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Abstract. We provide lattice-based protocols allowing to prove relations
among committed integers. While the most general zero-knowledge proof
techniques can handle arithmetic circuits in the lattice setting, adapting
them to prove statements over the integers is non-trivial, at least if we want
to handle exponentially large integers while working with a polynomial-
size modulus q. For a polynomial L, we provide zero-knowledge arguments
allowing a prover to convince a verifier that committed L-bit bitstrings x,
y and z are the binary representations of integers X, Y and Z satisfying
Z = X + Y over Z. The complexity of our arguments is only linear in
L. Using them, we construct arguments allowing to prove inequalities
X < Z among committed integers, as well as arguments showing that a
committed X belongs to a public interval [α, β], where α and β can be
arbitrarily large. Our range arguments have logarithmic cost (i.e., linear
in L) in the maximal range magnitude. Using these tools, we obtain
zero-knowledge arguments showing that a committed element X does not
belong to a public set S using Õ(n · log |S|) bits of communication, where
n is the security parameter. We finally give a protocol allowing to argue
that committed L-bit integers X, Y and Z satisfy multiplicative relations
Z = XY over the integers, with communication cost subquadratic in L.
To this end, we use our protocol for integer addition to prove the correct
recursive execution of Karatsuba’s multiplication algorithm. The security
of our protocols relies on standard lattice assumptions with polynomial
modulus and polynomial approximation factor.

1 Introduction

Lattice-based cryptography has been an extremely active area since the celebrated
results of Ajtai [3] and Regev [59]. In comparison with discrete-logarithm and
factoring-based techniques, it indeed offers numerous advantages like simpler
arithmetic operations, a better asymptotic efficiency, advanced functionalities
or a conjectured resistance to quantum computing. Its development was further
boosted by breakthrough results of [27,54] showing how to safely use lattice
trapdoors, which have been the cornerstone of many advanced primitives.

While lattices enable powerful functionalities that have no counterpart using
traditional number theoretic tools, they do not easily lend themselves to the



realization of certain fundamental tasks, like efficient zero-knowledge proofs.
Zero-knowledge protocols [31] make it possible to prove properties about certain
secret witnesses in order to have users demonstrate their correct behavior while
protecting their privacy. For simple statements such as proving knowledge of a
secret key, efficient solutions have been reported in [56,51,40,48]. In order to prove
relations among committed values, the best known methods rely on the extra
algebraic structure [61,8,5] offered by the ring-LWE or ring-SIS problems [52] and
no truly efficient solution is known for standard (i.e., non-ideal) lattices.

In this paper, we investigate the problem of proving, under standard lattice
assumptions, that large committed integers satisfy certain algebraic relations.
Namely, if cx, cy and cz are commitments to integers X,Y, Z of arbitrary poly-
nomial bit-size L = poly(n), where n is the security parameter, we consider the
problem of proving statements of the form Z = X+Y and Z = X ·Y over Z. Note
that this problem is different from the case of arithmetic circuits addressed in [8]:
here, we are interested in proving relations over the integers. Furthermore, we
would like to design zero-knowledge arguments for various other relations among
large committed integers. As specific applications, we consider the problems of:
(i) Proving that a committed integer X belongs to a publicly known range [α, β];
(ii) Proving order relations Y < X < Z between committed integers Y,X,Z; (iii)
Proving that a committed element X does not belong to a public set (which
allows users to prove their non-blacklisting).

While these problems received much attention in the literature, the most
efficient solutions [49,35,21] handling large integers appeal to integer commit-
ments [26,22] based on hidden-order groups (e.g., RSA groups), which are vul-
nerable to quantum computing. In particular, designing a solution based on mild
assumptions in standard lattices is a completely open problem to our knowl-
edge. Even in ideal lattices, handling integers of polynomial length L requires to
work with exponentially large moduli, which affects both the efficiency and the
approximation factor of the lattice assumption. Here, our goal is to realize the
aforementioned protocols using polynomial moduli and approximation factors.

If we were to use known zero-knowledge proof systems [61,8,5] in ideal lattices
to handle additive relations over Z, we would need (super-)exponentially large
moduli. In particular, in order to prove that committed integers X,Y, Z of bit-size
L = poly(n) satisfy Z = X + Y , these protocols would require to prove that
Z = X + Y mod q for a large modulus q = 2poly(n). With current techniques,
this would imply to work with a commitment scheme over rings Rq, for the same
modulus q. In terms of efficiency, a single ring element would cost thousand times
L bits to represent since the modulus should contain more than L bits. When it
comes to proving smallness of committed values (in order to prove Z = X + Y
over Z via Z = X + Y mod q, the prover should guarantee that X and Y are
small w.r.t. q) together with relations among them, the prover may need to send
hundreds of ring elements. As a consequence, the communication cost could be
as large as k ·L, where k is up to hundreds of thousands. In terms of security, we
note that such approaches may require at least sub-exponential approximation
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factors for the underlying ideal-lattice problems. Moreover, ensuring soundness
may be non-trivial as the protocols of [8,5] only guarantee relaxed soundness.

Our Contributions. We provide statistical zero-knowledge arguments allow-
ing to prove additive and multiplicative relations among committed integers of
bit-size L = poly(n) under mild assumptions in standard (i.e., non-ideal) lattices.
Our protocols can work with two flavors of the commitment scheme by Kawachi,
Tanaka and Xagawa (KTX) [40]. If we commit to integers in a bit-by-bit fashion,

the modulus q can be as small as Õ(n) and the security of our protocols can rely

on the worst-case hardness of SIVPγ with γ = Õ(n), which turns out to be one
the weakest assumptions in the entire literature on lattice-based cryptography.
On the other hand, if we rely on a stronger assumption with γ = Õ(

√
L · n) for a

modulus q = Õ(
√
L · n), then we can commit to L bits at once and reduce the

communication cost. For this all-at-once commitment variant, the complexities
of our protocols are summarized as follows.

The protocol for integer additions has communication cost (ζ + 20L) · κ bits,

where ζ = Õ(n) + 6L log q is the cost of proving knowledge of valid openings
for the commitments to X,Y, Z and κ = ω(log n) is the number of protocol
repetitions to make the soundness error negligibly small. Thus, the actual cost for
proving the additive relation is 20L · κ bits. In terms of computation complexity,
both the prover and the verifier only perform O(L) simple operations.

We offer two options for proving integer multiplications. For practically
interesting values of L, e.g., L ≤ 8000, we can emulate the schoolbook multi-
plication algorithm by proving L additive relations, and obtain communication
cost Õ(n+ L2) · κ as well as computation costs O(L2) for both parties. To our
knowledge, all known methods for proving integer multiplications (sometimes
implicitly) involve O(L2) computation and/or communication complexities. Can
we break this quadratic barrier?

As a theoretical contribution, we put forward the first protocol for multiplica-
tive relations that does not incur any quadratic costs. Specifically, by proving in
zero-knowledge the correct execution of a Karatsuba multiplication algorithm [39],
we obtain both computation and communication complexities of order O(Llog2 3).

Applications. While our protocol for additive relations only handles non-
negative integers, it suffices for many applications, such as arguments of inequali-
ties among committed integers, range membership for public/hidden ranges, and
set non-membership. Moreover, it can also be used in higher-level protocols like
zero-knowledge lists [28].4 or privacy-preserving certificate transparency [25].

In particular, for a set of N elements with bit-size Õ(n), our zero-knowledge

protocol for proving non-membership of a committed value only cost Õ(n · logN)
bits. In the lattice setting, this is the first non-membership proof that achieves
communication cost logarithmic in the cardinality of the set. Meanwhile, in our
protocol for proving that a committed L-bit integer belongs to a given range
[α, β], where β−α ≈ 2L, besides the cost of proving knowledge of a valid opening

4 These involve a prover wishing to convince a verifier that a committed list contains
elements {ai}i in a specific order without revealing anything else.
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for the commitment, the prover only has to send 23L · κ bits to the verifier. In
Table 1, we provide the concrete cost of the protocol variant achieving soundness
error 2−80, for commonly used lattice parameters.

We remark that, if we only had to prove the correct evaluation of binary
addition circuits, MPC-based techniques [37,29,20] could perform slightly better
than our protocols. However, they become much less efficient for the algebraic
parts of the statements we have to prove (in particular, we also need to prove
knowledge of openings of SIS-based commitments). Indeed, the MPC-in-the head
paradigm [37] and its follow-ups [29,20] have linear complexities in the size of the
circuit, which is much larger than the witness size as the commitment relation
entails Θ(n(L + m)) additions and multiplications over Zq. In our protocols,
proving knowledge of an opening takes Θ((L+m) log q) bits of communication.

Range size 21000 22000 24000 28000

Proving knowledge of committed X 3.16 3.65 4.63 6.59

Proving range membership of X 0.38 0.75 1.5 3

Total communication cost 3.54 MB 4.4 MB 6.13 MB 9.59 MB

Table 1. Concrete communication cost of our lattice-based zero-knowledge argument
(Section 5.1) for proving knowledge of committed integer X belonging to a given range,
w.r.t. various range sizes. We work with lattice parameters n = 256, q ≈ 215, m = 4608.
To achieve soundness error 2−80, we set κ = 137.

Our Techniques. We proceed by emulating integer commitments by means
of bit commitments. To commit to an L-bit integer X in an all-in-one fashion,
we generate a KTX commitment cx =

∑L−1
i=0 ai · xi + B · r ∈ Znq to its binary

representation (xL−1, . . . , x0)2 using public matrices A = [a0 | . . . |aL−1] ∈ Zn×Lq

and B ∈ Zn×mq and random coins r←↩ U({0, 1}m).

Integer Additions. To prove additive relations among committed integers, we
come up with an idea that may sound natural for computer processors, but, to the
best of our knowledge, has not been considered in the context of zero-knowledge
proofs. The idea is to view integer additions as binary additions with carries.
Suppose that we add two bits x and y with carry-in cin to obtain a bit z and
carry-out cout. Then, the relations among these bits are captured by equations

z = x+ y + cin mod 2, cout = x · y + z · cin + cin mod 2,

which is equivalent to a homogeneous system of two equations over Z2. Using
the above adder, we consider the addition of L-bit integers X = (xL−1, ..., x0)2
and Y = (yL−1, ..., y0)2 assuming that the committed sum is of length L+ 1 and
written as Z = (zL, zL−1, ..., z0)2. For each i ∈ {0, ..., L− 1}, we denote by ci+1
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the carry-out of the i-th addition and define cL = zL. The equations become

z0 + x0 + y0 = 0 mod 2

c1 + x0 · y0 = 0 mod 2

z1 + x1 + y1 + c1 = 0 mod 2

c2 + x1 · y1 + z1 · c1 + c1 = 0 mod 2

...

zL−1 + xL−1 + yL−1 + cL−1 = 0 mod 2

zL + xL−1 · yL−1 + zL−1 · cL−1 + cL−1 = 0 mod 2.

