in ring confidential transactions. In Section 4, we define LSTAG signatures, present
an implementation example. In Section A, we define an unforgeability game for LSTAG
signatures, prove the implementation from Section 4 is secure under this definition. We also
discuss linkability, exculpability, signer ambiguity, and key aggregation indistinguishability.

1.2 Related works and challenges
In [13], LSAG signatures were first described; modifications were suggested in [1]. In
[14], confidential transactions for use in digital currencies were first described, and in
[18], ring signature extensions of confidential transactions using a key-vector extension of
LSAG signatures called multi-layered linkable spontaneous anonymous group (MLSAG)
signatures were first described. We generally use the approach from [3] for computing
multi-signatures, with the Musig-style key aggregation from [20] and the commit-and-reveal
approach of [15]. Our unforgeability proof, like that of [15], uses a double application of
the rewind-on-success forking method (ostensibly first presented in [13]).

Other multi-signature techniques, especially in the pairings- and learning-with-errors
based worlds, are available. See, for example, [8], a novel and quite general fully ho-
momorphic thresholdizing set-up using only one round of communication is described
in the learning-with-errors environment, leading to fully homomorphic threshold signa-
tures and encryption. More recently, [7] uses a pairings-based setting to provide compact
multi-signatures with extremely valuable properties.
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Note that the thresholdizing heuristic described in [3] presented a general multi-
signature scheme in the plain public key model, but also presented a detailed discussion of
the knowledge-of-secret-key (KOSK) assumption. It is worth noting that there are some
problems with practically and securely implementing schemes that are proven secure under
the KOSK setting using proofs of possession of secret keys unless special care is taken
(see, for example, [21]). For this reason, we avoid the KOSK assumption, although the
security proofs for schemes such as ours are dramatically simpler in the KOSK setting with
proofs of possession replacing the certificate authority. In [20], the KOSK-free method of
aggregating a shared multi-signature public key we use here was presented which is resistant
to rogue key attacks (albeit in a pairings-based setting). An early version of Musig used a
single round of communication, which was later modified to include a commit-and-reveal
stage to signing. Indeed, in [10] it is demonstrated that it is very unlikely that a single
round of communication in a Musig-like signature scheme can be proven secure under the
discrete logarithm hardness assumption.

For use in digital currency applications in ring confidential transactions, these thring
signatures must be further extended. For example, in applications to digital currencies
employing (some variant of) the Cryptonote protocol such as Monero, implementation
must account for keypair vectors including a view key in addition to a spend/signing key,
and must account for one-time key computations. Proving the security of our scheme under
these extensions is beyond the scope of this document. For more detailed formalizations of
ring confidential transactions and thring signatures, see for example [11].

1.3 Special thanks
We want to specially thank the members of the Monero community who used the
GetMonero.org Community Forum Funding System to support the Monero Research
Lab. Readers may also regard this as a statement of conflict of interest, since our funding
is denominated in Monero and provided directly by members of the Monero community by
the Forum Funding System. We also wish to extend particular thanks to Andrew Poelstra
and Yannick Seurin, and many others, for some extremely helpful comments.

2 Notation and assumptions
We generally use calligraphic font to denote PPT algorithms and oracles: A,A′,A′′,B
are PPT algorithms, H is a random oracle, SO is a signing oracle. We often grant an
algorithm oracle access, which we denote with a superscript: ASO means A has oracle
access to SO. We shall often leave the superscripts implicit for clarity, unless there is risk
of confusion. We use teletype font to describe the inputs and outputs of algorithms, or
as the names of special algorithms from a cryptographic scheme: inpA is the input for
A, outA is the output, Sign is the signing algorithm in our implementation, and so on.
Algorithms often come with a distinguished failure symbol (or a set of them) which we
denote ⊥: ⊥A is the failure symbol of A, ⊥Sign is the failure symbol of Sign, and so on.

We use miniscule english letters and greek letters for integers: n, r, q, `, i, j, k, α, η are
all in N. For any r ∈ N = {1, 2, . . .}, we denote the set of r elements {1, 2, . . . , r} with
[r]. We use underlines to denote vectors, ordered lists, sequences, and sets indexed by
well-ordered indexing sets. For example, for an unordered list of independent random
oracles H indexed by some arbitrary finite set Λ with n = |Λ| elements, we can harmlessly
re-index and assume Λ = [n] and write H = {Hi}i∈[n].

For any n > 1, we denote Z/nZ with Zn. We assume a set-up phase is executed with a
security parameter η > 1 before beginning, resulting in some (p,G, G,H, φ,Φ), namely a
cyclic group G of order p with generator G such that elements from Zp and G admit η-bit
representations, a sequence H of cryptographic hash functions, and two key aggregation
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functions φ,Φ. We say an element of G is a public key, which we denote these throughout
this document with majuscule english letters. For example, A,B,C, T, P,X are public
keys, and P = {P`}`∈[r] denotes a sequence of r public keys. We say such a sequence is a
ring if it is to be used as input for a ring signature. For computing ring signatures with
r ∈ N, r > 1 ring members, we allow indices from [r] to “wrap around” by identifying
the ring index r + 1 with the ring index 1. We only use this convention for ring member
indices, not for other indices.

We say members of Zp are private keys. Since these are equivalence classes of integers,
we also use miniscule english letters to denote these private keys, but we tend to use
different sets of letters than for integers: a, b, t, p, and x are private keys from Zp. We say
that some X ∈ G is a public key associated with some private key x ∈ Zp if X = xG for
the generator G specified above, and we match letters: the public key associated with the
private key a is A = aG, the public key associated with the private key b is B = bG, and
so on. For a list of private keys, say x = (x1, . . . , xn), we write the list of corresponding
public keys as X = (X1, . . . , Xn) where each Xi = xiG. We denote this X = xG at the
risk of abusing notation.

We use the convention that φ(x, {X}) = x and Φ({X}) = X. Here, Φ takes as input
a non-empty multiset X = (X1, . . . , Xn) of public keys and produces as output a shared
public key Xsh ← Φ(X), and φ takes as input a private key xi with a non-empty multiset
X of public keys (such that Xi = xiG in X at least once) and produces as output a
coefficient βi = φ(xi, X). Users set their private share as x∗i := βixi = φ(xi, X)xi. We say
Xsh is related to or a child of the keys in X and we use

Φ(X) :=
∑
i∈[n]

βiXi =
∑
i

x∗iG = Xsh.

We specify H, six arbitrary-length-input, η-bit-output cryptographic hash functions
with independent outputs

Hki : {0, 1}∗ → G Hcom : {0, 1}∗ → {0, 1}η Hagg : {0, 1}∗ → Zp

Hsig : {0, 1}∗ → Zp Hmsg : {0, 1}∗ → Zp Hsess : {0, 1}∗ → Zp

under the random oracle model. We denote concatenation of bitstrings with the symbol ||.
Since elements of Zp can be described with η bits, we may as well take Hagg, Hsig, Hcom,
Hmsg, and Hsess to all five have the same codomain. This way, for implementation purposes,
these hash functions can be realized with a single hash function Hsc : {0, 1}∗ → Zp using
domain separation:

Hcom(x) :=Hsc(000 || x)
Hagg(x) :=Hsc(001 || x)
Hsig(x) :=Hsc(010 || x)
Hmsg(x) :=Hsc(011 || x)
Hsess(x) :=Hsc(111 || x)

This allows us to only require two hash functions for implementation, Hki and Hsc. Also,
we only use Hsess in an early example; our implementation could use just the first four
Hsc variants and use only two bits of prefixes. Note that although these functions will
each have η-bit outputs, their effective entropy is actually somewhat lower due to this
domain separation.

Of course, if Hki can be factored into some Hki = µG · H∗ki for some H∗ki : {0, 1}∗ → Zp

(where µG : Zp → G is the canonical hard-to-invert homomorphism defined by mapping
x 7→ xG), then whoever knows this factorization of Hki can compute the discrete logarithm
of outputs of Hki, which is a highly undesirable property. We assume no such factorization
is easily computable.
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3 Motivation of scheme
In this section, we describe the motivation behind our thring signature scheme. We
begin by describing, loosely, how Back-style LSAG signatures are computed using the
particular CryptoNote-style key spaces. We then describe a thresholdizing heuristic for
use in constructing our implementation, and then we make some brief comments on the
application of these signatures in Monero.

3.1 Back-style LSAG signatures
In this section we provide a brief look at how signatures work in Cryptonote-styled digital
currencies like Monero. The signatures in [13] use key images that are dependent upon
the ring of signers, making them inappropriate for linkability in this setting. In [1], a
modification was presented, which we summarize here. Our description makes use of four
cryptographic hash functions modeled as random oracles, Hsess, Hsig, Hki, and Hmsg.

Consider first the CryptoNote-styled key spaces of Monero. Users have user keypairs
(consisting of a view key and a spend key) and they sign with signing keypairs (consisting
of a transaction key and a session key [alternately, a one-time key or stealth key]). Session
keys are computed from user keypairs and transaction keys; ring signatures are computed
using the session keys. A generic keypair space is made available, K = Z2

p ×G2 and both
sorts of keypairs come from K.

