Strongly Secure Authenticated Key Exchange from Supersingular Isogeny

Xiu Xu1,2, Haiyang Xue1,2,*, Kunpeng Wang1,2, Song Tian1,2, Bei Liang3, Wei Yu1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 Data Assurance and Communication Security Research Center, Beijing, China
3 Chalmers University of Technology, Gothenburg, Sweden

{xiuxiu,xuehaiyang,wangkunpeng,tiansong,yuwei}@iie.ac.cn, lbei@chalmers.se

Abstract. In this paper, we study the authenticated key exchange (AKE) based on supersingular isogeny problems which are believed to be difficult for quantum computers. We first propose a three-pass AKE based on 1-Oracle SIDH assumption whose soundness is guaranteed by a strictly limited gap problem. To enhance the soundness, we propose a two-pass AKE based on standard SIDH assumption. The three-pass AKE achieves about 20% speedup compared with the SIDH variant of FSXY scheme and narrows the bandwidth by approximately 49.3% without lose of security. And the two-pass scheme narrows the bandwidth by around 23% and yields a factor 12% acceleration than the SIDH variant of FSXY scheme.

In the random oracle model, both three-pass AKE and two-pass AKE protocols are secure in the CK model, support arbitrary registration of public key and are resistant to the weak perfect forward secrecy (wPFS) attack, key-compromise impersonation (KCI) attack and maximal exposure (MEX) attack, which solves the open problem provided by Galbraith of looking for new techniques to design and prove security of AKE in SIDH setting with the widest possible adversarial goals.

Keywords: authenticated key exchange, key encapsulation mechanism, supersingular elliptic curve isogeny, post quantum

1 Introduction

Authenticated Key Exchange. Key exchange (KE) is a fundamental cryptographic primitive, which enables two parties to agree on a common shared key over a public but possibly insecure channel. The classical Diffie-Hellman (DH) key exchange protocol [39] without authentication is vulnerable to the man-in-the-middle attack. Many studies have investigated how to achieve KE protocols that provide authentication in secure models [4, 6, 9, 29] and how to implement authenticated key exchange (AKE) with high efficiency [3, 10, 9, 20, 29, 31, 32]. A plenty of security models has been proposed, including BR model [4], CK model [6] and eCK model [29]. CK$^+$ security model that is known to be one of the “strongest” and most “desirable” security notions [24] for AKE is reformulated by Fujioka et al. [9]. The CK$^+$ model not only covers the security requirement in CK model, but also captures some advanced attacks such as key compromise impersonation (KCI), the breaking of weak perfect forward secrecy (wPFS) and maximal exposure attacks (MEX). Therefore, in some

* Corresponding author email: xuehaiyang@iie.ac.cn
sense CK\(^+\) model can be theoretically considered as a complete version of the AKE security model since it currently covers the widest possible variety of adversarial methods.

AKE protocols have two types of authentication: the implicit authentication [32] which is implemented by each party individually to generate the session key, or vice versa explicit authentication. Since on the one hand the implicit AKE protocols enable to provide significantly computational savings thus resulting in highly efficient communication, on the other hand by adding key-confirmation flows [40] it is possible to achieve the explicit AKE from an AKE protocol that only provides implicit authentication, many works on constructing implicit AKE protocols based on concrete assumptions [24, 29, 30, 37] as well as studying the generic frameworks [3, 10, 9, 16] has been investigated.

Supersingular Isogeny. Apart from lattice, code, hash and multivariate cryptography, supersingular elliptic curve isogeny is a fresh and one of the most attractive candidates for post-quantum cryptography. Based on the problem of computing the isogeny between supersingular elliptic curves, which is believed to be difficult, Jao and De Feo [18, 19] proposed a supersingular isogeny Diffie-Hellman key exchange (SIDH) that is considered as one of the post-quantum candidates. There are many following works which mainly focus on the computational efficiency [7, 8, 23], key compression [2, 5, 38], adaptive attacks on SIDH [15, 22], the relationship of underlying complexity problems [13, 35], signature schemes [14, 21, 34, 36] and its standardization [17, 25].

The SIDH protocol is analogous to the traditional Diffie-Hellman protocol and so is vulnerable to the meet-in-middle attack. As in the survey where Galbraith concluded [12], to our best knowledge that there are few papers that investigate the natural problems of designing AKE schemes from the basic SIDH primitive. As we all know one approach to build AKE is to sign each party’s round messages with respect to their long-term public keys by using digital signatures. Unfortunately, there is no practical signature based on the hardness of constructing an isogeny between two isogenous elliptic curves[14, 36]. Therefore, it is essential to exploring on designing implicit AKE from SIDH primitives. However, as Galbraith [12] pointed out, when working in the SIDH setting there are several challenges arising in order to adapt the security proof of existing well-designed AKE schemes (most of them are based on discrete logarithm assumption) to the SIDH case:

- Many AKE schemes based on discrete logarithm, such as MQV [31] and HMQV [24], require a richer algebraic structure which supersingular isogeny does have.
- The protocols involving long-term/static secret keys are vulnerable to the adaptive attack [15] where the secret key can be extracted bit-by-bit.
- The gap assumption that holds in discrete logarithm setting is crucial for security proof. But the gap assumption does not hold in SIDH context when polynomial queries are submitted to unlimited decisional solver.

We should keep in mind that the adaptive attack introduced by Galbraith, Petit, Shani and Ti [15] works on the situation where the static public key is used. Suppose that in a protocol Alice sets \(E_A\) as her static public key, and \(E_Y\) is an ephemeral public value sent by Bob. Galbraith et al. [15] show that a malicious adversary Bob can send \((E_Y, R', S')\) with specified points \(R'\) and \(S'\), and gradually learn Alice’s static secret key.

Motivation. As shown by Galbraith [12] and Longa [28], the generic constructions of secure AKE from basic primitives like IND-CCA encryption/KEMs and MACs, PRFs etc, such as the schemes proposed by Boyd, Cliff, Gonzalez Nieto and Paterson [3] (abbreviated as BCNP scheme), by Fujioka, Suzuki, Xagawa and Yoneyama [10] (abbreviated as FSXY scheme)
and by Guilhem, Smart and Warinschi [16] (abbreviated as GSW scheme) are easily to be adapted to the SIDH context by plugging an IND-CCA secure KEM based on SIDH. However such transformations lead to more isogeny computations or more round of communication which are examined and summarised in the table 1 of [12]. Here we reexamine the security model they are satisfied, the assumption they are based on as well as the computation they cost, and make more concrete comparison among these resulted SIDH schemes in the following Table 1.

With respect to non-generic construction, both the Jeong-Katz-Lee scheme [20] and NAXOS scheme [29] only involve the computations like \(g^{xy} \) rather than \(g^{ax+b} \), thus being suitable to the SIDH case. Furthermore, Galbraith [12] proposed two SIDH-AKE schemes, and in this paper we called them Gal 1 which is a variant of the Jeong-Katz-Lee scheme [20] TS2 and Gal 2 which is closely related to NAXOS scheme. But their schemes could only satisfy the security with limited adversarial abilities (details are given in section 1.3). Several recognized attacks are not considered, including arbitrary registrant for static public keys, KCI attacks, and MEX attacks. In a AKE system, the adversary-controlled parties may register arbitrary public keys. KCI attacks mean that if a static secret key is revealed, an adversary can try to impersonate any other honest party in order to fool the owner of the exposed secret key. In MEX, an adversary tries to distinguish the session key from a random value under the disclosure of the ephemeral secret key of one party of the test session at least.

For example, the arbitrary registration for the static public key is not allowed for Gal 1 scheme. Otherwise Gal 1 scheme can not prevent adaptive attack: one malicious static public key can extract one bit of a target secret key. Furthermore, Gal 1 is not resistant to KCI and MEX attacks. Thus, this paper is to promote solving the open problem given by Galbraith [12]:

"to find new techniques to design and prove security of AKE protocols in SIDH setting, and give full analysis of AKE that includes the widest possible adversarial goals."

1.1 Our Contributions.

In this paper, we present a 3-pass and a 2-pass elegant AKE schemes in the SIDH setting and prove both of security in the CK\(^+\) model, which includes the widest possible adversarial goals.

1. As preparation work for 3-pass AKE, we investigate the soundness of the hashed decisional SIDH problem where the adversary is allowed to query a one-time hashed computational SIDH oracle, which we call 1-Oracle SIDH problem. We reduce the hardness of 1-Oracle SIDH problem to a computational SIDH assumption (called 1-gap SIDH assumption) with a strictly limited decisional oracle which allows queries with only one \((E_X, R_2, S_2 \in E_X[l^2])\) (that is asked at the first time) to the decisional SIDH (DSIDH) oracle.

2. We propose a strongly secure key encapsulation mechanism (KEM) based on supersingular isogeny, which is served as the core building block of our AKE schemes. Our KEM is chosen public-key chosen ciphertext (CPCCA) secure under the standard DSIDH assumption. Based on the 1-Oracle SIDH assumption, it is still CPCCA secure even some information of challenge ciphertext is leaked.

3. Equipped with 1-Oracle SIDH assumption and strongly secure KEM as the building block, we propose a 3-pass AKE \(\text{AKE}_{\text{SIDH-3}}\) and prove its security in the CK\(^+\) model.
4. To enhance the soundness of AKE, we also propose a 2-pass AKE $\text{AKE}_{\text{SIDH-2}}$ and prove its security based on standard DSIDH assumption.

As shown in Table 1, both the 3-pass and 2-pass AKE schemes have advantages in security and efficiency compared with existing works. Then we implement some typical schemes and give a comparison in Section 6. The 3-pass scheme decreases the bandwidth by 49.3% and is 1.2 times faster than the generic construction in [10] without loss of security. The 2-pass AKE scheme narrows the bandwidth by 23% and is 1.12 times faster.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Model</th>
<th>Assum.</th>
<th>Key Reg.</th>
<th>wPFS</th>
<th>KCI</th>
<th>MEX</th>
<th>Rd</th>
<th>Init isog</th>
<th>Resp isog</th>
<th>Mess Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDH [19]</td>
<td>-</td>
<td>DSIDH</td>
<td>-</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>72λ</td>
</tr>
<tr>
<td>Gal 1 [12]</td>
<td>CK</td>
<td>CSIDH</td>
<td>Honest</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>108λ</td>
</tr>
<tr>
<td>GSW [16]</td>
<td>CK</td>
<td>DSIDH</td>
<td>Honest</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>186λ</td>
</tr>
<tr>
<td>BCNP-Lon [3, 28]</td>
<td>CK</td>
<td>DSIDH</td>
<td>Arbi.</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>148λ</td>
</tr>
<tr>
<td>FSXY [10]</td>
<td>CK+</td>
<td>DSIDH</td>
<td>Arbi.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>148λ</td>
</tr>
<tr>
<td>$\text{AKE}_{\text{SIDH-2}}$</td>
<td>CK+</td>
<td>DSIDH</td>
<td>Arbi.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>114λ</td>
</tr>
<tr>
<td>$\text{AKE}_{\text{SIDH-3}}$</td>
<td>CK+</td>
<td>1-O SIDH</td>
<td>Arbi.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>80λ</td>
</tr>
</tbody>
</table>

Table 1. Comparison of existing AKE protocols on supersingular isogeny. SIDH is an unauthenticated scheme. Gal 1 is the Jeong-Katz-Lee variant in [12]. Gal 2 is the variant of the NAXOS-like scheme in the appendix of [12]. Assump. is the shortage of assumptions. Key Reg. means whether the static public key allows arbitrary registration or not, where “Arbi” allows arbitrary registration and “Honest” only allows honest registration. Rd is the pass number of protocol. Init isog and Resp isog represent the number of isogeny that the initiator and responder have to compute. Mess Size represents the total message size. “✓” presents that the scheme can resist this kind of attack and “×” cannot. “−” shows that this kind of security model does not consider this query.

1.2 Our Techniques

Our core ideas and techniques are illustrated in Figure 1. E_0 is the starting point.

The SIDH key exchange works as follows: U_A chooses a secret and computes the isogeny $\phi_X : E_0 \to E_X$ with kernel G_X and publishes $X = (E_X, \phi_X(P_2), \phi_X(Q_2))$. U_B chooses a secret and computes the isogeny $\phi_Y : E_0 \to E_Y$ with kernel G_Y and publishes $Y = (E_Y, \phi_Y(P_1), \phi_Y(Q_1))$. They both can compute $E_{XY} \cong E_X/\phi_X(G_Y) \cong E_Y/\phi_Y(G_X)$. The strategy to provide authentication for SIDH with the static and ephemeral component is that every user registers a static public key, for example U_A’s static public key is $(E_{A_1}, \phi_{A_1}(P_2), \phi_{A_1}(Q_2))$ and U_B’s static public key is $(E_{B_2}, \phi_{B_2}(P_1), \phi_{B_2}(Q_1))$.

