
Pseudo Constant Time Implementations of TLS
Are Only Pseudo Secure

Eyal Ronen1, Kenneth G. Paterson2, and Adi Shamir1

1 Weizmann Institute of Science.
eyal.ronen,adi.shamir@weizmann.ac.il
2 Royal Holloway, University of London,

kenny.paterson@rhul.ac.uk

Abstract. Today, about 10% of TLS connections are still using CBC-mode ci-
pher suites, despite a long history of attacks and the availability of better options
(e.g. AES-GCM). In this work, we present three new types of attack against four
popular fully patched implementations of TLS (Amazon’s s2n, GnuTLS, mbed
TLS and wolfSSL) which elected to use “pseudo constant time” countermea-
sures against the Lucky 13 attack on CBC-mode. Our attacks combine several
variants of the PRIME+PROBE cache timing technique with a new extension
of the original Lucky 13 attack. They apply in a cross-VM attack setting and
are capable of recovering most of the plaintext whilst requiring only a moder-
ate number of TLS connections. Along the way, we uncovered additional serious
(but easy to patch) bugs in all four of the TLS implementations that we studied;
in three cases, these bugs lead to Lucky 13 style attacks that can be mounted re-
motely with no access to a shared cache. Our work shows that adopting pseudo
constant time countermeasures is not sufficient to attain real security in TLS
implementations in CBC mode.

Keywords: Lucky 13 attack, TLS, Side-channel cache attacks, Plaintext recovery

1 Introduction

“All secure implementations are alike; each insecure implementation is buggy in its own
way.” – after Leo Tolstoy, Anna Karenina.

1.1 Background

The celebrated Lucky 13 attack on TLS [3] builds on Vaudenay’s padding oracle at-
tack [33,9] and exploits small timing variations present in implementations of TLS’s
decryption processing for CBC-mode cipher suites. The attack enables remote plain-
text recovery of TLS-protected data that is sent repeatedly in predictable locations in
a connection, such as HTTP cookies. The exploited timing variations were endemic
in TLS implementations due to TLS’s reliance on a MAC-then-pad-then-encrypt con-
struction in CBC mode: reversing these steps requires removal of padding before robust
integrity checks have been performed. An attacker could exploit CBC-mode’s “cut and
paste” property to place target ciphertext blocks at the end of TLS records so that
they were interpreted as containing padding. The timing differences between good and
bad padding could then be translated into leakage about target plaintext blocks. Un-
der an assumption about the presence of malicious client-side JavaScript, an attacker

2 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

could arrange for arbitrary plaintext bytes to be recovered. Similar techniques were ex-
ploited in the POODLE attack [29] which was specific to SSL’s padding construction.
Implementation-specific variants of the Lucky 13 attack were also discovered, see for
example [2,5,4].

The TLS developer community responded in a variety of different ways to Lucky
13.3 OpenSSL, used in Apache and NGINX, its BoringSSL fork used by Google in
Chrome and server-side, as well as NSS used in Mozilla Firefox, added roughly 500
new lines of code to implement the decryption processing required in a fully constant-
time, constant-memory-access fashion. The code is complex and difficult to understand
for developers not fully conversant in constant-time programming techniques.4 Even
this was not fully successful at first, as a code-branch in OpenSSL taking advantage
of AES hardware support was not properly patched, and an even worse attack was
enabled [32].

Other implementations (e.g. Amazon’s s2n, GnuTLS, wolfSSL) took an easier route
by adopting “pseudo constant time” solutions to address Lucky 13. For example, s2n
attempted to equalise the MAC verification time by adding dummy HMAC compu-
tations and also included a random timing delay. This kind of approach was perhaps
justified given the small timing differences involved in Lucky 13 (on the order of 1
microsecond, making the attack difficult to mount in practice, especially remotely) and
the complexity of the OpenSSL patch. However, soon after, Irazoqui et al. [5] showed
how to re-enable the Lucky 13 attack in a cross-VM setting, by presenting cache-
based “FLUSH+RELOAD” attacks that detect the dummy function calls that only
occur when bad padding is encountered. Their attacks work on deduplication-enabled
platforms (e.g. those implementing Kernel SamePage Merging, KSM, or related tech-
nologies). In this setting, their attacks apply to those implementations which take the
simplest approach to remediation, that of adding dummy computations via new func-
tion calls. Irazoqui et al. showed that the PolarSSL (now mbed TLS), GnuTLS and
CyaSSL (now wolfSSL) implementations were all vulnerable to attack in their specific
deduplication-enabled, cross-VM setting. PolarSSL patched against this attack, but
GnuTLS and wolfSSL chose not to. However, as deduplication is currently disabled
across different VMs by Infrastructure-as-a-service (IaaS) providers [23], no practical
cross-VM attack against any implementation is currently known.5

More broadly, the Lucky 13 attack, and the vulnerabilities in the alternative RC4-
based cipher suites discovered around the same time, nudged developers into finally
implementing and deploying TLS 1.2 with its support for more modern AES-GCM-
based cipher suites. These have risen in popularity to the point today where more
than 80% of TLS connections rely on AES-GCM. Yet still today, more than 10% of
TLS traffic is protected with CBC-mode cipher suites in the original MAC-then-pad-

3 A partial list of vendor responses can be found at http://www.isg.rhul.ac.uk/tls/

Lucky13.html.
4 See https://www.imperialviolet.org/2013/02/04/luckythirteen.html for a detailed

discussion of this patch.
5 More recently Xiao et al. [35] used an automated differential analysis framework to find

cache-based side channels to re-enable the Lucky 13 attack against GnuTLS and mbed TLS
code that runs directly inside an Intel Software Guard Extension (SGX) secure enclave.
However, they require root permissions for their “man in the kernel” attack.

http://www.isg.rhul.ac.uk/tls/Lucky13.html
http://www.isg.rhul.ac.uk/tls/Lucky13.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 3

ECDHE RSA AES 256 CBC SHA384 4.4%
RSA AES 256 CBC SHA 1.7%
RSA AES 128 CBC SHA 1.2%

ECDHE RSA AES 256 CBC SHA 1.2%
ECDHE RSA AES 128 CBC SHA 1.1%

ECDHE RSA AES 128 CBC SHA256 1.1%

Table 1: Distribution of CBC-mode TLS cipher suites.
Source: ICSI Certificate Notary, 24/04/2018 [1]

then-encrypt construction, see Table 1.6 Notably, CBC-mode cipher suites relying on
HMAC with SHA-384 for integrity have risen in popularity over SHA-256 and SHA-1
(this might be due to the fact that on modern 64-bit CPUs, SHA-384 is faster per
byte than SHA-256). This 10% figure makes the security of CBC-mode cipher suites of
enduring interest and means that their continued study (and elimination in the event
of new vulnerabilities being found) is still of considerable value.

1.2 Our contributions

Our main contribution is to present novel cache timing attacks on a representative
set of implementations of TLS that did not adopt the fully constant-time/constant-
memory-access approach to address Lucky 13, but which instead used pseudo constant
time fixes. We are thus able to mount practical attacks on TLS implementations that
have been fully patched against all previously known variants of Lucky 13, including
previous cache-based attacks such as [5].

As usual for such attacks, we assume the existence of a co-located adversary running
on the same CPU as the victim’s process or VM, and a shared cache. However, in
contrast to [5], we do not rely on memory deduplication technologies like KSM, that
are currently disabled across different VMs by IaaS providers [23]. Instead, we only
assume a shared Last Level Cache (LLC) side-channel as in [23].

Our attacks are capable of plaintext recovery with low complexity. We use 3 different
LLC side-channel based attack techniques to target the s2n, GnuTLS, mbed TLS and
wolfSSL implementations, giving for each technique a proof of concept (PoC) attack.

The attacks were developed through manual code inspection of the different imple-
mentations. We show that each implementation provides some leakage to the adversary
about the amount of TLS padding present in a plaintext underlying a chosen cipher-
text. Using by-now standard “JavaScript in the browser” methods (see, for example,
[3]), such leakage can be leveraged to perform plaintext recovery for TLS cookies, for
example. Naive exploitation of some of the leakages requires a large number of TLS
connections, but we show how to fine-tune them to improve their performance by three
orders of magnitude. We also introduce a novel variant of Lucky 13 that uses long TLS
padding patterns. These enhancements should be of independent interest.

Implementation Bugs in Lucky13 Countermeasures As a secondary contribu-
tion, we point out that all the reviewed pseudo constant time implementations of TLS
(s2n, GnuTLS, mbed TLS, wolfSSL) have bugs in their pseudo-constant-time code that

6 RFC 7366 [18] specifies an alternative “Encrypt-then-MAC” construction, but figures ob-
tained from the ICSI Certificate Notary indicate that it is barely used.

4 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

come into play when SHA-384 is selected as the hash algorithm in HMAC. These bugs
are easy to fix by changing some constants related to the SHA-384 hash size, but ren-
der the decryption operations non-constant time and therefore vulnerable to relatively
simple plaintext recovery attacks. Moreover, we show that GnuTLS is still vulnerable
to a novel variant of the original Lucky 13 attack even for SHA-256, despite having
been specifically patched against Lucky 13.

New variants of the PRIME+PROBE attack:

1. The synchronized probe PRIME+PROBE attack can sense the time between an
event controlled by the attacker (e.g. sending a message to the target) and a non-
constant-time memory access. We send the message at time tsend and assume that
the memory access will occur either at time tsend + t1 or tsend + t2 depending on
some secret value. We synchronize the cache probing to occur at time tsend + tprobe
(where t1 < tprobe < t2). We create a “race condition” between our probe and the
target’s memory access. From the result of the cache probing, we get a timing oracle.
This attack technique is especially useful in LLC side-channels like those in [23], in
a scenario where the side-channel probing resolution is not high enough to time the
event by continuous probing. The delay tprobe is both code and machine specific.

2. The synchronized prime PRIME+PROBE attack can distinguish between two dif-
ferent memory access patterns after an event controlled by the attacker (e.g. sending
a message to the target). We send the message at time tsend and assume that the
target code will access the memory at time tsend + t1. Depending on some secret
value, the target code might access the memory again at time tsend + t2. We syn-
chronize the cache priming to occur at time tsend + tprime (where t1 < tprime < t2).
We probe the cache at some time tprobe > t2. From the result of the cache probing,
we get an oracle for the secret value. Again this attack technique is especially useful
a scenario where the side-channel probing resolution is not high enough to perform
multiple measurements in the interval of length t1−t2. The delay tprime is both code
and machine specific.

3. The “PostFetch” attack can help to overcome large cache lines that reduce the cache
attack resolution. We would like to distinguish between the cases of accessing just
the first few bytes of an array inside a cache line, and accessing most of the array.
However, due to the cache line size, the whole array will be read into the cache in
both cases. In some scenarios, if a large part of a cache line is accessed (near the
cache line boundary), then the next cache line will also be read into the cache. This
can be caused by either hardware memory prefetching or by speculative execution.
In those scenarios, we can distinguish between the two types of access by probing
the cache line that contains the bytes after the array.