A user keypair is denoted ((a, b), (A,B)) ∈ K and we say a is the private view key, b is
the private spend key, A is the public view key, and B is the public spend key. Honest users
select their private keys uniformly at random. A signing keypair is some ((t, p), (T, P )) ∈ K
and we say t is the private transaction key, p is the private session key, T is the public
transaction key, and P is the public session key. Honest users receive the public part
of their transaction key T from a sender. In Monero, we say a public signing key pair
(T, P ) with index i in some transaction is addressed to a public user key pair (A,B) if
P = Hsess(aT, i)G + B. Given T, a,B, i or t, A,B, i, ownership of a session key can be
easily tested: merely check if P −Hsess(aT, i) = B. Given T, a, b, i or given t, A, b, i, the
private session key can be easily computed: p = Hsess(aT, i) + b. In the sequel we “forget”
the transaction index i for clarity in our notation.

If Alice has a user key ((a, b), (A,B)) ∈ K, has previously received a message containing
some public signing keys (T, P ) addressed to (A,B), and Alice wishes to address some
keys to Bob (who has public user key (A′, B′)). Alice computes p, picks a new private
transaction key t′ ← Zp, and computes a new public session key P ′ := Hsess(t′A′)G+B′

for Bob. Alice then sends (T ′, P ′) to Bob in a message m, and produces a ring signature
σ on a modified message m∗ that contains m and some ring P such that P ∈ P . Alice
computes the ring signature in the following way.

Alice selects a message m ∈ {0, 1}∗, computes her one-time key image J = pHki(P ), and
selects a ring of public signing keys P = {P1, . . . Pr} such that, for a secret distinguished
index π, Pπ = P . Alice assembles a modified message m∗ = (m, P , J, T ′, P ′) and computes
M = H(m∗). For each ` = 1, . . . , r, the signer computes an elliptic curve point from the
`th ring member H` := Hki(P`). The signer selects a random secret scalar u $← Zp and
computes an initial temporary pair of points Lπ := uG, Rπ := uHπ. The signer computes
an initial commitment cπ+1 := Hsig(M,Lπ, Rπ). We shall later use the key prefixed variant
of this commitment, cπ+1 := Hsig(M,Pπ, Lπ, Rπ)

The signer proceeds through indices ` = π + 1, π + 2, . . . , r − 1, r, 1, 2, . . . , π − 1 by
selecting a random scalar s`, computing the next pair of points L` := s`G + c`P` and
R` := s`H` + c`J , and computes the next commitment c`+1 := Hsig(M,L`, R`) (or the
key-prefixed variant c`+1 := Hsig(M,P`, L`, R`)). Once all commitments c` have been
computed, the signer then computes sπ := u−cπp for the distinguished index π. σ = (c1, s)
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is the signature on m. Alice sends (m∗, σ) to Bob. We say the set of equations

c2 =Hsig(M, s1G+ c1P1, s1H1 + c1J) = Hsig(M,L1, R1)
c3 =Hsig(M,L2, R2)

...
cr =Hsig(M,Lr−1, Rr−1)
c1 =Hsig(M,Lr, Rr)

(or their key-prefixed variants) are the verification equations.
Upon receiving (m∗, σ), Bob parses m∗ = (m, P , J, (T ′, P ′)) and checks thatM = H(m∗).

Bob can easily test if P ′ − Hsess(a′T ′)G = B′ to see if he is the addressee for the keys.
Bob can also extract the private signing key by computing p′ = Hsess(a′T ′) + b′. This way,
Bob can perform the same procedure Alice does above to pass new signing keys to other
users. However, Bob may not be convinced the signature is genuine, so he verifies the
signature in the following way.

Given (m∗, σ), the verifier parses σ = (c1, s) and computes M = H(m∗). The verifier
computes each H` = Hki(P`). For each 1 ≤ ` ≤ r, the verifier finds L′` = s`G + c`P`,
R′` = s`H` + c`J . The verifier uses these to compute the (` + 1)th commitment c`+1 =
Hsig(M,L′`, R

′
`). After computing c = (c2, c3, . . . , cr, cr+1), the verifier identifies index r+1

with index 1 and checks that cr+1 = c1. If so, the verifier is convinced the signature is
genuine. A verifier can check whether two signatures are signed by the same key by simply
comparing key images.

3.2 Thresholdizing Back LSAG signatures with Musig-style aggrega-
tion

In this section, Alice and Bob wish to collaborate in constructing a 2-of-2 threshold version
of an LSAG signature to send a key to Charlene. Signatures are verified exactly as before
without any knowledge that they were constructed by a coalition rather than a single user.
We proceed similarly to how we did before, making changes according to the following
heuristics.

Keys are sums: Replace spend keys with linear combinations of spend key shares.

Signing data are sums: Replace the (random) signing data with sums.

Commit and reveal: Insert a commitment step before revealing the signing data.

Key-prefixing: Insert the ring member into each signature challenge.

In Musig, the key-aggregation function is φ(bi, (A,B)) := Hagg(Bi, (A,B)). Note that
computing φ(bi, (A,B)) does not require the secret bi. Alice picks a new private user key
(a1, b1), computes the public key A1 = a1G, B1 = b1G, and sends (a1, B1) to Bob by
secure side channel. Bob does the same by selecting (a2, b2) and sending (a2, B2) to Alice.
They compute a private shared view key ash = a1 + a2 and a public shared spend key

Bsh = Hagg(B1, (A,B))B1 +Hagg(B2, (A,B))B2 = β1B1 + β2B2.

Alice and Bob could, alternatively, compute the private shared view key ash using any
number of methods of computing a shared secret.

Alice and Bob receive a message m containing some public signing keys (T, P ) addressed
to (Ash, Bsh) so that P = Hsess(ashT )G+Bsh. Alice and Bob wish to pass this along to
Charlene, who has public user key (A′, B′), by ring multi-signing some message m′. Alice
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and Bob decide by side channel upon some ring P = (P1, . . . , Pr) and a secret index π
such that with Pπ = P . Alice and Bob compute by side channel the key image

J =

Hsess(ashT )︸ ︷︷ ︸
view

+ b1Hagg(B1, (A,B))︸ ︷︷ ︸
first participant

+ b2Hagg(B2, (A,B))︸ ︷︷ ︸
second participant

Hki(P ).

Alice and Bob also pick a new private transaction key t′ ← Zp (some member unilaterally
selects or it is decided upon collaboratively somehow, similarly to the shared view key).
Alice and Bob compute a new public session key for Charlene P ′ = Hsess(t′A′)G + B′.
Alice and Bob compute a basepoint for each ring member, H` = Hki(P`). Then Alice and
Bob execute the ring signing algorithm in the following steps.

Commit: Alice selects u1
$← Zp and Bob selects u2

$← Zp. Alice computes tempo-
rary pair of points (L1,π, R1,π) = (u1G, u1Hπ) and Bob computes temporary pair
of points (L2,π, R2,π) = (u2G, u2Hπ). Alice selects random secret scalars s(1) =
{s1,`}` 6=π and Bob selects random secret scalars s(2) = {s2,`}` 6=π. Alice com-
putes her partial key image J1 = b1Hagg(B1, (A,B))Hki(P ) and Bob computes
his partial key image J2 = b2Hagg(B2, (A,B))Hki(P ). Alice computes the com-
mitment com1 = Hcom(L1,π, R1,π, s

(1)) and Bob computes the commitment com2 =
Hcom(L2,π, R2,π, s

(2)). Alice sends Bob (J1, com1) and Bob sends Alice (J2, com2).

Reveal: After receiving (J2, com2), Alice sends (L1,π, R1,π, s
(1)) to Bob; after receiving

(J1, com1), Bob sends (L2,π, R2,π, s
(2)) to Alice. After receiving (L2,π, R2,π, s

(2)), Al-
ice checks that com2 = Hcom(L2,π, R2,π, s

(2)). If not, Alice outputs ⊥ and terminates.
After receiving (L1,π, R1,π, s

(1)), Bob checks that com1 = Hcom(L1,π, R1,π, s
(1)). If

not, Bob outputs ⊥ and terminates.

Pre-compute signature: Alice and Bob compute the total key image J = J1 + J2 +
Hsess(ashT ), assemble a modified message m∗ = (m, P , J, (T ′, P ′)), compute M =
H(m∗), compute the sums Lπ = L1,π + L2,π, Rπ = R1,π +R2,π, and s` = s1,` + s2,`
for each ` 6= π. Alice and Bob can then compute the sequential commitments
c`+1 := Hsig(M,P`, L`, R`), proceeding through indices ` = π + 1, π + 2, . . . , π − 1
with L` = s`G+c`P` and R` = s`H`+c`J . The partial signature σ̂ = (c1, {s`}`∈[r]\π)
can be stored until later.

Complete signature: Alice computes s1,π = u1−cπβ1b1. Bob computes s2,π = u2−cπβ2b2.
Alice sends s1,π to Bob and Bob sends s2,π to Alice. Either can compute sπ =
s1,π+s2,π and publish the completed signature σ = (c1, s) with the modified message
m∗.

Observe that signature challenges have the ring member P` in their pre-image (compare
to Section 3.1); this forces oracle queries to occur in a safe order in our security proofs.