As shown in Figure 1, there is a natural way to extract a session key from 4 Diffie-Hellman values $E_{A_1B_2}$, E_{A_1Y}, E_{X_B2} and E_{XY}. But it is risky to take $E_{A_1B_2}$ into account. Let us recall the adaptive attack from Galbraith, Petit, Shani and Ti [15]. A malicious user U_B who registers his static public key E_{B_2} with specified points $R’, S’$, can learn one bit of the static secret key of U_A if he can also query the result session key. As shown in Figure 1 with dashed lines, Galbraith [12] involves $E_{A_1B_2}$ and E_{XY} for the session key. Under the adaptive attack [15], adversary could gradually learn the static secret key by malicious registrations. Thus, $E_{A_1B_2}$ could not be included in the session key when arbitrary registration is allowed.
Although now only $E_{A,Y}$, E_{X,B_2}, and E_{XY} are involved in the session key, the adaptive attack still works if the CK^+ adversary (in case E_2 in Table 2) sends E_Y with specified points R', S' to U_A. With the ephemeral secret key for E_X and the result session key, the adversary still could extract one bit of the static secret key. The problem comes down to how to check the “validity” of $Y = (E_Y, R, S)$. Our solution is the “re-encryption” approach used in Fujisaki-Okamoto (FO) transformation [11]. Precisely, $C = (Y, y_1, y_2)$ is the ciphertext under public key E_{A_1} and X, where $Y = (E_0 / (P_2 + [y]Q_2), \phi_Y(P_1), \phi_Y(Q_1))$, $y_1 = h(j(E_{A,Y})) \oplus m_1$, $y_2 = h(j(E_{XY})) \oplus m_2$ and $y = g(m_1, m_2)$ for a hash function g, and the encapsulated key is $K_B = H(m_1, m_2)$. As a byproduct, we obtain the chosen ciphertext (CCA) secure KEM by the FO transformation and the “validity” of $Y = (E_Y, R, S)$ can be checked by U_A such that the adaptive attack does not work now. The requirement is symmetric: U_A computes (X, x_1, x_2) as the ciphertext under public key E_{B_2} and Y, where $X = (E_0 / (P_1 + [x]Q_1), \phi_X(P_2), \phi_X(Q_2))$, $x_1 = h(j(E_{X,B_2})) \oplus n_1$, $x_2 = h(j(E_{XY})) \oplus n_2$ and $x = g(n_1, n_2)$, and encapsulated key is $K_A = H(n_1, n_2)$. Therefore, extracting the session key from K_A and K_B rather than $E_{A,Y}$, E_{X,B_2} and E_{XY} prevents the adaptive attack.

Although the CCA secure KEM with “re-encryption” avoids the adaptive attack, it is still not enough for CK^+ security. The CK^+ adversary has the capability to adaptively send messages and adaptively query the session state and session key of non-test sessions. The capability of adaptively sending messages in the test session means that it can choose part of the challenge public key X^* for (Y^*, y_1^*, y_2^*). The capability of querying the session state and session key of non-test session means that it can query the decapsulation oracle which decapsulates the ciphertext under several public keys X' (not only the challenge public key). We integrate such attack manner as the chosen public key and chosen ciphertext attack (CPCCA), inspired by Okamoto [33]. Although the CPCCA adversary is much stronger than CCA adversary, in the random oracle model the solution to make our CCA secure KEM...
remain secure against CPCCA adversary is not complex. We only need to put the public key in the hashing step when generating the encapsulated key. Precisely, K_B encapsulated in (Y, y_1, y_2) is $H(X, m_1, m_2)$, while K_A encapsulated in (X, x_1, x_2) is $H(Y, n_1, n_2)$.

We almost solve the problem except that both X and Y have two functionalities. In the test session, on the one hand X is part of the public key (pk_{A_1}, X) under which the ciphertext (Y, y_1, y_2) is computed. On the other hand X is part of the ciphertext (X, x_1, x_2) which encapsulates K_A. In the test session, (X, x_1, x_2) is sent by AKE adversary A, the simulator S gets challenge ciphertext (Y^*, y_1^*, y_2^*) from the CPCCA challenger (which means the secret y in Y^* is unknown). But to simulate the CK+ game, S should learn $h(j(E_X/\langle R_2^* + [y]S_2^* \rangle))$ to extract K_A encapsulated in (X, x_1, x_2).

We propose two solutions for this problem. One method is to strengthen the underlying assumptions as 1-Oracle SIDH assumption such that $h(j(E_X/\langle R_2^* + [y]S_2^* \rangle))$ can be leaked. The other one is to add an extra X_0 such that X_0 is part of the public key (pk_{A_1}, X_0) under which the ciphertext (Y, y_1, y_2) is computed, while X is part of the ciphertext (X, x_1) under public key E_{B_2} (we omit Y).

The two solutions result in our 3-pass AKE in section 4 and 2-pass AKE in section 5, respectively.

- Solution 1: We enhance the underlying DSIDH assumption to the 1-Oracle SIDH assumption to allow the leakage of $h(j(E_X/\langle R_2^* + [y]S_2^* \rangle))$. The 1-Oracle SIDH assumption is a hashed DSIDH assumption that a one-time hashed CSIDH oracle is allowed. This solution results in our 3-pass AKE.

- Solution 2: We add an extra X_0 to take the position of X as part of the public key (E_{A_1}, X_0) under which the ciphertext (Y, y_1, y_2) is computed, remove x_2 and set (X, x_1) as the ciphertext under public key E_{B_2} rather than (E_{B_2}, Y). Then the value of $h(j(E_X/\langle R_2^* + [y]S_2^* \rangle))$ is not needed during the security proof. The drawback of this solution is that K_A' can not be included in the session state of U_B. Solution 2 leads to our 2-pass AKE.

1.3 Related Works.

Galbraith [12] proposed two SIDH variants of AKE from Jeong-Katz-Lee protocol [20] and NAXOS protocol [29]. Considering the adaptive attack on static secret keys, Gal 1 protocol only allows honest registrar of static public keys, and can not stand against KCI and MEX attacks. Gal 2 protocol is provably secure in BR model, which only allows honest registrar of static public keys (if the adversary gets the ephemeral secret key, like x, the adaptive attack still works), and can not resist MEX attacks.

Some generic AKE schemes can be adapted to SIDH variant. Boyd et al. [3] proposed a simple scheme (called BCNP) consisting of two KEM schemes and an additional unauthenticated key exchange in parallel. But it can not resist MEX attacks. Guillem, Smart and Warinschi [16] gave a three round AKE, which encrypts the message of unauthenticated key exchange to achieve CK security. It is vulnerable to the KCI and MEX attacks. Fujioka et al. [10] provided a CK+ secure AKE protocol (called FSXY) combining two CCA secure KEMs with a chosen plaintext secure KEM. The SIDH variant of FSXY frame achieves the highest secure level against the widest possible adversarial goals. Recently, Longa [28] proposed some experiment result for the SIDH variant for the BCNP-frame.
2 Preliminaries

2.1 SIDH Key Exchange Based on Supersingular Isogeny

The SIDH protocol [18, 19] inherits the construction of general Diffie-Hellman protocol, but it has obvious technical difference. The endomorphism of a supersingular elliptic curve is isomorphic to an order in a quaternion algebra, which is not communicative. Thus, extra information must be transferred as part of the ciphertext in order to get the same shared key.

We reiterate the key exchange protocol briefly, where we adopt the notations in [19] for the most part. First, choose a prime of the form \(p = \ell_1^{r_1} \ell_2^{r_2} \cdot f + 1 \) where \(\ell_1 \) and \(\ell_2 \) are small primes and \(f \) is a cofactor. We fix a supersingular elliptic curve \(E_0 \) defined over \(\mathbb{F}_{p^2} \). The cardinality of \(E_0 \) is \(|E_0(\mathbb{F}_{p^2})| = (\ell_1^{r_1} \ell_2^{r_2} \cdot f)^2 \). Furthermore, \(E_0[|E_1|] = \mathbb{Z}/\ell_1^{r_1} + \mathbb{Z}/\ell_2^{r_2} = (P_1, Q_1) \), \(E_0[|E_2|] = \mathbb{Z}/\ell_2^{r_2} \mathbb{Z} \), \(Z/\ell_2^{r_2} = (P_2, Q_2) \). The above parameters are public. Then A secretly chooses two random elements \(m, n_A \in \mathbb{Z}/\ell_1^{r_1} \mathbb{Z} \), not both divisible by \(\ell_1 \), and computes an isogeny \(\phi_A : E_0 \to E_A \) with kernel \(|m_A| P_1 + |n_A| Q_1 \). A sends \(E_A \) to B with two points \(\phi_A(P_2), \phi_A(Q_2) \). Similarly, B secretly chooses two random elements \(m, n_B \in \mathbb{Z}/\ell_2^{r_2} \mathbb{Z} \), not both divisible by \(\ell_2 \), and computes an isogeny \(\phi_B : E_0 \to E_B \) with kernel \(|m_B| P_2 + |n_B| Q_2 \). B sends \(E_B \) to A with two points \(\phi_B(P_1), \phi_B(Q_1) \). Upon receiving from B, A computes an isogeny \(\phi'_A : E_A \to E_{AB} \) with kernel \(|m_A| \phi_B(P_1) + |n_A| \phi_B(Q_1) \). B computes an isogeny \(\phi'_B : E_B \to E_{AB} \) with kernel \(|m_B| \phi_A(P_2) + |n_B| \phi_A(Q_2) \). When it comes to computing the shared key, we take B as an example. We denote \(|m_B| P_2 + |n_B| Q_2 = (R_B) \) and \(|m_A| P_1 + |n_A| Q_1 = (R_A) \) for convenience.

\[
E_{AB} = E_A/(m_B| \phi_A(P_2) + n_B| \phi_A(Q_2)) = E_A/(\phi_A(m_B| P_2 + n_B| Q_2)) = (E_0/(R_A))/(R_A, R_B)/R_A).
\]

Due to the isomorphism theorem, \((E_0/(R_A))/(R_A, R_B)/(R_A) = E_0/(R_A, R_B) \). In the same way, we know \(E_{BA} = E_0/(R_A, R_B) \). Therefore, A and B share the same j-invariant as \(j(E_{AB}) = j(E_{BA}) \).

According to Lemma 1 in [15], we know that for some \((m, n) \in \mathbb{Z}^2 \) (not simultaneously even), we have that \((m, n) \sim (1, a) \) or \((m, n) \sim (a, 1) \) for some \(a \in \mathbb{Z} \). We call this private key normalized. Throughout the reminder of this paper, we note that the private keys are normalized and without loss of generality, we fall into the former case.

2.2 CK+ Security Model

We recall the CK+ model introduced by [24] and later refined by [9], which is a CK model [6] integrated with the weak PFS, resistance to KCI and MEX properties. We focus on three and two-pass protocols in this paper. For simplicity, we only show the model specified to two-pass protocols. As for three pass protocol, we can extend it by adding an extra message in the matching session identifier and Send definitions.

In AKE protocol, \(U_i \) denotes a party indexed by \(i \), who is modeled as a probabilistic polynomial time (PPT) interactive Turing machine. We assume that each party \(U_i \) owns a static pair of secret-public key \((ssk_i, spk_i) \), where the static public key is linked to \(U_i \)'s identity by a certification authority (CA). No other actions by the CA are required or assumed. In particular, we make no assumption on whether the CA requires a proof-of
possession of the private key from a registrant of a public key, and we do not assume any specific checks on the value of a public key.

Session. Each party can be activated to run an instance called a *session*. A party can be activated to initiate the session by an incoming message of the form \((\Pi, I, U_A, U_B)\) or respond to an incoming message of the form \((\Pi, R, U_B, U_A, X_A)\), where \(\Pi\) is a protocol identifier, \(I\) and \(R\) are role identifiers corresponding to *initiator* and *responder*. Activated with \((\Pi, I, U_A, U_B)\), \(U_A\) is called the session *initiator*. Activated with \((\Pi, R, U_B, U_A, X_A)\), \(U_B\) is called the session *responder*.

According to the specification of AKE, the party creates randomness which is generally called *ephemeral secret key*, computes and maintains a *session state*, generates outgoing messages, and completes the session by outputting a session key and erasing the session state. Note that Canetti-Krawczyk [6] defines session state as session-specific secret information but leaves it up to a protocol to specify which information is included in a session state. LaMacchia et al. [29] explicitly set all random coins used by a party in a session as session-specific checks on the value of a public key.

A session may also be aborted without generating a session key. The initiator \(U_A\) creates a session state and outputs \(X_A\), then may receive an incoming message of the forms \((\Pi, I, U_A, U_B, X_A, X_B)\) from the responder \(U_B\), then may computes the session key \(SK\). On the contrary, the responder \(U_B\) outputs \(X_B\), and may compute the session key \(SK\). We say that a session is *completed* if its owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If \(U_A\) is the initiator, the session identifier is \(\text{sid} = (\Pi, I, U_A, U_B, X_A)\) or \(\text{sid} = (\Pi, I, U_A, U_B, X_A, X_B)\), which denotes \(U_A\) as an owner and \(U_B\) as a peer. If \(U_B\) is the responder, the session is identified by \(\text{sid} = (\Pi, R, U_B, U_A, X_A, X_B)\), which denotes \(U_B\) as an owner and \(U_A\) as a peer. The *matching session* of \((\Pi, I, U_A, U_B, X_A, X_B)\) is \((\Pi, R, U_B, U_A, X_A, X_B)\) and vice versa.

Adversary. The adversary \(A\) is modeled in the following to capture real attacks in open networks, including the control of communication and the access to some of the secret information.

- **Send** (message): \(A\) could send message in one of the forms: \((\Pi, I, U_A, U_B)\), \((\Pi, R, U_B, U_A, X_A)\), or \((\Pi, I, U_A, U_B, X_A, X_B)\), and obtains the response.
- **SessionKeyReveal** (sid): if the session sid is completed, \(A\) obtains the session key \(SK\) for sid.
- **SessionStateReveal** (sid): The adversary \(A\) obtains the session state of the owner of sid if the session is not completed. The session state includes all ephemeral secret keys and intermediate computation results except for immediately erased information but does not include the static secret key.
- **Corrupt** \((U_i)\): By this query, \(A\) learns all information of \(U_A\) (including the static secret, session states and session keys stored at \(U_A\)). In addition, from the moment that \(U_A\) is corrupted all its actions may be controlled by \(A\).