Implications of Our Results We consider our complete set of results surprising in
the light of the huge amount of effort spent on correcting and verifying CBC-mode and
HMAC implementations in TLS over the last 5 years. For example, s2n was repeat-
edly patched in response to Lucky 13 style attacks [2,4]. Its principal author, Colm
MacCarthaigh wrote a detailed and thoughtful blogpost explaining AWS’s selected ap-
proach to defending against this kind of attack [24], focussing on the argument that a
balance needs to be struck between code simplicity and security. Moreover, the vulner-
able s2n HMAC code had also passed formal verification [13,10]. At its core, our work

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 5

shows that nothing short of the full “belt and braces” approach adopted in OpenSSL is
sufficient to provide a robust defence against Lucky 13 style attacks in all their forms,
and in fact the approach taken in OpenSSL is immune to our attacks. While our cache-
based timing attacks are different from the methods used in previous attacks against
s2n [2,4] and mbed TLS [5], cache-based attack scenarios have been well-known and
broadly accepted as being realistic in the security community for some years. In retro-
spect, the developers of the TLS implementations which we target in this work might
have better invested their code development effort in adopting fully robust approaches
from the beginning, rather than being forced to incrementally patch against each new
generation of attack (or to have to expend energy defending the decision not to patch
at all).

1.3 Disclosure

We have disclosed the vulnerabilities to all vendors mentioned in the paper, and sug-
gested a coordinated public disclosure on the 25th of July 2018. The status of these
disclosures at the time of writing is as follows:

– The wolfSSL team followed our recommendation and switched to the full constant
time solution in release 3.15.37 (released 20th June 2018).

– The mbed TLS team released a security advisory8 on July 25th 2018. CVEs 2018-
0497 and 2018-0497 were assigned to the SHA-384 bug and to the cache-based timing
attacks, respectively. Both CVEs were rated “high severity” and users were advised
to upgrade to new releases of the code, or to disable the CBC-mode cipher suite
if this is not possibles. Our understanding is that the new releases provide interim
fixies, with a full solution to follow in due course.

– The GnuTLS team made a number of changes to their code on June 12th 2018 and
then in releases 3.6.3, 3.5.19 and 3.3.30 on July 16th 2018. These changes address
the bugs in SHA-384 constants and adopt a new variant of the pseudo constant time
approach, roughly equalising the running time of decryption processing by ensuring
a constant number of hash compression function calls is made. However, we believe
that the GnuTLS code is still vulnerable to variants of the attacks presented in our
paper due to its padding-dependent memory accesses. We notified the GnuTLS team
of our concerns about this on June 13th 2018. Our understanding is that the GnuTLS
team does not plan to address the issues, but prefers to promote the use of Encrypt-
then-MAC (as specified in RFC 7366) when legacy cipher suites are required. Red
Hat assigned CVEs 2018-10844, 2018-10845 and 2018-10846 to the issues.

– Amazon’s s2n team plans to remove CBC-mode cipher suites from their list of pre-
ferred ciphers, and will replace their implementation of CBC-mode decryption with
the fully constant time one from BoringSSL.

1.4 Paper Structure

Section 2 gives further background on the Lucky 13 attack and cache attacks, and
Section 3 describes the bugs we found in the various implementations of the lucky 13

7 https://www.wolfssl.com/docs/wolfssl-changelog/.
8 https://tls.mbed.org/tech-updates/security-advisories/

mbedtls-security-advisory-2018-02.

https://www.wolfssl.com/docs/wolfssl-changelog/
https://tls.mbed.org/tech-updates/security-advisories/mbedtls-security-advisory-2018-02
https://tls.mbed.org/tech-updates/security-advisories/mbedtls-security-advisory-2018-02

6 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

countermeasures. Next we describe the main contribution of our paper: Section 4 de-
scribes our synchronized probe PRIME+PROBE attack on Amazon’s s2n implementa-
tion and Section 5 provides details on how to optimize the full byte plaintext recovery.
Section 6 describes our synchronized prime PRIME+PROBE attack on mbed TLS,
GnuTLS and wolfSSL. In Section 7 we introduce our novel “PostFetch” attack on the
mbed TLS implementation. Finally, Section 8 discusses the results and raises some
open questions.

2 Further Background

2.1 TLS Record Processing and the Lucky 13 Attack

For a detailed account of how TLS is processing records in CBC-mode cipher suites
and how this enables the Lucky 13 attack, see [3,2]. We present here a highly com-
pressed version of this information heavily based on [2] in order to make the paper
self-contained.

A TLS record R (viewed as a byte sequence) is processed as follows. The sender
has an 8-byte per-record sequence number SQN, and forms a 5-byte field HDR consisting
of a 2-byte version field, a 1-byte type field, and a 2-byte length field. The sender then
calculates a MAC over the bytes SQN||HDR||R; let T denote the resulting MAC tag. The
size t of the MAC tag depends on the hash function specified for use in HMAC in the
cipher suite.

The record is encoded by setting P = R||T ||pad. Here pad is a sequence of padding
bytes chosen such that the length of P in bytes is a multiple of the block-size b of the
selected block cipher (b = 16 for AES). In TLS, the padding must consist of p+1 copies
of some byte value p, where 0 ≤ p ≤ 255. Implementations typically use the last byte
of pad as an indicator of the padding length to determine how many padding bytes
should be present in a record and what values those bytes should take.

In the encryption step, the encoded record P is encrypted using CBC-mode of
the selected block cipher. TLS 1.1 and 1.2 mandate an explicit IV, which should be
randomly generated. TLS 1.0 (and SSL) use a chained IV. Thus, the ciphertext blocks
are computed as:

Cj = EKe(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key for the block cipher E.
The final ciphertext data has the form:

HDR||C

where C is the concatenation of the blocks Ci (including or excluding the IV depending
on the particular SSL or TLS version). Note that the sequence number is not trans-
mitted as part of the message.

At a high level, the decryption process reverses this sequence of steps: first the
ciphertext is decrypted block by block to recover the plaintext blocks:

Pj = DKe
(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher. Then the padding is
checked and removed, and finally, the MAC is checked. However, these operations must
be performed without leaking any information about what the make-up of the plaintext

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 7

blocks is in terms of message, MAC field and padding, and whether the format is valid.
Prior literature including [9,3,5,2,4] illustrates the difficulties of doing this securely.

As a flavour of what can go wrong, consider an attacker that wishes to decrypt a
target ciphertext block C∗; let C∗−1 denote the preceding block in the sequence of ci-
phertext blocks. The attacker intercepts a ciphertext HDR||C and injects HDR′||C||C∗−1⊕
∆||C∗ so that it is received in the sequence of TLS records. Here HDR′ is a modified
header containing the correct length field and ∆ is a block-size mask. A naive imple-
mentation might treat the last block of this ciphertext as containing padding, check its
validity, and then either send a padding error message or extract and verify the MAC.
By construction, the last block is equal to P ∗ ⊕∆, where P ∗ is the (unknown) target
plaintext block. Whether or not the padding is valid therefore leaks information about
P ∗⊕∆, and thence about P ∗. By varying the value of ∆ across different injected TLS
records, the attacker can gradually build up information about P ∗, possibly recovering
it in its entirety.

In reality, attacks against CBC-mode in TLS are more complex than this:

– First, all errors are fatal, meaning that the connection is terminated and the key
is thrown away. However, an attacker can aim to recover plaintext blocks that
are repeated in predictable locations over many connections, e.g. HTTP cookies,
with client-side malicious JavaScript being used to initiate the required connections
and the cookies being automatically injected into connections by the victim’s web
browser.

– Second, the error messages are encrypted, so the attacker cannot directly learn
whether or not the padding is valid. Instead, the leakage typically comes from timing
information. For example, in the above discussion, we assumed that the MAC was
only checked if the padding is good; of course the MAC verification will fail with
overwhelming probability, and the error condition will then leak through the timing
of the error message, which can be measured by an attacker located on the network.

– Third, such large timing differences are no longer present in implementations, due
to patching. In particular, in view of the attacks of [33,9], the TLS 1.1 and 1.2
specifications recommend checking the MAC even if the padding is bad, and doing
so on a synthetic message whose length is equal to that of the plaintext (i.e. as if
the padding had zero length). This reduces, but does not completely eliminate the
timing differences; the remaining timing variation was exploited in Lucky 13 [3].

– Fourth, as the timing differences have become smaller through patching, so network
noise has made mounting the attacks remotely progressively harder. This in part
motivates cache-based attacks with a co-located attacker, like those in [5] and here.

2.2 Cache attacks

Cache attacks have become one of the most prolific types of attack against crypto-
graphic primitives, using different techniques for measuring leakage of secret values
(e.g. [30,38,23,16]). Those different techniques were used to break real world crypto-
graphic implementations (e.g. [17,39,37,6,8,19,15]). The assumption that the attacker
can run code on the same platform as the target’s process is now widely accepted and
used, including in the recent Meltdown [22] and Spectre [20] attacks.

Some cache attacks (e.g. [38] required shared memory between the attacker and
target processes. Memory might be shared between different processes or even VMs

8 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

due to memory deduplication. Memory deduplication optimizations (e.g. KSM), allow
two or more processes or VMs to share identical memory pages (e.g. shared library
code or constants). However, due to the discovered security implications, today they are
disabled between different VMs by IaaS providers [23]. Using more advanced techniques
such as those in [23,16,21] cross-VM attacks are now practical even when memory
deduplication is disabled.

Our cache attack techniques are based on the PRIME+PROBE [30] attack vari-
ant of Liu et al. [23] that allows cross-VM attacks. The Mastik [36] toolkit contains
an implementation of this attack. We will give a short description of the general
PRIME+PROBE attack (for a detailed account of the techniques see [23]). The main
idea is that the access time to data that is stored in the cache is much smaller than
for data that is stored in main memory. In the first PRIME phase of the attack, the
attacker fills the part of the cache that will hold the target’s data by accessing its own
data in specific memory locations. In the second PROBE phase, the attacker tests if
part of its data was evicted from the cache by measuring the access time to its own
data. If all of the data is still in the cache, the target’s data was not accessed. Oth-
erwise, either the target’s data was accessed, or some other code forced the eviction
of the attacker’s data. If the target’s code access pattern to its data is determined by
some secret value, the attacker can learn this value.