4 Linkable thring signatures and an implementation
Definition 4.0.1. A Linkable Thring Signature is a quadruple of collaboratively computed
polynomial-time algorithms (KeyGen, Sign, Ver, Link). We neglect notation for the common
input η, the security parameter in our description:

1. KeyGen produces as output a new random x
$← Zp, computes X = xG, and outputs

outKeyGen = (x,X).
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2. Sign is a multi-party algorithm executed by participants with private keys x =
{xi}ni=1. Each participant uses their key xi as private input and all participants use
some shared input inpSign = (m, P , π) where m ∈ {0, 1}∗, P = {Pi}ri=1 is a ring of
public keys, and π is a secret index satisfying 1 ≤ π ≤ r. Sign outputs either a
distinguished failure symbol outSign = ⊥Sign to each participant or some outSign =
(m∗, σ) to each participant where σ is a ring signature and m∗ = (m, P , J, auxSign)
for a linkability tag J and some auxiliary data auxSign.

3. Ver takes as input some inpVer = (m∗, σ) and outputs a bit outVer = b ∈ {0, 1}.

4. Link takes as input some inpLink = (m∗1, σ1), (m∗2, σ2) and outputs a bit outLink =
b ∈ {0, 1}.

We include the auxiliary data in the modified message to allow, for example, packing
of a recipients’ keys into m∗, although we do not make use of aux directly.

Definition 4.0.2 (Correctness). For any m∗ ∈ {0, 1}∗ and any σ ∈ Z∗p, denote the event
that Ver(m∗, σ) = 1 as V (m∗, σ). For any ((m, P , π, x), (m∗, σ)), denote the event that
Sign(m, P , π, x) = (m∗, σ) and Pπ = Φ(X) with S ((m, P , π, x), (m∗, σ)). We say a linkable
thring signature scheme is correct when, by measuring the probability over all input
coins and all choices of hash functions, P [V (m∗, σ) | S ((m, P , π, x), (m∗, σ))] = 1 for any
(m, P , π, x).

Definition 4.0.3 (Linkability). For any pair of signatures, (m∗1, σ1), and (m∗2, σ2), de-
note the event that Link(m∗1, σ1,m

∗
2, σ2) = 1 as L(m∗1, σ1,m

∗
2, σ2). We define the sub-

event S′(m∗1, σ1,m
∗
2, σ2) ⊆ V (m∗1, σ1) ∩ V (m∗2, σ2) as the event that there exists some

x, some messages m1, m2, some rings P 1, P 2, and some indices π1, π2 satisfying both
Sign(m1, P 1, π1, x) = (m∗1, σ1) and Sign(m2, P 2, π2, x) = (m∗2, σ2). We say a linkable
thring signature scheme is linkable when, for any (m∗1, σ1,m

∗
2, σ2),

P [L(m∗1, σ1,m
∗
2, σ2) | S′(m∗1, σ1,m

∗
2, σ2)] = 1,

where this probability is measured over all participants’ coins and all choices of hash
functions.

Example 4.0.4 (LSTAGs). We present a linkable thring signature scheme inspired by the
LSAG signatures of [13]; we say this scheme is a linkable spontaneous threshold anonymous
group signature, or an LSTAG signature.

We aggregate keys using the Musig approach by setting Φ(X) =
∑
i∈[n] βiXi where

βi = φ(xi, X) = Hagg(Xi, X). To ensure each participant computes keys in a consistent
way, we assume users have, during some set-up phase, decided upon a canonical linear
ordering of keys in X such as a bit-by-bit little endian lexicographic ordering. The ith
member has a share of the private key x∗i = βixi = φ(xi, X)xi. The key image is computed
as is usual in Monero: for any private key x ∈ Zp, the key image is xHki(xG), so the key
image of Xsh is exactly

∑
i βixiHki(Xsh).

1. KeyGen selects some x ∈ Zp at random, computes X := xG, and outputs (x,X).

2. Sign is initiated by side channel when the group agrees upon a message m, decides
upon a ring P and a secret index π, pre-computes the key image basepoints for
each ring member, H` := Hki(P`), computes the key image J =

∑
j Jj =

∑
j x
∗
jHπ,

assembles the modified message m∗ = (m, P , J, aux), and computes M = Hmsg(m∗).
The remainder is run collaboratively:

Commit: Each signer, say with index j such that 1 ≤ j ≤ n, does the following:
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(a) Selects a random scalar uj . Compute the points Uj = ujG and Vj = ujHπ

and select random scalars sπ+1,j , sπ+2,j , . . . , sπ−1,j .
(b) Set datj := (Uj , Vj , {s`,j}` 6=π).
(c) Compute commitment comj = Hcom(datj).
(d) Send comj to all other signers.

Reveal: After receiving each comj from the rest of the coalition, each signer indexed
as before does the following:
(a) Send datj to all other signers.
(b) After all datj′ have been received, verify that Hcom(datj′) = comj′ for

each j 6= j′. If not all commitments open appropriately, output ⊥Sign and
terminate.

Offline signature pre-processing Each signer indexed as before does the following:
(a) Compute Lπ =

∑
j Uj , Rπ =

∑
j Vj .

(b) Compute each s` =
∑
j s`,j for each 1 ≤ ` ≤ r such that ` 6= π.

(c) For each ` = π, π + 1, . . . , π − 1 (where we re-assign overflow indices by
mapping r + 1 7→ 1, r + 2 7→ 2, and so on), compute the following.

c`+1 =Hsig(M,P`, L`, R`)
L`+1 =s`+1G+ c`+1P`+1

R`+1 =s`+1H`+1 + c`+1J

(d) Store the pre-processed signature (uj ,m∗, c1, cπ, {s`}` 6=π) for later.
Signature completion To finish signing with (uj ,m∗, c1, cπ, {s`}` 6=π), each signer

indexed as before does the following:
(a) Compute sπ,j = uj − cπx∗j .
(b) Send sπ,j to the other signers.
(c) After receiving all {sπ,j′}j 6=j′ , compute sπ =

∑
j sπ,j .

(d) Output (m∗, σ) where σ = (c1, s) where s = (s1, s2, . . . , sr).

3. Ver takes as input some (m∗, σ).

(a) Parse m∗ = (m, P , J, aux) and σ = (c1, s).
(b) For ` = 1, 2, . . . , r − 1, compute L` = s`G + c`P`, R` = s`H` + c`J , and

c`+1 = Hsig(M,P`, L`, R`).
(c) Compute c′1 = Hsig(M,Pr, Lr, Rr).
(d) Output 1 if c′1 = c1 and 0 otherwise.

4. Link operates just like a Back LSAG signature: check if key images J match.

5 Unforgeability and thring signatures
5.1 Defining a forgery
What, exactly, does it mean to be a forger, or to present a forgery? A forgery should be
some (m∗, σ) such that σ is not an output in the transcript of queries made by A to SO
and Ver(m∗, σ) = 1. However, this is not enough. Indeed, if none of the keys in P are
aggregated, a forgery of our scheme reduces to forgery of the underlying LSAG scheme;
without loss of generality, a successful forgery should have at least one aggregate key in P .
Additionally, even if some key is aggregate, the forger could simply place their own key
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in P along with the aggregate key. So, if the forger knows the discrete logarithm of any
public key in some ring P , then the forger can simply produce an honest signature with P ,
which cannot count as a forgery. Without loss of generality, all ring members must either
be an honest key (i.e. a discrete log challenge) or be a child of an honest key. Since the
most powerful adversary has corrupted all keys except one, we assume only one target
honest key Xh.

Hence, we modify the usual unforgeability game: given Xh and ring P , a forgery is only
successful if it comes equipped with evidence that every ring member is either Xh itself
or a child of Xh, and that P has least one child of Xh. The forger can simply produce
evidence of these relationships by presenting the aggregating sets

{
X(`)

}
`∈[r]

such that

Xh ∈ X(`) and P` = Φ(X(`)) for each 1 ≤ ` ≤ r. In the following, a forger is a PPT
algorithm A that takes as input some Xh and produces as output a distinguished failure
symbol ⊥A or a successful forgery outA = forg = (m∗, σ,

{
X(`)

}
`∈[r]

).

Definition 5.1.1 (Existential Unforgeability for LSTAGs). We say a PPT algorithm A
is a (t, ε, q, n)-forger if, within time at most t and with at most q oracle queries, A can
succeed at the following game with probability at least ε.

1. The challenger picks an honest key pair (xh, Xh)← KeyGen and sends the public key
Xh to A.

2. A can generate keys, can aggregate any group elements with Xh, and is granted
access to a signing oracle SO and the random oracles Hagg, Hsig, Hcom, Hmsg, and
Hki. A can perform any of these in any order, adaptively responding to previous
results.

3. A outputs some (m∗, σ,
{
X(`)

}r
`=1

).

4. A wins if all the following conditions are satisfied.

Correct: For each `, P` = Φ(X(`)).

Bounded: For each `, 1 ≤
∣∣∣X(`)

∣∣∣ ≤ n.
Honest parent: For each `, Xh ∈ X(`).

Aggregated: For some `,
∣∣∣X(`)

∣∣∣ ≥ 2 (so at least one key is aggregated).

Non-trivial: σ is not an output in the transcript between A and SO; and of course
Valid: Ver(m∗, σ) = 1.

While it seems not realistic for the adversary to present evidence of their forgery, we
note that if a forger is placed in a black box by some master algorithm, the key aggregation
queries made by the forger must be simulated by or also made by the master algorithm.
Hence, evidence of these relationships are extractable from the transcript resulting any
successful forgery.