Freshness. Let \(\text{sid}^* = (\Pi, I, U_A, U_B, X_A, X_B)\) or \((\Pi, I, U_A, U_B, X_A, X_B)\) be a completed session between honest users \(U_A\) and \(U_B\). If the matching session of \(\text{sid}^*\) exists, denote it by \(\overline{\text{sid}^*}\). We say session \(\text{sid}^*\) is fresh if \(A\) does not queries: 1) **SessionStateReveal**(\(\text{sid}^*\)), **SessionKeyReveal**(\(\text{sid}^*\)), and **SessionStateReveal** (\(\text{sid}^*\)), **SessionKeyReveal** (\(\text{sid}^*\)) if \(\text{sid}^*\) exists; 2) **SessionStateReveal** (\(\text{sid}^*\)) and **SessionKeyReveal** (\(\text{sid}^*\)) if \(\text{sid}^*\) does not exist.
Security Experiment. The adversary A could make a sequence of the queries described above. This query can be issued at any stage to a completed, fresh and unexpired session sid. A bit b is picked randomly. If $b = 1$, the oracle generates a random value in the key space; if $b = 0$, it reveals the session key. The adversary can continue to issue queries except that it cannot expose the test session. The adversary wins the game if the session is fresh and if the guess of the adversary is correct, i.e., $b' = b$. The advantage of the adversary A is defined as $\text{Adv}^{\text{CK}^+}_{\Pi}(A) = \Pr [A \text{ wins}] - \frac{1}{2}$.

Definition 1. We say that a AKE protocol Π is secure in the CK^+ model if the following conditions hold:

(Correctness:) if two honest parties complete matching sessions, then they both compute the same session key except with negligible probability.

(Soundness:) for any PPT adversary A, $\text{Adv}^{\text{CK}^+}_{\Pi}(A)$ is negligible for the test session sid^*,

1. the static secret key of the owner of sid^* is given to A, if $\overline{sid^*}$ does not exist.
2. the ephemeral secret key of the owner of sid^* is given to A, if $\overline{sid^*}$ does not exist.
3. the static secret key of the owner of sid^* and the ephemeral secret key of $\overline{sid^*}$ are given to A, if $\overline{sid^*}$ exists.
4. the ephemeral secret key of $\overline{sid^*}$ and the ephemeral secret key of $\overline{sid^*}$ are given to A, if $\overline{sid^*}$ exists.
5. the static secret key of the owner of sid^* and the static secret key of the peer of sid^* are given to A, if $\overline{sid^*}$ exists.
6. the ephemeral secret key of $\overline{sid^*}$ and the static secret key of the peer of sid^* are given to A, if $\overline{sid^*}$ exists.

As indicated in Table 2, the CK^+ model captures all non-trivial patterns of exposure of static and ephemeral secret keys listed in Definition 1, and these ten cases cover wPFS, resistance to KCI, and MEX as follows: E_1, E_4, E_{7-1}, E_{7-2}, E_{8-1} and E_{8-2} capture KCI, since the adversary obtains either only the static secret key of one party or both the static secret key of one party and the ephemeral secret key of the other party of the test session. E_5 captures wPFS. E_2, E_3 and E_6 capture MEX, since the adversary obtains the ephemeral secret key of one party of the test session at least.

<table>
<thead>
<tr>
<th>Event</th>
<th>Case</th>
<th>sid^*</th>
<th>$\overline{sid^*}$</th>
<th>ssk_A</th>
<th>esk_A</th>
<th>esk_B</th>
<th>ssk_B</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>1 A</td>
<td>No</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>$-$</td>
<td>\times</td>
<td>KCI</td>
<td></td>
</tr>
<tr>
<td>E_2</td>
<td>2 A</td>
<td>No</td>
<td>\times</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>MEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>2 B</td>
<td>No</td>
<td>\times</td>
<td>\times</td>
<td>$\sqrt{\ }$</td>
<td>MEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_4</td>
<td>1 B</td>
<td>No</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>KCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_5</td>
<td>4 A or B</td>
<td>Yes</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>\times</td>
<td>$\sqrt{\ }$</td>
<td>wPFS</td>
<td></td>
</tr>
<tr>
<td>E_6</td>
<td>5 A or B</td>
<td>Yes</td>
<td>\times</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>MEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{7-1}</td>
<td>3 A</td>
<td>Yes</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>\times</td>
<td>KCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{7-2}</td>
<td>3 B</td>
<td>Yes</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>\times</td>
<td>KCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{8-1}</td>
<td>6 A</td>
<td>Yes</td>
<td>\times</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>KCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{8-2}</td>
<td>6 B</td>
<td>Yes</td>
<td>$\sqrt{\ }$</td>
<td>\times</td>
<td>\times</td>
<td>KCI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The behavior of AKE adversary in CK^+ model. $\overline{sid^*}$ is the matching session of sid^*, if it exists. “Yes” means that there exists $\overline{sid^*}$ and “No” means not. ssk_A (ssk_B) means the static secret key of A (B), esk_A (esk_B) is the ephemeral secret key of A (B) in sid^* or $\overline{sid^*}$ if there exists. “$\sqrt{\ }$” means the secret key may be revealed to adversary, “\times” means the secret key is not revealed. “$-$” means the secret key does not exist.

3 1-Oracle SIDH Assumptions

In this section, we recall the complexity problems related to supersingular isogeny, where the first five are standard assumptions, the sixth is straightforward by adding a hash function and the last two are new. We also analyze their relations and plausibility.

3.1 Standard SIDH Problems and Their Relations

Recall that E_0 is the base curve and there are fixed basis pairs $(P_1, Q_1) = E_0[l_1^e]$ and $(P_2, Q_2) = E_0[l_2^e]$.

Definition 2 (SI isogeny problem [13]). The A-SI problem is given $(E_0, P_1, Q_1, P_2, Q_2; E_A, R_2, S_2)$ where $R_2, S_2 \in E_A[l_2^e]$, to find $\phi_A : E_0 \rightarrow E_A$ of degree l_1^e such that $R_2 = \phi_A(P_2)$ and $S_2 = \phi_A(Q_2)$. The B-SI problem is given $(E_0, P_1, Q_1, P_2, Q_2; E_B, R_1, S_1)$ where $R_1, S_1 \in E_B[l_1^e]$, to find $\phi_B : E_0 \rightarrow E_B$ of degree l_2^e such that $R_1 = \phi_B(P_1)$ and $S_1 = \phi_B(Q_1)$.

Definition 3 (Decisional SI problem [13]). Let E_A be any elliptic curve. The Decisional A-SI problem is given $(E_0, P_1, Q_1, P_2, Q_2; E_A, R_2, S_2)$ where $R_2, S_2 \in E_A[l_2^e]$, to determine whether or not there exists an isogeny $\phi_A : E_0 \rightarrow E_A$ of degree dividing l_1^e such that $R_2 = \phi_A(P_2)$ and $S_2 = \phi_A(Q_2)$. The Decisional B-SI can be defined similarly.

Definition 4 (Computational SIDH (CSIDH) problem [18]). Let $\phi_A : E_0 \rightarrow E_A$ be an isogeny whose kernel is $G_A = \langle P_1 + [a]Q_1 \rangle$, and let $\phi_B : E_0 \rightarrow E_B$ be an isogeny whose kernel is $G_B = \langle P_2 + [b]Q_2 \rangle$. Given $(E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1))$, find the j-invariant of $E_0/\langle G_A, G_B \rangle$.

Definition 5 (Decisional SIDH (DSIDH) problem [18]). Given $(E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); E_C)$, where E_A, E_B, G_A, G_B are that in CSIDH problem, E_C is computed as $E_C \cong E_0/(G_A, G_B)$ or $E_C \cong E_0/(P_1 + [a']Q_1, P_2 + [b']Q_2)$ with probability $1/2$, where a' (respectively b') are chosen at random from $Z/l_1^e Z$ (respectively $Z/l_2^e Z$) and not both divisible by l_1 (respectively l_2). The DSIDH problem is decide how E_C is computed.

Definition 6 (A/B-DSIDH problem [35]). Given $(E_0, P_1, Q_1, P_2, Q_2)$. Suppose that E_B and $\phi_B(P_1), \phi_B(Q_1) \in E_B[l_1^e]$ are known, then given a curve E_X, a basis pair $R_2, S_2 \in E_X[l_2^e]$ and a curve E_Z determine whether the tuple (E_X, E_B, E_Z) is a valid SIDH tuple, in the sense that there is a map $\psi_X : E_0 \rightarrow E_X$ of degree (dividing) l_1^e such that $\psi_X(P_2) = R_2, \psi_X(Q_2) = S_2, E_Z = E_0/\langle \ker \psi_X, G_B \rangle$. This is the A-DSIDH problem.

Given $(E_0, P_1, Q_1, P_2, Q_2)$. Suppose that E_A and $\phi_A(P_2), \phi_A(Q_2) \in E_A[l_2^e]$ are known, then given a curve E_Y, a basis pair $R_1, S_1 \in E_Y[l_1^e]$ and a curve E_Z determine whether the tuple (E_A, E_Y, E_Z) is a valid SIDH tuple, in the sense that there is a map $\psi_Y : E_0 \rightarrow E_Y$ of degree (dividing) l_2^e such that $\psi_Y(P_1) = R_1, \psi_Y(Q_1) = S_1, E_Z = E_0/\langle G_A, \ker \psi_Y \rangle$. This is the B-DSIDH problem.

Remark 1: Note that DSIDH problem is different with both A-DSIDH and B-DSIDH problems, since DSIDH problem requires that $R_2 = \phi_A(P_2), S_2 = \phi_A(Q_2)$, while A-DSIDH does not require this “public key validation” [35].

Remark 2: Note that in [35] the A-DSIDH problem is to decide whether there is a map $\psi_X : E_0 \rightarrow E_X$ of degree dividing l_1^e such that $\psi_X(P_2) = R_2$ and $\psi_X(Q_2) = S_2$. In the
following we define it to decide whether there is a map of degree equal to \(l_1^{e_1} \). The same holds for \(B \)-SIDH problem.

The above are standard problems and previous works have analyzed their relations. Galbraith and Vercauteren \cite{13} show that the computational SI isogeny is equal to the decisional SI problem. They show that \(l_1 \) queries to decisional SI solver will help to decide the result of the first \(e_1 - 1 \) steps. Precisely, let \(u \in \mathbb{Z} \) be such that \(u l_1 \equiv 1 \pmod{l_2^{e_2}} \) and \(R_2' = [u] \psi(R_2), S_2' = [u] \psi(S_2) \), given the computational SI instance \((E_0, P_1, Q_1, P_2, Q_2; E_A, R_2, S_2)\), choose one \(l_1 \)-isogeny \(\psi : E_A \rightarrow E' \) and call the decisional SI solver on \((E_0, P_1, Q_1, P_2, Q_2; E', R_2', S_2')\) to decide the last \(l_1 \)-isogeny \(\psi \). Then querying the decisional SI solver polynomial times with \textbf{polynomial} different \((E', R_2', S_2')\) will help to determine the path from \(E_0 \) to \(E_A \).

Urbanik and Jao \cite{35} show that a solver of A-SI problem is equivalent under randomized polynomial time reductions to a solver which solves both CSIDH and A-DSIDH problems.

Galbraith \textit{et al}. \cite{15} proposed an adaptive attack which intends to attack the SIDH key exchange if \((E_A, \phi_A(P_2), \phi_A(Q_2))\) is a static key. They found that the known public key validation methods are insufficient and show that the attacker will learn one bit of the secret key of \(\phi_A \) by querying the B-DSIDH solver once. After polynomial times of queries with \textbf{polynomial} different \((R_1, S_1) \in E_Y[l_1^{e_1}]\) and polynomial different curves \(E_Z \) to the decisional B-DSIDH problem, the secret key of \(\phi_A \) will be extracted bit-by-bit. Thus the CSIDH problem is equivalent under reduction for randomized polynomial times to A-DSIDH or B-DSIDH problem.

3.2 1-Oracle SIDH Problem

We first give a straightforward variant of DSIDH problem by adding a hash function, then propose the 1-Oracle SIDH problem and reduce its soundness to the hardness of solving \textit{1-gap} problem.

In the supersingular isogeny area, the classical “gap” problem does not hold, namely computational SIDH problem (resp. SI) does not hold \cite{15, 13} if allowing queries with \textbf{polynomial} different \((R_2, S_2) \in E_X[l_2^{e_2}]\) and polynomial different curves \(E_Z \) to the decisional A-DSIDH problem (resp. Decisional SI) solver.

Although the classical “gap” assumption does not hold, we believe that the “gap” assumption may hold with a \textbf{strictly limited} decisional oracle. Precisely, we believe that the CSIDH is still hard even if allowing queries with \textbf{only one} \((E_X, R_2, S_2) \in E_X[l_2^{e_2}]\) and polynomial different curves \(E_Z \) to the decisional A-DSIDH problem. The certainty comes from the fact that the queries to the decisional A-DSIDH solver with only one curve and one pair of basis leak at most \(\log \text{poly}(\lambda) \) bits of secret key of \(\phi_B \), which would not dramatically harm the soundness of CSIDH problem.

Definition 7 (Hashed DSIDH problem). Let \(H : \{0, 1\}^* \rightarrow \{0, 1\}^\lambda \) be a hash function.

Given \((E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); h)\), where \(E_A, E_B, G_A, G_B \) are that in CSIDH problem and \(h \) is computed as \(h = H(j(E_{AB})) \) where \(E_{AB} \cong E_0 / \langle G_A, G_B \rangle \) or \(h \leftarrow \{0, 1\}^\lambda \) with probability \(1/2 \). The Hashed DSIDH problem is to decide how \(h \) is computed.