We observe that all the terms in the above equations are either bits or products
of two bits. By adapting the Stern-like [60] techniques for hiding secret bits [45]
and handling quadratic relations [43], we manage to prove that the bits of X,Y, Z
satisfy the above equations modulo 2, which is equivalent to X + Y = Z over Z.
Meanwhile, to prove that those bits coincide with the values committed under
the KTX commitment requires to additionally prove a linear equation modulo q.

Interestingly, we show that, not only the problem of proving additive relations
among committed integers can be reduced to proving secret bits satisfying linear
and quadratic equations modulo 2 and one linear equation modulo q, such type
of reduction is doable for all subsequently considered relations (multiplications,
range membership, set non-membership). To handle the reduced statements in a
modular manner, we thus design (in Section 3) a general zero-knowledge protocol
that subsumes all argument systems of this work. In comparison with previous
protocols [40,48,44,46] built on Stern’s framework [60], this general protocol
introduces a technical novelty which allows to reduce the communication cost.

Range Membership and Set Non-Membership. Our techniques for addi-
tions of non-negative integers directly yield a method for proving inequalities of
the form X ≤ Z, where it suffices to show the existence of non-negative integer
Y such that X + Y = Z. This method can be further adapted to handle strict
inequalities. To prove that X < Z, we demonstrate the existence of non-negative
Y such that X + Y + 1 = Z, for which only a small additional treatment for the
least significant bits of X,Y, Z is needed. Then, by combining two sub-protocols
for inequalities, we can obtain range arguments for the statements “X ∈ [α, β]”,
“X ∈ [α, β)”, “X ∈ (α, β]” and “X ∈ (α, β)”, where X is committed under the
KTX commitment, and α, β can be hidden/committed or public.

Given the techniques for proving inequalities, we can further obtain arguments
of non-membership. In order to prove that a committed string X ∈ {0, 1}k does
not belong to a public set S = {s1, . . . , sN}, the prover generates a (publicly
computable) Merkle tree [53] whose leaves are the elements of S arranged in
lexicographical order. Then, the prover can use the technique of Libert et al. [45] –
which allows arguing possession of a path in a lattice-based Merkle tree – to prove
knowledge of two paths leading to adjacent leaves for which the corresponding
set elements Y,Z ∈ {0, 1}k satisfy Y < X < Z in lexicographical order. Here,
the adjacency of the leaves Y and Z is argued using our techniques for integers
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additions, which allows proving that their labels (i.e., the binary encoding of the
path that connects them to the root) encode integers V,W such that W = V + 1.

Subquadratic Integer Multiplications. Proving multiplicative relations
among L-bit committed integers with subquadratic complexity requires some
additional tricks. Karatsuba’s technique [39] divides integers X,Y into equal
halves X = X1|X0 and Y = Y1|Y0, each of which has length L/2. If the length
is odd, the factors must be padded with zeroes in the left halves, which raises
technical difficulties as will be explained below. We have X = 2L/2 ·X1 +X0 and
Y = 2L/2 · Y1 + Y0, so that X · Y can be written

X · Y = (2L − 2L/2)(X1Y1) + (1− 2L/2)(X0Y0) + 2L/2(X1 +X0)(Y1 + Y0). (1)

To prove this equation, we first prove knowledge of 3 partial products and then
prove their correct shifting w.r.t. multiplication by powers of 2 before proving
the correctness of additions. Each of the factors X1, Y1, X0, Y0, X1 +X0, Y1 + Y0
of (1) is recursively broken into 3 smaller products until reaching an easy-to-prove
“base multiplication”. One difficulty is that the length of X1 +X0 and Y1 + Y0
are one bit longer than the length L/2 of X0, X1, Y0, Y1. Since L/2 + 1 is odd,
we need to pad with a zero before dividing any further and the same issue arises
when dividing X1, Y1, X0, Y0. In the context of zero-knowledge proofs, it makes
it very complicated to keep track of the lengths of witnesses in the underlying
equations and determine where the original bits of X and Y should be.

To address the problems caused by carry-on bits in additions, Knuth [41]
suggested to use subtractions and re-write the product X · Y as

(2L + 2L/2) · (X1 · Y1) + (1 + 2L/2) · (X0 · Y0)− 2L/2 · (X1 −X0) · (Y1 − Y0). (2)

The difference X1−X0 is now guaranteed to have length L/2, which allows using
L = 2k and recursively come down to base multiplications of two-bit integers.
However, this modification introduces another problem as X1 −X0 and Y1 − Y0
can now be negative integers, which are more difficult to handle in our setting.
For this reason, we need to make sure that we always subtract a smaller integer
from a larger one, while preserving the ability to prove correct computations.

To this end, our idea is to compare X1 and X0 and let the smaller one be
subtracted from the larger one. To do this, we define auxiliary variables X ′1, X

′
0

such that X ′1 > X ′0 and {X ′1, X ′0} = {X1, X0}. Letting b be the bit such that
b = 1 if X ′1 ≥ X ′0 and b = 0 otherwise, this can be expressed by the equation:

(X ′1 −X ′0) = b · (X1 −X0) + (1− b) · (X0 −X1),

which is provable in zero-knowledge using our techniques for integer additions.
If we repeat the above process and define variables Y ′1 , Y

′
0 such that {Y ′1 , Y ′0} =

{Y1, Y0} and an order control bit c ∈ {0, 1}, if we define d = b+ c mod 2, we have

(X1 −X0) · (Y1 − Y0) = (X ′1 −X ′0) · (Y ′1 − Y ′0) if d = 0

(X1 −X0) · (Y1 − Y0) = −(X ′1 −X ′0) · (Y ′1 − Y ′0) if d = 1.

The term (X1 −X0) · (Y1 − Y0) appearing in equation (2) can thus be written as

(X1−X0) · (Y1−Y0) = (1− d) · (X ′1−X ′0) · (Y ′1 −Y ′0)− d · (X ′1−X ′0) · (Y ′1 −Y ′0),
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which yields an equation compatible our techniques while avoiding to handle
negative integers. At each recursive step, we further divide the differences X ′1−X ′0
and Y ′1−Y ′0 and keep track of the control bits b, c, d which are part of the witnesses.

Related Work. The first integer commitment scheme was proposed by Fujisaki
and Okamoto [26] who suggested to use it to prove relation over the integers.
They underlined the importance of zero-knowledge arguments over the integers
in order to be able to prove modular relations when the modulus is not known
in advance, when the commitment key is generated. Damg̊ard and Fujisaki [22]
corrected a flaw in the Fujisaki-Okamoto commitment and generalized it to
abelian groups satisfying specific properties.

Lipmaa [49] highlighted the cryptographic importance of the class D of Dio-
phantine sets5 [1] and gave improved constructions of zero-knowledge proofs for
Diophantine equations. As special cases, he obtained efficient zero-knowledge
arguments for intervals, unions of intervals, exponential relations and gcd rela-
tions. In [34], Groth suggested another integer commitment scheme based on
the Strong RSA assumption [4] which, like [26,22], relies on groups of hidden
order. Couteau, Peters and Pointcheval [21] recently suggested to combine integer
commitments with a commitment scheme to field elements in order to improve
the efficiency of zero-knowledge proofs over the integers. They also revisited the
Damg̊ard-Fujisaki commitment [22] and proved it the security of its companion
argument system under the standard RSA assumption. While our results are not
as general as those of [49,21] as we do not handle negative integers, they suffice
for many applications of integer commitments, as we previously mentioned.

Range proofs were introduced by Brickell et al. [10] and received a permanent
attention [19,12,9,49,36,18,21,32] since then. They served as a building block of
countless cryptographic applications, which include anonymous credentials [14],
anonymous e-cash [13], auction protocols [50], e-voting [35] privacy-preserving
certificate transparency [25] and many more.

Currently known range proofs proceed via two distinct approaches. The first
one proceeds by breaking integers into bits or small digits [10,7,23,12,36,32],
which allows communicating a sub-logarithmic (in the range size) number of
group elements in the best known constructions [12,36,32]. The second approach
[9,49,35,21] appeals to integer commitments and groups of hidden order. This
approach is usually preferred for very large ranges (which often arise in appli-
cations like anonymous credentials [14], where range elements are comprised of
thousands of bits) where it tends to be more efficient and it does not require the
maximal range length to be known when the commitment key is chosen.

Despite three decades of research, all known efficient range proofs (by “effi-
cient”, we mean that the communication complexity should be only logarithmic
in the range size) build on quantum-vulnerable assumptions and the only candi-
dates supporting very large integers rely on groups of hidden order. By proving
knowledge of small secret vectors, lattice-based protocols [40,48] can be seen as

5 For k, ` ∈ N, a Diophantine set is a set of the form S = {x ∈ Zk | ∃w ∈ Z` :
PS(x,w) = 0}, for some representing polynomial PS(X,W ) defined over integer
vectors X ∈ Zk, W ∈ Z`. Any recursively enumerable set is [24] Diophantine.
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providing a limited form of range proofs: if we can prove that a committed x ∈ Zm
has infinity norm ‖x‖∞ < B for some basis B < q of a B-ary representation,
we can prove that x encodes an integer X in the range [0, Bm − 1]. However,
it is not clear how to deal with arbitrary ranges. Using homomorphic integer
commitments, any range [α, β] can be handled (see [17] and references therein) by
exploiting the homomorphic properties of the commitment scheme and proving
that X − α ∈ [0, β − α]. With homomorphic commitments used in the context
of lattice-based cryptography, there is no obvious way to shift the committed
value by an integer α when α > q. Even with a sub-exponential modulus q, the
size L of integers can be at most sub-linear in n. To our knowledge, no flexible
solution has been proposed in the lattice setting, let alone under standard lattice
assumptions with polynomial approximation factors and polynomial-size moduli.
Our schemes thus provide a first answer to this question.

In the context of set non-membership, our construction bears resemblance
with a technique used by Nakanishi et al. [57] to handle revocation in privacy-
preserving protocols by proving inequalities over the integers. For a public set
S = {s1, . . . , sN} arranged in lexicographical order, they rely on a trusted au-
thority to create Camenisch-Lysyanskaya signatures [16] on all ordered pairs
{Msgi = (si, si+1)}N−1i=1 of adjacent set elements. To prove that a committed
s is not in S, the prover proceeds with a proof of knowledge of two message-
signature pairs (Msgj , sigj), (Msgj+1, sigj+1) for which Msgj = (sj , sj+1) and
Msgj+1 = (sj+1, sj+2) contain elements sj , sj+1 such that sj < s < sj+1. While
this approach could be instantiated with our technique for proving integer inequal-
ities, it would require proofs of knowledge of signatures and thus lattice trapdoors
(indeed, all known lattice-based signatures compatible with proofs of knowledge
rely on lattice trapdoors [27,54]). By using proofs of knowledge of a Merkle
tree path [45] instead of signatures, our solution eliminates the need for lattice
trapdoors, which allows for a better efficiency (note that proving inequalities
sj < s < sj+1 incurs a complexity Ω(logN) in both cases, so that using Merkle
trees does not affect the asymptotic complexity). Moreover, the technique of
Nakanishi et al. [57] involves a trusted entity to sign all pairs (si, si+1)}N−1i=1 in a
setup phase whereas no trusted setup is required in our construction. Eskandarian
et al. [25] recently used proofs of integer inequalities and hash trees in their proofs
of non-membership. Still, they prove inequalities by using signatures issued by
some TTP. In contrast, our approach does not require any TTP.