5.2 Strategy for proving unforgeability
Suppose B is a meta-reduction of A that produces, for some fixed message m, four forged
signatures σ, σ′, σ′′, σ′′′ with rings P , P ′, P ′′, P ′′′ with family histories X =

{
X(`)

}
`∈[r]

,

X ′ =
{

(X(`))′
}
`∈[r′]

, X ′′ =
{

(X(`))′′
}
`∈[r′′]

, and X ′′′ =
{

(X(`))′′′
}
`∈[r′′′]

. Suppose
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furthermore that B can extract from the oracles made by A a distinguished index ` such
that

L` = L′`, L
′′
` = L′′′` , P` = P ′` , P

′′
` = P ′′′` .

Then B can compute the discrete logarithm of P` as (c` − c′`)−1(s′` − s`) and the discrete
logarithm of P ′′` as (c′′` − c′′′` )−1(s′′′` − s′′` ). However, the keys P` = P ′` are aggregated from
X and X ′, respectively. Due to this, we can write P` = P ′` = αXh + Z for some α and for
some Z using the key aggregation function Φ. Similarly P ′′` = P ′′′` and can be written as
α′Xh + Z ′ for some α′, Z ′.

If B can ensure that Z = Z ′ and α 6= α′, then P` − P ′′` = (α − α′)Xh and so B can
obtain the discrete logarithm of Xh:

xh = (α− α′)−1
(
s′` − s`
c` − c′`

− s′′′` − s′′`
c′′` − c′′′`

.

)
Hence, to demonstrate the absurdity of the existence of a forger A, it is sufficient to
demonstrate the existence of a meta-reduction that can produce four transcripts such
that the following is extractable from those transcripts: an index 1 ≤ `, some public keys
(P`, P ′` , P ′′` , P ′′′` , L`, L′`, L′′` , L′′′` , Z, Z ′), and some scalars (s`, s′`, s′′` , s′′′` , c`, c′`, c′′` , c′′′` , α, α′)
such that

L` =s`G+ c`P` L′` =s′`G+ c′`P
′
`

L′′` =s′′`G+ c′′`P
′′
` L′′′` =s′′′` G+ c′′′` P

′′′
`

L` =L′` L′′` =L′′′`
P` =P ′` P ′′` =P ′′′`
P` =αXh + Z P ′′` =α′Xh + Z ′

and such that c′′` 6= c′′′` , c` 6= c′`, and α 6= α′. We say this is the system of forgery-to-
discrete-log equations and inequalities.

We do this in Appendix A with careful construction of oracles and by forking twice:
the first time upon the very first signature verification query of the form H(M,P`, L`, R`),
ensuring that L` = L′` and L′′` = L′′′` , and the second time upon the computation of key
aggregation coefficients, ensuring that Z` = Z ′` = Z and α 6= α′.

6 Use and abuse of applications and implementations
In this section, we discuss some implementation considerations for thring signature schemes,
their extensions, and their applications in ring confidential transactions.

6.1 Danger in non-random or repeated signing
The protocol is dangerous if data is not randomly generated for each attempted signature
or if more than one signature per key is ever published. If the same signature data uj,π is
used by a participating member twice, they risk revealing their private keys: the equalities
s = u− cb∗ and s′ = u− c′b∗ can be used to compute b∗ = s−s′

c′−c . Hence, any non-random
method of selecting signing data should never be used. Similarly, two signatures with the
same session key should never be provided, as the discrete logarithm of the signing key
can be extracted.

6.2 Group property considerations
Also note that it is perfectly safe to use a group G with composite order instead of prime
order. However, we must restrict our choices of public key to a specific prime-order subgroup
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of G. Using the so-called Ed25519 curve (which is a twisted Edwards curve presented in [6]
that is birationally equivalent to the so-called Curve25519 curve presented in [5]), there are
some implementation risks in selecting a public key outside of the prime-order subgroup.

Indeed, the prime-order subgroup has cofactor 8, introducing the possibility of mal-
leability exploitations. To prevent these exploitations, all implementations with this curve
require checking that group elements for use as public keys lie on the prime order subgroup
by checking their order. Certainly any private key x ∈ Zp will have a corresponding public
key X = xG on this prime-order subgroup since G is a generator of that subgroup. On
the other hand, selecting a public key at random does not guarantee a discrete logarithm
pre-image with respect to G. We must modify the hash-to-point function Hki to have a
codomain equal to the prime-order subgroup. This means multiplying public keys without
corresponding private keys by the cofactor 8 when using the Ed25519 or Curve25519
curves.

6.3 View key extension and thring confidential transactions
Among other reasons, our thring signatures are not directly comparable to signatures
employed in digital currencies like the MLSAG signatures used in protocols like Cryptonote.
Indeed, Cryptonote user keys come in pairs with a view key and a spend key, and signatures
are computed with one-time keys derived from these. The thresholdizing heuristic described
in Section 3.2 extends naturally to a system with this one-time key extension, but our proofs
of security properties do not immediately apply to these extensions without some further
work.Establishing the unforgeability of an implementation of LSTAG thring signatures
using Cryptonote-styled one-time keys with a view key extension remains an open task.

One model that may be helpful in proving the unforgeability of a view key extension
of our implementation below is for collaborators to each receive a common shared secret
y = ash and use keys x = (x1, . . . , xn) to compute a shared key of the form Y + Φ(X).
Rogue-key or key cancellation attacks using this method may be mitigated by careful
construction of y. For example, in Cryptonote protocols, tampering with Y requires
tampering with the hash digest of a key from a Diffie-Hellman exchange.

Similarly, our heuristic also extends naturally to the MLSAG setting, but our security
proofs again do not immediately apply without some further work. We briefly describe ring
confidential transactions in Monero and a thresholdized extension to thring confidential
transactions.

MLSAG signatures are constructed from vectors of keys of the form (Hsess(aT )G +
B, PedCom(v, r)) where PedCom is a Pedersen commitment scheme, v is a transaction
amount, and r is a private amount-commitment key. MLSAG signatures, by construction,
are multisignatures since they use multiple keys to sign a message but they are not
collaboratively computed. They produce a signature size that is independent of the number
of signers, but MLSAG signatures still reveal the number of signing keys. With a list
of signing public keys P = (P1, . . . , Pn) interpreted as a vector, the signer (or signers)
randomly selects similar vectors from the blockchain to construct a ring of such key vectors
P̃ , packing P into the πth column for a secret π.

P̃ =


P1,1 P1,2 · · · P1,r
P2,1 P2,2 · · · P2,r
...

...
Pn,1 Pn,2 · · · Pn,r

 = (P 1, . . . , P r)

where each P ` = {Pj,`}j∈[n]. For each j = 1, 2, . . . , n and ` = 1, 2, . . . , r, with the
entry Pj,` in P̃ we compute Hj,` := Hki(Pj,`). For each component pj ∈ p, the signer
computes key image Jj = pjHki(pjG). The signer selects a vector of random scalars
u = (u1, . . . , un) ∈ Znp for the πth column and, for each ` 6= π, the signer selects a vector
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of random scalars s` = (s1,`, s2,`, . . . , sn,`). Now, for each signing key Pj,`, the signer
computes the pair of points and the commitment

Lj,` =sj,`G+ c`Pj,`, Rj,` =sj,`Hj,` + c`Jj , c`+1 =Hsig

(
M,
{

(Lj` , R
j
`)
}n
j=1

)
.

Once each commitment has been computed, the signer computes each sj,π = uj − cπpj
as usual, assembles sπ = (sj,π)j∈[n], and the MLSAG signature is then σ = (c1, (s`)`∈[r]),
which is verified similarly to LSAG signatures.

Initially, this scheme may seem to not be particularly ambiguous with respect to signer
identification. Anyone can discern that one of these columns contains all the signing keys.
That is to say, it is not possible that p2,2 and p1,1 may both be the true keys used in
this ring signature. Rather than a drawback, this is how Monero links signing keys with
transaction amounts. In Monero, the first row of keys in P̃ are signing keys, the second row
consists of the differences between Pedersen commitments to transaction input amounts
and output amounts. Signing with this matrix means both knowing the private signing
key for the special index and being able to open the amount commitment at that index to
zero.

To see how our thresholdizing heuristic extends naturally to the MLSAG setting, con-
sider the following. For a collaborating coalition of signers, presume that each participating
signer has a share of a key, which are aggregated in the Musig style, and each participant
contributes some random scalars to be summed for uj , sj,`, etc, in a commit-and-reveal
stage. Formally establishing the unforgeability of such an implementation of MLSTAG
thring confidential transactions using Cryptonote-styled one-time keys with a view key
extension also remains an open task. We leave the task of presenting more general formal
definitions and implementations of thring confidential transactions and their security
properties for future works, such as the upcoming work of [11].

6.3.1 Extending to m-of-n

Section 3.2 presents a simple 2-of-2 example, which extends naturally to n-of-n. With a
Diffie-Hellman exchange, we may extend the above approach to an (n− 1)-of-n threshold
signature scheme in the following way: participants share their Bj with each other and
compute pairwise shared secrets zi,j = Hagg(biBj). There are n(n−1)

2 distinct shared
secrets split across n parties such that any n − 1 members can regain all of the secrets.
Hence, an (n− 1)-of-n scheme may be implemented as an n(n−1)

2 -of-n(n−1)
2 scheme. More

general approaches for m-of-n are obviously available, and we go no further describing
them here.