1-Oracle SIDH Assumption. Let \(\phi_B : E_0 \rightarrow E_B \) be an isogeny with kernel \(G_B = \langle P_2 + [b]Q_2 \rangle \). And \(\phi_B(P_1), \phi_B(Q_1) \in E_B[l_1^{e_1}] \) are known. Let the \(O_B \) be a SIDH key exchange oracle such that given the input a curve \(E_X \) and a basis pair \(\langle R_2, S_2 \rangle \in E_X[l_2^{e_2}] \), compute and output a curve \(E_Z = E_X / \langle R_2 + [b]S_2 \rangle \).
Let \mathcal{H}_B be a one-time Hashed SIDH oracle which given the input a curve E_X and a basis pair $(R_2, S_2) \in E_X[l_2^2]$, outputs $H(j(E_Z))$ where $E_Z \leftarrow \mathcal{O}_B(E_X, R_2, S_2)$ and H is a hash function. Suppose given $(E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1))$, the adversary’s goal is to compute $H(j(E_{AB}))$ where $E_{AB} = E_0/(G_A,G_B)$. Now, as long as the one-time oracle \mathcal{H}_B can not be queried with $(E_A, \phi_A(P_2), \phi_A(Q_2))$, this one-time oracle seems useless. We formalize this as follows.

Definition 8 (1-Oracle SIDH problem). Let $H : \{0,1\}^* \rightarrow \{0,1\}^\lambda$ be a hash function. Given $(E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); h)$, where E_A, E_B, G_A, G_B are that in CSIDH problem and h is computed as $h = H(j(E_{AB}))$ where $E_{AB} \equiv E_0/(G_A,G_B)$ or $h \leftarrow \{0,1\}^\lambda$ with probability 1/2. The 1-Oracle SIDH problem is to decide how h is computed when the adversary A can query one-time Hashed SIDH oracle \mathcal{H}_B with $(E_X, R_2, S_2) \neq (E_A, \phi_A(P_2), \phi_A(Q_2))$. The advantage of A is

$$A_{\mathcal{H}_B}^{1-\text{OSIDH}} = \Pr[\mathcal{A}_{\mathcal{H}_B}(E_A, \phi_A(P_2), \phi_A(Q_2), E_B, \phi_B(P_1), \phi_B(Q_1); H(j(E_{AB}))) = 1] - \Pr[\mathcal{A}_{\mathcal{H}_B}(E_A, \phi_A(P_2), \phi_A(Q_2), E_B, \phi_B(P_1), \phi_B(Q_1); h \leftarrow \{0,1\}^\lambda) = 1].$$

We emphasize that the adversary is allowed to query Hashed SIDH oracle \mathcal{H}_B only one time and $(E_X, R_2, S_2) \neq (E_A, \phi_A(P_2), \phi_A(Q_2))$. If he can query for polynomial times, then the 1-Oracle SIDH problem can be solved using the adaptive attack in [13].

Remarks 3: In definition 8, 1-Oracle SIDH solver is associated with one-time oracle \mathcal{H}_B. We may also associate the solver with one-time oracle \mathcal{H}_A. Concretely, in definition 8, 1-Oracle SIDH should be called 1-Oracle A-SIDH. If the \mathcal{H}_B is replaced by \mathcal{H}_A, it is called 1-Oracle B-SIDH.

1-gap SIDH Assumption. Given $(E_0, P_1, Q_1, P_2, Q_2; E_B, \phi_B(P_1), \phi_B(Q_1))$, let $\mathcal{O}_B((\cdot),\cdot)$ be a highly limited decisional oracle that only one curve E_X, one basis pair $R_2, S_2 \in E_X[l_2^2]$ (that is queried at the first time) and the j-invariant j' are allowed to be queried. It outputs 1, if $\exists E_Z$ such that $j(E_Z) = j'$ and $E_Z \equiv E_X/(R_2 + [b]S_2)$, and 0 otherwise. We formalize the oracle by adding count which is initiated as 0 as follows.

<table>
<thead>
<tr>
<th>$\mathcal{O}_B((\cdot),\cdot)$ with count=0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 On receiving $E'_X, R'_2, S'_2 \in E'_X[l_2^2]$ and a j-invariant j'</td>
</tr>
<tr>
<td>02 if count=0</td>
</tr>
<tr>
<td>03 $(E_X, R_2, S_2) := (E'_X, R'_2, S'_2)$, count=1</td>
</tr>
<tr>
<td>04 if $\exists E_Z$ s.t. $j(E_Z) = j' \land E_Z \equiv E_X/(R_2 + [b]S_2)$</td>
</tr>
<tr>
<td>05 return 1 else 0</td>
</tr>
<tr>
<td>06 if count = 1</td>
</tr>
<tr>
<td>07 if $(E_X, R_2, S_2) \neq (E'_X, R'_2, S'_2)$, abort</td>
</tr>
<tr>
<td>08 else if $\exists E_Z$ s.t. $j(E_Z) = j' \land E_Z \equiv E_X/(R_2 + [b]S_2)$</td>
</tr>
<tr>
<td>09 return 1 else 0</td>
</tr>
</tbody>
</table>

Fig. 2. The limited decisional oracle $\mathcal{O}_B((\cdot),\cdot)$

The intuition of 1-gap SIDH assumption is that the query to the decisional A-DSIDH solver with only one curve and one pair of basis leaks at most $\log \text{poly}(\lambda)$ bits of secret key of ϕ_B, and would not dramatically harm the soundness of CSIDH problem. We formalize this as follows.
Definition 9 (1-gap SIDH). Let $H: \{0, 1\}^* \rightarrow \{0, 1\}^\lambda$ be a hash function. Given $(E_0, P_1, Q_1, P_2, Q_2; E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); h)$, where E_A, E_B, G_A, G_B are that in C-SIDH problem, and a limited oracle $O_B(\cdot, \cdot)$, find the j-invariant of $E_0/(G_A, G_B)$. The advantage of adversary A is

$$A^\text{Avd}_A^{1\text{-gSIDH}} = \Pr[A^{O_B}(E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1)) = j(E_{AB})],$$

where $E_{AB} \equiv E_0/(G_A, G_B)$.

We emphasize that if the adversary is allowed to query $O_B(\cdot, \cdot)$ with unlimited numbers of (E'_X, R'_2, S'_2), 1-gap SIDH problem can be solved using the adaptive attack in [15]. Thus we require a highly limited oracle $O_B(\cdot, \cdot)$.

Remark 4: As in Remark 3, 1-gap SIDH can also be specified as 1-gap A-SIDH or 1-gap B-SIDH depending on the limited oracle $O_B(\cdot, \cdot)$ or $O_A(\cdot, \cdot)$.

3.3 1-Oracle SIDH and 1-gap SIDH

The following theorem shows that the 1-gap SIDH assumption implies the 1-Oracle SIDH assumption when the hash function H is modeled as a random oracle, the proof is inspired by analysis of the Oracle Diffie-Hellman assumption given by Abdalla, Bellare and Rogaway [1]. More specifically, we show that in the random oracle model if there is a algorithm A to solve the 1-Oracle SIDH there is a algorithm B to solve the 1-gap SIDH problem.

Theorem 1. Let E_0 is the base curve and there are fixed basis pairs $P_1, Q_1 \in E_0[l'_1]$, $P_2, Q_2 \in E_0[l'_2]$. Let the associated hash function be chosen at random. Let q be the total number of queries to H-oracle. Then we have for any algorithm A against the 1-Oracle SIDH problem there is an algorithm B against the 1-gap SIDH problem such that

$$A^\text{Avd}_B^{1\text{-eSIDH}}(\lambda) \leq 1/q \cdot A^\text{Avd}_A^{1\text{-OSIDH}}(\lambda).$$

Proof. Let A be any algorithm against the 1-Oracle SIDH problem. We can construct an algorithm B for the 1-gap SIDH problem using A as sub-routine in Figure 3. The problem for B is how to maintain the hash list so as to keep the consistency with the one-time oracle H_B, while the limited oracle $O_B(\cdot, \cdot)$ would help B to fix it.

Note that in Figure 3, if $H_B(E_X, R_2, S_2)$ is asked at first which returns a random h, and later j' is queried to H such that $O_B((E_X, R_2, S_2), j') = 1$, it will return h. If $H(j')$ is asked at first which returns a random h, and later (E_X, R_2, S_2) is asked to H_B such that $O_B((E_X, R_2, S_2), j') = 1$, it will return that h.

Let Ask be the event that $j(E_0/(G_A, G_B))$ is queried to H and $\overline{\text{Ask}}$ be the complement of Ask. If Ask does not happen, which means $j(E_0/(G_A, G_B))$ is not queried by A to H, there is no way to tell whether h_b is equal to $H(j(E_0/(G_A, G_B)))$ or not. Let $(E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); H(j_{E_{AB}}))$ be SIDH distribution, and $(E_A, \phi_A(P_2), \phi_A(Q_2); E_B, \phi_B(P_1), \phi_B(Q_1); h \leftarrow \{0, 1\}^\lambda)$ be non-SIDH distribution. Thus we have that

$$A^\text{Avd}_A^{1\text{-OSIDH}} = \Pr[A(\text{SIDH}) = 1] - \Pr[A(\text{non-SIDH}) = 1]$$

$$= \Pr[A(\text{SIDH}) = 1 \land \text{Ask}] - \Pr[A(\text{non-SIDH}) = 1 \land \text{Ask}]$$

$$+ \Pr[A(\text{SIDH}) = 1 \land \overline{\text{Ask}}] - \Pr[A(\text{non-SIDH}) = 1 \land \overline{\text{Ask}}]$$

$$= \Pr[A(\text{SIDH}) = 1 \land \text{Ask}] - \Pr[A(\text{non-SIDH}) = 1 \land \text{Ask}]$$

$$\leq \Pr[\text{Ask}] < A^\text{Avd}_B^{1\text{-gSIDH}}.$$
Algorithm $B_{\mathcal{E}}(\cdot)^{-1}(A = (E_A, \phi_A(P_2), \phi_A(Q_1)); B = (E_B, \phi_B(P_1), \phi_B(Q_1)))$

01 $h_0, h_1 \leftarrow \{0, 1\}^\lambda$
02 $b \leftarrow \{0, 1\}$
03 Run $A_{\mathcal{E}}(\cdot, B, h_b)$
04 a. For one-time query \mathcal{H}_B
05 do as one-time \mathcal{H}_B
06 b. For the H-query
07 do as one-time \mathcal{H}_B
08 c. Let b' be the output of A
09 return $j \leftarrow L_H$

One time \mathcal{H}_B

10 given one-time query (E_X, R_2, S_2)

11 if $\exists(j', h') \in L_H \wedge \mathcal{O}_B((E_X, R_2, S_2), j') = 1$

12 return h'

13 else $h \leftarrow \{0, 1\}^\lambda$, $L_B = L_B \cup \{h\}$

14 return h

15 if $\exists(j', h') \in L_H$ return h'

16 else if $\exists((E_X, R_2, S_2), h) \in L_H \wedge \mathcal{O}_B((E_X, R_2, S_2), j') = 1$

17 return h, $L_H = L_H \cup \{(j', h)\}$

18 otherwise $h \leftarrow \{0, 1\}^\lambda$

19 return h, $L_H = L_H \cup \{(j', h)\}$

Fig. 3. Algorithm B for attacking the 1-gap SIDH problem

4 A Three-Pass AKE from Supersingular Isogeny

We propose a strongly secure 3-pass AKE from supersingular isogeny whose security relies on the 1-Oracle SIDH assumption.

4.1 Chosen Public Key CCA Secure KEM

We first propose a KEM from supersingular isogeny which is the core building block of our AKE. The KEM is secure against the adversary who is allowed to choose not only part of the challenge public key but also query strong decryption oracle which will decrypt the ciphertext under several public keys rather than only the challenge public key.

Public parameters. Choose $p = l_1^{f_1}l_2^{f_2} \cdot f \pm 1, E_0, \{P_1, Q_1\}, \{P_2, Q_2\}$ as above. Let $h : \{0, 1\}^* \rightarrow \{0, 1\}^{2\lambda}, g : \{0, 1\}^* \rightarrow \{0, 1\}^*$, and $H : \{0, 1\}^* \rightarrow \{0, 1\}^\lambda$ be hash functions, where λ is the security parameter. The KEM is shown in Figure 4.

KeyGen(λ). Choose a random element $a_1 \leftarrow Z/l_1^{f_1}Z$ and compute the isogeny $\phi_{A_1} : E_0 \rightarrow E_{A_1}$ with the kernel $\{P_1 + [a_1]Q_1\}$. Let $A_1 = (E_{A_1}, \phi_{A_1}(P_2), \phi_{A_1}(Q_2))$. Similarly, choose a random element $x \leftarrow Z/l_1^{f_1}Z$ and compute the isogeny $\phi_x : E_0 \rightarrow E_X$ with the kernel $\{P_1 + [x]Q_1\}$. Let $X = (E_X, \phi_X(P_2), \phi_X(Q_2))$. The encapsulation key is defined as $pk = (A_1, X)$ and the decapsulation key is $sk = (a_1, x)$.

Encaps(pk). Choose two random elements $m_1, m_2 \leftarrow \{0, 1\}^\lambda$ and let $y = g(m_1, m_2)$. First compute the isogenies $\phi_Y : E_0 \rightarrow E_Y$ with the kernel $\{P_2 + [y]Q_2\}$ and let $Y = (E_Y, \phi_Y(P_1), \phi_Y(Q_1))$. Then with pk, compute two isogenies $\phi_{A_1} : E_{A_1} \rightarrow E_{Y,A_1}$ and $\phi_X : E_X \rightarrow E_{Y,X}$ with kernels $\{\phi_{A_1}(P_2) + [y]\phi_{A_1}(Q_2)\}$ and $\{\phi_X(P_2) + [y]\phi_X(Q_2)\}$, respectively. The ciphertext is $C = (Y, y_1, y_2)$, where $y_1 = h(j(E_{A_1})) \oplus m_1$ and $y_2 = h(j(E_{Y,X})) \oplus m_2$. The session key is $K = H(X, m_1, m_2, C)$.

Dec(sk, C). With the ciphertext and sk, compute isogenies $\phi_{A_1} : E_Y \rightarrow E_{A_1,Y}$ and $\phi_{X,Y} : E_Y \rightarrow E_{X,Y}$. Then, compute $m'_1 = y_1 \oplus h(j(E_{A_1,Y}))$, $m'_2 = y_2 \oplus h(j(E_{X,Y}))$ and $y' = g(m'_1, m'_2)$. If $E_Y = E_0/\{P_2 + [y]Q_2\}$, then return the session key $H(X, m'_1, m'_2, C)$, else⊥.