Other approaches to prove (non-)membership of a public set were suggested in
[15,42,12,47]. However, they rely on a trusted entity to approve the sets of which
(non-)membership must be proven during a setup phase. Setup-free accumulator-
based set membership proofs were described in [11,45], but they are not known
to support non-membership proofs.

In [6], Bayer and Groth cleverly used Σ protocols to handle proofs of non-
membership without assuming a trusted setup. Their construction achieves
logarithmic complexity in the cardinality of the set, but it crucially relies on
commitment schemes, like Pedersen’s discrete-log-based commitment [58], with
homomorphic properties over the message space and the randomness space. For
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lack of a lattice-based commitment scheme with similar properties, their approach
does not seem readily instantiable under lattice assumptions.

2 Preliminaries

Notations. When working with an integer X ∈ [0, 2L − 1], we use the notation
X = (xL−1, . . . , x0)2 to describe its bits, and use bold lower-case letter x to
denote the representation of X as binary column vector (xL−1, . . . , x0) ∈ {0, 1}L.
The column concatenation of matrices A ∈ Zn×k and B ∈ Zn×m is denoted by
[A |B] ∈ Zn×(k+m). When concatenating column vectors x ∈ Zk and y ∈ Zm,
for simplicity, we often use the notation (x‖y) ∈ Zk+m (instead of (x>‖y>)>).

2.1 Lattice-Based Cryptographic Building Blocks

We first recall the average-case problem SIS and its hardness.

Definition 1 (SIS∞n,m,q,β [2][27]). Given uniformly random matrix A ∈ Zn×mq ,
find a non-zero vector x ∈ Zm such that ‖x‖∞ ≤ β and A · x = 0 mod q.

If m,β = poly(n), and q > β · Õ(
√
n), the SIS∞n,m,q,β problem is at least as hard

as worst-case lattice problem SIVPγ for some γ = β · Õ(
√
nm) (see, e.g., [27][55]).

We will use two SIS-based cryptographic ingredients: the commitment scheme
of Kawachi, Tanaka and Xagawa [40] (KTX) and the Merkle hash tree from [45].

The KTX commitment scheme. The scheme works with security parameter
n, prime modulus q = O(

√
L · n), and dimension m = n(dlog2 qe+ 3). We will

consider several flavours of the scheme.
In the variant that allows committing to L ≤ poly(n) bits, the commitment

key is (a0, . . . ,aL−1,B)←↩ U(Zn×(m+L)
q ). To commit to a bitstring x0, . . . , xL−1,

one samples r←↩ U({0, 1}m), and outputs c =
∑L−1
i=0 ai ·xi+B·r mod q. Then, to

open the commitment, one simply reveals x0, . . . , xL−1 ∈ {0, 1} and r ∈ {0, 1}m.
If one can compute two valid openings (x′0, . . . , x

′
L−1, r

′) and (x′′0 , . . . , x
′′
L−1, r

′′)
for the same commitment c, where (x′0, . . . , x

′
L−1) 6= (x′′0 , . . . , x

′′
L−1), then one can

compute a solution to the SIS∞n,m+L,q,1 problem associated with the uniformly

random matrix [a0 | . . . | B] ∈ Zn×(m+L)
q . Thus, the scheme is computationally

binding, assuming the worst-case hardness of SIVPÕ(
√
L·n). On the other hand, by

the Leftover Hash Lemma [30], the distribution of a commitment c is statistically
close to uniform over Znq . This implies that the scheme is statistically hiding.

In the special case when L = 1, the scheme becomes a bit commitment scheme,
in which case it can use a small modulus q = Õ(n) and rely on a weak SIVP

assumption with γ = Õ(n).
Kawachi et al. [40] extended the above fixed-length commitment scheme to a

string commitment scheme COM : {0, 1}∗ × {0, 1}m → Znq . The obtained scheme
is also statistically hiding for the given setting of parameters, and computationally
binding assuming that SIVPÕ(n) is hard.
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Here, we will use the first commitment variant to commit to secret bits and
the string commitment scheme COM as a building block for Stern-like protocols.

Lattice-based Merkle hash tree. The construction relies on the following
collision-resistant hash function. Let n be the security parameter, q = Õ(n),
k = ndlog2 qe and m = 2k. Define the “powers-of-2” matrix

G = In ⊗ [1 2 4 . . . 2dlog2 qe−1] ∈ Zn×kq .

Note that for every v ∈ Znq , we have v = G · bin(v), where bin(v) ∈ {0, 1}k
denotes the binary representation of v.

For matrix B = [B0 | B1] ←↩ U(Zn×mq ), where B0,B1 ∈ Zn×kq , define the

function hB : {0, 1}k × {0, 1}k → {0, 1}k as follows:

(u0,u1) 7→ hB(u0,u1) = bin
(
B0 · u0 + B1 · u1 mod q

)
.

Note that hB(u0,u1) = u ⇔ B0 · u0 + B1 · u1 = G · u mod q. This hash
function was shown collision-resistant if SIVPÕ(n) is hard [2,45]. It allows building

Merkle trees to securely accumulate data. In particular, for an ordered set
S = {d0, . . . ,d2`−1} consisting of 2` ∈ poly(n) elements of bit-size k, one builds
the binary tree of depth ` on top of elements of the set, as follows. First, associate
the 2` leaf nodes with elements of the set, with respect to the order of these
elements. Then, every non-leaf node of the tree is associated with the hash value
of its two children. Finally, output the root of the tree u ∈ {0, 1}k. Note that,
the collision resistance of the hash function hB guarantees that it is infeasible to
find a tree path starting from the root u and ending with d′ 6∈ S.

2.2 Zero-Knowledge Argument Systems and Stern-like Protocols

We will work with statistical zero-knowledge argument systems, where remain
zero-knowledge for any cheating verifier while the soundness property only holds
against computationally bounded cheating provers. More formally, let the set
of statements-witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A
two-party game 〈P,V〉 is called an interactive argument system for the relation
R with soundness error e if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any V̂(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and V̂(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [33], where the latter assumes that there exists a PPT extractor
which takes as input a set of valid transcripts with respect to all possible values of
the “challenge” to the same “commitment”, and outputs w′ such that (y, w′) ∈ R.
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The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [60] protocols. In particular, they are Σ-protocols in the general-
ized sense defined in [38] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commitment
scheme, such as the KTX scheme [40], is employed in the first move, then one
obtains a statistical zero-knowledge argument of knowledge (ZKAoK) with perfect
completeness, constant soundness error 2/3. In many applications, the protocol
is repeated κ = ω(log n) times to make the soundness error negligibly small in n.

3 A General Zero-Knowledge Argument of Knowledge

This section presents a general Stern-like zero-knowledge argument system that
subsumes all the subsequent constructions in Sections 4, 5 and 6. Before describing
the protocol, we first recall two previous Stern-like techniques that it will use.

3.1 Some Previous Extending-then-Permuting Techniques

Let us recall the techniques for proving knowledge of a single secret bit x, and for
proving knowledge of bit product x1 · x2, from [45] and [43], respectively. These
techniques will be employed in the protocol presented in Section 3.2.

For any bit b ∈ {0, 1}, denote by b the bit b = b+ 1 mod 2, and by ext2(b) the
2-dimensional vector (b, b) ∈ {0, 1}2.

For any bit c ∈ {0, 1}, define P 2
c as the permutation that transforms the

integer vector v = (v0, v1) ∈ Z2 into P 2
c (v) = (vc, vc). Namely, if c = 0 then P 2

c

keeps the arrangement the coordinates of v; or swaps them if c = 1. Note that:

v = ext2(b) ⇐⇒ P 2
c (v) = ext2(b+ c mod 2). (3)

As shown in [45], the equivalence (3) helps proving knowledge of a secret bit x
that may appear in several correlated linear equations. To this end, one extends
x to ext2(x) ∈ {0, 1}2, and permutes the latter using P 2

c , where c is a uniformly
random bit. Seeing the permuted vector ext2(x+ c mod 2) convinces the verifier
that the original vector ext2(x) is well-formed – which in turn implies knowledge
of some bit x – while c acts as a “one-time pad” that completely hides x.

To prove that a bit is the product x1 · x2 of two secret bits, Libert et al. [43]
introduced the following t echnique. For any two bits b1, b2, define

ext4(b1, b2) = ( b1 · b2, b1 · b2, b1 · b2, b1 · b2 ) ∈ {0, 1}4,

which is an extension of the bit product b1 · b2. Next, define a specific type of
permutation associated with two bits, as follows.

For any two bits c1, c2 ∈ {0, 1}, define P 4
c1,c2 as the permutation that trans-

forms the integer vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z4 into

P 4
c1,c2(v) =

(
vc1,c2 , vc1,c2 , vc1,c2 , vc1,c2

)
∈ Z4.
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For any bits b1, b2, c1, c2 and any vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z4, we have

v = ext4(b1, b2) ⇐⇒ P 4
c1,c2(v) = ext4(b1 + c1 mod 2, b2 + c2 mod 2). (4)

As a result, to prove the well-formedness of x1 · x2, one can extend it to the
vector ext4(x1, x2), permute the latter using P 4

c1,c2 , where c1, c2 are uniformly
random bits, and send the permuted vector to the verifier who should be convinced
that the original vector, i.e., ext4(x1, x2), is well-formed, while learning nothing
else about x1 and x2, thanks to the randomness of c1 and c2. Furthermore, this
sub-protocol can be combined with other Stern-like protocols, where one has to
additionally prove that x1, x2 satisfy other conditions. This is done by using the
same “one-time pads” c1, c2 at all occurrences of x1 and x2, respectively.

3.2 Our General Protocol

LetN,m1,m2 be positive integers, where m1 ≤ N . Let T = {(i1, j1), . . . , (i|T |, j|T |)}
be a non-empty subset of [N ]× [N ]. Define d1 = 2(m1 +m2), d2 = 2N + 4|T | and
d = d1 + d2. Let n1 ≤ d1, n2 ≤ d2 and q > 2 be positive integers. The argument
system we aim to construct can be summarized as follows.

Public input consists of g1, . . . ,gm1 ,b1, . . . ,bm2 ,u1 ∈ Zn1
q and

{h`,k} (`,k)∈ [n2]×[N ]; {f`,t} (`,t)∈ [n2]×[ |T | ]; v1, . . . , vn2
∈ Z2.