6.4 Cross-chain, confidential, spender-ambiguous atomic swaps
Simple cross-chain atomic swaps using thring signatures are possible. If all goes well, the
swap goes like this: Alice sends x AliceCoins to the 2-of-2 key on the AliceCoin chain,
Bob sends y BobCoins to the 2-of-2 key on the BobCoin chain, and once both parties
are satisfied, they can collaborate to claim their funds. Of course, we cannot assume all
goes well; as described in [2], refund transactions allow for semi-honest parties to halt the
process in an adversarial environment. All that remains to complete a spender-ambiguous
model of the cross-chain atomic swaps from [2] for a digital currency using confidential
transactions is to formalize refund transaction capabilities for that currency (c.f. [17]).
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A Security
In this Appendix, we prove the following theorem based on the game of Definition 5.1.1.
In Appendix B, we discuss some other security properties of thring signatures and their
LSTAG implementation. In A.1 we detail the signing oracle of Definition 5.1.1 and its
simulation. In A.2, we review the rewind-on-success forking lemma. In A.3, we discuss the
first reduction of the forging adversary and establish some probability bounds. In A.4, we
explain our twice-forking approach, concluding the proof of the following theorem.

Theorem A.0.1. Let A be a (t, ε, q, n)-forger for some non-negligible ε. There exists some
t′ > 0 and an algorithm B that is a (t+ t′, ε′, q)-solver of the discrete logarithm problem
for some non-negligible ε′.

A.1 The signing oracle
In this section, we explain the signing oracle for use in the unforgeability game of Definition
5.1.1.

The signing oracle in the unforgeability game captures the situation where an adversary
A can persuade an honest party to sign some documents before attempting a forgery. In
the multisignature case, we must also capture the implications of a malicious A persuading
an honest party to collaborate to construct some multisignatures on similar documents.
Due to this collaboration, A has some control over signing data so SO must be interactive.
In an honest collaboration, A would also know which index π corresponds with the true
signer, so we allow the signing oracle to be queried with the special signing index π.
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Moreover, a reduction A′ of A must simulate interactions between A and any oracles, in
particular the signing oracle.
SO takes as input some inpSO = (m, P , π,

{
X(`)

}
`∈[r]

) where m ∈ {0, 1}∗ is a message,

P is a ring of public keys, π is a special index, and
{
X(`)

}
`∈[r]

is a a multi-set of multi-sets
of public keys. SO and A interact. SO outputs a distinguished failure symbol ⊥SO or A
successfully simulates collaborating with an honest party to obtain a multi-signature.

The Oracle: A queries SO with some
(
M,P , π,

{
X(`)

}
`∈[r]

)
.

1. SO checks if, for each `, P` = Φ(X(`)) and checks if Xh ∈ X(`) and checks that
at least one P` is aggregated. If not, SO outputs ⊥SO and terminates.

2. Otherwise, SO selects signing data dat1 = (U1, V1, {s1,`}` 6=π), computes the
commitment com1 ← Hcom(dat1) and send com1 to A.

3. After A responds with a set {comj}nj=2, SO sends dat1 to A.
4. After A responds with {datj}nj=2, SO checks that comj = Hcom(datj) for each
j. If not, SO outputs ⊥SO and terminates.

5. SO completes the off-line signature pre-processing stage, solves for sπ,j , and
sends sπ,j to A.

The symbol ⊥SO only indicates a failed simulation of SO. If A misbehaves but SO is
successfully simulated, then it is possible that SO successfully simulates a bad execution
of Sign. Since SO was successful, this does not result in ⊥SO but results in an invalid
signature or the failure symbol ⊥Sign from Sign.

A.2 Rewind-on-success forking lemma
In this section, we explain the double forking technique and present the general forking
lemma. Recall that, to prove unforgeability of our scheme, it is sufficient to prove that
a forger A with non-negligible advantage at the existential unforgeability game can be
reduced to some B that produces four forgeries as described above. As usual, we use
reductions and meta-reductions of A with a general forking lemma to complete our task.
We denote a reduction of A with black-box access to A as (A′)A, and we denote the process
of taking reductions with the notation A A′. Our proof strategy, roughly following the
strategy from [15], can be visualized this way:

A A′  forkA
′
 A′′  forkA

′′
 B.

That is to say: our strategy is to prove that if a forger A exists, then there exists a
reduction A′ of A that satisfies the hypotheses of Lemma A.2.0.1, which can be forked.
The forking algorithm can be put in a wrapper A′′, which can be again forked. If A′ and
A′′ have non-negligible acceptance probability, so does forkA

′′ , which we reduce to some
discrete logarithm solver B.

Lemma A.2.0.1 (General Forking Lemma). Let q, η ≥ 1. Let P be any PPT algorithm
which takes as input some inpP = (inp, h) where h = (h1, . . . , hq) is a sequence of oracle
query responses (η-bit strings) and returns as output outP either a distinguished failure
symbol ⊥ or a pair (i, out) where i ∈ [q] and out is some output. Let accP denote the
probability that P does not output ⊥ (where this probability is taken over all random coins
of P, the distribution of inp, all choices h).

There exists an algorithm, forkP that takes as input some inpforkP = inpP and
produces as output outforkP either a distinguished failure symbol ⊥ or a pair of pairs
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((i, out), (i′, out′)), where (i, out) and (i′, out′) are outputs from P such that i = i′.
Furthermore, the accepting probability of forkP is bounded from below such that

accforkP ≥ accP

(
accP
q
− 1

2η

)
.

We refer the reader to [3] for a proof.

Algorithm forkP : Let η > 1 be a security parameter, q > 1 be a polynomial function of
η. Let P any PPT algorithm satisfying the hypotheses of Lemma A.2.0.1.
The algorithm forkP produces as output a distinguished failure symbol outforkP = ⊥
or some outforkP = (i′, out′) where j is an index in [q] and out′ = (out, out′′, aux)
such that out, out′′ are two outputs from P.

1. Pick random coins ρ = ρP for P and select h← ({0, 1}η)q.
2. Execute outP ← P(inpP , h; ρ).
3. If outP = ⊥P , output ⊥forkP and terminate. Otherwise, outP = (i, out) for

some out.
4. Pick new h′ ← ({0, 1}η)q.
5. Glue the oracle query sequences together: h∗ := (h1, . . . , hi−1, h

′
i, . . . , h

′
q).

6. Execute out′′P ← P(inpP , h
∗; ρ).

7. If out′′P = ⊥P , output ⊥forkP and terminate. Otherwise, out′′P = (i′′, out′′).
8. If i 6= i′′ or i = i′′ but hi = h′i, output ⊥forkP and terminate.
9. Otherwise, select some auxiliary data aux, assemble out′ = (out, out′′, aux),

output (i, out′), and terminate.

If P takes as input several sequences of oracle queries together, we can parse these as
to be included in inp ∈ inpP . If inpP has some other sequence h∗ of oracle queries
packed into it like this, then forkP can be forked again in a chain. In the next section,
we describe each algorithm in the chain of reductions comprising our proof strategy
A A′  forkA

′
 A′′  forkA

′′
 B, proving their existence and the non-negligibility

of their accepting probability as we go.

A.3 Reducing A
In this section, we begin our forking journey by constructing the first reduction A′ of A in
the chain of reductions. We explain how A′ simulates each oracle, and we establish some
lemmata regarding the accepting probability of A′.

We construct a reduction A′ of A compatible by Lemma A.2.0.1, which applies to
an algorithm P that takes as input some inpP = (inp, h). A′ takes as input inpA′ =
(inp, hsig). However, A′ must simulate both Hsig and Hagg queries, so we define inp :=
(inpA, hagg). That is to say, A′ takes as input inpA′ = (inpP , hagg) =

(
(Xh, hagg), hsig

)
.

A′ responds to oracle queries with hagg and hsig as described below. A′ augments
the output of A, producing as output ⊥ when A fails. On the other hand, if A
produces a non-⊥ output, say forg =

(
m∗, σ,

{
X(`)

}
`

)
, A′ repeats this in its out-

put but augments this with some transcript information, outA′ = (isig, out∗) where
out∗ = (forg, isig, hsig,isig , `sig, πsig, iagg, hagg,iagg , a) for some signature and aggregation
query indices isig, iagg and responses hsig,isig , hagg,iagg , some ring indices `sig, πsig, and a list
of coefficients a extracted from the transcript in the following way:
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1. (isig, `sig) are defined such that the response to first query made by A to Hsig to
compute any verification equation used in the forgery is the ithsig such query and takes
place for the `thsig ring member, i.e. hsig,isig = c`sig+1 = Hsig(M,P`sig , L`sig , R`sig) for
some index `; and

2. πsig is defined such that the response to the final query made by A to Hsig to
compute any verification equation used in the forgery is used in the πthsig signature
challenge, i.e. the final signature challenge to be computed in the transcript is
cπsig = Hsig(M,Pπsig−1, Lπsig−1, Rπsig−1); and

3. iagg is the index of the first aggregation query made for any member of X(`sig), i.e.
the aggregation coefficient on Xh in X(`) is hagg,iagg ; and

4. a contains the aggregation coefficients of all adversarially selected keys in X(`sig)

(arranged in some canonical manner).

Lemma A.3.0.1. Assume A makes at most q random oracle queries and does not output
⊥A. Every query made to Hsig for the verification equations is made by A before terminating
except with a probability bounded above by 1− (1− (p− q)−1)r (conditioned upon the event
that A does not output ⊥A).