Remark 5: In this scheme, these points in the public key are chosen from subgroups of order $l_2^{f_2}$. We can change the subgroups by replacing A with B and X with Y. And now the underlying assumption is altered from 1-Oracle B-SIDH to 1-Oracle A-SIDH as in Remark 3.
KeyGen(λ)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>(a_1 \leftarrow \mathbb{Z}/r_1^*\mathbb{Z})</td>
</tr>
<tr>
<td>02</td>
<td>(E_{A_1} = E_0/(P_1 + [a_1]Q_1))</td>
</tr>
<tr>
<td>03</td>
<td>(\phi_{A_1}(P_2), \phi_{A_1}(Q_2))</td>
</tr>
<tr>
<td>04</td>
<td>(A_1 = (E_{A_1}, \phi_{A_1}(P_2), \phi_{A_1}(Q_2)))</td>
</tr>
<tr>
<td>05</td>
<td>(x \leftarrow \mathbb{Z}/r_1^*\mathbb{Z})</td>
</tr>
<tr>
<td>06</td>
<td>(E_X = E_0/(P_1 + [x]Q_1))</td>
</tr>
</tbody>
</table>

Encaps(pk)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>(m_1, m_2 \leftarrow {0, 1}^\lambda)</td>
</tr>
<tr>
<td>02</td>
<td>(y = g(m_1, m_2))</td>
</tr>
<tr>
<td>03</td>
<td>(E_Y = E_0/(P_2 + [y]Q_2))</td>
</tr>
<tr>
<td>04</td>
<td>(Y = (E_Y, \phi_Y(P_1), \phi_Y(Q_1)))</td>
</tr>
<tr>
<td>05</td>
<td>(E_{Y_A} = E_A/(\phi_{A_1}(P_2) + [y]\phi_{A_1}(Q_2)))</td>
</tr>
<tr>
<td>06</td>
<td>(E_{Y_X} = E_X/(\phi_X(P_2) + [y]\phi_X(Q_2)))</td>
</tr>
<tr>
<td>07</td>
<td>(y_1 = h(j(E_{Y_A})) \oplus m_1)</td>
</tr>
<tr>
<td>08</td>
<td>(y_2 = h(j(E_{Y_X})) \oplus m_2)</td>
</tr>
<tr>
<td>09</td>
<td>(C = (Y, y_1, y_2), K = H(X, m_1, m_2, C))</td>
</tr>
</tbody>
</table>

Dec(sk, C)

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>((e_1, e_2, e_3) \leftarrow C)</td>
</tr>
<tr>
<td>02</td>
<td>(E_{A,Y} = E_Y/\langle \phi_Y(P_1) + [a_1]\phi_Y(Q_1)\rangle = (E_0/\langle R_Y \rangle)/(\langle R_{A_1} \rangle, R_Y))</td>
</tr>
<tr>
<td>03</td>
<td>(E_{XY} = E_Y/\langle \phi_Y(P_1) + [x]\phi_Y(Q_1)\rangle = (E_0/\langle R_Y \rangle)/(\langle R_{X} \rangle, R_Y))</td>
</tr>
<tr>
<td>04</td>
<td>(E_{Y_A} = E_A/(\phi_{A_1}(P_2) + [y]\phi_{A_1}(Q_2)) = (E_0/\langle R_{A_1} \rangle)/(\langle R_{A_1} \rangle, R_Y))</td>
</tr>
<tr>
<td>05</td>
<td>(E_{Y_X} = E_X/(\phi_X(P_2) + [y]\phi_X(Q_2)) = (E_0/\langle R_{X} \rangle)/(\langle R_{X} \rangle, R_Y))</td>
</tr>
</tbody>
</table>

Fig. 4. The CPCCA secure KEM scheme \(\text{KEM}_{\text{dsidh}}\) with strong decryption oracle.

Correctness. For the purpose of getting the correct key \(K\), we should make sure that \(m_1 = m_1\) and \(m_2 = m_2\). That is to say, we have to prove the isomorphism between curves \(E_{A,Y}, E_{XY}\) and \(E_{Y_A}, E_{Y_X}\), respectively. Let \(P_1 + [a_1]Q_1 = R_{A_1}, P_1 + [x]Q_1 = R_{X}, P_2 + [y]Q_2 = R_{Y}\) and \(P_2 + [b]Q_2 = R_{B_2}\) for simplicity.

\[
E_{A,Y} = E_Y/\langle \phi_Y(P_1) + [a_1]\phi_Y(Q_1)\rangle = (E_0/\langle R_Y \rangle)/(\langle R_{A_1} \rangle, R_Y) \\
E_{XY} = E_Y/\langle \phi_Y(P_1) + [x]\phi_Y(Q_1)\rangle = (E_0/\langle R_Y \rangle)/(\langle R_{X} \rangle, R_Y) \\
E_{Y_A} = E_A/(\phi_{A_1}(P_2) + [y]\phi_{A_1}(Q_2)) = (E_0/\langle R_{A_1} \rangle)/(\langle R_{A_1} \rangle, R_Y) \\
E_{Y_X} = E_X/(\phi_X(P_2) + [y]\phi_X(Q_2)) = (E_0/\langle R_{X} \rangle)/(\langle R_{X} \rangle, R_Y)
\]

According to the isomorphism theorem, the curves \(E_{A,Y}\) and \(E_{Y_A}\) can be generated by the kernel subgroup \((R_{A_1}, R_Y)\), and the curves \(E_{XY}\) and \(E_{Y_X}\) are produced by the kernel subgroup \((R_{X}, R_Y)\).

In Figure 5, we give the chosen public key CCA (CPCCA) game for \(\text{KEM}_{\text{dsidh}}\) with strong decryption oracle. Note that \(\mathcal{A}\) has the capability to choose \(X^*\) and query strong decryption oracle that will decrypt the ciphertext under general public keys generated by the challenger.

The advantage of \(\mathcal{A}\) in this game is defined as \(\text{Adv}_{\mathcal{A}, \text{KEM}_{\text{dsidh}}}^{\text{CPCCA}} = \Pr[b = b'] - 1/2\). We say \(\text{KEM}_{\text{dsidh}}\) is CPCCA secure if for any PPT adversary \(\mathcal{A}\), \(\text{Adv}_{\mathcal{A}}^{\text{CPCCA}}\) is negligible.

Theorem 2. Under DSIDH assumption, \(\text{KEM}_{\text{dsidh}}\) is CPCCA secure in the random oracle model. Precisely, for any PPT CPCCA adversary \(\mathcal{A}\) there exists algorithm \(\mathcal{B}\) such that

\[
\text{Adv}_{\mathcal{A}, \text{KEM}_{\text{dsidh}}}^{\text{CPCCA}} \leq \text{Adv}_{\mathcal{B}}^{\text{DSIDH}}.
\]
On receiving (state, X∗) if the event that it queries m∗ = \{0, 1\}λ happens (we denote such event as bad). Although X∗ is chosen by A, and it will help A to determine m2, the event that it queries H with m1 being bounded by solving DSIDH problem. Precisely, for public parameters (E0, P1, Q1, P2, Q2), given DSIDH challenge EA, φA(P2), φA(Q2); ЕY, φY(P1), φY(Q1) and EC, S simulates the CPCCA game for A and transforms the advantage of A to the advantage of solving DSIDH problem. S first sets A1 = (EA, φA(P2), φA(Q2)) and on receiving one challenge public key X∗ = (EX, R∗, S∗), S sets (Y∗, j(EC) + m1, y2) as the challenge ciphertext, where Y∗ = (EY, φY(P1), φY(Q1)) and m1, y2 ← \{0, 1\}λ. If bad happens, we can utilize it to solving DSIDH problem.

Theorem 3. Under 1-Oracle SIDH assumption, KEMdsidh is CPCCA secure in the random oracle model, even if both the challenge ciphertext is given and h(j(EX/(R∗ + [y]S∗))) is leaked. Precisely, for any PPT CPCCA adversary A who also gets h(j(EX/(R∗ + [y]S∗))), there exists algorithm B such that

$$
\text{Adv}_{\text{CPCCA}, \text{KEM}_{\text{dsidh}}} ^{\text{A}} \leq \text{Adv}_{\text{B}} ^{1-\text{OSIDH}}.
$$

By the proof sketch of Theorem 2, if the DSIDH challenge is replaced by the 1-oracle SIDH instance, and besides the challenge ciphertext (Y∗, j(Ec) + m1, y2), we also query the one-time oracle HY and give h(j(EX/(R∗ + [y]S∗))) to adversary A. This proof proceeds the same.

4.2 Three-pass AKE from 1-Oracle SIDH Assumption

Equipped with strong CPCCA secure KEM under 1-Oracle SIDH assumption as a core building block, we propose a 3-pass AKE in Figure 6.

Public parameters. Choose p = t1t2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above. Let hash functions be G : \{0, 1\}∗ → \{0, 1\}4λ, g : \{0, 1\}∗ → \{0, 1\}∗, h : \{0, 1\}∗ → \{0, 1\}2λ, H : \{0, 1\}∗ → \{0, 1\}2λ and \tilde{H} : \{0, 1\}∗ → \{0, 1\}λ, where λ is the security parameter.
Static secret and public keys. To solve the three-body problem \[12\] that one party can play both the roles of initiator and responder in a multi-user setting. Therefore, we should distribute two pairs of static keys for the participant parties. The static secret-public key of \(U_A\) as initiator is \((a_1; E_{A_1}, \phi_{A_1}(P_2), \phi_{A_1}(Q_2))\). The static secret-public key of \(U_A\) as responder is \((a_2; E_{A_2}, \phi_{A_2}(P_2), \phi_{A_2}(Q_2))\). The static secret-public key of \(U_B\) as responder is \((b_2; E_{B_2}, \phi_{B_2}(P_1), \phi_{B_2}(Q_1))\). The static secret-public key of \(U_B\) as initiator is \((b_1; E_{B_1}, \phi_{B_1}(P_2), \phi_{B_1}(Q_2))\). We distinguish the party as initiator or responder by the subscript. The subscript represents which subgroup their secret key lies in.

Step 1. \(U_A\) selects a random element \(r_1 \in \{0, 1\}^\lambda\), parses \(G(r_1, a_1)\) into two equal bitstrings \(n_1||n_2\), and then hashes the concatenation \(g(n_1, n_2)\) to an element \(x\) in \(Z/p_1^\lambda Z\). Then \(U_A\) revokes the isogeny computation algorithm to compute the isogeny \(\phi_X\) with the kernel \((P_1 + [x]Q_1)\) and publishes \(X = (E_X, \phi_X(P_2), \phi_X(Q_2))\). \(U_A\) further computes \(\phi_{XU}\) with the kernel \((\phi_{B_2}(P_1) + [x]\phi_{B_2}(Q_1))\). Half of the secret key \(n_1\) is hidden in the message \(x_1 = h(j(E_{XU})) + n_1\). Then \(U_A\) sends to \(U_B\) the identities of \(U_A\) and \(U_B\) as well as \((X, x_1)\).

Step 2. \(U_B\) chooses a random element \(r_2 \in \{0, 1\}^\lambda\), spares \(G(r_2, b_2)\) to two bitstrings \(m_1||m_2\) of equal length, and then hashes \((m_1, m_2)\) to get a secret key \(y\) for these isogenies. \(U_B\) computes three \(r_2\)-degree isogenies \(\phi_Y, \phi_{XY}\) and \(\phi_{XY}\) with kernels \((P_2 + [y]Q_2), (\phi_{Y}(P_2) + [y]\phi_{Y}(Q_2))\), and \(\phi_{X}(P_2) + [y]\phi_{X}(Q_2)\), respectively. And \(U_B\) defines the secret key \(K_B = H(X, m_1, m_2, Y, y_1, y_2)\), where \(y_1 = h(j(E_{YU})) + m_1\) and \(y_2 = h(j(E_{XY})) + m_2\). Then \(U_B\) forwards the identity messages of \(U_A\) and \(U_B\) with \((Y, y_1, y_2)\) to \(U_A\).

Step 3. Upon receiving the message from \(U_B\), \(U_A\) computes isogenies \(\phi_{A,Y}\) and \(\phi_{XY}\) to get the hash values of \(j\)-invariants \(h(j(E_{A,Y}))\), \(h(j(E_{XY}))\) with the secret keys \(a_1\) and \(x\). Then \(U_A\) could know \(m_1\) and \(m_2\) by \(h(j(E_{A,Y})) + y_1\) and \(h(j(E_{XY})) + y_2\). Hence, \(U_A\) can retrieve what \(U_B\) has done and verify the validation of the ciphertext \(Y\). If the validation passes, then \(U_A\) obtains the key \(K_B' = H(X, m_1', m_2', Y, y_1, y_2)\) and transmits messages \(x_2 = h(j(E_{XY})) + n_2\) to \(U_B\).

The key \(K_A = H(Y, n_1, n_2, X, x_1, x_2)\). \(U_A\) sets the session identity \(sid = (U_A, U_B, pk_{A_1}, pk_{B_2}, X, x_1, x_2; Y, y_1, y_2)\) and completes the session with the session key \(SK = \hat{H}(sid, K_A, K_B')\).

Step 4. \(U_B\) computes \(\phi_{B,X}\) with the static secret key \(b_2\) and the public key \(X\) from \(U_A\) during the first round. Then \(U_B\) can obtain both \(n_1'\) and \(n_2'\) by \(h(j(E_{B,X})) + x_1\) and \(h(j(E_{XY})) + x_2\). Hence, \(U_B\) likewise recomputes what \(U_A\) has computed and verifies the validation of the ciphertext \(X\). If the validation passes, \(U_B\) gets the key \(K_A' = H(Y, n_1', n_2', X, x_1, x_2)\), sets the session identity \(sid = (U_A, U_B, ek_{A_1}, ek_{B_2}, X, x_1, x_2, Y, y_1, y_2)\) and completes the session with the session key \(SK = \hat{H}(sid, K_A', K_B)\).