Prover’s witness is (N +m2)-bit vector s = (s1, . . . , sm1 , . . . , sN , . . . , sN+m2).

Prover’s goal is to prove in zero-knowledge that:

1. The first m1 bits s1, . . . , sm1
and the last m2 bits sN+1, . . . , sN+m2

satisfy
the following linear equation modulo q.∑

i∈[m1]

gi · si +
∑
j∈[m2]

bj · sN+j = u1 mod q. (5)

2. The first N bits s1, . . . , sm1
, . . . , sN satisfy the following n2 equations modulo

2 that contain N linear terms and a total of |T | quadratic terms {sit · sjt}
|T |
t=1.

∀` ∈ [n2] :

N∑
k=1

h`,k · sk +

|T |∑
t=1

f`,t · (sit · sjt) = v` mod 2. (6)

Looking ahead, all the statements that we will consider in Sections 4, 5 and 6
can be handled as special cases of the above general protocol, which will serve as
an “umbrella” for all of our subsequent constructions.

As a preparation for the protocol construction, let us first introduce a few
notations and techniques.

Encoding vector ENC(·). In the protocol, we will work with a binary vector
of length d that has a very specific constraint determined by N + m2 bits. For
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any b = (b1, . . . , bm1
, . . . , bN , . . . , bN+m2

) ∈ {0, 1}N+m2 , we denote by ENC(b) ∈
{0, 1}d the vector encoding b as follows:

ENC(b) =
(
ext2(b1) ‖ . . . ‖ ext2(bm1) ‖ ext2(bN+1) ‖ . . . ‖ ext2(bN+m2)

‖ ext2(b1) ‖ . . . ‖ ext2(bN ) ‖ ext4(bi1 , bj1) ‖ . . . ‖ ext4(bi|T | , bj|T |)
)
,

where ext2(·) and ext4(·, ·) are as in Section 3.1.

Permutation Γ . To prove in zero-knowledge of a vector that has the form
ENC(·), we will need to a specific type of permutation. To this end, we associate
each c = (c1, . . . , cN , . . . , cN+m2) ∈ {0, 1}N+m2 with a permutation Γc that acts
as follows. When being applied to vector

v =
(
v1‖ . . . ‖vm1

‖ vm1+1‖ . . . ‖vm1+m2
‖vm1+m2+1‖ . . . ‖vm1+m2+N‖

‖ vm1+m2+N+1‖ . . . ‖vm1+m2+N+|T |
)
∈ Zd,

whose first m1 +m2 +N blocks are of length 2 and last |T | blocks are of length 4,
it transforms these blocks as described below.

vi 7→ P 2
ci(vi), ∀i ∈ [m1]; vm1+j 7→ P 2

cN+j
(vm1+j), ∀j ∈ [m2];

vm1+m2+k 7→ P 2
ck

(vm1+m2+k), ∀k ∈ [N ];

vm1+m2+N+t 7→ P 4
cit ,cjt

(vm1+m2+N+t), ∀t ∈ [ |T | ].

Based on the equivalences observed in (3)-(4), it can be checked that the
following holds. For all b, c ∈ {0, 1}N+m2 , all v ∈ Zd,

v = ENC(b) ⇐⇒ Γc(v) = ENC(b + c mod 2). (7)

Let us now present the protocol, based on the above notations and techniques.
First, we perform the following extensions for the secret objects:{

∀k ∈ [N + m2] : sk = ext2(sk) ∈ {0, 1}2

∀(it, jt) ∈ T : yit,jt = ext4(sit , sjt) ∈ {0, 1}4.
(8)

Now, we will perform some transformations regarding equation (5). Observe
that, for each i ∈ [m1], if we form matrix Gi = [0n1 | gi] ∈ Zn1×2

q , then
we will have Gi · si = gi · si mod q. Similarly, for each j ∈ [m2], if we form
Bj = [0n1 | bj ] ∈ Zn1×2

q , then we will have Bj · sN+j = bj · sN+j mod q.
Therefore, if we build matrix M1 = [G1 | . . . | Gm1

| B1 | . . . | Bm2
] ∈

Zn1×d1
q , equation (5) can be expressed as M1 · w1 = u1 mod q, where w1 =(
s1 ‖ . . . ‖ sm1 ‖ sN+1 ‖ . . . ‖ sN+m2

)
∈ {0, 1}d1 .

Next, we will unify all the n2 equations in (6) into just one equation modulo 2,
in the following manner. We form matrices{

H`,k =
[

0 | h`,k
]
∈ Z1×2

2 , ∀(`, k) ∈ [n2]× [N ];

F`,t =
[

0 | 0 | 0 | f`,t
]
∈ Z1×4

2 , ∀(`, t) ∈ [n2]× [ |T | ],
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and note that H`,k · sk = h`,k · sk mod 2 and F`,t · yit,jt = f`,t · (sij · sit) mod 2.
Thus, (6) can be rewritten as:

H1,1 · s1 + . . .+ H1,N · sN + F1,1 · yi1,j1 + · · ·+ F1,|T | · yi|T |,j|T | = v1 mod 2

H2,1 · s1 + . . .+ H2,N · sN + F2,1 · yi1,j1 + · · ·+ F2,|T | · yi|T |,j|T | = v2 mod 2

...
...

...

Hn2,1 · s1 + · · ·+ Hn2,N · sN + Fn2,1 · yi1,j1 + · · ·+ Fn2,|T | · yi|T |,j|T | = vn2
mod 2.

Letting u2 = (v1, . . . , vn2)> ∈ Zn2
2 , the above equations can be unified into

M2 ·w2 = u2 mod 2, (9)

where matrix M2 ∈ Zn2×d2
2 is built from H`,k,F`,t, and

w2 =
(
s1 ‖ . . . ‖ sN ‖yi1,j1 ‖ . . . ‖yi|T |,j|T |

)
∈ {0, 1}2N+4|T |.

Now, let us construct the vector w = (w1‖w2) ∈ {0, 1}d, which has the form(
s1 ‖ . . . ‖ sm1

‖ sN+1 ‖ . . . ‖ sN+m2
‖ s1 ‖ . . . ‖ sN ‖yi1,j1 ‖ . . . ‖yi|T |,j|T |

)
,

where its components blocks are as described in (8). Then, by our above definition
of encoding vectors, we have w = ENC(s).

The transformations we have done so far allow us to reduce the original
statement to proving knowledge of vector s ∈ {0, 1}N+m2 , such that the compo-
nent vectors w1 ∈ {0, 1}d1 , w2 ∈ {0, 1}d2 of w = ENC(s) satisfy the equations
M1 ·w1 = u1 mod q and M2 ·w2 = u2 mod 2. The derived statement can be
handled in Stern’s framework, based on the following main ideas.

– To prove that w = ENC(s), we will use the equivalence (7). To this end,
we sample a uniformly random c ∈ {0, 1}N+m2 and prove instead that
Γc(w) = ENC(s + c mod 2). Seeing this, the verifier is convinced in ZK that
w indeed satisfies the required constraint, thanks to the randomness of c.

– To prove that equations M1 ·w1 = u1 mod q and M2 ·w2 = u2 mod 2 hold,
we sample uniformly random r1 ∈ Zd1q , r2 ∈ Zd22 , and demonstrate that

M1 · (w1 + r1) = u1 + M1 · r1 mod q; M2 · (w2 + r2) = u2 + M2 · r2 mod 2.

The interactive protocol. Our interactive protocol goes as follows.

– The public input consists of matrices M1,M2 and vectors u1,u2, which are
constructed from the original public input, as discussed above.

– The prover’s witness consists of the original secret vector s ∈ {0, 1}N+m2 and
vector w = (w1‖w2) = ENC(s) derived from s, as described above.

The prover P and the verifier V interact as described in Figure 1. The protocol
uses the KTX string commitment scheme COM, which is statistically hiding
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and computationally binding. For simplicity of presentation, for vectors w =(
w1‖w2

)
∈ Zd and r =

(
r1‖r2

)
∈ Zd, we denote by w � r the operation that

computes z1 = w1 + r1 mod q, z2 = w2 + r2 mod 2, and outputs d-dimensional
integer vector z =

(
z1‖z2

)
. We note that, for all c ∈ {0, 1}N+m2 , if t = Γc(w)

and s = Γc(r), then we have Γc(w � r) = t � s.

The described protocol can be seen as an improved version of a Stern-like
protocol presented in [46], in the following aspect. In the case Ch = 1, instead of
sending Γc(w) = ENC(c?) - which costs d = 2(m1 + m2) + 2N + 4|T | bits, we let
the prover send c? which enables the verifier to compute the value ENC(c?) and
which costs only N + m2 bits. Due to this modification, the results from [46] are
not directly applicable to our protocol, and thus, in the proof of Theorem 1, we
will analyze the protocol from scratch.

1. Commitment: P samples c ← U({0, 1}N+m2), r1 ← U(Zd1
q ), r2 ← U(Zd2

2 ), and
computes r = (r1‖r2), z = w � r.
Then P samples randomness ρ1, ρ2, ρ3 for COM, and sends CMT =

(
C1, C2, C3

)
to V, where C1 = COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1), and

C2 = COM(Γc(r); ρ2), C3 = COM(Γc(z); ρ3).

2. Challenge: V sends a challenge Ch← U({1, 2, 3}) to P.
3. Response: P sends RSP computed according to Ch, as follows:

- Ch = 1: RSP = (c?,v, ρ2, ρ3), where c? = s + c mod 2 and v = Γc(r).

- Ch = 2: RSP = (b,x, ρ1, ρ3), where b = c and x = z.

- Ch = 3: RSP = (e,y, ρ1, ρ2), where e = c and y = r.

Verification: Receiving RSP, V proceeds as follows:

– Ch = 1: Let t = ENC(c?). Check that C2 = COM(v; ρ2), C3 = COM(t � v; ρ3).

– Ch = 2: Parse x = (x1‖x2), where x1 ∈ Zd1
q and x2 ∈ Zd2

2 , and check that

C1 = COM(b,M1 ·x1−u1 mod q,M2 ·x2−u2 mod 2; ρ1), C3 = COM(Γb(x); ρ3).

– Ch = 3: Parse y = (y1‖y2), where y1 ∈ Zd1
q and y2 ∈ Zd2

2 , and check that

C1 = COM(e,M1 · y1 mod q,M2 · y2 mod 2; ρ1), C2 = COM(Γe(y); ρ2).

In each case, V outputs 1 if and only if all the conditions hold.

Fig. 1: The interactive protocol.

Theorem 1. Suppose that COM is a statistically hiding and computationally
binding string commitment. Then, the protocol described above is a statistical
ZKAoK for the considered relation, with perfect completeness, soundness error 2/3
and communication cost ζ + 2 +N +m2 + 2(m1 +m2)dlog2 qe+ 2N + 4|T |, where
ζ = O(n log n) is the total bit-size of CMT and two commitment randomness.
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Proof. We first analyze the completeness and efficiency of the protocol. Then we
prove that it is a zero-knowledge argument of knowledge.