Proof. The event that A does not query Hsig for some verification query requires that A
guess the output of Hsig for some query by flipping coins. This occurs with probability
at most (p − q)−1 (the result must avoid the queries already made). The probability
of successfully doing this even once for any of the r verification queries is therefore
1− (1− (p− q)−1)r. This is the upper bound on the probability that A can get away with
flipping coins instead of querying for a verification equation.

As a corollary to this lemma, A′ can find isig, hsig,isig , `sig, and πsig easily.

Lemma A.3.0.2. Assume A makes at most q random oracle queries and does not output
⊥. Every query made to Hagg for every aggregation coefficient for Xh is made by A before
terminating, except with a probability bounded above by 1− (1− (p− q)−1)nr (conditioned
upon the event that A does not output ⊥A).

Proof. The event that A does not make one of these queries is requires that A guess the
output of Hagg. With r ring members, each with some contributing keys X(`) such that
each

∣∣∣X(`)
∣∣∣ ≤ n has at most nr such queries, each with a successful guess probability of

(p− q)−1. The probability of doing this successfully even once in a trial of nr attempts is
therefore 1− (1− (p− q)−1)nr.

As a corollary, A′ can extract iagg and hagg,iagg easily.

Lemma A.3.0.3. Assume A is a (t, ε, n, q)-forger. Let E be the event that A does not
output ⊥. In E, for each 1 ≤ ` ≤ r, the query made to Hsig for the verification equation
challenge c`+1 is made after the query to Hagg for the aggregation coefficient on Xh in the
associated X(`), except with probability bounded above by 1− (1− (p− q)−1)r.

Proof. Since Φ(X(`)) = P` is part of the pre-image for c`+1, the probability that A can
compute c`+1 before querying to compute P` (and assuming all queries are made except
this final one) is at most (p− q)−1, and there are at most r such queries relevant to the
forgery.

These lemmata and corollaries demonstrate that all verification queries appear, and
each of them appears after the aggregation coefficients have been computed. With these
lemmata at hand, we can describe A′. A′ places A in a black box, simulating all oracle
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queries made by A. A′ keeps internal tables denoted with Tsig, Tagg and a counter denoted
ctr to keep track of queries made to maintain internal consistency and track oracle query
indices.

Algorithm A′: A′ takes as input inpA′ = ((Xh, hagg), hsig). A′ has black-box access to
A, simulating oracle queries as described below and produces as output either a
distinguished failure symbol ⊥ or some (i, out).

1. A′ selects random coins ρ = ρA, sets ctr := 0, and sets inpA := {Xh}.
2. A′ executes A(inpA; ρA), answering oracle queries made by A as described

below.
3. If A outputs ⊥A, A′ outputs ⊥A′ and terminates.

4. Otherwise, A outputs a forgery forg = (m∗, σ,
{
X(`)

}
`
).

5. A′ finds all verification queries in the transcript and finds the following:
(a) the query index isig of the first verification equation used in the forgery,

and
(b) the response hsig,isig to that first verification query, and
(c) the ring index `sig of the input to that first verification query (satisfying

the verification equation c`sig+1 = H(M,P`sig , L`sig , R`sig) = hsig,isig), and
(d) the response hsig,i′sig

to the final verification query, and
(e) the ring index πsig − 1 of the input to this query, which satisfies a similar

verification equation cπsig = H(M,Pπsig−1, Lπsig−1, Rπsig−1), and
(f) the query index iagg of the first aggregation query for any member of X(`sig),

and
(g) the response hagg,iagg to that query, and lastly
(h) A′ finds all other aggregation coefficients for members of X(`sig) in Tagg,

say a. See description of Hagg oracle for more information.
6. A′ outputs outA′ = (isig, (forg, isig, hsig,isig , `sig, πsig, iagg, hagg,iagg , a)).

Simulating Hcom: To simulate queries of the form Hcom(inp), A′ keeps track of
an internal table Tcom. A′ checks if Tcom[inp] is empty. If so, a random
out $← {0, 1}η is selected and stored Tcom[inp]← out. In either case, Tcom[inp]
is sent to A.

Simulating Hki: To simulate queries made by A of the form Hki(inp), A′ keeps
track of an internal table Tki. A′ checks if Tki[inp] is empty. If so, a random
point Y ′ ∈ G is selected and stored Tki[inp]← Y ′. In either case, Tki[inp] is
sent to A.

Simulating Hagg: A′ tracks aggregation queries carefully and always ensures that
the aggregation coefficient for Xh is selected after all other coefficients.
1. A queries Hagg with inp.
2. A′ checks if Tagg[inp] is undefined. If so, A does the following:

(a) A′ checks if inp can be parsed as some (Y,X). If not, A′ picks a
random entry Tagg[inp] $← Zp.

(b) Otherwise, A′ parses inp = (Y,X) and checks if Xh ∈ X. If not, then
for each Y ′ ∈ X, A′ picks a random entry Tagg[Y ′, X] $← Zp.

(c) Otherwise, inp = (Y,X) for some Y ∈ X such that Xh ∈ X and yet
Tagg[inp] is undefined. A′ checks if Tagg[Xh, X] is defined. If so, A′
outputs ⊥agg and terminates
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(d) Otherwise, for each Y ′ ∈ X \ {Xh} such that Tagg[Y ′, X] is undefined,
A′ selects a random entry Tagg[Y ′, X] $← Zp.

(e) After all entries of X except Xh have an entry in Tagg, A′ increments
ctragg and stores Tagg[Xh, X]← hagg,ctragg .

3. A′ outputs Tagg[inp].
Note that A′ responds with ⊥agg if and only if Tagg[Xh, X] is defined but some
Y ∈ X has Tagg[Y,X] defined. If A′ follows the protocol as described, this
never happens. In all other cases, the aggregation coefficient for Xh is decided
after all other aggregation coefficients have been decided. This is important to
our proof of unforgeability.

Simulating Hsig: To simulate queries made by A for signing, Hsig(inp), A′ checks if
Tsig[inp] is defined. If not, A′ checks if inp can be parsed as inp = (M,P,U, V )
for some M and group points P,U, V . If not, Tsig[inp] $← {0, 1}η is selected at
random. Otherwise, ctrsig is incremented and Tsig[M,P,U, V ]← hsig,ctrsig is
stored. Either way, A′ sends Tsig[inp] to A.

Simulating SO: For notational simplicity, SO uses notations assuming it is the first
member of the coalition to begin signing (with index j = 1 in the coalition). A′
simulates SO in the following way:
1. A queries SO with inpSO.

2. After receiving the query, A′ parses inp as
(
M,P , π,

{
X(`)

}
1≤`≤r

)
such

that
∣∣∣X(`)

∣∣∣ ≥ 2 for some ` and, for each `,
∣∣∣X(`)

∣∣∣ ≤ n, Xh ∈ X(`), and
P` ∈ P is derived from the corresponding X(`). If A′ cannot parse this way,
A′ sends ⊥SO to A indicate the query is rejected and halts simulating SO.

3. Otherwise, A′ selects signing data dat1 as in step 2 in Section A.1, computes
the commitment com1, and send com1 to A in the following way:
(a) A′ increments ctr and picks the critical commitment cπ ← hsig,ctrsig .
(b) A′ selects a random set of signing data {s1,`}`∈[r] (including the index

` = π).
(c) A′ computes L1,π = s1,πG + cπPπ and R1,π = s1,πHπ + cπJ , as-

sembles dat1 := (L1,π, R1,π, {s1,`}`∈[r], 6̀=π), and selects a random

com1
$← {0, 1}η.

(d) If Tcom[dat1] is defined, A′ halts simulating SO, outputs ⊥1 to indicate
that some dat1 has already been used, and terminate.

(e) Otherwise, A′ simulates a query of Hcom by setting Tcom [dat1]← com1,
sends com1 to A.

4. After A responds with commitments com = {comj}j∈[n],j 6=1, A
′ does some

back-patching and then sends dat1 to A.
(a) For each j > 1, A′ searches Tcom for any dat such that Tcom [dat] = comj .
(b) If, for any j, more than one dat is found, A′ halts simulation of SO,

outputs ⊥2, and terminates.
(c) If, for any j, no such dat is found, then A′ sets alert1 ← true.
(d) Otherwise, exactly one dat = datj is found in Tcom for each comj . If any

datj cannot be parsed as (Uj , Vj , {sj,`}` 6=π), A′ sets alert2 ← true.
(e) Otherwise, exactly one datj is found in Tcom for each comj and can

be parsed as (Uj , Vj , {sj,`}). After parsing each datj , A′ does the
following:
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i. A′ computes U =
∑
j Uj , V =

∑
j Vj , and s` =

∑
j sj,` for each

` 6= π.
ii. A′ checks if (M,P`, U, V ) appears in Tsig. If so, A′ halts simulating
SO, outputs ⊥3, and terminates.

iii. Otherwise, A′ increments ctrsig, sets cπ+1 ← hsig,ctrsig , and stores
Tsig[M,P`, U, V ]← cπ+1.

iv. For each ` = π + 1, π + 2, . . . , π − 2, A′ computes L` = s`G+ c`P`
and R` = s`H` + c`J and checks if (M,P`, L`, R`) appears in Tsig.
If so, A′ halts simulating SO, outputs ⊥3, and terminates.

v. Otherwise, A′ increments ctrsig, sets c`+1 ← hsig,ctrsig , stores

Tsig[M,P`, L`, R`]← c`+1

and then moves to the next `.
vi. A′ checks that Tsig [M,Pπ−1, Lπ−1, Rπ−1] is empty. If not, A′ halts

simulating SO, outputs ⊥3, and terminates.
vii. Otherwise, Tsig [M, sπ−1G+ cπ−1Pπ−1, sπ−1Hπ−1 + cπ−1J ]← cπ.