The session state of \(sid\) owned by \(U_A\) consists of ephemeral secret key \(r_1\), encapsulated key \(K_B'\) and encapsulated key \(K_A\). The session state of \(sid\) owned by \(U_B\) consists of ephemeral secret key \(r_2\), encapsulated key \(K_B\) and encapsulated key \(K_A'\).

Correctness. To show that both \(U_A\) and \(U_B\) can agree on the same session key, we present an in-depth and detailed analysis. The different parts of keys \(K_A\), \(K_B\) of \(U_A\) and \(K_A', K_B\) of \(U_B\) are the values \(n_1, n_2, m_1', m_2'\) and \(n_1', n_2', m_1, m_2\). We have to show that \(n_1' = n_1, n_2' = n_2\) and \(m_1' = m_1, m_2' = m_2\). That is to say we are required to prove the isomorphism between curves \(E_{XU}, E_{XY}, E_{A,Y}\) and \(E_{B,X}, E_{XY}, E_{Y,A}\), respectively. We have proved the isomorphism of \(E_{XY}, E_{A,Y}\) and \(E_{Y,X}, E_{Y,A}\) in Section 4.1.
A 3-Pass AKE $\text{AKE}_\text{SIDH-3}$ Based on 1-Oracle SIDH. Here sid is $(U_A, U_B, pk_{A_1}, pk_{B_2}, X, x_1, Y, y_1, y_2, x_2)$.
\[E_{X,B_2} = E_{B_2}/(\phi_{B_2}(P_1) + [a_1]\phi_{B_2}(Q_1)) = (E_0/(R_{B_2}))/((R_X,R_{B_2})/(R_{B_2})) \]
\[= E_0/(R_X,R_{B_2}) \]
\[E_{B_2 \times X} = E_X/\phi_X(P_2) + [b_2]\phi_X(Q_2)) = (E_0/(R_X))/((R_X,R_{B_2})/(R_X)) \]
\[= E_0/(R_X,R_{B_2}) \]

It is easy to see that the two curves are isomorphic. Hence, they definitely arrive at the same key.

Theorem 4. Under the 1-Oracle SIDH assumption, the 3-pass AKE \(\text{AKE}_{\text{SIDH}} \) is \(\text{CK}^+ \) secure in the random oracle model. Precisely, if the number of users is \(N \) and there are at most \(l \) sessions between any two users, for any PPT adversary \(\mathcal{A} \) against \(\text{AKE}_{\text{SIDH}} \) with \(q_0 \) times of \(G \) oracle queries, \(q_H(q_g) \) times of \(H \) oracle queries and \(q \) times of \(\text{CK}^+ \) queries, there exists \(S \) s.t.

\[\text{Adv}_{\text{AKE}_{\text{SIDH}}}^\text{CK+}(\mathcal{A}) \leq 1/2 + N^2lq \cdot \text{Avd}_S^{1\text{-OSIDH}}. \]

Proof. Let \(\text{Succ} \) be the event that the guess of \(\mathcal{A} \) against the test session is correct. Let \(\text{AskH} \) be the event that \(\mathcal{A} \) poses \((U_A, U_B, pk_{A_1}, pk_{B_2}, X, x_1, Y, y_1, y_2, x_2, K_A, K_B)\) to \(H \), where \((X, x_1, Y, y_1, y_2, x_2)\) is the view of the test session and \(K_A, K_B \) is the key encapsulated in the test session. Let \(\overline{\text{AskH}} \) be the complement of \(\text{AskH} \). Then,

\[\Pr[\text{Succ}] = \Pr[\text{Succ} \land \overline{\text{AskH}}] + \Pr[\text{Succ} \land \text{AskH}] \]
\[\leq \Pr[\text{Succ} \land \overline{\text{AskH}}] + \Pr[\text{AskH}], \]

where the probability is taken over the randomness used in \(\text{CK}^+ \) experiment.

Lemma 1. If \(H \) is modeled as a random oracle, we have \(\Pr[\text{Succ} \land \overline{\text{AskH}}] \leq 1/2. \)

Proof of Lemma 1: If \(\Pr[\overline{\text{AskH}}] = 0 \) then the claim is straightforward, otherwise we have \(\Pr[\text{Succ} \land \overline{\text{AskH}}] = \Pr[\text{Succ} \land \overline{\text{AskH}}] \Pr[\text{AskH}] \leq \Pr[\text{Succ} \land \text{AskH}] \). Let \(\text{sid} \) be any completed session owned by an honest party such that \(\text{sid} \neq \text{sid}' \) and \(\text{sid} \) is not the matching session of \(\text{sid}' \). The inputs to \(\text{sid} \) are different from those of \(\text{sid}' \) and \(\text{sid} \) (if there exists the matching session of \(\text{sid}' \)). If \(\mathcal{A} \) does not explicitly query the view and keys to oracle, then \(H(U_A, U_B, pk_{A_1}, pk_{B_2}, X, x_1, Y, y_1, y_2, x_2, K_A, K_B) \) is completely random from \(\mathcal{A} \)'s point of view. Therefore, the probability that \(\mathcal{A} \) wins when \(\text{AskH} \) does not occur is exactly 1/2.

We then show that \(\Pr[\text{AskH}] \) is negligible (as in Lemma 2) in all the events (listed in Table 2) of \(\text{CK}^+ \) model. Followed by Lemma 2, we achieve the security of AKE in \(\text{CK}^+ \) model. Thus, we only need to prove Lemma 2 in the following.

Lemma 2. If the 1-Oracle SIDH assumption holds, the probability of event \(\text{AskH} \) defined above is negligible. Precisely,

\[\Pr[\text{AskH}] \leq N^2lq \cdot \text{Avd}_S^{1\text{-OSIDH}} \]

We give the sketch of proof here, for formal proof please refer to Appendix A. Let \(\text{AskG} \) be the event that the static secret key of one user, for example \(sk_{B_2} \), is queried by the \(\text{CK}^+ \) adversary \(\mathcal{A} \) to \(G \). In order to bound the probability of \(\text{AskH} \), we handle the event \(\text{AskH} \land \text{AskG} \), as well as the events \(\text{AskH} \land \overline{\text{AskG}} \land E_i \) for \(1 \leq i \leq 8 \) one by one, where \(E_i \) is listed in Table 2.
If \(\text{AskG} \) happens (meaning the secret key \(b_2 \) of \(E_{B_2} \) is known), then given the 1-Oracle SIDH (actually the DSIDH assumption is enough) challenge \((E_A, \phi_A(P_2), \phi_A(Q_2), E_{B}, \phi_B(P_1), \phi_B(Q_1); h)\), \(S \) sets the public key of \(U_B \) as responder to be \(pk_{B_2} = (E_B, \phi_B(P_1), \phi_B(Q_1)) \). If \(b_2 \) is queried by \(A \), \(S \) could compute \(E_{AB} \) by himself and solve the 1-Oracle SIDH problem. Thus \(\Pr[\text{AskG}] \leq \text{Adv}_S^{1\text{-Oracle SIDH}} \).

In the following, we assume that \(\overline{\text{AskG}} \) (the complement of \(\text{AskG} \)) happens with the events \(\text{AskH} \land \overline{\text{AskG}} \land E_i \), for \(1 \leq i \leq 8 \). Here, we only take \(\text{AskH} \land \overline{\text{AskG}} \land E_8 \) as an example to explain in detail. For the other cases we can deal with them in the same way. In the case of \(\text{AskH} \land \overline{\text{AskG}} \land E_3 \), the 1-Oracle SIDH adversary \(S \) performs as follows. It simulates the CK+ games, and transfers the probability that the event \(\text{AskH} \) performed by \(A \) to the advantage of solving 1-Oracle SIDH problem. Based on Theorem 3, we transform the event \(\text{AskH} \) performed by \(A \) to the advantage of against CPCCA security of \(\text{KEM}_{\text{dsidh}} \) with the public key as \((pk_A, X)\) and the ciphertext as \((Y, y_1, y_2)\).

In order to simulate the random oracles, \(S \) maintains three lists for \(\hat{H} \) and \(G \) oracle and \(\text{SessionKeyReveal} \), respectively. The \(H \)-oracle and \(\text{SessionKeyReveal} \) are related, which means the adversary may ask \(\text{SessionKeyReveal} \) without the encapsulated keys at first, and then may ask \(\hat{H} \)-oracle with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to \(\hat{H} \) and \(\text{SessionKeyReveal} \). The strong decapsulation oracle for \(\text{KEM}_{\text{dsidh}} \) would help to maintain the consistency of \(\hat{H} \)-oracle and \(\text{SessionKeyReveal} \).

On receiving the public key \((E_A, \phi_A(P_2), \phi_A(Q_2))\) from the CPCCA challenger in Theorem 3, in order to simulate the CK+ game, \(S \) randomly chooses two parties \(U_A, U_B \) and the \(i \)-th session as a guess of the test session with success probability \(1/N^2i \). \(S \) computes and sets all the static secret and public key pairs by himself for all \(N \) users \(U_P \) as both responder and initiator except \(U_A \) for whom \(S \) only computes and sets the static public key as responder. Specially, \(S \) sets the static secret and public key pairs \((pk_{B_2}, sk_{B_2})\) for \(U_B \) as responder, and sets \(pk_A = (E_A, \phi_A(P_2), \phi_A(Q_2)) \) for \(U_A \) as initiator.

Without knowing the secret key of \(U_A \) as initiator, \(S \) chooses totally random \(r_1 \) as part of the ephemeral secret key and totally random \(x \). Since \(G \) is a hash function and \(sk_{A_1} \) is not queried, the difference between simulation with modification of \(r_1 \) and a real game can not be detected by the adversary. When a session state of a session owned by \(U_A \) is queried, \(S \) returns \(r_1 \) of this session as part of the ephemeral secret key.

On receiving \((X^* = (E_X, R_2, S_2), x_1)\) of the \(i \)-th session from \(U_A \) (that is sent by \(A \) in the CK+ game), \(S \) returns \(X^* \) to the CPCCA challenger and receives the challenge ciphertext \((Y^*, y_1^*, y_2^*)\) (under public key \(pk_{A_1} \) and \(X^* \)) and \(h(j(E_X^*/(R_2 + [y]S_2))) \). Then \(S \) returns \((Y^*, y_1^*, y_2^*) \) to \(U_A \) as the response of \(i \)-th session from \(U_B \). \(S \) chooses a totally independent randomness \(r_2 \) as the ephemeral secret key of \(U_B \) for \(C^* \) and leaks it to the adversary \(A \). Since \(G \) is a hash function, the difference between simulation with modification of \(r_2 \) and the real game can not be detected by adversary.

\(S \) simulates the oracle queries of \(A \) and maintains the hash lists. Specially, when \(\text{AskH} \) happens, which means \(A \) poses \((U_A, U_B, pk_{A_1}, pk_{B_2}, X^*, x_1, Y^*, y_1^*, y_2^*, x_2, K_A, K_B)\) to \(H \), where \((X^*, x_1, Y^*, y_1^*, y_2^*, x_2)\) is the views of the test session and \(K_B \) is the key encapsulated in \((X^*, x_1, x_2)\) (this can be detected by \(S \) since it has \(sk_{B_2} \) and \(h(j(E_X^*/(R_2^2 + [y]S_2^2))) \) from CPCCA challenger), \(S \) returns \(K_A \) as the guess of \(K^* \) encapsulated in \((Y^*, y_1^*, y_2^*)\), which contradicts with the CPCCA security of \(\text{KEM}_{\text{dsidh}} \) and further 1-Oracle SIDH assumption.

\(\square \)
5 A Two-Pass AKE from Supersingular Isogeny

Although the 3-pass AKE has the advantage of less communication, it relies on a non-standard assumption, 1-Oracle SIDH assumption. To enhance the soundness of AKE, we propose a 2-pass AKE with a little more communication (which is still competitive with existing schemes) based on DSIDH assumption.

Intuition of 2-Pass AKE. The reason we need the non-standard 1-Oracle SIDH assumption is that, in the test session, on the one hand X is part of the public key \((pk_{A1}, X)\) under which the ciphertext \((Y, y_1, y_2)\) is computed; on the other hand X is part of the ciphertext \((X, x_1, x_2)\) which encapsulates \(K_A\). An extra \(X_0\) instead of \(X\) as part of the public key \((pk_{A2}, X_0)\) could effectively avoid the 1-Oracle SIDH assumption. Besides, it is also necessary to delete \(x_2\) and set \((X, x_1)\) as the ciphertext under public key \(pk_{B2}\) rather than \((pk_{B2}, Y)\). Then the \(h(j(E_X/\langle R^2 + [y]S^2 \rangle))\) is not needed.

Two-Pass AKE. The public parameters and static secret-public keys are defined the same as those in our 3-pass AKE in Section 4.

Step 1. \(U_A\) randomly selects two elements \(r_1 \in \{0,1\}^\lambda\) and \(r_{X_0} \in Z/\ell_1^1Z\). Let \(n_1 = G(r_1, a_1)\) and \(x = g(n_1)\). Then \(U_A\) computes an \(l_1^1\)-degree isogeny \(\phi_X\) with the kernel equal to \((P_1 + [x]Q_1)\) and an \(l_1^2\)-degree isogeny \(\phi_{X_2}\) with kernel \(\phi_B_2(P_1) + [x]\phi_{B_2}(Q_1)\). Then \(U_A\) generates an ephemeral public key \(X_0 = (E_{X_0}, \phi_{X_0}(P_2), \phi_{X_0}(Q_2))\) with the secret key \(r_{X_0}\). \(U_A\) sends \((X, x_1, X_0)\) to \(U_B\), where \((X, x_1, X_0) = (E_X, \phi_X(P_2), \phi_X(Q_2); h(j(E_{X_0})) \oplus n_1; E_{X_0}, \phi_{X_0}(P_2), \phi_{X_0}(Q_2))\).