Completeness. Suppose that the prover is honest and follows the protocol.
Then, observe that the verifier outputs 1 under the following conditions.

1. t � v = Γc(z). This conditions holds, since w = ENC(s), and by equiva-
lence (7), we have t = ENC(c?) = ENC(s + c mod 2) = Γc(ENC(s)) = Γc(w).
Hence, t � v = Γc(w) � Γc(r) = Γc(w � r) = Γc(z).

2. M1 · x1 − u1 = M1 · r1 mod q and M2 · x2 − u2 = M2 · r2 mod 2. These
two equations hold, because x1 = w1 + r1 mod q, x2 = w2 + r2 mod 2 and
M1 ·w1 = u1 mod q, M2 ·w2 = u2 mod 2.

Therefore, the protocol has perfect completeness.

Efficiency. Both prover and verifier only have to carry out O(d) simple
operations modulo q and modulo 2. In terms of communication cost, apart
from ζ bits needed for transferring CMT and two commitment randomness,
the prover has to send a vector in {0, 1}N+m2 , a vector in Zd1q and a vec-

tor in Zd22 , while the verifier only has to send 2 bits. Thus, the total cost is
ζ + 2 +N + m2 + 2(m1 + m2)dlog2 qe+ 2N + 4|T | bits. (When COM is the KTX
string commitment scheme, we have ζ = 3ndlog2 qe+ 2m.)

Zero-Knowledge Property. We construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier V̂, such that, given only the public input, it
outputs with probability negligibly close to 2/3 a simulated transcript that is
statistically close to the one produced by the honest prover in the real interaction.

The simulator first chooses a random Ch ∈ {1, 2, 3} as a prediction of the

challenge value that V̂ will not choose.

Case Ch = 1: The simulator uses linear algebra over Zq and Z2 to compute

vectors w′1 ∈ Zd1q and w′2 ∈ Zd22 such that M1 ·w′1 = u1 mod q and M2 ·w′2 =
u2 mod 2. Let w′ = (w′1‖w′2).

Next, it samples c ← U({0, 1}N+m2), r1 ← U(Zd1q ), r2 ← U(Zd22 ), and
computes r = (r1‖r2), z′ = w′ � r. Then, it samples randomness ρ1, ρ2, ρ3 for

COM and sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂, where

C ′1 = COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1),

C ′2 = COM(Γc(r); ρ2), C ′3 = COM(Γc(z′); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

(
c, z′, ρ1, ρ3

)
.

– If Ch = 3: Send RSP =
(
c, r, ρ1, ρ2

)
.

Case Ch = 2: SIM samples s′ ← U({0, 1}N+m2) and computes w′ = ENC(s′).
Next, it picks c← U({0, 1}N+m2), and r1 ← U(Zd1q ), r2 ← U(Zd22 ), and computes
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r = (r1‖r2), z′ = w′ � r. Then, it samples randomness ρ1, ρ2, ρ3 for COM and

sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂, where

C ′1 = COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1),

C ′2 = COM(Γc(r); ρ2), C ′3 = COM(Γc(z′); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Send RSP =
(
s′ + c mod 2, Γc(r), ρ2, ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP =

(
c, r, ρ1, ρ2

)
.

Case Ch = 3: SIM prepares CMT =
(
C ′1, C

′
2, C

′
3

)
as in the case Ch = 2 above,

except that C ′1 is computed as

C ′1 = COM(c,M1 · (w′1 + r1)− u1 mod q,M2 · (w′2 + r2)− u2 mod 2; ρ1).

Receiving a challenge Ch from V̂, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

In all the above cases, since COM is statistically hiding, the distribution of the
commitment CMT and that of the challenge Ch from V̂ are statistically close to
those of the real interaction. Hence, the probability that the simulator outputs ⊥
is negligibly far from 1/3. Moreover, whenever the simulator does not halt, it
provides an accepting transcript, of which the distribution is statistically close to
that of the prover in a real interaction. We thus described a simulator that can
successfully emulate the honest prover with probability negligibly close to 2/3.

Argument of Knowledge. Suppose that we have RSP1 = (c?,v, ρ
(1)
2 , ρ

(1)
3 ),

RSP2 = (b,x, ρ
(2)
1 , ρ

(2)
3 ), and RSP3 = (e,y, ρ

(3)
1 , ρ

(3)
2 ), which are accepting tran-

scripts for the three possible values of the challenge and the same commitment
CMT = (C1, C2, C3). Let us parse x and y as x = (x1‖x2), y = (y1‖y2), where
x1,y1 ∈ Zd1q and x2,y2 ∈ Zd22 .

The validity of the given responses implies that:

C1 = COM(b,M1 · x1 − u1 mod q,M2 · x2 − u2 mod 2; ρ
(2)
1 );

C1 = COM(e,M1 · y1 mod q,M2 · y2 mod 2; ρ
(3)
1 );

C2 = COM(v; ρ
(1)
2 ) = COM(Γe(y); ρ32);

C3 = COM(t � v; ρ
(1)
3 ) = COM(Γb(x); ρ

(2)
3 ),

where t = ENC(c?). Since COM is computationally binding, we can deduce that:

b = e; v = Γe(y); t � v = Γb(x);

M1 · x1 − u1 = M1 · y1 mod q; M2 · x2 − u2 = M2 · y2 mod 2.
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Let s′ = c?+e mod 2 and w′ = [Γe]−1(t). Since t = ENC(c?), by equivalence (7),
we have that w′ = ENC(s′). Furthermore, note that Γe(w′) � Γe(y) = Γe(x),
which implies that w′ � y = x.

Now, parse w′ as w′ = (w′1‖w′2), where w′1 ∈ {0, 1}d1 and w′2 ∈ {0, 1}d2 .
Then, we have w′1 + y1 = x1 mod q, w′2 + y2 = x2 mod 2, and

M1 ·w′1 = M1 · x1 −M1 · y1 = u1 mod q;

M2 ·w′2 = M2 · x2 −M2 · y2 = u2 mod 2.

This implies w′ = (w′1‖w′2) = ENC(s′), as well as M1 · w′1 = u1 mod q and
M2 · w′2 = u2 mod 2. Let s′ = (s′1, . . . , s

′
m1
, . . . , s′N , . . . , s

′
N+m2

) ∈ {0, 1}N+m2 .
By reversing the transformations, it can be seen that the bits of s′ satisfy∑

i∈[m1]

gi · s′i +
∑
j∈[m2]

bj · s′N+j = u1 mod q;

∀` ∈ [n2] :

N∑
k=1

h`,k · s′k +

|T |∑
t=1

f`,t · (s′it · s
′
jt) = v` mod 2.

Hence, we have extracted s′ = (s′1, . . . , s
′
m1
, . . . , s′N , . . . , s

′
N+m2

), which is a valid
witness for the considered relation. ut

As we mentioned earlier, all the statements we will consider in the next sections
will be reduced into instances of the presented general protocol. For each of them,
we will employ the same strategy. First, we demonstrate that the considered
statement can be expressed as an equation modulo q of the form (5) and equations
modulo 2 of the form (6). This implies that we can run the general protocol
to handle the statement, and obtain a statistical ZKAoK via Theorem 1. Next,
as the complexity of the protocol depends on m1 + m2, N, |T |, we count these
respective numbers in order to evaluate its communication cost.

4 Zero-Knowledge Arguments for Integer Additions

This section presents our lattice-based ZK argument system for additive re-
lation among committed integers. Let n be the security parameter, and let
L = poly(n). Given KTX commitments to L-bit integers X = (xL−1, . . . , x0)2,
Y = (yL−1, . . . , y0)2 and (L+ 1)-bit integer Z = (zL, zL−1, . . . , z0)2, the protocol
allows the prover to convince the verifier in ZK that X + Y = Z over Z.

As discussed in Section 1 and Section 2.1, using different flavors of the KTX
commitment scheme, we can commit to all the bits of X,Y, Z at once or a
bit-by-bit fashion. Both approaches are both compatible with (and independent
of) our ZK techniques. Depending on which commitments we use, we obtain
different give trade-offs in terms of parameters, key sizes, security assumptions
and communication costs. In the following, we will use the former variant, which
yields communication complexity Õ(L+ n). Our protocol can be easily adjusted
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to handle the bit-wise commitment variant, which yields complexity Õ(L · n),
but allows smaller parameters, smaller keys and weaker lattice assumption.

Commitments. Let a prime q = Õ(
√
L · n) and m = n(dlog2 qe+ 3). Choose a

commitment key (a0, . . . ,aL−1,aL,b1, . . . ,bm)←↩ U(Zn×(L+m+1)
q ). To commit

to X,Y, Z, sample ri,1, . . . , ri,m,←↩ U({0, 1}), for i ∈ {1, 2, 3}, and compute


∑L−1
i=0 ai · xi +

∑m
j=1 bj · r1,j = cx mod q;∑L−1

i=0 ai · yi +
∑m
j=1 bj · r2,j = cy mod q;∑L

i=0 ai · zi +
∑m
j=1 bj · r3,j = cz mod q,

(10)

and output commitments cx, cy, cz ∈ Znq . The scheme relies on the worst-case

hardness of SIVPγ , for γ = Õ(
√
L · n).

Before presenting our protocol, we note that the three equations (10) can be
unified into one equation of the form

L−1∑
i=0

a
(1)
i · xi +

L−1∑
i=0

a
(2)
i · yi +

L∑
i=0

a
(3)
i · zi +

∑
(i,j)∈[3]×[m]

b
(i)
j · ri,j = c mod q, (11)

where a
(1)
i ,a

(2)
i ,a

(3)
i ∈ Z3n

q are extensions of ai; b
(1)
j ,b

(2)
j ,b

(3)
j ∈ Z3n

q are exten-

sions of bj ; and c = (cx‖cy‖cz) ∈ Z3n
q . Having done this simple transformation,

we observe that equation (11) does have the form captured by equation (5) in
the protocol we put forward in Section 3. Here, the secret bits contained in the
equations are the bits of X,Y, Z and those of the commitment randomness.

Proving integer additions. At a high level, our main idea consists in trans-
lating the addition operation X + Y over the integers into the binary addition
operation with carries of (xL−1, . . . , x0)2 and (yL−1, . . . , y0)2 and proving that
this process indeed yields result (zL, zL−1, . . . , z0)2. For the latter statement,
we capture the whole process as equations modulo 2 that contain linear and
quadratic terms, and show how this statement, when combined with the commit-
ment equations (11), reduces to an instance of the protocol of Section 3.