3 Implementation Bugs in Lucky13 Countermeasures

Pseudo constant time countermeasures are very hard to get right and maintain over
time. This is due both to the possibility of finding novel variants of the original at-
tacks, and the need to manually check the timing implications of adding new features.
In contrast, real constant time implementations are more robust against novel attack
variants, and bugs created by supporting new features will likely be found by unit-
testing. TLS 1.2 [12] added new ciphers suites based on CBC-mode for encryption and
HMAC-SHA-384 for integrity. The SHA-384 hash function is considered more secure,
and also has better performance on 64-bit processors, than the previously supported
SHA-1 and SHA-256 algorithms. We tested if TLS implementations supporting HMAC-
SHA-384 are vulnerable to timing attacks similar to the one described in [2]. All of
the constant-time implementations that we checked (OpenSSL, BoringSSL, NSS) were
secure. However, all of the ”pseudo” constant time implementations (i.e. those only
ensuring a constant number of compression function calls) had bugs making them vul-
nerable to attack. The reason for the bugs is that, although the SHA-384 cipher suites
were added, the code responsible for adding dummy compression function calls was not
updated correctly. Specifically, SHA-384 has a 128-byte block size (compared to the
64-byte blocks of SHA-256), and encodes the message length using 16 bytes (compared
to 8 bytes in SHA-256). All of the extra compression function call calculations have
hard-coded values appropriate for SHA-256 but not SHA-384, resulting in them using
a non-constant number of calls to the SHA-384 compression function. We explain in
more detail below for each of the four ”pseudo” constant time implementations we
studied; since the bugs are easily fixed, we do not go into great detail on how each bug
leads to a plaintext recovery attack.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 9

3.1 GnuTLS Implementation

Although the function dummy_wait (see Listing 1.3 in Appendix A) uses the correct
hash block size, it also uses the hard-coded number ”9”. This comes from at least 1 byte
for the the hash function padding and the 8 bytes used to encode the hashed message
length for SHA-256. However, in SHA-384, the message length is encoded using 16
bytes, and so the correct value should be ”17” rather than ”9”. The code includes a
comment warning that this is a hash-specific fix, but it was apparently not corrected
when the SHA-384 cipher suites were added.

Even more surprisingly, we discovered that the GnuTLS Implementation is vul-
nerable to a timing attack when SHA-256 is selected as the hash algorithm in HMAC,
despite this having been patched in response to Lucky 13 [27]. The function dummy_wait

can add at most one call to the hash compression function. However, the attack de-
scribed in Section 6.3 creates a padding oracle that distinguishes between a valid pad
of a large length (PadLen > 240) and an invalid padding (PadLen = 0). In that case,
for GnuTLS, there will be a timing difference of 3 calls to the compression function
of SHA-256, that is 3 times larger than the timing difference in the original Lucky 13
attack [3].

3.2 mbed TLS Implementation

The function ssl_decrypt_buf (see Listing 1.8 in Appendix A) uses the hard-coded
value ”64” (for block size) and ”8” (for message length encoding). These should be ”128”
and ”16”, respectively, for SHA-384. For example, HMAC verification of a decrypted
TLS record of length 512 and valid padding of length in the range PadLen = 229 will
result in 3 more compression functions call than same length TLS record with invalid
padding (PadLen = 0). Again we can use the attack described in Section 6.3 to create
a padding oracle to distinguish between the two cases, resulting in a timing difference
much larger than the one in the original Lucky 13 attack [3].

3.3 WolfSSL Implementation

The function GetRounds (see Listing 1.5 in Appendix A) uses the hard-coded numbers
”64” and ”55” (64-8-1). These should be ”128” and ”111”, respectively, for SHA-384.
The same attack described in Appendix 3.2 can also be used against the WolfSSL
implementation.

3.4 Amazon’s s2n Implementation

The s2n_hmac_digest_two_compression_rounds function (see Listing 1.1) can add
one dummy compression function call. The calculation of the condition uses the hard-
coded number 9 as the minimal number of bytes to add, whereas 17 would be appro-
priate for SHA-384. This bug was not detected during the formal verification of the
HMAC code carried out by Galois [13]. However, unlike our new cache attack for s2n
presented in Section 4, the attack arising from this bug (modeled on that in [2]) is likely
to be impractical due to the random delay protection in s2n.

10 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

4 A Cache-based Padding Oracle in Amazon’s s2n
Implementation

Amazon’s s2n TLS implementation is responsible for protecting all of the traffic to
Amazon’s S3 cloud storage service [31]. This implementation was previously analysed by
Albrecht and Paterson [2] and found vulnerable to a variant of the Lucky 13 attack. The
current protection includes a pseudo constant time implementation, and the inclusion
of a very high resolution and large random delay after detecting any error in TLS
decryption. This causes previous timing attacks to become impractical. Moreover, the
correctness of s2n’s patched HMAC implementation was formally verified [13].

However, as we will see, the memory access pattern in s2n depends on the padding
length byte (i.e. the last byte of the decrypted TLS record). We will use a PRIME+PROBE [30]
cache attack to build a new padding oracle for s2n. We assume a cache side-channel as
in Liu et al. [23], and describe two versions of our attack on s2n: In a simplified version,
we target the specific code written to block the attack in [2]. However, this attack is not
practical due to an ad hoc programming decision in s2n. In our full synchronized probe
PRIME+PROBE attack, we exploit the same programming decision, but using the
probability of cache hits and misses as an indicator of padding length. Our full attack
works on HMAC using both SHA-384 and SHA-256, even if the simple bug described
in Appendix 3.4 is fixed.

4.1 Attack Preliminaries

In both attacks the cache side-channel arises from the access pattern to a dynamically
allocated memory location, more specifically a buffer used to store part of the key in
the HMAC calculation. We first have to find the mapping of this location to the right
cache set, by exploiting a design decision of the s2n developers: All the structures and
memory buffers required for a specific connection in s2n are allocated in the handshake
phase and are reused for all messages. We can then find the right cache set in the
same manner as in [23]. For each handshake, we trace the cache set while processing
valid messages, and find the cache set exhibiting the activity pattern we expect for the
HMAC code.

4.2 Simplified Attack

The attack described in [2] is based on the following fact: If we split a message
into two parts, and hash each of them separately, the number of calls to the inter-
nal hash compression function might vary depending on the split point. This is due
to the padding and length bytes added internally by the hash function. A new func-
tion s2n_hmac_digest_two_compression_rounds (see Listing 1.1 in Appendix A) was
added to the HMAC API in s2n to block this attack vector. This function makes two
calls to the internal hash compression function, even if the hash padding doesn’t neces-
sitate it. The function checks if the hash padding will require another compression call.
If not, it will reset the hash context and call another update function. In that case, the
buffer that is sent to the update function is the HMAC state buffer called xor_pad.
The only other place this buffer is used is in the HMAC initialization function, and
that is called only once, in the TLS handshake.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 11

Algorithm 1 s2n Simplified Attack

1: function SimplifiedS2NPadOracle(valid msg,attack msg)
2: xor pad← FindXorPadCache(valid msg)
3: Prime(xor pad) . evict xor pad set from cache
4: Send attacker’s TLS record to target
5: Wait for verification error
6: if Probe(xor pad) then
7: return 1 . buffer was accessed
8: else
9: return 0 . buffer was not accessed

10: end if
11: end function

Our attack (see Algorithm 1) is now straightforward. The attack code runs on
a different VM on the same CPU socket. We start by finding the cache set of the
xor pad buffer. This is done by sending valid TLS records to the target (for example,
by using malicious JavaScript running in a remote victim’s browser), and using the
PRIME+PROBE technique of [23] to find the correct cache set. We then prime the
xor pad buffer, and send the attacker-constructed TLS record for decryption. After the
TLS record is rejected (due to a MAC failure) we probe the cache set. If we get a cache
miss, we assume that with high probability the xor pad buffer was accessed, and so the
TLS record’s padding length (as determined by s2n from PadLen, the value of the last
byte of the decrypted TLS record P = R||T ||pad) is such that the length of R mod
hash_block_size is between hash_block_size − 9 − 13 and hash_block_size − 13
(here, 13 comes from the TLS header length and ”9” would be replaced by ”17” for SHA-
384 if the bug identified in Appendix 3.4 were to be fixed). By setting the attacker’s
TLS record so that its last blocks are C∗−1 ⊕ ∆||C∗, as in Appendix 2.1, information
about the value of the last byte of P ∗ ⊕∆ is thereby leaked to the attacker.

4.3 Full synchronized probe PRIME+PROBE Attack

The simplified attack is not practical due to the following ad hoc programming decision
in the verification function s2n verify cbc (see Listing 1.2 in Appendix A). After fin-
ishing the HMAC calculation, the s2n code hashes the rest of the TLS record padding
bytes, to ensure a constant number of compression function calls. In this specific solu-
tion it is required to “remember” the number of bytes digested up to this point. To allow
this, the function s2n_hmac_copy was added to the HMAC API. This function (used
only in CBC-mode processing) copies all of the state buffers of the HMAC calculation,
so that the copy can be used to digest the remaining padding bytes. The copy function
also copies the xor_pad buffer (although it is not required for the calculation), and so
it accidentally causes it to be read into the cache. For the simplified attack to work,
we would need to arrange for the probing of the xor_pad buffer to happen exactly in-
between the call to s2n_hmac_copy and s2n_hmac_digest_two_compression_rounds.
This requires too fine a control over timing.

However, we can use the fact that the HMAC copy buffer is only accessed in the
s2n_hmac_copy function, just after finishing the HMAC calculation over the message.
The time elapsed until this buffer is accessed is actually the same as the time taken for
HMAC verification in the Lucky 13 attack.

The full synchronized probe PRIME+PROBE attack (see Algorithm 2) tries to ap-
proximate the HMAC execution time by using a “race condition” between the message

12 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

Algorithm 2 s2n synchronized probe PRIME+PROBE Attack

1: function S2NPadOracle(valid msg,attack msg)
2: copy xor pad← FindCopyXorPadCache(valid msg)
3: Prime(copy xor pad) . evict copy xor pad set from cache
4: Send attacker’s TLS record to target
5: Delay to synchronize the probe
6: if Probe(copy xor pad) then
7: return 1 . buffer was accessed
8: else
9: return 0 . buffer was not accessed

10: end if
11: end function

verification and the cache probing. We start again by finding the correct cache set for
the copy xor pad, using valid messages. Then we prime the cache set, and send the TLS
record for decryption. We use a short delay to synchronize the attack, as our probing
step should run at approximately the same time as the HMAC verification code would
finish hashing a short message (corresponding to a long TLS padding pattern).

We assume that there will be small timing variations due to the behaviour of the
operating system. So we run the attack multiple times, and use the probability of a
cache miss as an indicator of the HMAC execution time. If the probability of a cache
miss is high (so Algorithm 2 outputs ”0” frequently), it indicates that we have probed
before the call to s2n_hmac_copy. This means that the HMAC execution took longer,
and so we can infer that PadLen was small. On the other hand, if the probability of a
cache hit is high, it indicates that PadLen was large. We will shortly make this analysis
more precise.