Step 2. On receiving the message from \(U_A, U_B\) chooses a random element \(r_2 \in \{0,1\}^\lambda\), parses \((r_2, b_2)\) to two bit strings \(m_1\|m_2\) of same length and then computes the hash of the concatenation of \((m_1, m_2)\) to get a secret key \(y. U_B\) computes three \(l_2^2\)-degree isogenies with kernels \((P_2 + [y]Q_2), (\phi_A(P_2) + [y]\phi_A(Q_2))\) and \((\phi_{X_0}(P_2) + [y]\phi_{X_0}(Q_2))\), respectively. \(U_B\) sets the message \(Y = (E_Y, \phi_Y(P_1), \phi_Y(Q_1))\) and the secret key \(K_B = H(X_0, m_1, m_2, Y, y_1, y_2)\), where \(y_1 = h(j(E_{Y,A})) \oplus m_1\) and \(y_2 = h(j(E_{Y,X_0})) \oplus m_2\). Then \(U_B\) forwards the identity messages of \(U_A\) and \(U_B\) with \((Y, y_1, y_2)\) to \(U_A\).

\(U_B\) computes the isogeny \(\phi_{B_2,X}\) with the static secret key \(b_2\) and gets \(n_1' = h(j(E_{B_2,X})) \oplus x\) to compute \(x' = g(n_1')\). Then \(U_B\) recompute \(E_0/\langle P_1 + [x']Q_1 \rangle\). If it is not equal to \(E_X\), output \(\perp\). Otherwise, set \(K_B' = H(n_1')\). The session identity is \(sid = (U_A, U_B, pk_{A1}, pk_{B2}, X, x, X_0, Y, y_1, y_2)\). Finally, \(U_B\) completes the session with the session key \(SK = H(sid, K_A', K_B)\).

Step 3. Upon receiving the message from \(U_B, U_A\) computes isogenies \(\phi_{A,Y}\) and \(\phi_{X,Y}\) with the secret keys \(a_1\) and \(r_X\). \(U_A\) obtains \(m_1'\) and \(m_2'\) by \(h(j(E_{A,Y})) \oplus y_1\) and \(h(j(E_{X,Y})) \oplus y_2\). Then \(U_A\) recompute \(E_0/\langle P_2 + [y']Q_2 \rangle\). If it is not equal to \(E_Y\), output \(\perp\). Otherwise, set \(K_B' = H(X_0, m_1', m_2', Y, y_1, y_2)\). Then \(U_A\) sets the session identity \(sid = (U_A, U_B, ek_{A_1}, ek_{B_2}, X, x, X', Y, y_1, y_2)\). Similarly, \(U_A\) completes the session with the session key \(SK = H(sid, K_A, K_B)\).

The session state of \(sid\) owned by \(U_A\) consists of ephemeral secret key \(r_1, r_{X_0}\), decapsulated key \(K_B'\) and encapsulated key \(K_A\); The session state of \(sid\) owned by \(U_B\) consists of ephemeral secret key \(r_2\) and encapsulated key \(K_B\), but does not include decapsulated key \(K_B'\).

Correctness. This property can refer to the proof of 3-pass AKE for reference, but there is one different point that the two groups of curves are not exactly the same. We only have
Fig. 7. A Compact 2-pass AKE Based on SIDH. Here \(\text{sid} \) is \((U_A, U_B, pk_{A_1}, pk_{B_2}, X, x, X_0, Y, y_1, y_2) \).
to prove the isomorphism of $E_{X,Y}$ and $E_{Y,X}$. We define $P_i + [r_{X,i}Q_1 = R_{X,i}$ for simplicity.

$$E_{X,Y} = E_Y/\langle \phi_Y(P_i) + [r_{X,i}]\phi_Y(Q_1) \rangle = (E_0/\langle R_Y \rangle)/\langle (R_{X,i}, R_Y) / \langle R_Y \rangle \rangle$$

$$E_{Y,X} = E_X/\langle \phi_X(P_2) + [b_{2,i}]\phi_X(Q_2) \rangle = (E_0/\langle R_{X,i} \rangle)/\langle (R_{X,i}, R_Y) / \langle R_{X,i} \rangle \rangle$$

It is easy to see that the two curves $E_{X,Y}$ and $E_{Y,X}$ are isomorphic. So they own the same j-invariant and then share the same session key.

Theorem 5. Under the DSIDH assumption, the 2-pass AKE AKE_{SIDH-2} is CK^+ secure in the random oracle model. Precisely, if the number of users is N and there are at most l sessions between any two users, for any PPT adversary A against AKE_{SIDH-2} with q_G times of G oracle queries, $q_H(q_B)$ times of $H(g)$ oracle queries and q times of CK^+ queries, there exists S s.t.

$$Adv_{A,CK^+}^{AKE_{SIDH-2}}(A) \leq 1/2 + N^2lq \cdot Adv_S^{DSIDH}.$$

Proof of Sketch: The proof proceeds similarly to that of 3-pass AKE and the main difference is the proof of Lemma 2, but much easier. In the 2-pass AKE, we add an extra X_0 to take the position as part of the public key (pk_A, X_0) under which the ciphertext (Y, y_1, y_2) is computed, delete x_2 and set (X, x_1) to be the ciphertext under public key pk_{B_1} rather than (pk_{B_2}, Y). Now in order to compute K_A encapsulated in (X, x_1), $h(j(E_X/\langle R_2^s + [y]S_2^s \rangle))$ is not required any longer and ski_{B_1} is enough. In other cases, for example $E_1, (X^*, x_1^*)$ is the challenge ciphertext in test session. Since X_0 is generated by S, on receiving (Y, y_1, y_2) it can query the CPCCA decapsulation oracle with (X_0, Y, y_1, y_2) to extract K_B'. We omit the details here. And based on Theorem 2, the security relies on a standard assumption, DSIDH assumption.

6 Parameters, Implementation and Comparison

If we demand λ bits of quantum security and adopt the parameters chosen in [7] which are considered to be the most efficient choices, then the prime is of bit-length 6λ. Each field element needs 12λ since the curve is defined over F_{p^2}. Then the A-coefficient and a point both require 12λ bits. In the FSXY scheme where both U_A and U_B would like to share a session key, they need to transmit 148λ bits. Fortunately, from Figure 7 we can see that this 3-pass scheme narrows the bandwidth to 80λ bits and reduces the computation cost to 5 isogenies for per party. But it requires one more pass to interact with parties. However, the cost of interaction could be neglected, comparing with the cost of one such isogeny in our scheme. Furthermore, in the 2-pass AKE we narrow the bandwidth to 114λ bits, reducing the size of the uncompressed public keys by approximately 23%. If considering the public key compression [5], we can compress the total bandwidth to 69λ bits. As the compression will bring high computation cost, we will not consider this way here.

To evaluate the performance of our proposed two authenticated key exchange protocols, we write a supporting program based on the optimized implementation of SIKE [17]. It is written in portable C only and makes use of efficient algorithms for fast isogeny computation and field arithmetic implementation. We adopt the curve SIKE751 for 128-bit quantum security. The SIKE751 fixes the prime $p = 2^{3723}2^{339} - 1$ and $F_{p^2} = F_p(i)$ for $i^2 = -1$. The supersingular elliptic curve is the Montgomery curve $E_0: y^2 = x^3 + x$. The generator points
are selected as $P_1 = [3^{239}]((11, \sqrt{11^3 + 11}), Q_1 = \tau(P_1); P_2 = [2^{232}]((6, \sqrt{6^3 + 6}), Q_2 = \tau(P_2)$, where τ is an endomorphism mapping (x, y) to $(-x, iy)$. This prime p of bitlength 751 provides quantum 124-bit security and classically 186-bit security.

The performance is benchmarked on an Intel(R) Core i7-6567U CPU @3.30GHz processor supporting the Skylake micro-architecture. We perform the test experiments of the four schemes on the same platform, in order to compare their performance more intuitively and credibly.

In terms of implementation, the hash functions used in the authenticated key exchange are all instantiated with the SHA-3 function cSHAKE256 [26]. The size of one SIDH protocol public key are 564 bytes and the size of the additional hash value transmitted together with public keys are 32 bytes. Message sizes are shown in Table 3. It is easy to see that our 3-pass AKE protocol cuts the bandwidth almost to half of both FSXY [10] and BCNP-Lon [3, 28].

In Table 4, we present the performance of our protocols comparing with the FSXY scheme [10] and the BCNP-Lon scheme [3, 28]. They are median cycles over 1,000 measurements. It shows that our 2-pass scheme is 1.12 times faster than that of FSXY and 1.3 times faster than that of BCNP-Lon. Our 3-pass AKE is more efficient with 1.2 times faster than FSXY and 1.4 times faster than BCNP-Lon.

Table 3. Comparison of message sizes. We adopt the parameters chosen in [17], taking into account the efficiency. “-” stands for no messages to be transmitted. Only our first scheme of this paper among the four schemes listed is a 3-pass one and then has a message from A to B again. The message sizes are counted in byte.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$A \rightarrow B$</th>
<th>$B \rightarrow A$</th>
<th>$A \rightarrow B$</th>
<th>total (byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSXY [10]</td>
<td>1160</td>
<td>1160</td>
<td>-</td>
<td>2320</td>
</tr>
<tr>
<td>BCNP-Lon [3, 28]</td>
<td>1160</td>
<td>1160</td>
<td>-</td>
<td>2320</td>
</tr>
<tr>
<td>AKE$_{\text{SIDH-2}}$</td>
<td>1160</td>
<td>628</td>
<td>-</td>
<td>1788</td>
</tr>
<tr>
<td>AKE$_{\text{SIDH-3}}$</td>
<td>596</td>
<td>628</td>
<td>32</td>
<td>1176</td>
</tr>
</tbody>
</table>

Table 4. Comparison of cycle counts. Benchmarks are performed on a Intel(R) Core i7-6567U CPU @3.30GHz processor. Cycle counts are rounded to 10^6 cycles by taking the average of 1,000 trials.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>A(initial)</th>
<th>B</th>
<th>A(end)</th>
<th>B(end)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSXY [10]</td>
<td>6,238</td>
<td>14,779</td>
<td>10,124</td>
<td>31,141</td>
<td></td>
</tr>
<tr>
<td>BCNP-Lon [3, 28]</td>
<td>11,146</td>
<td>20,092</td>
<td>9,563</td>
<td>40,801</td>
<td></td>
</tr>
<tr>
<td>AKE$_{\text{SIDH-2}}$</td>
<td>6,828</td>
<td>13,917</td>
<td>6,641</td>
<td>27,386</td>
<td></td>
</tr>
<tr>
<td>AKE$_{\text{SIDH-3}}$</td>
<td>5,966</td>
<td>4,429</td>
<td>4,922</td>
<td>9,575</td>
<td>24,892</td>
</tr>
</tbody>
</table>

7 Conclusion

In this paper, we investigate 1-Oracle SIDH problem and propose a CPCCA secure KEM. Then we build a compact and efficient 3-pass AKE based on 1-Oracle SIDH assumption and a 2-pass one based on DSIDH assumption. They are proved to be secure under the strongest CK$^+$ model.
We have proved the security in random oracle, but not considered the standard model. It is non-trivial for this proof because of the lack of a ring structure in SIDH. Hence, one of the future work is to prove the security in the standard model, and another direction is to consider the security in quantum security models in which the adversary can deliver quantum superpositions of messages, analogous to the one in [27].

References

Appendix A, Proof of Lemma 2
In order to bound the probability of $\neg AskH$, we investigate the events $AskH \land \neg AskG \land E_i$ for $1 \leq i \leq 8$ one by one.
Event $\text{AskH} \land \overline{\text{AskG}} \land E_3$

In the event E_3, the test session sid^* has no matching session, and the ephemeral secret key of U_B is given to A. In case $\text{AskH} \land \overline{\text{AskG}} \land E_3$, the adversary S for solving 1-Oracle SIDH problem (actually based on Theorem 3, we consider S against CPCCA security of $\text{KEM}_{\text{dsidh}}$) as follows. It simulates the CK$^+$ games, and transforms the happening of event AskH performed by A to the advantage of solving 1-Oracle SIDH problem.

In order to simulate the random oracles, S maintains hash list L_G, L_B and L_{sk}, corresponding to the queries and answers of the G-oracle, H-oracle and SessionKeyReveal, SessionKeyReveal. L_B and L_{sk} are related. For example the adversary may ask L_{sk} without the encapsulated keys firstly, then ask L_H with the encapsulated keys. Thus, the reduction must ensure consistency with the random oracle queries to L_B and L_{sk}. The strong decapsulation oracle for $\text{KEM}_{\text{dsidh}}$ could help to maintain the consistency as done in H-oracle and SessionKeyReveal in the following.

On receiving the public key $(E_A, \phi_A(P_2), \phi_A(Q_2))$ from the CPCCA challenger in Theorem 3, to simulate the CK$^+$ game, S randomly chooses two parties U_A, U_B and the i-th session as a guess of the test session with success probability $1/N^2$. S computes and sets all the static secret and public key pairs by himself for all N users U_P as both responder and initiator except for U_A and only computes and sets the static public key for U_A as responder. Specially, S sets the static secret and public key pairs (pk_{B_2}, sk_{B_2}) for U_B as responder, and sets $pk_{A_1} = (E_A, \phi_A(P_2), \phi_A(Q_2))$ for U_A as initiator.

Without knowing the secret key of U_A as initiator, S chooses totally random r_1 as part of ephemeral secret key and totally random x. Since G is a hash function and sk_A is not queried, the difference between simulation with modification of r_1 and the real game can not be detected by adversary. When a session state of a session owned by U_A is queried, S returns r_1 of this session as part of the ephemeral secret key.