Let us first consider the addition of two bits x, y with carry-in bit cin. Let the
output be bit z and the carry-out bit be cout. Then, observe that the relation
among x, y, z, cin, cout ∈ {0, 1} is captured by equations

{
z = x+ y + cin mod 2

cout = x · y + z · cin + cin mod 2
⇐⇒

{
z + x+ y + cin = 0 mod 2

cout + x · y + z · cin + cin = 0 mod 2.
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Therefore, the addition with carries of (xL−1, . . . , x0)2 and (yL−1, . . . , y0)2 results
in (zL, zL−1, . . . , z0)2 if and only if the following equations hold:

z0 + x0 + y0 = 0 mod 2;

c1 + x0 · y0 = 0 mod 2;

z1 + x1 + y1 + c1 = 0 mod 2;

c2 + x1 · y1 + z1 · c1 + c1 = 0 mod 2;
...

zL−1 + xL−1 + yL−1 + cL−1 = 0 mod 2;

zL + xL−1 · yL−1 + zL−1 · cL−1 + cL−1 = 0 mod 2.

(12)

Here, for each i ∈ {1, . . . , L − 1}, ci denotes the carry-out bit at the i-th step
which is also the carry-in bit at the (i+ 1)-th step. (The last carry-out bit is zL.)

Now, observe that, together with equation (11), the 2L equations in (12) lead
us to an instance of the protocol of Section 3. It indeed fits the pattern if we
let N := 4L, m1 := 3L+ 1, m2 := 3m and denote the ordered tuple of N + m2

secret bits
(
x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL, c1, . . . , cL−1, r1,1, . . . , r3,m

)
by(

s1, . . . , sN+m2

)
. Then, note that the first m1 bits s1, . . . , sm1

and the last m2

bits sN+1, . . . , sN+m2
satisfy the linear equation modulo q from (11), while the

first N bits s1, . . . , sN satisfy the equations modulo 2 in (12), which contain N
linear terms and a total of |T | := 2L− 1 quadratic terms, i.e.:

x0 · y0, x1 · y1, z1 · c1, . . . , xL−1 · yL−1, zL−1 · cL−1.

As a result, our ZK argument system can be obtained from the protocol
constructed in Section 3. The protocol is a statistical ZKAoK assuming the
security of two variants of the KTX commitment scheme: the variant used to
commit to X, Y , Z - which relies on the hardness of SIVPÕ(

√
L·n), and the

commitment COM used in the interaction between two parties - which relies on
the hardness of SIVPÕ(n). By Theorem 1, each execution of the protocol has

perfect completeness, soundness error 2/3 and communication cost

O(n log n) + 3m+ 2(3L+ 1 + 3m)dlog2 qe+ 20L

bits, where O(n log n) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, it is important
to note that the cost of proving knowledge of valid openings for cx, cy, cz is
O(n log n) + 3m+ 2(3L+ 1 + 3m)dlog2 qe bits. Thus, the actual cost for proving
the addition relation is 20L bits.

We further remark that the protocol can easily be adapted to less challenging
situations such as: (i) The bit-size of the sum Z is public known to be exactly L
(instead of L+ 1); (ii) Not all elements X,Y, Z need to be hidden and committed.
Indeed, in those scenarios, our strategy of expressing the considered relations as
equations modulo q and modulo 2 easily goes through. Moreover, it even simplifies
the resulting protocols and reduces their complexity because the number of secret
bits to deal with is smaller than in the above protocol.
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5 Logarithmic-Size Arguments for Range Membership
and Set Non-Membership

We present two applications of our zero-knowledge protocol for integer additions
from Section 4: range membership and set non-membership arguments.

5.1 Range Membership Arguments

Our range arguments build on the integer addition protocol of Section 4. We
consider the problem of proving in ZK that a committed integer X satisfies
X ∈ [α, β], i.e., α ≤ X ≤ β, for publicly known integers α, β.

Let L = poly(n), q = Õ(
√
L · n) and m = n(dlog2 qe+ 3). Suppose that L-bit

integer X = (xL−1, . . . , x0)2 is committed via the KTX commitment scheme,
using a public commitment key a0, . . . ,aL−1,b1, . . . ,bm ∈ Znq and randomness
r1, . . . , rm ∈ {0, 1}. Namely, the commitment c ∈ Znq is computed as

L−1∑
i=0

ai · xi +

m∑
j=1

bj · rj = c mod q. (13)

Our goal is to prove in ZK that X ∈ [α, β], for publicly given L-bit integers
α = (αL−1, . . . , α0)2 and β = (βL−1, . . . , β0)2.

The main idea. We observe that X satisfies α ≤ X ≤ β if and only if there
exist non-negative L-bit integers Y,Z such that

α+ Y = X and X + Z = β. (14)

We thus reduce the task of proving X ∈ [α, β[ to proving two addition relations
among integers, which can be achieved using the techniques of Section 4. To this
end, it suffices to demonstrate that the relations among the secret bits of X,Y, Z
and public bits of α, β can be expressed as equations modulo 2 of the form (6).

The underlying equations modulo 2. Let the bits of integers Y,Z be
(yL−1, . . . , y0)2 and (zL−1, . . . , z0)2, respectively. The addition α+Y = X over Z,
when viewed as a binary addition with carries, can be expressed as the following
2L equations modulo 2 which contain L−1 quadratic terms x1 ·c1, . . . , xL−1 ·cL−1.

x0 + y0 = α0 mod 2;

c1 + α0 · y0 = 0 mod 2; // First carry-bit

x1 + y1 + c1 = α1 mod 2;

c2 + α1 · y1 + x1 · c1 + c1 = 0 mod 2; // Second carry-bit

...

cL−1 + αL−2 · yL−2 + xL−2 · cL−2 + cL−2 = 0 mod 2;

xL−1 + yL−1 + cL−1 = αL−1 mod 2;

αL−1 · yL−1 + xL−1 · cL−1 + cL−1 = 0 mod 2. // Last carry-bit is 0.

(15)
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The relation X + Z = β is handled similarly. We obtain the following 2L
equations modulo 2, which contain L quadratic terms x0 ·z0, x1 ·z1, . . . , xL−1 ·zL−1.

x0 + z0 = β0 mod 2;

e1 + x0 · z0 = 0 mod 2; // First carry-bit

x1 + z1 + e1 = β1 mod 2;

e2 + x1 · z1 + β1 · e1 + e1 = 0 mod 2; // Second carry-bit

...

eL−1 + xL−2 · zL−2 + βL−2 · eL−2 + eL−2 = 0 mod 2;

xL−1 + zL−1 + eL−1 = βL−1 mod 2;

xL−1 · zL−1 + βL−1 · eL−1 + eL−1 = 0 mod 2. // Last carry-bit is 0.

(16)

Combining (15) and (16), we obtain a system of 4L equations modulo 2,
which contain N := 5L− 2 linear terms

x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL−1, c1, . . . , cL−1, e1, . . . , eL−1,

and a total of |T | = 2L− 1 quadratic terms

x1 · c1, . . . , xL−1 · cL−1, x0 · z0, x1 · z1, . . . , xL−1 · zL−1.

Putting it altogether. Based on the above transformations, we have translated
the task of proving that committed integer X satisfies X ∈ [α, β] to proving
knowledge of N + m2 = 5L− 2 +m secret bits

x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL−1, c1, . . . , cL−1, e1, . . . , eL−1, r1, . . . , rm,(17)

where the first m1 = L bits and the last m2 = m bits satisfy equation (13)
modulo q, while the first N = 5L− 2 bits satisfy a system of equations modulo
2 containing N linear terms and |T | = 2L− 1 quadratic terms. In other words,
we have reduced the considered statement to an instance of the general protocol
of Section 3.2. By running the latter with the witness described in (17), we
obtain a statistical ZKAoK hardness of based on the hardness of SIVPγ with

factor γ ≤ Õ(
√
L · n). Each execution of the protocol has perfect completeness,

soundness error 2/3 and communication cost

O(n log n) +m+ 2(L+m)dlog2 qe+ 23L

bits, where O(n log n) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, the cost of proving
knowledge of a valid opening for c is O(n log n) +m+ 2(L+m)dlog2 qe bits. The
actual cost for proving the range membership thus amounts to 23L bits.

Variants. Our techniques can be easily adapted to handle other variants of
range membership arguments. To prove a strict inequality, e.g., X < β for a
given β, we can simply prove that X ≤ β − 1 using the above approach. In the
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case of hidden ranges, e.g., when we need prove that Y < X < Z where X,Y, Z
are all committed, then we proceed by proving the existence of non-negative
L-bit integers Y1, Z1 such that Y + Y1 + 1 = X and X + Z1 + 1 = Z. This can
be done by executing two instances of the protocol for addition relation among
committed integers from Section 4.

5.2 Set Non-Membership Arguments

In this section, we construct a protocol allowing to prove that a committed
element is not in a public set Set. The goal is to do this without relying on a
trusted third party to approve the description of Set by signing its elements or
any other means. To this end, we combine our protocols for integer addition
and inequalities with arguments of knowledge of a path in a Merkle tree [45].
While Merkle trees were introduced for proving set membership, we (somewhat
counter-intuitively) use them for dual purposes.

For security parameter n, choose q = Õ(n), k = ndlog2 qe and m = 2k.
Sample uniformly random matrices A,B0,B1 ∈ Zn×kq , and denote their columns
as a0, . . . ,ak−1,b0,0, . . . ,b0,k−1,b1,0, . . . ,b1,k−1 ∈ Znq . These vectors will serve
as public key for the KTX commitment scheme with k-bit committed values,
while matrix B = [B0 | B1] ∈ Zn×2kq will also serve as the public key for the

Merkle tree from [44]. Let G ∈ Zn×kq be the “powers-of-2” matrix of Section 2.1.
Let X = (xk−1, . . . , x0)2 be a k-bit integer, and let c ∈ Znq be a KTX

commitment to X, i.e., we have the following equation modulo q:

k−1∑
i=0

ai · xi +
∑

(i,j)∈{0,1}×k

bi,j · ri,j = c mod q, (18)

where bits r0,1, . . . , r1,k ∈ {0, 1} are the commitment randomness.
Let Set = {S1, . . . , SM} be a public set containing M = poly(n) integers of

bit-size k, where S1 < S2 < . . . < SM . We wish to prove in ZK that an integer
X, which has been committed to via c ∈ Znq , does not belong to Set. We aim at
communication complexity O(logM), so that the protocol scales well for large
sets. To this end, we will use the lattice-based Merkle hash tree from [45].

Without loss of generality, assuming that M = 2` − 2 for some positive inte-
ger `.6 For each i = 0, . . . ,M , let si ∈ {0, 1}k be the binary-vector representation
of Si. Let s0 = (0, . . . , 0) and sM+1 = (1, . . . , 1) be the all-zero and all-one
vectors of length k, which represent 0 and 2k − 1, the smallest and the largest
non-negative integers of bit-size k, respectively. Using the SIS-based hash function
hB (see Section 2.1), we build a Merkle tree of depth ` on top of 2` vectors
s0, s1, . . . , sM , sM+1 and obtain the root u ∈ {0, 1}k. For each i ∈ [0,M + 1], the
tree path from leaf si to root u is determined by the ` bits representing integer i.