4.4 s2n’s Timing Blinding Mitigation

Amazon added a general mitigation to protect s2n from attacks targeting their non-
constant time implementation. In the event of a decryption error , the function s2n_connection_kill

adds a very large random time delay before killing the connection and sending the error
message. This is supposed to add a large amount of noise to any timing-based attack,
making it impractical [24]. While this random delay can indeed block regular timing
attacks, it offers no protection against our cache-based attack, as the cache access that
we target is made before the random delay is added. Moreover, since a server running
s2n can support many concurrent connections, the random delay does not significantly
slow down the rate at which we can send attack TLS records.

4.5 s2n Proof of Concept

We experimentally implemented a PoC for the attack. We ran our attack on an Intel(R)
Core(TM) i7-7500U CPU @ 2.70GHz running Ubuntu 17.10. We used the code from the
master branch of the official s2n git repository on 14/2/2018 (commit hash f742802),
and compiled with the provided make files and GCC version 7.2.0. We targeted the
code of the s2n_verify_cbc function (including the code for hashing the header and
sequence number called before the function). The function is called to verify multiple
messages that differ only in the last byte of the decrypted TLS record (which is used
to set PadLen). Another thread was run in parallel to evaluate the cache hit/miss
probability.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 13

Hash Message PadLen Cache hit
function Length range probability

SHA-384 720 0− 44 ≈ 0.68
SHA-384 720 45− 172 ≈ 0.75
SHA-384 720 173− 255 ≈ 0.97

SHA-256 576 0− 44 ≈ 0.63
SHA-256 576 45− 108 ≈ 0.65
SHA-256 576 109− 172 ≈ 0.66
SHA-256 576 173− 236 ≈ 0.90
SHA-256 576 237− 255 ≈ 0.95

Table 2: Cache hit probabilities for s2n attack

We studied HMAC verification for both SHA-384 and SHA-256. We chose a random
720-byte string (576 bytes for SHA-256) as our decrypted TLS record (the record length
must be a multiple of the cipher block-size, and these sizes are optimal for our attack),
and ran 2000 trials of the attack for all 256 possible padding length values in the last
byte. As expected the hit probability changes on the 128-byte boundaries of the hashed
data (64-byte boundaries for SHA-256). Since the number of bytes hashed until the call
to s2n_hmac_copy is made is:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ DecMsgLen−MacLen− PadLen− 1, then

HashLenSHA-384 = 128 + 8 + 5 + 720− 48− PadLen− 1

= 812− PadLen, and

HashLenSHA-256 = 64 + 8 + 5 + 576− 32− PadLen− 1

= 620− PadLen

Due to the inclusion of the underlying hash length field and padding in this hashing
operation, we expect to see an increase in the cache hit probability when PadLen ≡
45 mod 128 (45 mod 64 for SHA-256). The experimental results in Table 2 show these
expected changes. We synchronized the attack so that the cache probe is expected to
happen after ≈ 5 calls to the SHA-384 compression function (≈ 7 for SHA-256). So
we should get a cache hit with high probability if the value of PadLen is greater than
172, and with low probability otherwise. This can be seen in the table. There is also
a smaller change in the probability at value 44 (48, 108 and 236 for SHA-256). When
the pad length is less than 44, there is one less compression function call, which causes
the probability of a cache hit to be even lower.

4.6 Creating the Padding Oracle

Our experiments show that s2n permits a single-bit oracle that can distinguish if
PadLen > 172 or not. Recall that PadLen is set from the last byte of the decrypted TLS
record P = R||T ||pad, and the method described in Appendix 2.1 can use such an oracle
to learn information about the value of the last byte of P ∗ ⊕∆ for attacker-controlled
values ∆. We build this oracle by repeatedly running Algorithm 2 and estimating the
cache hit probability p. We then use this estimate to decide whether PadLen > 172 or
not. The accuracy of this process is determined by the difference in probabilities and the
number of iterations n of Algorithm 2 that we perform; we are effectively trying to dis-
tinguish between two binomial distributions, one with p = 0.75 (p = 0.66 for SHA-256)

14 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

and the other with p = 0.97 (p = 0.90 for SHA-256). We set a threshold probability of
pt = 0.86 (pt = 0.78 for SHA-256) and set a desired error probability of β. We can then
calculate n, the required number of iterations, such that Pr(Bin(n, 0.75) > 0.86n) < β
and Pr(Bin(n, 0.97) < 0.86n) < β. We can calculate the required n for any chosen β
by using the CDF of the binomial distribution.

In fact, we can generate different oracles by changing the length of the TLS records
that we send to our target. The body of the records must have lengths that are multiples
of the block-size. This allows us to obtain oracles of the form PadLen > 12 + 16k mod
256 for any k. In Appendix 5 we will show how to choose n, β and the optimal k to
use in the oracle for achieving full plaintext recovery.

5 From s2n Padding Oracle to Full Plaintext Recovery

The attack in Section 4 on s2n provides us with one-bit linear condition oracles on the
padding length byte that is located at the end of the decrypted TLS record.9

However, our goal is to recover multiple, full bytes of plaintext. Fortunately, we
can select the last blocks of the attacker’s TLS record as C∗−1 ⊕ ∆||C∗ for different
values of mask ∆, and post-process the results to gain information about the values of
plaintext block P ∗; more precisely, since the linear conditions are always on the very
last byte p∗ of P ∗, we need only vary ∆ in its last byte position δ, and we can only
gain information about p∗. In this section, we describe two strategies for selecting the
different single-byte masks δ to try: a naive approach, and a more sophisticated one.

We remark here that going from single-byte recovery to many-byte recovery can
be achieved in the main application scenario of recovering HTTP cookies. The idea
is to use progressively longer padding of pathnames in HTTP requests to move the
target HTTP cookie bytes one-by-one into the last position p∗ in the target block
P ∗. The HTTP requests are produced by malicious JavaScript running in the victim’s
browser; the browser automatically generates the required TLS connections in response
to the requests. This is a known technique that we borrow from the literature on TLS
attacks [14,3,29], and we do not comment on it further here.

5.1 Naive Algorithm

The naive algorithm is described in Algorithm 3. The algorithm receives the following
parameters:

1. OracleFunc(δ): a function that implements a padding oracle attack for mask value
δ. This function carries out one of the padding oracle attacks from the previous
sections, targeting a particular fixed byte p∗ in the last position in some target
plaintext block P ∗. This involves repeatedly intercepting TLS records containing the
target byte/block p∗/P ∗ in ciphertext block C∗, building fixed-length TLS records
ending with C∗−1 ⊕ ∆||C∗ where the last byte of ∆ is set to δ, and recovering the
result of evaluating the oracle’s one-bit linear condition on input p∗⊕ δ. We assume
that the oracle has error probability β when n iterations are carried out.

9 We actually have several different conditions and oracles, depending on the attacker-
controlled TLS record length.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 15

Algorithm 3 Padding Oracle to Plaintext Byte — Naive Algorithm

1: function NaiveOracleToByte(OracleFunc, OracleCondition)
2: ValList ← [0..255] . all possible values for PadLen
3: MaskList ← [0..255] . all possible one-byte mask values δ
4: for all δ in MaskList do
5: OracleRes← OracleFunc(δ)
6: for all val in ValList do
7: ValRes ← OracleCondition(val⊕ δ)
8: if ValRes 6= OracleRes then
9: remove val from ValList

10: end if
11: end for
12: if Length(ValList)==1 then
13: return ValList[0]
14: end if
15: end for
16: end function

2. OracleCondition(PadLen): returns the result of the linear condition executed by the
above oracle, assuming that the value PadLen is used as input (along with some fixed
TLS record length). For example, the oracle may return the value of the predicate
“PadLen > 172”.

The algorithm starts by initializing two byte-lists ValList and MaskList with all possible
byte values. We iterate over all possible single-byte mask values δ. For each possible
δ, we get the result of the oracle by running OracleFunc(δ). We then iterate over the
possible values in ValList. For each possible val, we check if the linear condition on
val⊕ δ is equal to the result of the oracle. If not, the value is discarded (and this will
be a correct decision with probability 1 − β). The algorithm ends when there is only
one possible value remaining in ValList.

The complexity of the algorithm is dominated by the number of calls to the OracleFunc(·)
function. The expected number is 128, with a worst case of 256. Recall, however, that
each call to this oracle involves some number n executions of the underlying cache
timing attack, giving an average of 128n executions of the cache timing attack. More-
over, each execution of the underlying attack consumes a TLS connection (since the
attacker’s constructed ciphertext will always fail HMAC verification). For example, as
we will see in Appendix 5.3, this results in roughly 13000 runs of the synchronized
probe PRIME+PROBE attack in Algorithm 2 for the attack on s2n. This figure of
128n might make the attack impractical. For this reason, we developed an improved
greedy algorithm which can reduce the attack complexity by a factor of more than 50.
We present this next.

5.2 Greedy Algorithm

Our greedy algorithm optimizes the way in which we choose the masks δ that we use
in our oracle calls. Instead of iterating over all possible values, in each iteration of
the attack we choose as the next mask the one that will give us the most information
(maximizing the entropy of each oracle call). Algorithm 4 chooses the ”best” mask in
a greedy manner. It takes as input a list of all remaining possible byte values (ValList)
and mask values (MaskList). For each mask it simulates all the oracle responses on the

16 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

Algorithm 4 Padding Oracle to Plaintext Byte — Greedy Algorithm

1: function GetBestMask(MaskList, ValList, OracleCondition)
2: HalfLenValList← Length(ValList)/2
3: MinMaskCount← 256 . maximum possible value
4: BestMask← 0
5: for all δ in MaskList do
6: OneCount← 0
7: for all val in ValList do
8: ValRes← OracleCondition(val⊕ δ)
9: if ValRes == 1 then

10: OneCount← OneCount + 1
11: end if
12: end for
13: Count = |HalfLenValList−OneCount| . how far are we from half the values

returning 1 and half returning 0?
14: if Count ≤ MinMaskCount then
15: BestMask← δ
16: MinMaskCount← Count
17: end if
18: end for
19: end function

possible values remaining, and chooses the mask that maximizes the entropy of this
experiment. Since we only consider single bytes at a time, the algorithm is efficient. In
a further optimization, we can also remove the masks with zero entropy from MaskList
in each iteration.

5.3 Application to Amazon s2n

In our attack we can obtain oracles of the form “PadLen > 12 + 16k mod 256” for any
k. We will analyze the run time complexity of the SHA-384 version of the attack.

Attack complexity of the naive algorithm For the naive algorithm, the expected
number of runs is 128, with a worst case of 256. We focus for the moment on successfully
recovering a single byte of plaintext with probability pB > 0.5 (a standard requirement
for success probability in cryptanalysis). In the worst case we will require 256 correct
calls to the oracle. So we would need each oracle call to return the correct result with
β = 0.51/256 = 0.9973. Based on our experiments, we model the s2n SHA-384 attack
cache hit distribution as a binomial distribution with p = 0.75 for PadLen ≤ 172 and
p = 0.97 for PadLen > 172. We would then need n = 100 executions of the cache attack
to distinguish between the two distributions with probability larger than β = 0.9973.
The expected total number of cache attack executions needed for the naive attack is
then 12800 with a worst case of 25600.