On receiving the i-th session $(X^* = (E_X^*, R^*_{i2}, S^*_{i2}), x_1)$ from U_A (that is sent by A in the CK$^+$ game), S returns X to the CPCCA challenger and receives the challenge ciphertext (Y^*, y^*_1, y^*_2) (under public key pk_{A_1} and X^*) and $h(j(E_X^*/(R^*_{i2} + [y]S^*_{i2})))$. Then S returns (Y^*, y^*_1, y^*_2) to U_A as the response of i-th session from U_B. S chooses a totally independent randomness r_2 as the ephemeral secret key of U_B for C^* and leaks it to adversary A. Since G is a hash function, the difference between simulation with modification of r_2 and the real game can not be detected by the adversary.

S simulates the oracle queries of A and maintains the hash lists L_G, L_H, L_{sk} as follows. Specially, when AskH happens, which means A poses $(U_A, U_B, pk_{A_1}, pk_{B_2}, X^*, x_1, Y^*, y^*_1, y^*_2, x_2, K_A, K_B)$ to H, where $(X^*, x_1, Y^*, y^*_1, y^*_2, x_2)$ is the views of the test session and K_B is the key encapsulated in (X^*, x_1, x_2) (this can be detected by S since it has sk_{B_2} and $h(j(E_X^*/(R^*_{i2} + [y]S^*_{i2})))$ from CPCCA challenger), S returns K_A as the guess of K^* encapsulated in (Y^*, y^*_1, y^*_2), which contradicts with the CPCCA security of $\text{KEM}_{\text{dsidh}}$ and further 1-Oracle SIDH assumption.

- Querying G-oracle with (r_i, ab_i):

 1. If there exists a tuple $(r_i, ab_i, g_i) \in L_G$, S returns g_i, otherwise S randomly chooses g_i, returns g_i and records (r_i, ab_i, g_i) in L_G. Note that in the security definition A does not query $\text{SessionStateReveal}(\text{sid}^*)$, thus A does not know any information of r_1.

 2. As shown in the following (in the Send queries, or when S generates the encapsulated key and the ciphertext using randomness), when S queries G-oracle with (r_1, a_1),
if there does not exist \((r_1, a_1, \cdot) \in L_G\), generates randomness \(g\), returns \(g\) and adds \((r_1, a_1, g)\) into \(L_G\).

- Querying \(\hat{H}\)-oracle with \((U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q)\)

1. If \(P = A, Q = B, (Y, y_1, y_2) = (Y^*, y_1^*, x_2^*)\), and \((\Pi_1, U_A, U_B, X, x_1, Y, y_1, y_2, x_2)\)
 is the \(i\)-th session of \(U_A\), and \(K_B\) is the key encapsulated in \((X, x_1, x_2)\) (this can be judged by \(S\), since it has \(sk_{B_2}\) and \(h(j(E_X^*/(R_2^* + [y]S_2^*)))\) from CPCCA challenger), then \(S\) outputs the \(K_A\) as the key encapsulated in the challenge
 ciphertext \((Y^*, y_1^*, x_2^*)\) of CPCCA games, that is \(K^*\), sets flag = true.

2. Else if \(\exists (U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h) \in L_R\), return \(h\).

3. Else if \(P = A\) and \(\exists (U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, K_A, K_Q, h) \in L_{sk}\):

 1. if \((X, x_1, x_2)\) is sent by \(A, S\) with the knowledge of \(sk_{Q_2}\) and \(Y\) extracts \(K_A^i\)
 encapsulated in \(X, x_1\) and \(x_2\). Since \((Y, y_1, y_2)\) is generated by himself, \(S\) has the
 knowledge of encapsulated key \(K_Q^i\).

 2. if \((Y, y_1, y_2)\) is sent by \(A, S\) with the knowledge of \(y\) queries the decapsulation
 oracle with \(X\) and ciphertext \((Y, y_1, y_2)\) to extract the encapsulated key \(K_Q^i\).

 3. if both \((X, x_1, x_2)\) and \((Y, y_1, y_2)\) are sent by \(S\), it has the knowledge of corre-
 sponding encapsulated key \(K_A^i, K_B^i\).

 If \((K_A, K_Q) = (K_A^i, K_Q^i)\), then \(S\) returns \(h\) and records \((U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h)\) in
 the list \(L_{\hat{H}}\).

4. Else if \(Q = A\) and \(\exists (U_P, U_A, X, x_1, Y, y_1, y_2, x_2, K_P, K_A, h) \in L_{sk}\): Since \(S\) has the
 static secret key of \(U_A\) as responder and static secret keys of \(U_P\), it can extract
 encapsulated key \(K_A^i\) in \((Y, y_1, y_2)\) and encapsulated key \(K_P^i\) in \((X, x_1, x_2)\).
 If \((K_P, K_A) = (K_P^i, K_A^i)\), then \(S\) returns \(h\) and records \((U_P, U_A, X, x_1, Y, y_1, y_2, x_2, K_P, K_A, h)\) in
 the list \(L_{\hat{H}}\).

5. Else if \(A \neq P, Q\) and \(\exists (U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h) \in L_{sk}\): Since \(S\) has the
 static secret keys of \(U_Q\) as responder and static secret keys of \(U_P\), it can extract encapsulated
 key \(K_Q^i\) in \((Y, y_1, y_2)\) and encapsulated key \(K_P^i\) in \((X, x_1, x_2)\).
 If \((K_Q, K_P) = (K_Q^i, K_P^i)\), then \(S\) returns \(h\) and records \((U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h)\) in
 the list \(L_{\hat{H}}\).

6. Otherwise, \(S\) returns a random value \(h\) and records \((U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h)\) in
 the list \(L_{\hat{H}}\).

- Send(\(\Pi_1, U_P, U_Q\)):

1. If \(P = A, S\) generates two independent randomness \((r_1, n_1||n_2)\) (to pretend that
 \(n_1||n_2 = G(r_1, sk_{A_1})\), although \(S\) does not know \(sk_{A_1}\)). This will not be detected by
 \(A\) as \(A\) does not ask \(G\) with \(sk_{A_1}\). \(S\) computes \((X, x_1)\) as in the protocol and sends
 \((X, x_1)\) out.

2. Otherwise, \(S\) proceeds as the protocols.

- Send(\(\Pi_2, U_Q, U_P, X, x_1\)):

1. If \(Q = B\) and this session is the \(i\)-th session of \(U_B\), \(S\) sends \(X\) to CPCCA challenger
 as part of challenge public key, and gets \((Y^*, y_1^*, y_2^*)\) as challenge ciphertext and also
 gets \(h(j(E_X^*/(R_2^* + [y]S_2^*)))\). Then \(S\) returns \((Y^*, y_1^*, y_2^*)\).

2. Otherwise, \(S\) chooses \(SK\) randomly.

- Send(\(\Pi_2, U_Q, U_P, X, x_1, Y, y_1, y_2\)): \(S\) computes the session key and maintains the session-
 key list \(L_{sk}\) as follows.

1. If \(P = A\), \(S\) computes \(x_2\) (using secret key \(x\)) and with the knowledge of \(n_1||n_2\) computes
 the key \(K_A^i\) encapsulated in \((X, x_1, x_2)\). \(S\) queries the CPCCA decapsulation
oracles with X and Y, y_1, y_2. Since $(X, Y, y_1, y_2) \neq (X^*, Y^*, y_1^*, y_2^*)$, the decapsulation oracle will return K'_Q encapsulated in ciphertext (Y, y_1, y_2) under public key (pk_{A1}, X). If $\exists (U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, K_A, K_Q, h) \in L_H$, S does the following: if $(K'_A, K'_Q) = (K_A, K_Q)$, sets $SK = h$.

2. Otherwise, S computes and returns x_2, S has the knowledge of sk_{P_1}, x, and sk_{Q_2}, and can extract the encapsulated key K'_P and K'_Q in (X, x_1, x_2) and (Y, y_1, y_2). If $\exists (U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, K_A, K_Q, h) \in L_H$, S does the following: if $(K'_P, K'_Q) = (K_P, K_Q)$, sets $SK = h$.

3. Otherwise, S chooses SK randomly. S records this as the completed session and adds $(U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, SK)$ to the session key list L_{sk}.

- **Send(H,I,U_P,U_Q,X,x_1,Y,y_1,y_2,x_2):** With the knowledge of sk_{Q_2} and y, S could extract K'_P. The key K'_Q encapsulated in (Y, y_1, y_2) is computed by S himself. If there exists $((U_A, U_Q, X, x_1, Y, y_1, y_2, x_2, K_P, K_Q, h) \in L_H$ and $K'_P = K_P, K'_Q = K_Q$, set $SK = h$. Otherwise, S chooses SK randomly. S records this as the completed session and adds $(U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, SK)$ to the session key list L_{sk}.

- Querying **SessionKeyReveal(sid):** The session key list L_{sk} is maintained as in the Send queries.
 1. If the session sid is not completed, S aborts.
 2. Else if sid is recorded in the list L_{sk}, $(U_P, U_Q, X, x_1, Y, y_1, y_2, x_2, SK) \in L_{sk}$, then returns SK.
 3. Otherwise, S returns a random value SK and records it in L_{sk}.

- Querying **SessionStateReveal(sid):** As the definition of freshness, sid is not the test session.
 1. If the owner of sid is A, and A is an initiator. The session state is generated by himself or extractable from the decapsulation oracle. S just returns them.
 2. If the owner of sid is A, and A is a responder. The session state is generated by himself. S just returns them.
 3. Otherwise, S holds the secret key of other users and could return the session state as the definition.

- Querying **Corrupt(U_P)**
 S returns the static secret key of U_P.

- **Test(sid)**
 If sid is not the i-th session of U_A, S aborts with failure. Otherwise, S responds to the query as the definition above.
 - If A outputs a guess b', S aborts with failure.

The simulator S maintains the consistency of H-oracle, h-oracle, **SessionStateReveal** and **SessionKeyReveal** with the decryption oracle of KEM_{dsidh}. Note that in the first case in the H-oracle, if $\text{flag} = \text{ture}$, then S would succeed in the CPCCA game. Thus $\Pr[\text{AskH} \land E_3] \leq N^2 l \cdot \text{Adv}_{\text{CPCCA}}^\text{KEM}_{dsidh} (S) \leq N^2 l \cdot \text{Adv}_{\text{OSIDH}}^\text{OSIDH}$.

Event AskH \land E_1

In the event E_1, the test session sid^* (with owner as initiator) has no matching session, and the static secret key of U_A is given to A. In case $\text{AskH} \land E_1$, the 1-Oracle (A-)SIDH problem is replaced with the 1-Oracle B-SIDH problem as noted in Remark 5. The 1-Oracle SIDH adversary S simulates the CK+ games and transforms the happening of event AskH performed by A to the advantage of solving 1-Oracle SIDH problem.

The difference with Event $\text{AskH} \land E_3$ is that the underlying assumption is replaced to 1-Oracle B-SIDH and the static secret key of U_A as initiator is unknown. The other part of analysis is the same.
Event $\text{AskH} \land E_2$

In the event E_2, the test session sid^* (with owner as initiator) has no matching session, and the ephemeral secret key of U_A is given to \mathcal{A}. In case $\text{AskH} \land E_2$, the 1-Oracle SIDH adversary \mathcal{S} simulates the CK^+ games, and transforms the happening of event AskH performed by \mathcal{A} to the advantage of solving 1-Oracle SIDH problem.

The only difference with Event $\text{AskH} \land E_1$ is that the ephemeral secret key r_1 is leaked to \mathcal{S} rather than sk_A. This is fixed by the hash function G which is modeled as a random oracle.

Event $\text{AskH} \land E_3$

In the event E_3, the test session sid^* (with owner as responder) has no matching session, and the static secret key of U_B is given to \mathcal{A}. In case $\text{AskH} \land E_3$, the 1-Oracle SIDH adversary \mathcal{S} simulates the CK^+ games, and transforms the happening of event AskH performed by \mathcal{A} to the advantage of solving 1-Oracle SIDH problem.

Event $\text{AskH} \land E_4$

In event E_4, the test session sid^* (with owner as responder or initiator) has a matching session sid^*. Both static secret keys of the initiator and the responder are leaked to \mathcal{A}. In this case, the DSIDH adversary \mathcal{S} performs as follows. It simulates the CK^+ games, and transforms the happening of event AskH performed by \mathcal{A} to the advantage of attacking DSIDH problem. Since we know that if the 1-Oracle SIDH assumption holds, the DSIDH assumption holds. This event is also bounded by $\text{Avd}_{1-\text{OSIDH}}^1$.

Event $\text{AskH} \land E_5$

In event E_5, the test session sid^* has a matching session sid^*. Both ephemeral secret keys of the initiator and the responder are leaked to \mathcal{A}. This is almost the same with Event $\text{AskH} \land E_3$. In this case, the only difference is that the ephemeral secret key of U_B is leaked to \mathcal{A}, which does not affect the proof.

Event $\text{AskH} \land E_6$

In event E_6, the test session sid^* has a matching session sid^*. Both ephemeral secret keys of the initiator and the responder are leaked to \mathcal{A}. This is almost the same with Event $\text{AskH} \land E_5$. In this case, the only difference is the owner of the test session, which does not affect the proof.

Event $\text{AskH} \land E_7$

In event E_7, the test session sid^* has a matching session sid^*. Both the ephemeral secret key of the responder and the static secret key of the initiator are leaked to \mathcal{A}, which does not affect the proof.

Event $\text{AskH} \land E_8$

In event E_8, the test session sid^* has a matching session sid^*. Both the static secret key of the initiator and the ephemeral secret key of the responder are leaked to \mathcal{A}. This is almost the same with Event $\text{AskH} \land E_7$. In this case, the only difference is the owner of the test session, which does not affect the proof.