(f) A′ sends dat1 to A.
5. After A responds with dat′ =

{
dat′j

}
j 6=1, A

′ checks comj = Tcom[dat′j ] for
each j. If any do not match A′ sends ⊥SO to A indicating a successful
simulation of a failed signing ceremony.

6. Otherwise, if alert1 = true or alert2 = true, A′ ⊥4 and terminates.
7. Otherwise, A′ sends s1,π to A, which is sufficient information for A to

compute the rest of the signature.

If the output is one of the symbols in {⊥1,⊥2,⊥3,⊥4}, then A′ actually terminates:
these are the failure symbols that indicate something strange is happening to the orders of
oracle assignments while simulating SO. This indicates failure of the signing oracle from a
malformed query or some other bad ordering of events. We shall prove these only occur
with negligible probability.

Moreover, ⊥SO only appears if A queries SO with something beyond the scope of the
unforgeability game defined in Definition 5.1.1, or sent commitments that did not open
correctly; A′ does not terminate because these are successful simulations of a failed signing
ceremony, not a failed simulation.

We investigate the acceptance probability of A′.

Lemma A.3.0.4. Let A be a (t, ε, q, n)-forger with SO and H access, and let A′ be any
reduction of A that simulates the oracle queries as described above, let t′ > 0, and let c > 0
be the amount of time required for A′ to select a new Zp or G element at random. Then
in time at most t+ t′ and with probability at most ε′ = ε1 + ε2 + ε3 + ε4, A′ terminates
without outputting any ⊥i ∈ {⊥1,⊥2,⊥3,⊥4,⊥agg} where

ε1 =1−
∏

k∈[q−1]

(1− kp−r−1) ε2 =1−
∏

k∈[q−1]

(1− kp−1)

ε3 =1−
∏

k∈[q−1]

(1− kp−4) ε4 =1− exp(−−t
′(t′ − c)

2(p− q)c2 ).

Proof. The failure symbols partition the event that A′ outputs some ⊥ and terminates, so
the probability of any ⊥ symbol appearing is exactly the sum of each individual one. That
is to say, if E is the event that A′ outputs some ⊥ and terminates and Ei is the event that
A′ outputs ⊥i for some i ∈ {1, 2, 3, 4, agg} and terminates, then we have εi = P[Ei] and,
by the law of total probability P[E] = P[E | Eagg]P[Eagg] +

∑
i∈[4] P[E | Ei]P[Ei].
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Moreover, each conditional probability here is obviously 1 (the probability that A′
outputs some ⊥i given the fact that A′ outputs ⊥3 is 1, for example) so we have the simple
sum. Hence, bounding the acceptance probability from below is equivalent to bounding
each of the probabilities of each of these failure events from above. We immediately
simplify the analysis: P[Eagg] = 0 by construction.

To bound ε1: IfA′, while simulating a query to SO forA, selects dat1 such that Tcom[dat1]
is non-empty, then ⊥1 is output. Hence, this symbol occurs if and only if A′ selects
random signing data dat1 for which an image under Hcom is already determined. A′
never selects the same random data twice by specification of the SO simulation, so
this implies that A queried Hcom with dat1 at some point in the past and, moreover,
A′ randomly discovered its pre-image. There are pr+1 choices of (U`, V`, {s`}); this
scenario is precisely the scenario of a usual birthday attack. Presuming that at most
q such choices are used in Hcom, the probability that A′ sees no collisions is exactly∏
k∈[q−1](1− kp−r−1). Hence we have

ε1 ≤ 1−
∏

k∈[q−1]

(1− kp−r−1).

To bound ε2: The failure symbol ⊥2 occurs if and only if at least two (U, V, {s`}) are
found with table entries Tcom[U, V, {s`}] = comj for the same comj . This implies a
collision of the simulated random oracle. We have

ε2 ≤ 1−
∏

k∈[q−1]

(1− kp−1).

To bound ε3: Let E be the event that A′, in simulating a query made to SO, checks
Tsig and finding that some query of the form (M,P`, U`, V`) has already been made,
outputting ⊥3. This is also a birthday attack: since M is output from Hmsg, we
have p4 such possible choices, and we make up to q queries, so the probability of
seeing no collisions is exactly

∏
k∈[q−1](1− kp−4).

To bound ε4: The failure symbol ⊥4 is output only in the case that alert1 = true and
the simulation has almost come to an end. A′ only gets to this point when A
misbehaves and sends a commitment comj in the commit-and-reveal stage that has
not yet been associated with any query of the form Hcom, and yet still produced
opening data {datj}j that pass the reveal phase: A guessed comj = Hmsg(datj)
without querying Hmsg. This, too, is a birthday attack. The probability that an
attacker requires more than k attempts at this before seeing the first collision is
bounded from above by exp(−k(k−1)

2(p−q) ). Assuming each attempt takes constant time
(say c units of time per attempt), since A′ is granted t′ > 0 time in addition to the
runtime of A, the probability that A′ outputs ⊥4 is at most 1− exp(−−t

′(t′−c)
2(p−q)c2 ).

Note that by rescaling time (t′, t) 7→ ( t
′

c ,
t
c ) we can rewrite ε4 = 1− e−t′(t′−1)/(α(p−q))

for some α > 0. Also note that each εi is negligible in p so the sum of these are negligible
in p. Since A′ is compatible with the hypotheses of Lemma A.2.0.1, we immediately obtain
the following.

Corollary A.3.1. The algorithm forkA
′ and forkA

′′ have acceptance probabilities
bounded from below:
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accforkA′ ≥accA′
(

accA′
q
− 1

2η

)
accforkA′′ ≥accforkA′

(
accforkA′

q
− 1

2η

)
In the next section we describe forkA

′ and forkA
′′ .

A.4 Forking twice
In this section we apply the general forking lemma twice and obtain the punchline, a
discrete logarithm solver. We fork A′ in two stages. We first construct forkA

′ to take
as input some inpforkA′ = (Xh, hagg), selects some hsig at random, and executes A′ with
input inpA′ = (Xh, hsig). If A′ outputs any failure symbol ⊥, then forkA

′ outputs ⊥forkA′

and terminates.
Otherwise, A′ outputs some (isig, out) where out = (hagg,iagg , hsig,isig , a, forg). A

second h∗sig is selected at random, the sequences hsig and h∗sig are glued together as usual
to get a sequence h′sig. A′ is run again except with input (Xh, h

′
sig) in pursuit of a second

success. If A′ outputs any failure symbol ⊥, then forkA
′ outputs ⊥forkA′ and terminates.

Otherwise, A′ comes through with a second success, say (i∗sig, out∗). If isig 6= i∗sig,
forkA

′ outputs ⊥forkA′ and terminates. Otherwise, forkA
′ outputs

outforkA′ = (isig, (i, out), (i∗, out∗)).

Algorithm forkA′ : Takes as input inpforkA′ = (inp, hagg) = (Xh, hagg).

1. forkA
′ picks random coins for A′, selects hsig ← ({0, 1}η)q, assembles inpA′ =

(inp, hagg).

2. forkA
′ runs A′ with inpA′ .

3. If A′ outputs ⊥A′ , forkA
′ outputs ⊥forkA′ and terminates.

4. Otherwise, A′ outputs some outA′ = (isig, out) where

out = (isig, `sig, πsig, iagg, hsig,isig , hagg,iagg , a, forg).

5. forkA
′ selects h′sig ← ({0, 1}η)q, sets the gluing index as j = isig, and glues

oracle query response sequences together as usual

h′′sig = (hsig,1, hsig,2, . . . , hsig,j−1, h
′
sig,j , h

′
sig,j+1, . . .).

6. forkA
′ runs A′ with inp′A′ = (inp, h′′sig).

7. If A′ outputs ⊥, then forkA
′ outputs ⊥.

8. Otherwise, A′ outputs some out∗A′ = (i∗sig, out∗) where

out∗ = (i∗sig, `∗sig, π∗sig, i∗agg, h′′sig,i∗sig
, hagg,i∗agg

, a∗, forg∗).

9. If isig 6= i∗sig, output ⊥forkA′ and terminate.
10. Otherwise, output (isig, out′) where out′ = (out, out∗).

The following lemma is obvious: aggregation coefficients for P` must be decided before
the Hsig oracle is queried with (M,P`, L`, R`) except with negligible probability. Hence,
the queries that determines hagg,iagg and h∗agg,i∗agg

are made before the fork, so they must
be the same queries.
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Lemma A.4.0.1. A successful output from forkA
′ has iagg = i∗agg except with negligible

probability.

Proof. To guess the output of Hsig(M,P`, L`, R`) before learning P` occurs with probability
at most (p− q)−1. This is sufficient, but not necessary: it’s also possible that P` is learned
without making aggregation coefficient queries.

Hence, except with some probability at most (p− q)−1, P` is learned before this query
is made. Conditioning upon the event that A′ does learn P`, the probability that P` is
guessed without computing any aggregation coefficients is also at most (p− q)−1.

The probability that this ordering does not hold is bounded from above by (p− q)−1 +
(1− (p− q)−1)(p− q)−1 = (2− (p− q)−1)(p− q)−1). So the probability that this ordering
does hold is at least (1− (p− q)−1)2.