Attack complexity of the greedy algorithm We simulated the complexity of the
greedy algorithm for all oracles of the form PadLen > 12 + 16k mod 256. The oracle
with the lowest complexity is the one with k = 10, where the condition is PadLen > 172,
having an expected number of 8.5 runs and a worst case of 11. This is very close to
the information theoretical lower bound of 8 runs.. To achieve pB > 0.5 this requires
β = 0.51/11 = 0.939, which translates to n = 28. So the expected total number of cache

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 17

attack executions needed for the greedy attack is only 238, with a worst case of 308.
This is more than 50 times less than needed in the naive attack.

Recovering multiple bytes We are typically interested in recovering multiple plain-
text bytes, e.g. an entire 16-byte cookie, with good probability. To achieve success prob-
ability greater than 0.5 across 16 bytes, we need a per-byte probability of pB ≈ 0.96,
which in the greedy attack yields β = 0.51/11·16 = 0.996. In turn, this translates to
n = 92 and an expected total number of TLS connections of 782 per byte. For com-
parison, the naive algorithm requires an expected total of 21900 TLS connections per
byte.

6 A Padding Oracle Based on TLS Record Cache Access
Pattern

The original Lucky 13 attack [3] exploited the time difference of the TLS record veri-
fication process for valid and invalid padding. As a mitigation, all the pseudo constant
time TLS implementations added dummy compression function calls that cause the
total number of compression function calls to be independent of the padding length.
However, unlike proper constant time TLS implementations, the cache access pat-
tern to the data structure holding the TLS record is still dependent on the padding
length. We can exploit this cache access pattern with our novel synchronized prime
PRIME+PROBE attack to restore the original padding oracle of [3] in several TLS im-
plementations – mbed TLS , GnuTLS and wolfSSL . All implementations were patched
against Lucky 13 [3]. Moreover, mbed TLS was also patched against a second cache-
based attack by Irazoqui et al. [5], targeting the code of the first patch. We will again
use a PRIME+PROBE [30] cache attack, assuming a cache side channel as in Liu
et.al. [23]. Our attack works on HMAC using both SHA-384 and SHA-256, even if all
the bugs in Appendix 3 were fixed, and all the previous variants of Lucky 13 were
patched correctly.

6.1 Attack Preliminaries

All of the vulnerable implementations follow this general code flow for constant time
decryption:

1. Decrypt the message, accessing all the bytes in the TLS record.
2. Perform constant time checking of the TLS record padding, assuming zero-length

padding if the padding is not valid. All of the final 256 bytes of the TLS record are
accessed.

3. Calculate HMAC on the decrypted TLS record payload (excluding the padding).
All bytes in the decrypted TLS record are accessed, except for the padding bytes at
the end.

4. Add extra dummy compression function calls to make the number of calls the same
in every case. The data input to these function calls is obtained from the start of
the TLS record or from a dummy memory buffer. The padding bytes of the TLS
record are not accessed (except for messages that are shorter than the hash block
size).

18 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

Algorithm 5 Message Access Attack

1: function MessageAccessPadOracle(Valid TLS records, Attack TLS record)
2: LastBytesCache ← FindPtrCache(Valid TLS record[End])
3: Send attacker’s TLS record to target
4: Delay to synchronize to the start of the HMAC verification
5: Prime(MsgCache) . evict end of record from cache
6: Delay till maximum time for HMAC calculation
7: if Probe(MsgCache) then . end of record was accessed
8: return 0 . padding was invalid
9: else

10: return 1 . padding was valid
11: end if
12: end function

In our attack, we will try to distinguish between two cases: long valid padding
and long invalid padding. We will explain in Section 6.3 how an oracle yielding this
information can be used to recover plaintext bytes. Consider the cache access pattern
from the beginning of the HMAC verification. In the case of invalid padding, the code
typically assumes zero-length padding, and the HMAC verification will access all of the
TLS record bytes (possibly excluding the last byte). However, if the padding is valid
and long (e.g. PadLen = 255, in which case there are 256 bytes of padding), the HMAC
verification will not access the last PadLen + 1 bytes of the TLS record.

6.2 synchronized prime PRIME+PROBE Attack Description

Our synchronized prime PRIME+PROBE attack exploits this difference in the access
pattern using a PRIME+PROBE [30] cache attack. We synchronize the PRIME part
of the attack to run in parallel to the HMAC verification process, that is, after the
padding check but before the HMAC verification is done. The maximum TLS record
size is ca. 214 bytes, corresponding to about 28 compression function calls for a 64-
byte hash block size. By working with ciphertexts of this size, we can force the HMAC
verification to take a long time to complete. This makes the synchronization of the
attack relatively easy.

The attack (described in Algorithm 5) has four main parts:

1. Finding the cache sets containing the last bytes of the TLS record.

2. Sending the attack TLS record. The TLS record is constructed to have long valid
padding, except possibly in the first padding byte. This is the byte we try to recover
in the attack.

3. Delaying till the HMAC verification begins. This occurs after the decryption and
padding check is finished (and takes a constant amount of time regardless of the
padding).

4. In parallel to the HMAC verification, we Prime the end of the TLS record to evict
it from the cache.

5. After the end of the HMAC verification calculation, we probe the cache set that
contains the last few bytes of the TLS record. If it was accessed, then with high
probability the padding was invalid; otherwise it was valid.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 19

6.3 Constructing an Attack on TLS Records

It remains to explain how we construct the TLS records used in the attack, and how
we use the results of the oracle to recover plaintext bytes (HTTP cookie bytes in this
case). We rely on techniques first explained in [14]: we use HTTP pathname padding
and the ability to choose plaintext bytes that are placed after the cookie in the HTTP
request to ensure that the plaintext in the TLS record contains 16 consecutive blocks
in which the first block has the form:

p∗||“\r”||“\n”||0xFF|| . . . ||0xFF,

and the remaining 15 blocks consist solely of values 0xFF. Here p∗ is the last byte of
the cookie and the target of the first step of the attack, while “\r′′, “\n′′ represent
ASCII characters inserted after the cookie by HTTP. Note that these plaintext blocks
are almost correct padding of maximum length; of course they are incorporated into a
TLS record containing an HMAC tag and correct TLS padding. Let C∗0 , . . . , C

∗
15 denote

the matching ciphertext blocks in the resulting TLS record, and let C∗−1 denote the
preceding ciphertext block.

The attack TLS record is then constructed as:

HDR||L||C∗−1 ⊕∆||C∗0 || . . . ||C∗15

where HDR is a suitable header, L is a long random block sequence that brings the TLS
record up to the maximum size, and ∆ is a mask with bytes:

δ||(“\r”⊕ 0xFF)||(“\n”⊕ 0xFF)||0x00|| . . . ||0x00.

Here, the first mask byte creates a value p∗⊕δ in the first position of the block decrypt-
ing C∗0 , while the second and third mask bytes force values 0xFF in the corresponding
positions. Clearly, when decrypted, this TLS record will have correct padding of length
256 if and only if p∗ ⊕ δ = 0xFF. The attacker then uses TLS records of this form with
distinct values of δ in the attack of Algorithm 5; after 128 attempts on average and
256 in the worst case, the value of δ producing correct padding will be identified.

This description explains how to recover the last byte of the cookie. Further bytes
can be recovered by shifting the position of the cookie by altering the length of the
pathname in the HTTP request so that the last 2, 3, . . . bytes are present at the start
of the block underlying C∗0 . We also update ∆ as needed to force correct padding 0xFF

in all but the first byte of this block. This approach will recover up to 14 bytes of the
cookie; the remaining bytes seems to remain inaccessible using these techniques (trying
to extend further would push the “\r” and “\n” characters into the next block, where
they could not be turned into correct padding by XOR masking).

We close this description by noting that the above attack with long padding patterns
can be applied to the original Lucky 13 setting, quadrupling the timing differences there
and so making them substantially easier to detect (at the cost of limiting how much
plaintext can be recovered). This enhancement to Lucky 13 seems to have been missed
by the authors of [3], though they used a similar idea in their distinguishing attack.

6.4 Proof of Concept for synchronized prime PRIME+PROBE attack

We implemented a PoC for the above attack for wolfSSL, to verify the presence of
the cache side-channel. We ran our attack on an Intel(R) Core(TM) i7-7500U CPU

20 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

@ 2.70GHz running Ubuntu 17.10. We used the version 3.14 code taken from the
master branch of the official git repository on 20/4/2018 (commit hash 7d425a5c), and
compiled with the provided make files and GCC version 7.2.0.

wolfSSL code The TLS record verification is done in function TimingPadVerify (see
Listing 1.5 in Appendix A). First, the padding is checked by the function PadCheck. If
the padding check fails, the branch taken by the code implicitly assumes PadLen = 0
and HMAC is calculated over the whole TLS record excluding the last byte (that is
assumed to be the minimal length padding). However, if the padding is valid, HMAC
is calculated on the TLS record excluding all of the padding bytes. To achieve constant
time, the extra compression function CompressRounds is called. However, this is done
with the dummy array, which points to the start of the ssl context. So in case of valid
padding the last bytes of the TLS record are not accessed.

Attack results We prepared two types of decrypted TLS records. The first one with
256 bytes of valid padding and the second one being identical, except for the first byte
of padding which was changed to a different value. We called the TimingPadVerify

function multiple times with both types of data. Before each call to the function,
another “attack” thread was run in parallel to perform the cache priming during the
HMAC verification. After the function returned, we checked if the cache line of the last
bytes in the TLS record is in the cache or not. For TLS records with valid padding we
saw a hit probability of ≈ 0.025. For TLS records with invalid padding we saw a hit
probability of ≈ 0.998. Using the same calculations as in Appendix 5.3 this translates
to n = 4 and an expected total number of TLS connections of 512 per byte.

mbed TLS The same vulnerability also applies to the mbed TLS code in function
ssl_decrypt_buf (see Listing 1.8 in Appendix A). If the padding is invalid the func-
tion sets the variable padlen to 0. For constant time, the extra compression function
mbedtls_md_process is called multiple times with pointer in_msg pointing to the start
of the TLS record.

GnuTLS The same vulnerability also applies to the GnuTLS code in function decrypt_packet

(see Listing 1.4 in Appendix A). If the padding is invalid the function sets pad to 0.
For constant time, extra compression functions are executed via dummy_wait (see List-
ing 1.3 in Appendix A). If the padding was invalid, the function does nothing and
returns. If the padding was valid, but the HMAC verification fails, the extra compres-
sion function gnutls auth cipher add auth is called multiple times with the pointer
data, pointing to the start of the TLS record.