We prove knowledge of two consecutive paths from leaves y ∈ {0, 1}k and
z ∈ {0, 1}k to the public root u such that the k-bit integers Y and Z corresponding

6 If M does not have this form, one can duplicate S1 sufficiently many times until the
cardinality of the set has this property. Our protocol remains the same in this case.
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to y and z satisfy Y < X < Z, where X is the integer committed in c.
Let v`−1, . . . , v0 and w`−1, . . . , w0 be the bits determining the paths from the

leaves y and z, respectively, to root u. Then, by “consecutive”, we mean that the
`-bit integers V = (v`−1, . . . , v0)2 and W = (w`−1, . . . , w0)2 satisfy V + 1 = W .

We remark that the truth of the statement – which is ensured by the soundness
of the argument – implies that the integer committed in c does not belong to
Set, assuming the collision-resistance of the Merkle hash tree and the security of
the commitment scheme. This is because: (i) The existence of the two tree paths
guarantees that y, z ∈ Set; (ii) The fact that they are consecutive further ensures
that (y, z) = (si, si+1), for some i ∈ [0,M ]; (iii) The inequalities Y < X < Z
then implies that either X < S1 or SM < X or Sj < X < Sj+1, for some
j ∈ [1,M − 1]. In either case, it must be true that X 6∈ Set.

The considered statement can be divided into 4 steps: (1) Proving knowledge
of X committed in c; (2) Proving knowledge of the tree paths from y and
z; (3) Proving the range membership Y < Z < X; (4) Proving the addition
relation V + 1 = W . We show that the entire statement can be expressed as one
linear equation modulo q together with linear and quadratic equations modulo 2,
which allows reducing it to an instance of the general protocol from Section 3.2.
Regarding (1), we have obtained equation (18). As for (2), we use the techniques
from [45] to translate Merkle tree inclusions into a set of provable equations
modulo q and modulo 2. The sub-statement (3) can be handled as in Section 5.1.
Finally, (4) can easily be expressed as 2`− 1 simple equations modulo 2.

The details of these steps are provided in Appendix A. We finally remark
that set elements can have a longer representation than k = ndlog qe bits if we
hash them into k-bit string before building the Merkle tree. For this purpose, a
SIS-based hash function HSIS : {0, 1}m → Znq like [2] should be used to preserve
the compatibility with zero-knowledge proofs.

6 Subquadratic Arguments for Integer Multiplications

For L = poly(n), we consider the problem of proving that committed integers
X = (xL−1, . . . , x0)2, Y = (yL−1, . . . , y0)2, Z = (z2L−1, . . . , z0)2 satisfy the multi-
plicative relation Z = XY . This task can be realized by running L instances of the
protocol for integer additions from Section 4, but this naive method would yield
complexity at least O(L2). Our target here is to design an asymptotically more
efficient protocol with computation/communication cost subquadratic in L. From
a theoretical point of view, such a protocol is particularly interesting, because
its execution must somehow employ a subquadratic multiplication algorithm.
This inspires us to consider for the first time in the context of ZK proofs the
Karatsuba multiplication algorithm [39] that achieves subquadratic complexity
O(Llog2 3). Specifically, we will prove that the result of applying the Karatsuba
algorithm to committed integers X,Y is exactly the committed integer Z.

Commitments. Choose a prime q = Õ(
√
L ·n) and let m = n(dlog2 qe+3). We

use the KTX commitment scheme with public key (a0, . . . ,a2L−1,b1, . . . ,bm)←↩
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U(Zn×(2L+m)
q ). Let cx, cy, cz ∈ Znq be commitments to X,Y, Z, where

∑L−1
i=0 ai · xi +

∑m
j=1 bj · r1,j = cx mod q;∑L−1

i=0 ai · yi +
∑m
j=1 bj · r2,j = cy mod q;∑2L−1

i=0 ai · zi +
∑m
j=1 bj · r3,j = cz mod q,

where bits {ri,j}(i,j)∈[3]×[m] are the commitment randomness. Then, as in Sec-
tion 4, we can unify the 3 equations into one linear equation modulo q:

L−1∑
i=0

a
(1)
i · xi +

L−1∑
i=0

a
(2)
i · yi +

2L−1∑
i=0

a
(3)
i · zi +

∑
(i,j)∈[3]×[m]

b
(i)
j · ri,j = c mod q. (19)

6.1 An Interpretation of the Karatsuba Algorithm

Let L = 2k for some positive integer k. We will employ a variant of the Karatsuba
algorithm, suggested by Knuth [41, Section 4.3.3]. First, we need to interpret the
execution of the algorithm in a fashion compatible with our ZK technique.
The First Iteration. For the first application of Karatsuba algorithm, we
break X and Y into their “most significant” and “least significant” halves:

X = [X(1), X(0)] and Y = [Y (1), Y (0)], (20)

where X(1), X(0), Y (1), Y (0) are L/2-bit integers. Then, as suggested by Knuth,
the product Z can be written as:

Z = XY = (2L + 2L/2) · X(1)Y (1) + (2L/2 + 1) ·X(0)Y (0)

− 2L/2 · (X(1) −X(0))(Y (1) − Y (0)). (21)

The advantage of Knuth’s approach over Karatsuba’s is that it allows working
with the differences (X(1) −X(0)), (Y (1) − Y (0)) that guarantee to have bit-size
L/2, rather than working with the sums (X(1) +X(0)), (Y (1) + Y (0)) that cause
a burden of carry-on bits. However, this modification introduces a new issue as
these differences may be negative, which are more difficult to handle in our setting.
For this reason, we need to make sure that we always subtract a smaller integer
from a larger one, while preserving the ability to prove correct computations.

Let X̂(1), X̂(0) such that X̂(1) ≥ X̂(0) and {X̂(1), X̂(0)} = {X(1), X(0)}. If we
use an order control bit b that is assigned value 1 if X(1) ≥ X(0), or value 0
otherwise, and let X(2) = X̂(1) − X̂(0) ≥ 0, then we have the relations

X̂(1) = b ·X(1) + b ·X(0); X̂(0) = b ·X(1) + b ·X(0); X(2) + X̂(0) = X̂(1). (22)

Conversely, if non-negative integers X(1), X(0), X̂(1), X̂(0), X(2) and bit b sat-
isfy (22), then it holds that {X̂(1), X̂(0)} = {X(1), X(0)} and X̂(1) ≥ X̂(0) and

X(2) = X̂(1) − X̂(0).
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Similarly, we can obtain Ŷ (1), Ŷ (0) such that Ŷ (1) ≥ Ŷ (0), non-negative Y (2)

such that Y (2) = Ŷ (1) − Ŷ (0), as well as a control bit d satisfying

Ŷ (1) = d · Y (1) + d · Y (0); Ŷ (0) = d · Y (1) + d · Y (0); Y (2) + Ŷ (0) = Ŷ (1). (23)

Relations (22)-(23) essentially establish a “bridge” that allows us to work (in the
subtractions X(1) −X(0) and Y (1) − Y (0) incurring in (21)) with non-negative
integers X(2) and Y (2) instead of possibly negative integers. Indeed, letting
s = b+ d mod 2, we have

(X(1) −X(0))(Y (1) − Y (0)) = s ·X(2)Y (2) − s ·X(2)Y (2).

Then, equation (21) can be expressed as

Z = XY = (2L + 2L/2)Z(1) + (2L/2 + 1)Z(0) + 2L/2(s · Z(2))− 2L/2(s · Z(2)),

(24)

where Z(1) = X(1)Y (1), Z(0) = X(0)Y (0) and Z(2) = X(2)Y (2) are L-bit integers.
These values are computed based on recursive applications of the Karatsuba
algorithm until we reach integers of bit-size L/2k−1 = 2, as described below.

The Recursion. For t = 1 to k − 2, and for string α ∈ {0, 1, 2}t, on input of
L/2t-bit integers X(α) and Y (α), we recursively obtain L/2t+1-bit integers

X(α1); X(α0); X̂(α1); X̂(α0); X(α2); Y (α1); Y (α0); Ŷ (α1); Ŷ (α0); Y (α2),

and bits b(α), d(α), s(α) satisfying the following relations.

X(α) = [X(α1), X(α0)];

X̂(α1) = b(α) ·X(α1) + b
(α) ·X(α0); X̂(α0) = b

(α) ·X(α1) + b(α) ·X(α0);

X(α2) + X̂(α0) = X̂(α1);

Y (α) = [Y (α1), Y (α0)];

Ŷ (α1) = d(α) · Y (α1) + d
(α) · Y (α0); Ŷ (α0) = d

(α) · Y (α1) + d(α) · Y (α0);

Y (α2) + Ŷ (α0) = Ŷ (α1);

s(α) = b(α) + d(α) mod 2.

(25)

Let Z(α1) = X(α1)Y (α1), Z(α0) = X(α0)Y (α0), Z(α2) = X(α2)Y (α2). Note that
these L/2t-bit integers satisfy the equation:

Z(α) := X(α)Y (α) =
(
2L/2

t

+ 2L/2
t+1)
· Z(α1) + (2L/2

t+1

+ 1) · Z(α0)

+ 2L/2
t+1

· (s(α) · Z(α2))− 2L/2
t+1

· (s(α) · Z(α2)). (26)

We remark that the number of secret bits contained in the integers

{X(α1); X(α0); X̂(α1); X̂(α0); X(α2)}, where α ∈ {0, 1, 2}t,∀t = 0, . . . , k − 2,
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derived from X in the above process is

5 ·
k−2∑
t=0

(
3t · L

2t+1

)
=

5L

3
·
k−2∑
t=0

(
3

2

)t+1

=
10L

3
·
(

3

2

)k
− 5L =

10

3
· 3log2 L − 5L.

That is also the number of secret bits in the integers derived from Y . Meanwhile,
the number of control bits b(α), d(α), s(α) is 3 ·

∑k−2
t=0 3t = (3log2 L − 3)/2. In total,

the process gives us O(3log2 L) = O(Llog2 3) secret bits.

6.2 Representing All Relations as Equations Modulo 2

As shown in Sections 4 and 5, to prove that committed integers satisfy some
statement, it suffices to demonstrate that the statement can be expressed as one
linear equation modulo q together with linear and quadratic equations modulo 2,
which effectively reduces it to an instance of the general protocol of Section 3.2.
We have already obtained the linear equation modulo q from 19. Our main task
is now to show that all the relations among O(Llog2 3) secret bits obtained in
Section 6.1 can be expressed in terms of linear and quadratic equations modulo 2.

We observe that, apart from the linear equations s(α) = b(α) + d(α) mod 2,
there are several common types of relations among the secret objects derived in
Section 6.1, for which we handle as follows.