The acceptance probability of forkA
′ is provided by the general forking lemma. Due

to our choice of forking, the query to Hsig in the two resulting transcripts have the same
input (M,P`, L`, R`) but different outputs. This is the condition that c` 6= c′` from the
system of forgery-to-discrete-log equations and inequalities. We wrap this algorithm with
the following algorithm A′′ that rejects certain executions and reformats their outputs.

Algorithm A′′: 1. Take as input some inpforkA′ = (Xh, hagg).
2. Select some random coins ρ = ρforkA′ .
3. Execute forkA

′ with inpforkA′ and these random coins.
4. If the result is ⊥forkA′ , output ⊥A′′ and terminate. Otherwise, assemble together

outforkA′ = (isig, out′) where out′ = (out, out∗) and output outforkA′ .
5. Find `sig, πsig ∈ out; find `∗sig, π∗sig ∈ out∗.
6. If `sig 6= `∗sig or πsig 6= π∗sig, output ⊥ and terminate. Otherwise, assemble

together outA′′ = (iagg, out′) and output outA′′ .

The proof of the non-negligibility of the acceptance probability of A′′ is very similar to
a proof presented in [13] for the non-threshold case of LSAG signatures. We omit this,
noting merely that the threshold property of our scheme makes no difference in determining
the acceptance probability.

Now we fork on iagg. This way, all queries made before this point remain the same.
Moreover, since the aggregation coefficients on the adversarially chosen keys are determined
by random coins, not the hash query tape, and due to our structure of the Hagg simulations,
it is always the case that these random coins are selected before the output for the honest
key. Hence, if some algorithm is making decisions adaptively based on previous input, the
random coins chosen for the aggregation coefficients on the adversarially selected keys are
identical between the two branches with probability 1.

Algorithm forkA′′ : Takes as input some inpforkA′′ = Xh.

1. Selects some random coins ρ = ρA′′ .
2. forkA

′′ selects hagg ← ({0, 1}η)q and sets inpA′′ = inpforkA′ = (Xh, hagg).

3. forkA
′′ runs A′′ with inpA′′ .

4. If A′′ outputs ⊥A′′ , then forkA
′′ outputs ⊥forkA′′ and terminates. Otherwise,

forkA
′′ receives some (iagg, outA′′).

5. forkA
′′ selects h′agg ← ({0, 1}η)q, sets the gluing index j = iagg, and glues

oracle query responses together as usual

h′′agg = (hagg,1, hagg,2, . . . , hagg,j−1, h
′
agg,j , h

′
agg,j+1, . . .),

and assembles inp′A′′ = (Xh, h
′′
agg)
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6. forkA
′′ runs A′′ with inp′

forkA′′
.

7. If A′′ outputs ⊥, then forkA
′′ outputs ⊥. Otherwise, forkA

′′ receives some
(i∗agg, out∗A′′).

8. If iagg 6= i∗agg, output ⊥forkA′′ and terminate.
9. Otherwise, output (iagg, outforkA′′ ) where outforkA′′ = (outA′′ , out∗A′′)

The acceptance probability of forkA
′′ is bounded from below by some non-negligible

function, following the general forking lemma, bounded from below:

accforkA′′ ≥ accA′′
(

accA′′
q
− 1

2η

)
.

Lastly we construct our discrete log solver. Note that the following algorithm succeeds
if and only if forkA

′′ does, so the probability of success is identical, establishing our main
theorem.

Algorithm B: B has black-box access to forkA
′′ . B takes as input an honest public key

Xh and is granted random oracle access, and outputs the discrete logarithm xh.

1. B takes as input some Xh.
2. B executes forkA

′′ with inp = {Xh}.
3. If forkA

′′ outputs ⊥forkA′′ , B outputs ⊥B and terminates. Otherwise, B receives
(iagg, outforkA′′ ).

4. B goes through outforkA′′ to extract the four signatures, σ(j) (for j ∈ [4]), the
signing query indices i(j)sig , the signing query responses h(j)

sig,i(j)
sig
, the ring indices

`
(j)
sig and π

(j)
sig , the aggregation query indices iagg and the aggregation query

responses h(j)
agg,i(j)

agg
.

5. B verifies the following system of equalities and inequalities

i
(1)
sig =i(2)

sig `
(1)
sig =`(2)

sig π
(1)
sig =π(2)

sig

i
(3)
sig =i(4)

sig `
(3)
sig =`(4)

sig π
(3)
sig =π(4)

sig

i(i)agg =i(j)agg for each i, j h
(1)
agg,iagg

=h(2)
agg,iagg

h
(3)
agg,iagg

=h(4)
agg,iagg

h
(1)
sig,i(1)

sig
6=h(2)

sig,i(1)
sig

h
(3)
sig,i(1)

sig
6=h(4)

sig,i(1)
sig

h
(1)
agg,iagg

6=h(3)
agg,iagg

outputting ⊥B if any fail.

6. From each forg(j), the random signature data s(j)
` can be extracted.

7. B outputs

x̂h := (h(1)
agg,iagg

− h(3)
agg,iagg

)−1

 s
(2)
` − s

(1)
`

h
(2)
sig,i(2)

sig
− h(1)

sig,i(1)
sig

−
s

(4)
` − s

(3)
`

h
(3)
sig,i(3)

sig
− h(4)

sig,i(4)
sig

 .

Of course, B only fails if forkA
′′ fails or if the system is not verified, but this

is a sub-event of the failure of forkA
′′ . So the probability that B is bounded

above by the probability that forkA
′′ fails.
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B Properties other than unforgeability
We establish correctness and linkability and describe some security properties like signer
ambiguity and its relation to key aggregation indistinguishability. Correctness and linka-
bility take into account semi-honest adversaries, who carry out algorithms to specification
(although may also take additional steps outside of specification). In this case, this is a
group of “curious but honest” friends wishing to collaborate upon a signature.

Lemma B.0.0.1. Example 4.0.4 is correct.

Proof. In the event S((m, P , π, x), (m∗, σ)) where σ = (c1, s) and m∗ = (m, P , J, aux), the
semi-honest signer computes cπ+1, cπ+2, . . ., cr, and c1 with usual/honest queries made to
Hsig with probability 1. Moreover, the semi-honest verifier makes queries c2, . . . , cπ−1, cπ
by making usual/honest queries to Hsig with probabilty 1. The semi-honest signer also,
by specification, ensured the verification equations are satisfied with use of the secret key
pπ. Hence, a semi-honest verifier given m∗ and σ = (c1, (s1, s2, . . . , sr)) who computes the
following

L′1 :=c1G+ s1P1 R′1 :=c1H1 + s1J c′2 :=Hsig(M,P1, R1, L1)
L′2 :=c′2G+ s2P2 R′2 :=c′2H2 + s2J c′3 :=Hsig(M,P2, R2, L2)

...
...

...
L′r :=c′rG+ srPr R′r :=c′rHr + srJ c′1 :=Hsig(M,Pr, Rr, Lr)

obtains c′1 = c1 with probability 1.

Lemma B.0.0.2. Example 4.0.4 is linkable.

Proof. In the event S′(m∗1, σ1,m
∗
2, σ2), the semi-honest adversary used the same key in

each signature. That is to say, for the rings P 1, P 2, there is a common key; that is, for
some indices i1, i2, (P 1)i1 = (P 2)i2 = Pcommon. In both signatures, the key image is
J = PcommonHki(Pcommon), and so linking occurs with probability 1.

We modify the definition of anonymity with adversarially chosen ring members from [4]
to take into account key aggregation; the stronger definition presented in [4] with full key
exposure is not possible to satisfy in the linkable transaction setting of CryptoNote-styled
ring signatures we see in Monero.

Definition B.0.1 (Threshold signer ambiguity with adversarially chosen ring members).
Let f(−) be a positive polynomial. Consider the following game:

1. A set of private-public key pairs {(xi, Xi)}i∈[f(λ)] is selected by the challenger with
KeyGen. Denote SK = {xi} and PK = {Xi}.

2. The public keys PK are sent to A, who is granted access to a signing oracle, SO.

3. A outputs a message m, two non-empty aggregation multi-sets of public keys X(0),
X(1) ⊂ PK, and a ring P such that Pij = Φ(X(j)) for j = 0, 1.

4. The challenger selects a random bit b, computes (m∗, σ)← Sign(m, P , πb) where πb
denotes the index of Pib in P , and sends (m∗, σ) to A.

5. A outputs a bit b′.

A wins the game if b′ = b and the key images for Pi0 and Pi1 do not appear in the output
of any query made to SO by A.
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The following lemma, which establishes key aggregation indistinguishability, is obvious
in the case with the semi-honest adversary, since the distribution of (c1, s) in both signature
schemes is determined by the hash function Hsig and the choice made by the signer for s.
Under the random oracle model, c1 is uniformly distributed over Zp. In the case with the
semi-honest adversary, each si ∈ s is also uniformly distributed over Zp and, moreover, all
of these are independent from each other.

Lemma B.0.1.1. Signatures produced by semi-honest adversaries using Example 4.0.4
are statistically indistinguishable from LSAG signatures.

As a corollary, we immediately obtain that an adversary who can violate the signer
ambiguity of Example 4.0.4 must likewise be able to violate the signer ambiguity of LSAG
signatures.

Corollary B.0.2. Example 4.0.4 is signer ambiguous with adversarially chosen ring
members.
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