Note that unlike other implementations, the extra compression functions are only
called when the verification process fails, so the decryption time on valid messages is
not constant. This may leak the real size of the encrypted messages, but cannot be
used to recover plaintext bytes.

7 A Cache-Based Padding Oracle in the mbed TLS
Implementation

We will describe another novel attack on mbed TLS targeting the inner hash function
execution in HMAC. This attack is more robust than the one described in Section 6

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 21

as it does not require the synchronization between the attack and target code. At
first we will describe a simplified version that assumes a small cache line size. The
full “PostFetch” attack will show how we can deal with modern cache line sizes and
memory prefetching. Our attack works on HMAC with both SHA-384 and SHA-256,
even if the bug described in Appendix 3.2 is fixed.

7.1 Attack Preliminaries

HMAC makes two hashing passes over its input message, which we refer to as the inner
and outer hashes. The inner hash processes a string of the form K1||M to produce a
hash value h; the outer hash processes an input K2||h. Here K1,K2 are keys derived
from a single key by XOR offsets and M is the message input. The hash functions used
in HMAC in TLS are based on the Merkle-Damg̊ard construction [28]. This construction
pads the message being processed to a multiple of the hash function’s block size. The
usual hash function padding scheme is to always add the byte 0x80 and then zero bytes
up to the required length.10

In mbed TLS the hash padding is implemented by defining a constant array con-
taining the maximum possible length hash padding pattern, and passing this array
with the required padding length to the hash update function (see Listing 1.7 in Ap-
pendix A; SHA-384 is simply a truncated output of SHA512). Our cache attack targets
the access pattern to this constant array to create a padding oracle. A maximum hash
padding length will cause the entire array to be saved in the cache, while a short hash
padding will cause only the beginning of the array to be saved in the cache. To check if
parts of the array are in the cache or not we can use cache attacks that exploit shared
memory pages. If the attack code runs on the same core as the target code we can use
a simple PRIME+PROBE attack on the L1 cache [30]. However, if the code runs on
different cores (as is the case in most cross-VM attacks) we can use more advanced
cross-core attacks [23,16,21]. For brevity and without loss of generality we will use the
PRIME+PROBE notation.

7.2 Hash Padding Length for SHA-384

For the inner hash calculation of HMAC-SHA-384, the length of the hash padding for
an encrypted message with length EncMsgLen is calculated in the following way:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ EncMsgLen−MacLen− IVLen− PadLen− 1

= 128 + 8 + 5 + EncMsgLen− 48− 16− PadLen− 1

= EncMsgLen + 76− PadLen, hence:

HashPadLen = 112−HashLen mod 128

= 36− EncMsgLen + PadLen mod 128 (1)

Note that if HashPadLen = 0 mod 128 then HashPadLen = 128.
The length of the hash padding for the outer hash calculation in HMAC-SHA-384 is

10 This hash padding is distinct from the padding added by TLS in CBC-mode and which is
actually transmitted as part of TLS records.

22 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

calculated via:

HashLen = OuterHashKeyLen + HashLen = 128 + 48 = 176

HashPadLen = 112−HashLen mod 128 = 64

So the the number of hash padding bytes accessed in the HMAC calculation is given
by:

HashPadLen = max(36− EncMsgLen + PadLen mod 128, 64)

7.3 Hash Padding Length for SHA-256

For the inner hash calculation of HMAC based on SHA-256, the length of the hash
padding for an encrypted message with length EncMsgLen is calculated in the follow-
ing way:

HashLen = InnerHashKeyLen + SeqNumLen + HdrLen

+ EncMsgLen−MacLen− IVLen− PadLen− 1

= 64 + 8 + 5 + EncMsgLen− 32− 16− PadLen− 1

= EncMsgLen + 28− PadLen, hence:

HashPadLen = 56−HashLen mod 64

= 28− EncMsgLen + PadLen mod 64 (2)

Note that if HashPadLen = 0 mod 64 then HashPadLen = 64.
For the outer hash calculation of HMAC-SHA-256, we have:

HashLen = OuterHashKeyLen + HashLen = 64 + 32 = 96

HashPadLen = 56−HashLen mod 64 = 24

So the number of hash padding bytes accessed in the HMAC calculation is given by:

HashPadLen = max(28− EncMsgLen + PadLen mod 64, 24)

7.4 Simplified Attack

The simplified attack on mbed TLS is described in Algorithm 6. The start of the pad
array is always accessed by the outer hash calculation of HMAC. We prime a cache
set that contains the array at an offset, targeting the first cache line that is not always
accessed (offset of 64 for SHA-384 and 32 for SHA-256). We send the attacker’s TLS
record to the target, and then probe the cache set. If the cache set was accessed, then
with high probability HashPadLen > 64 (32 for SHA-256). Otherwise we know that
HashPadLen ≤ 63 (31 for SHA-256). From this we can infer a possible range for the
value of PadLen. Using the attack described in Section 6.3 we can create a padding
oracle to distinguish between invalid padding of length PadLen = 0, and a large padding
value.

For this simplified attack to work, we need the following assumptions to hold:

1. The cache line size is 32.
2. The padding array is aligned with the cache line.
3. There are no prefetching optimizations used.

Clearly these assumptions are unrealistic, and we show next how they can be relaxed.

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 23

Algorithm 6 mbed TLS – Simplified Attack

1: function SimplifiedMbedPadOracle(attack msg)
2: ProbeOffset ← 64 . 32 for SHA-256
3: Prime shaX padding + ProbeOffset . evict from cache
4: Send attacker’s TLS record to target
5: if Probe(shaX padding + ProbeOffset) then
6: return 1 . last part of the array was accessed
7: else
8: return 0 . last part of the array was not accessed
9: end if

10: end function

7.5 Full “PostFetch” Attack

The full “PostFetch” attack is the same as the one described in Algorithm 6, but the way
that we choose the values of ProbeOffset and the resulting condition on HashPadLen
are different. This is due to the following real world conditions:

1. In most modern CPUs, the cache line size is 64 bytes. This makes the simplified
attack on SHA-256 impractical.

2. The padding array is not always aligned with a 64-byte cache line. As the alignment
keyword is not used in the array declaration, it can vary from compilation to compi-
lation. On our test platform, the padding arrays were either aligned to a cache line,
or had a 32-byte offset. The alignment was changed between compilations by minor
code changes (e.g. adding or removing a printf function call).

3. In the hash implementation, the padding array is always copied to the hash function’s
internal buffer using the memcpy function. Due to the cache line size the array is read
into the cache in cache line resolution even if just a single byte in the cache line has
been accessed. On our test platform, we observed that the bytes after the array are
also read into to cache (the next cache line), if we read a large enough part of the
array (near the end of the cache line). For example, if the SHA-384 padding array
is aligned to the cache line, the outer hash call of HMAC (that uses a hash padding
of length 64) will cause a cache hit on the next cache line, so the entire 128 bytes
padding array will be in the cache regardless of the TLS record padding length. This
causes the simplified attack on SHA-384 to also become impractical.

Although each of the above conditions can cause our attack to fail, the combination
of these conditions actually allows the attacks to work! Instead of probing the cache
line at an offset ProbeOffset = 64 (32 for SHA-256), we probe the next cache line using
ProbeOffset = 128 (64 for SHA-256). In fact we probe a memory location that is just
after the padding array itself. In some cases this memory location will be read into the
cache due to either hardware memory prefetching mechanism or speculative execution.
For our attack to work we require that the probed memory location is not accessed by
any other code in the verification process. As we will show, this is indeed the case in
mbed TLS (see Appendix 7.7.

In case the hash padding array is aligned to the cache line, the last cache line for
the array will be always accessed due to the memcpy call in the outer hash of HMAC.
However the cache line after that will not be accessed, unless we read most of the
bytes of the padding array (a very large value of HashPadLen). In case the array has
a 32-byte offset to the cache line, the cache line at location ProbeOffset = 128 (64 for

24 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

Hash Array offset Hash Padding Cache Hit
function from cache line length range probability

SHA-384 32 1− 72 ≈ 0.026
SHA-384 32 73− 128 ≈ 0.998

SHA-256 32 1− 32 ≈ 0.002
SHA-256 32 32− 64 ≈ 0.998

SHA-384 0 1− 104 ≈ 0.028
SHA-384 0 105− 128 ≈ 0.999

SHA-256 0 1− 64 ≈ 0.999

Table 3: Cache hit probabilities for mbed TLS attack

SHA-256), includes both the end of the array and some data that is stored afterwards.
This cache line will only be accessed if HashPadLen is large.

7.6 Proof of Concept

We implemented a PoC for the above attack, to verify the presence of the cache side-
channel. We ran our attack on an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz running
Ubuntu 17.10. We use the version 2.7 code taken from the mbedtls-2.7 branch of the
official git repository on 4/4/2018 (commit hash be97c9cc), and compiled with the pro-
vided makefiles and GCC version 7.2.0. We targeted the HMAC function call sequence
that is used in the ssl_decrypt_buf function (see Listing 1.8 in Appendix A). This
HMAC code is the latest pseudo constant time version, designed to protect against
previous timing and cache attacks.

We ran the code multiple times with different lengths for the decrypted TLS record.
We primed the memory before the HMAC execution, and probed it afterwards. We
attacked both the SHA-384 and SHA-256 implementations, with the hash padding
array both aligned and not aligned (i.e. with a 32-byte offset) relative to the cache
line. The experimentally obtained cache hit probabilities are given in Table 3. Because
of the differing probabilities, we obtain reliable hash padding length oracles for three
out of the four combinations, the exception being when SHA-256 is combined with a
cache-aligned padding array.

7.7 Analysis of the Proof of Concept

As we described in Section 7.5, our full cache attack targets a cache line that contains
the data stored just after the hash padding array. For this attack to work, the data after
the array must not be accessed by the targeted code (otherwise we will always get a
cache hit). When analyzing the PoC results we can see that this requirement is indeed
fulfilled, except for the case of SHA-256 with a cache-aligned array. By analyzing the
compiled program in this case, we discovered that the data the compiler stores just after
the array is an array of round constants used in the SHA-256/SHA-384 compression
function. This function is called in the finalization of the hash calculation just after
accessing the hash padding array. In theory, our attack shouldn’t work on this specific
build of the code.

To get a better understanding we looked at a dump of the compiled assembly
code of the compression function, taken from the mbed TLS server example program
ssl_server2 (see Listing 1.9 in Appendix A). In both the SHA-384 and SHA-256 code,

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 25

the programmer unrolled the first 8 rounds of the compression function. To optimise
performance, the GCC compiler uses hard-coded assembly movabs commands to push
the first 8 round constants into registers. For the remaining rounds, the code uses the
constants stored in the array. So although the first 8 round constants are stored in
the array, they are never accessed. Since SHA-384 constants are 64 bits each, storing
the first 8 round constants requires 64 bytes. So the 64 bytes after the hash padding
array are never accessed. This means that, regardless of the array alignment, the cache
line we target is only accessed due to the hash padding array and the attack can work.
However, in the SHA-256 case, the round constants are only 32 bits long. So storing the
first 8 constants requires just 32 bytes. The attack then works when the hash padding
array has a 32-byte offset to the cache line. In this case, the targeted cache line holds
the end of the hash padding array, and the first 8 round constants; then the cache line
is only accessed due to the hash padding array and our attack succeeds. In the other
case, the hash padding array is aligned with the cache line and the targeted cache line
holds the first 16 round constants. Since the constants of round 9 to 16 are accessed
by the compression function, this cache line is always accessed and our attack fails.

7.8 Creating the Padding Oracle

Combining the results from Table 3 and equations 1 and 2, we obtain a CBC-mode
padding oracle in the mbed TLS implementation of the form PadLen > 4+16k mod 128
for any k (mod64 for SHA-256). We use this padding oracle with the attack described
in Section 6.3 to get a much more robust attack. Using the same calculations as in
Appendix 5.3 we get an expected total number of cache attack executions (and TLS
connections) of 384 per byte for SHA-256.

8 Conclusion

We have conducted an in-depth analysis of the security of pseudo constant time counter-
measures to the Lucky 13 attack on CBC-mode in TLS. We examined a representative
set of implementations, and found them all to be vulnerable to cache timing attacks.
We developed three new techniques for exploiting leakage from cache timing and access
patterns, and a novel variant of Lucky 13 with increased timing differences. These ideas
may be applicable in attacking other cryptographic schemes. We produced PoCs for
most of the attacks and evaluated the number of iterations of the basic cache timing
step (and consequently the number of TLS connections) needed for the attacks to suc-
ceed. The requirements of the attacks are modest, especially in view of our novel greedy
algorithm for selecting which mask value to use at each stage.

The main takeaway from our work is encapsulated in the title of our paper: pseudo
constant time protections only give ”pseudo security”. CBC-mode in TLS seems des-
tined to stay with us for some years to come, despite the growth in usage of AES-GCM
and the impending arrival of TLS 1.3, due to the need to support legacy code and de-
vices. The “Encrypt-then-MAC” countermeasure from RFC 7366 is supported in mbed
TLS and GnuTLS, but requires client-side support and has seen little uptake elsewhere
(e.g. neither Firefox nor Chrome supports the EtM extension). We suggest that all
the pseudo constant time implementations should seriously consider adopting a fully
constant time, constant memory access approach to defending against Lucky 13 and

26 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

its variants – only this can provide robust security across a broad range of deployment
(and thereby attack) scenarios.

The paper opens up several avenues for future work. Our greedy algorithm for select-
ing masks has good performance (coming close to the information theoretic lower bound
in some cases), but it would be of interest to seek optimal algorithms. These may be of
independent interest in other areas of cryptanalysis. We use only a single oracle condi-
tion, whereas we can often obtain multiple conditions by carefully varying the length of
ciphertexts. It may be possible to exploit the availability of multiple conditions to fur-
ther reduce the number of TLS connections needed. Our results with a single condition
in combination with our greedy algorithm already illustrate the dangers of settling for
pseudo constant time code. Finally, when considering the recovery of multiple plaintext
bytes, we used a simple byte-by-byte analysis to estimate plaintext recovery rates. A
more sophisticated approach would be to design attacks that produce likelihood values
for each plaintext byte candidate, and then combine these across multiple bytes using
enumeration techniques from the side-channel literature [34,7,26,25,11].

9 Acknowledgments

The authors would like to thank Yuval Yarom for his helpful comments and insights.
The authors would also like to thank the anonymous reviewers for their constructive
suggestions that helped us improve the paper.

References

1. Icsi certificate notary (2017), https://notary.icsi.berkeley.edu/
2. Albrecht, M.R., Paterson, K.G.: Lucky microseconds: A timing attack on amazon’s s2n

implementation of TLS. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology –
EUROCRYPT 2016, Part I. Lecture Notes in Computer Science, vol. 9665, pp. 622–643.
Springer, Heidelberg (May 2016)

3. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record pro-
tocols. In: 2013 IEEE Symposium on Security and Privacy. pp. 526–540. IEEE Computer
Society Press (May 2013)

4. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Verifiable side-channel security of
cryptographic implementations: Constant-time MEE-CBC. In: Peyrin, T. (ed.) Fast Soft-
ware Encryption - 23rd International Conference, FSE 2016, Bochum, Germany, March
20-23, 2016, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9783, pp.
163–184. Springer (2016), https://doi.org/10.1007/978-3-662-52993-5_9

5. Apecechea, G.I., Inci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In: Bao, F.,
Miller, S., Zhou, J., Ahn, G.J. (eds.) ASIACCS 15: 10th ACM Symposium on Information,
Computer and Communications Security. pp. 85–96. ACM Press (Apr 2015)

6. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “ooh aah... just a little bit”: A small
amount of side channel can go a long way. In: Batina, L., Robshaw, M. (eds.) Crypto-
graphic Hardware and Embedded Systems – CHES 2014. Lecture Notes in Computer
Science, vol. 8731, pp. 75–92. Springer, Heidelberg (Sep 2014)

7. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast and
memory-efficient key recovery in side-channel attacks. In: Dunkelman, O., Keliher, L.
(eds.) SAC 2015: 22nd Annual International Workshop on Selected Areas in Cryptog-
raphy. Lecture Notes in Computer Science, vol. 9566, pp. 310–327. Springer, Heidelberg
(Aug 2016)

https://notary.icsi.berkeley.edu/
https://doi.org/10.1007/978-3-662-52993-5_9

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 27

8. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload - A cache
attack on the BLISS lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2016. Lecture Notes in
Computer Science, vol. 9813, pp. 323–345. Springer, Heidelberg (Aug 2016)

9. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in a SS-
L/TLS channel. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 583–599. Springer, Heidelberg (Aug 2003)

10. Chudnov, A., Collins, N., Cook, B., Dodds, J., Huffman, B., MacCárthaigh, C., Magill,
S., Mertens, E., Mullen, E., Tasiran, S., Tomb, A., Westbrook, E.: Continuous formal
verification of amazon s2n. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 10982, pp. 430–446. Springer (2018), https://doi.org/
10.1007/978-3-319-96142-2_26

11. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for
multi-subkey side-channel attacks. In: Handschuh, H. (ed.) Topics in Cryptology – CT-
RSA 2017. Lecture Notes in Computer Science, vol. 10159, pp. 311–327. Springer, Heidel-
berg (Feb 2017)

12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard) (Aug 2008), https://www.rfc-editor.org/rfc/rfc5246.txt,
updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919

13. Dodds, J.: Verifying s2n hmac with saw (2016), https://galois.com/blog/2016/09/

verifying-s2n-hmac-with-saw/

14. Duong, T., Rizzo, J.: Here come the ⊕ Ninjas. Unpublished manuscript (2011)

15. Genkin, D., Valenta, L., Yarom, Y.: May the fourth be with you: A microarchitectural
side channel attack on several real-world applications of Curve25519. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17: 24th Conference on Computer
and Communications Security. pp. 845–858. ACM Press (Oct / Nov 2017)

16. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+flush: A fast and stealthy cache
attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference, DIMVA 2016,
San Sebastián, Spain, July 7-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9721, pp. 279–299. Springer (2016), https://doi.org/10.1007/978-3-319-40667-1_
14

17. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache attacks
on AES to practice. In: 2011 IEEE Symposium on Security and Privacy. pp. 490–505.
IEEE Computer Society Press (May 2011)

18. Gutmann, P.: Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). RFC 7366 (Proposed Standard) (Sep 2014), https:
//www.rfc-editor.org/rfc/rfc7366.txt

19. Inci, M.S., Gülmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks enable
bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.) Cryptographic
Hardware and Embedded Systems – CHES 2016. Lecture Notes in Computer Science,
vol. 9813, pp. 368–388. Springer, Heidelberg (Aug 2016)

20. Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative
execution. In: 40th IEEE Symposium on Security and Privacy (S&P’19) (2019)

21. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: Cache at-
tacks on mobile devices. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016. pp. 549–564.
USENIX Association (2016), https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/lipp

https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96142-2_26
https://www.rfc-editor.org/rfc/rfc5246.txt
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.rfc-editor.org/rfc/rfc7366.txt
https://www.rfc-editor.org/rfc/rfc7366.txt
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp

28 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

22. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard,
S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading kernel memory
from user space. In: 27th USENIX Security Symposium (USENIX Security 18) (2018)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel attacks
are practical. In: 2015 IEEE Symposium on Security and Privacy. pp. 605–622. IEEE
Computer Society Press (May 2015)

24. MacCarthaigh, C.: AWS security blog - s2n and Lucky 13 (2015), https://aws.amazon.
com/blogs/security/s2n-and-lucky-13/

25. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of the
key rank distribution in the context of side channel evaluations. In: Cheon, J.H., Takagi,
T. (eds.) Advances in Cryptology – ASIACRYPT 2016, Part I. Lecture Notes in Computer
Science, vol. 10031, pp. 548–572. Springer, Heidelberg (Dec 2016)

26. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after a
side channel attack. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptology – ASI-
ACRYPT 2015, Part II. Lecture Notes in Computer Science, vol. 9453, pp. 313–337.
Springer, Heidelberg (Nov / Dec 2015)

27. Mavrogiannopoulos, N.: Time is money (in cbc ciphersuites) (2013), https://nikmav.

blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.html

28. Merkle, R.C., Charles, R., et al.: Secrecy, authentication, and public key systems (1979)
29. Möller, B., Duong, T., Kotowicz, K.: This POODLE bites: Exploiting the SSL 3.0 fallback

(September 2014), https://www.openssl.org/~bodo/ssl-poodle.pdf
30. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of

AES. In: Pointcheval, D. (ed.) Topics in Cryptology – CT-RSA 2006. Lecture Notes in
Computer Science, vol. 3860, pp. 1–20. Springer, Heidelberg (Feb 2006)

31. Schmidt, S.: Aws security blog - s2n is now handling 100 percent of ssl
traffic for amazon s3 (2017), https://aws.amazon.com/blogs/security/

s2n-is-now-handling-100-percent-of-of-ssl-traffic-for-amazon-s3/

32. Somorovsky, J.: Systematic fuzzing and testing of TLS libraries. In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16: 23rd Conference on
Computer and Communications Security. pp. 1492–1504. ACM Press (Oct 2016)

33. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL, IPSEC,
WTLS... In: Knudsen, L.R. (ed.) Advances in Cryptology – EUROCRYPT 2002. Lecture
Notes in Computer Science, vol. 2332, pp. 534–546. Springer, Heidelberg (Apr / May
2002)

34. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.X.: An optimal key enu-
meration algorithm and its application to side-channel attacks. In: Knudsen, L.R., Wu,
H. (eds.) SAC 2012: 19th Annual International Workshop on Selected Areas in Cryptog-
raphy. Lecture Notes in Computer Science, vol. 7707, pp. 390–406. Springer, Heidelberg
(Aug 2013)

35. Xiao, Y., Li, M., Chen, S., Zhang, Y.: STACCO: Differentially analyzing side-channel
traces for detecting SSL/TLS vulnerabilities in secure enclaves. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 17: 24th Conference on Computer and
Communications Security. pp. 859–874. ACM Press (Oct / Nov 2017)

36. Yarom, Y.: Mastik: A micro-architectural side-channel toolkit (2016), http://cs.

adelaide.edu.au/~yval/Mastik/Mastik.pdf

37. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the FLUSH+RELOAD
cache side-channel attack. Cryptology ePrint Archive, Report 2014/140 (2014), http:

//eprint.iacr.org/2014/140

38. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014. pp. 719–732.
USENIX Association (2014), https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://aws.amazon.com/blogs/security/s2n-and-lucky-13/
https://nikmav.blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.html
https://nikmav.blogspot.co.uk/2013/02/time-is-money-for-cbc-ciphersuites.html
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://aws.amazon.com/blogs/security/s2n-is-now- handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
https://aws.amazon.com/blogs/security/s2n-is-now- handling-100-percent-of-of-ssl-traffic-for-amazon-s3/
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://eprint.iacr.org/2014/140
http://eprint.iacr.org/2014/140
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 29

39. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and their use
to extract private keys. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12: 19th
Conference on Computer and Communications Security. pp. 305–316. ACM Press (Oct
2012)

A Source Code

Listing 1.1: s2n HMAC digest for CBC verify

int s2n hmac digest two compression rounds(struct s2n hmac state ∗state,
void ∗out, uint32 t size){
/∗ Do the ”real” work of this function. ∗/
GUARD(s2n hmac digest(state, out, size));

/∗ If there were 9 or more bytes of space left in the current hash block
∗ then the serialized length , plus an 0x80 byte, will have fit in that block .
∗ If there were fewer than 9 then adding the length will have caused an extra
∗ compression block round. This digest function always does two compression rounds,
∗ even if there is no need for the second.
∗/
if (state−>currently in hash block > (state−>hash block size − 9))

return 0;
/∗ Can’t reuse a hash after it has been finalized ,
so reset and push another block in ∗/
GUARD(s2n hash reset(&state−>inner));

/∗ No−op s2n hash update to normalize timing and guard against Lucky13. This
does not affect the value of ∗out. ∗/
return s2n hash update(&state−>inner, state−>xor pad, state−>hash block size);

}

Listing 1.2: s2n CBC verification function

int s2n verify cbc(struct s2n connection ∗conn, struct s2n hmac state ∗hmac,
struct s2n blob ∗decrypted) {
/∗ Set up MAC copy workspace ∗/
struct s2n hmac state ∗copy = &conn−>client−>record mac copy workspace;
...

/∗ Update the MAC ∗/
GUARD(s2n hmac update(hmac, decrypted−>data, payload length));
GUARD(s2n hmac copy(copy, hmac));

/∗ Check the MAC ∗/
uint8 t check digest[S2N MAX DIGEST LEN];
lte check(mac digest size, sizeof(check digest));
GUARD(s2n hmac digest two compression rounds(hmac, check digest, mac digest size));

Listing 1.3: GnuTLS’s extra compression call calculation

static void dummy wait(record parameters st ∗ params, gnutls datum t ∗ plaintext,
unsigned pad failed, unsigned int pad, unsigned total){

...

30 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

/∗ This is really specific to the current hash functions.
∗ It should be removed once a protocol fix is in place .
∗/
if ((pad + total) % len > len − 9 && total % len <= len − 9) {

if (len < plaintext−>size)
gnutls auth cipher add auth(¶ms−>read.cipher state,
plaintext−>data, len);

Listing 1.4: GnuTLS’s pad check and HMAC verification

decrypt packet(gnutls session t session , gnutls datum t ∗ ciphertext,
gnutls datum t ∗ plain, content type t type, record parameters st ∗ params,
gnutls uint64 ∗ sequence) {
...
pad = plain−>data[ciphertext−>size − 1]; /∗ pad ∗/
...
for (i = 2; i <= MIN(256, ciphertext−>size); i++) {

tmp pad failed |= (plain−>data[ciphertext−>size − i] != pad);
pad failed |= ((i <= (1 + pad)) & (tmp pad failed));

}

if (unlikely (pad failed != 0 || (1 + pad > ((int) ciphertext−>size − tag size)))) {
/∗ We do not fail here. We check below for the
∗ the pad failed . If zero means success.
∗/
pad failed = 1;
pad = 0;

}
length = ciphertext−>size − tag size − pad − 1;
...
ret = gnutls auth cipher add auth(¶ms−>read.ctx.tls12, plain−>data, length);
if (unlikely(gnutls memcmp(tag, tag ptr, tag size) != 0 || pad failed != 0)) {

/∗ HMAC was not the same. ∗/
dummy wait(params, plain, pad failed, pad, length + preamble size);

Listing 1.5: WolfSSL’s extra compression call calculation

COMPRESS UPPER = 55, /∗ compression calc numerator ∗/
COMPRESS LOWER = 64, /∗ compression calc denominator ∗/

/∗ get compression extra rounds ∗/
static INLINE int GetRounds(int pLen, int padLen, int t) {

...
L1 −= COMPRESS UPPER;
L2 −= COMPRESS UPPER;

if ((L1 % COMPRESS LOWER) == 0)
roundL1 = 0;

if ((L2 % COMPRESS LOWER) == 0)
roundL2 = 0;

Listing 1.6: WolfSSL’s pad checke and HMAC verification

Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure 31

/∗ timing resistant pad/verify check, return 0 on success ∗/
static int TimingPadVerify(WOLFSSL∗ ssl, const byte∗ input, int padLen, int t,

int pLen, int content){
byte verify [WC MAX DIGEST SIZE];
byte dmy[sizeof(WOLFSSL) >= MAX PAD SIZE ? 1 : MAX PAD SIZE] = {0};
byte∗ dummy = sizeof(dmy) < MAX PAD SIZE ? (byte∗) ssl : dmy;
...
if (PadCheck(input + pLen − (padLen + 1), (byte)padLen, padLen + 1) != 0) {

WOLFSSL MSG(”PadCheck failed”);
PadCheck(dummy, (byte)padLen, MAX PAD SIZE − padLen − 1);
ssl−>hmac(ssl, verify, input, pLen − t, content, 1); /∗ still compare ∗/
ConstantCompare(verify, input + pLen − t, t);

...
PadCheck(dummy, (byte)padLen, MAX PAD SIZE − padLen − 1);
ret = ssl−>hmac(ssl, verify, input, pLen − padLen − 1 − t, content, 1);

CompressRounds(ssl, GetRounds(pLen, padLen, t), dummy);
...

}

Listing 1.7: MBedTLS’s SHA512 finish function

static const unsigned char sha512 padding[128] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int mbedtls sha512 finish ret(mbedtls sha512 context ∗ctx,
unsigned char output[64]){
size t last , padn;
...
last = (size t)(ctx−>total[0] & 0x7F);
padn = (last < 112) ? (112 − last) : (240 − last);
if ((ret = mbedtls sha512 update ret(ctx, sha512 padding, padn)) != 0)
return(ret);

Listing 1.8: MBedTLS’s CBC HMAC verification

static int ssl decrypt buf(mbedtls ssl context ∗ssl){
...
padlen = 1 + ssl−>in msg[ssl−>in msglen − 1];
...
for(i = 1; i <= 256; i++) {

real count &= (i <= padlen);
pad count += real count ∗ (ssl−>in msg[padding idx + i] == padlen − 1);

}
correct &= (pad count == padlen); /∗ Only 1 on correct padding ∗/
padlen &= correct ∗ 0x1FF;
...
∗ Known timing attacks:
∗ − Lucky Thirteen (http://www.isg.rhul.ac.uk/tls/TLStiming.pdf)
∗
∗ We use ((Lx + 8) / 64) to handle ’negative Lx’ values

32 Eyal Ronen, Kenneth G. Paterson, and Adi Shamir

∗ correctly . (We round down instead of up, so −56 is the correct
∗ value for our calculations instead of −55)
∗/
size t j , extra run = 0;
extra run = (13 + ssl−>in msglen + padlen + 8) / 64 −

(13 + ssl−>in msglen + 8) / 64;
...
mbedtls md hmac update(&ssl−>transform in−>md ctx dec, ssl−>in ctr, 8);
mbedtls md hmac update(&ssl−>transform in−>md ctx dec, ssl−>in hdr, 3);
mbedtls md hmac update(&ssl−>transform in−>md ctx dec, ssl−>in len, 2);
mbedtls md hmac update(&ssl−>transform in−>md ctx dec, ssl−>in msg,

ssl−>in msglen);
mbedtls md hmac finish(&ssl−>transform in−>md ctx dec, mac expect);
/∗ Call mbedtls md process at least once due to cache attacks ∗/
for(j = 0; j < extra run + 1; j++)

mbedtls md process(&ssl−>transform in−>md ctx dec, ssl−>in msg);

mbedtls md hmac reset(&ssl−>transform in−>md ctx dec);

Listing 1.9: MBedTLS’s internal SHA512 process function assmebly code

48690 <mbedtls internal sha512 process>:
...
48797: 49 bf 18 81 6d da d5 movabs $0xab1c5ed5da6d8118,%r15
4879e: 5e 1c ab
487a1: 48 bd 2f 3b 4d ec cf movabs $0xb5c0fbcfec4d3b2f,%rbp
487a8: fb c0 b5
487ab: 4c 89 7c 24 20 mov %r15,0x20(%rsp)
487b0: 49 bf 9b 4f 19 af a4 movabs $0x923f82a4af194f9b,%r15
487b7: 82 3f 92
487ba: 49 bd cd 65 ef 23 91 movabs $0x7137449123ef65cd,%r13
487c1: 44 37 71
487c4: 4c 89 7c 24 18 mov %r15,0x18(%rsp)
487c9: 49 bf 19 d0 05 b6 f1 movabs $0x59f111f1b605d019,%r15
487d0: 11 f1 59
487d3: 49 bc 22 ae 28 d7 98 movabs $0x428a2f98d728ae22,%r12
487da: 2f 8a 42
...
48802: 49 bf 38 b5 48 f3 5b movabs $0x3956c25bf348b538,%r15
48809: c2 56 39
4880c: 48 89 74 24 30 mov %rsi,0x30(%rsp)
48811: 4c 89 7c 24 08 mov %r15,0x8(%rsp)
48816: 49 bf bc db 89 81 a5 movabs $0xe9b5dba58189dbbc,%r15
4881d: db b5 e9

	Pseudo Constant Time Implementations of TLS Are Only Pseudo Secure