The first type is relation of the form X(α) = [X(α1), X(α0)], between an L/2t-

bit integer X(α) and its halves X(α1) and X(α0). Let X(α) = (x
(α)
L
2t
−1, . . . , x

(α)
0 )2

and X(α1) = (x
(α1)

L

2t+1−1
, . . . , x

(α1)
0 )2, X(α0) = (x

(α0)
L

2t+1−1
, . . . , x

(α0)
0 )2. This type of

relation can be expressed as the following linear equations modulo 2:

∀i = 0, . . . ,
L

2t+1
− 1 : x

(α0)
i + x

(α)
i = 0 mod 2; x

(α1)
i + x

(α)

i+ L

2t+1

= 0 mod 2.

The second type is relation of the form

X̂(α1) = b(α) ·X(α1) + b
(α) ·X(α0); X̂(α0) = b

(α) ·X(α1) + b(α) ·X(α0),

reflecting how L/2t+1-bit integers X̂(α1), X̂(α0) are computed from X(α1), X(α0)

based on a control bit b(α). This type of relation can be translated into the
following equations modulo 2, with respect to the bits of those integers

∀i = 0, . . . , L/2t+1 − 1 : x̂
(α1)
i + b(α) · x(α1)i + b

(α) · x(α0)i = 0 mod 2;

∀i = 0, . . . , L/2t+1 − 1 : x̂
(α0)
i + b

(α) · x(α1)i + b(α) · x(α0)i = 0 mod 2,

that contains 4 · L
2t+1 quadratic terms.

The third type is the addition relation X(α2) + X̂(α0) = X̂(α1) among L/2t+1-
bit integers. This can be handled using our techniques from Section 4, resulting
in equations modulo 2 with less than 2 · L

2t+1 quadratic terms in total.
The fourth type of relations appears when we reach the base multiplication
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of 2-bit integers: e.g., Z(α1) = X(α1)Y (α1), where α ∈ {0, 1, 2}k−2. Let X(α1) =

(x
(α1)
1 , x

(α1)
0 )2, Y (α1) = (y

(α1)
1 , y

(α1)
0 )2 and Z(α1) = (z

(α1)
3 , z

(α1)
2 , z

(α1)
1 , z

(α1)
0 )2.

This relation can then be expressed by the following equations modulo 2, which
contain 6 quadratic terms.

z
(α1)
0 + x

(α1)
0 · y(α1)0 = 0 mod 2;

t
(α1)
1,0 + x

(α1)
1 · y(α1)0 = 0 mod 2; // assign value x

(α1)
1 · y(α1)0 to t

(α1)
1,0

t
(α1)
0,1 + x

(α1)
0 · y(α1)1 = 0 mod 2; // assign value x

(α1)
0 · y(α1)1 to t

(α1)
0,1

z
(α1)
1 + t

(α1)
1,0 + t

(α1)
0,1 = 0 mod 2;

c
(α1)
1 + t

(α1)
1,0 · t

(α1)
0,1 = 0 mod 2; // carry bit

t
(α1)
1,1 + x

(α1)
1 · y(α1)1 = 0 mod 2; // assign value x

(α1)
1 · y(α1)1 to t

(α1)
1,1

z
(α1)
2 + t

(α1)
1,1 + c

(α1)
1 = 0 mod 2;

z
(α1)
3 + t

(α1)
1,1 · c

(α1)
1 = 0 mod 2,

The other types of relations come into the scene when we add up partial products
and their shifts to compute the Z(α)’s and finally reach Z, which are reflected
by equations (26) and (24). To handle the shifts, e.g., left-shifting integer Z(α1)

by L/2t+1 positions, we assign an auxiliary variable Z̃(α1) := 2L/2
t+1 · Z(α1) and

express the relations between bits of Z̃(α1) and Z(α1) as linear equations modulo 2,
as is done for the first type of relation considered above. After performing all the
shifts, we will need to handle a few additions of integers to compute a partial
product such as Z(α) in (26). There, the subtraction by 2L/2

t+1 · (s(α) ·Z(α2)) can
be transformed into an equivalent addition relation. Then, we can represent each
of the addition operations in (26) as linear and quadratic equations modulo 2.

Based on the above discussion, it can be seen that the whole execution of the
Karatsuba algorithm can be expressed as linear and quadratic equations modulo 2.
Combining with the linear equation modulo q from 19, we thus obtain an instance
of the general protocol from Section 3.2. As a result, we achieve a statistical
ZKAoK of committed integers X,Y, Z satisfying XY = Z. The security of the
argument system relies on the binding of the COM used in the interaction and
the binding of the commitment variant used for committing to X,Y, Z. Overall,
the protocol is secure assuming the hardness of SIVPÕ(

√
L·n).

We remark that, in our process of translating the relations in Section 6.1 into
equations modulo 2, for each type of relations, the number of secret bits and the
number of quadratic terms we need to handle are only a constant times larger than
those before translating. Thus, the final numbers N and |T | are of order O(Llog2 3).
Meanwhile, from equation (19), we obtain that m1 + m2 = 4L+ 3m. Therefore,
when repeating the protocol κ = ω(log n) times to achieve negligible soundness
error, the total communication cost is of order

(
O
(
L+m) log q

)
+O(Llog2 3)

)
·κ.

In terms of computation cost, the total number of bit operations performed by
the prover and the verifier is of order O(Llog2 3), i.e., subquadratic in L.
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A Detailed Description of the Protocol of Section 5.2

The tree paths. We walk the paths from y and z to the root u and capture
all the relations as equations modulo q and modulo 2. Let use denote the nodes
on the path from y by d` = y,d`−1, . . . ,d1,d0 = u ∈ {0, 1}k and their siblings
by e`, e`−1, . . . , e1 ∈ {0, 1}k, respectively. Recall that the bits determining this
path are denoted by v`−1, . . . , v0.

Following the construction of the tree from Section 2.1, ∀i ∈ {`− 1, . . . , 1, 0},
we have:

di =

{
hB(di+1, ei+1), if vi = 0;

hB(ei+1,di+1), if vi = 1.
⇔ di = vi · hB(di+1, ei+1) + vi · hB(ei+1,di),

which can be interpreted as:

B0 · (vi ·di+1) + B1 · (vi ·di+1) + B0 · (vi · ei+1) + B1 · (vi · ei+1) = G ·di mod q.

For each i = `− 1, . . . , 0, let
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– di+1 = d?i + d′i, where d?i = vi · di+1 and d′i = vi · di+1.
– ei+1 = e?i + e′i, where e?i = vi · ei+1 and e′i = vi · ei+1.

Then, we have the following equations modulo q:
B0 · d?`−1 + B1 · d′`−1 + B0 · e′`−1 + B1 · e?`−1 −G · d`−1 = 0 mod q;

B0 · d?`−2 + B1 · d′`−2 + B0 · e′`−2 + B1 · e?`−2 −G · d`−2 = 0 mod q;
...

B0 · d?0 + B1 · d′0 + B0 · e′0 + B1 · e?0 = G · u mod q.

(27)

By re-writing the matrix-vector products in 27 as sums of vector-bit products,
and then combining the equations together, we obtain one linear equation modulo
q that contains a total of 5k`− k secret bits.

Meanwhile, we also have the following (5k+1)` linear and quadratic equations
modulo 2, for all i = `− 1, . . . , 0:

vi + vi = 1 mod 2; // The relation between vi and vi

di+1,j + d?i,j + d′i,j = 0 mod 2,∀j ∈ [0, k − 1] // The bits of di+1, d
?
i and di+1

d?i,j + vi · di+1,j = 0 mod 2,∀j ∈ [0, k − 1] // The bits of d?
i and di+1

d′i,j + vi · di+1,j = 0 mod 2,∀j ∈ [0, k − 1] // The bits of d′
i and di+1

e?i,j + vi · ei+1,j = 0 mod 2,∀j ∈ [0, k − 1] // The bits of e?
i and ei+1

e′i,j + vi · ei+1,j = 0 mod 2,∀j ∈ [0, k − 1] // The bits of e′
i and ei+1.

Note that these equations contain (7k + 2)` secret bits and 4k` quadratic terms.
Next, we proceed analogously for the path from z to u, which is determined

by the bits w`−1, . . . , w0, and also obtain a linear equation involving 5k` − k
secret bits over Zq, as well as (5k+ 1)` equations over Z2, which contain (7k+ 2)`
secret bits and 4k` quadratic terms.

The range membership Y < X < Z. To prove this range membership among
k-bit integers, we use the techniques of Section Section 4 and Section 5.1 to express
the relation as equations modulo 2. Then, we obtain 4k equations containing
7k − 2 linear terms and 4k − 2 quadratic terms. We note that, among 7k − 2
linear terms appearing in these equations, 2k of them have previously appeared
in the Merkle tree step: they are exactly the bits of Y and Z.

The addition relation V + 1 = W . This simple relation is captured by the
followings 2`− 1 equations modulo 2.

w0 + v0 = 1 mod 2; c1 + v0 = 0 mod 2

w1 + v1 + c1 = 0 mod 2; c2 + v1 · c1 = 0;
...

w`−1 + v`−1 + c`−1 = 0 mod 2,

where c1, . . . , c`−1 are the carry-bits incurring in the additions. These equations
contain 3`− 1 linear terms and `− 2 quadratic terms. We note that, among the
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3`− 1 linear terms considered here, 2` of them, i.e., the bits of V and W , have
previously appeared in the Merkle tree step.

Putting the above altogether. In the whole process, we obtain 3 equations
modulo q: equation (18) in the commitment layer and two equations in the Merkle
tree step. Using linear algebra, we combine them together and obtain one linear
equation over Zq that contains a total of m1 + m2 := 3k + 2(5k`− k) = 10k`+ k
secret bits.

We also obtain 2(5k+1)`+4k+(2`−1) = 10k`+4k+4`−1 equations over Z2

which contain N := 2(7k+ 2)`+ (7k− 2) + (3`− 1)− 2k− 2` = 14k`+ 5k+ 5`− 3
linear terms and a total of |T | := 8k` + (4k − 2) + (` − 2) = 8k` + 4k + ` − 4
quadratic terms.

We have thus reduced the set non-membership statement to an instance of
the general protocol of Section 3.2. As a result, we obtain a statistical ZKAoK
for the former. In the simulation, we simply run the simulator of Theorem 1.
For extraction, we invoke the extractor of Theorem 1 and then “backtrack” the
transformations described above in order to reconstruct k-bit integers X ′, Y ′, Z ′,
bits r′0,1, . . . , r

′
1,m, and `-bit integers V ′,W ′ such that:

– The bits of X ′, together with bits r′0,1, . . . , r
′
1,m, form a valid opening of c.

– V ′ + 1 = W ′ and the two paths determined by the bits of V ′,W ′ have the
binary-vector representations of Y ′, Z ′ at the leaf level.

– Y ′ < X ′ < Z ′.

We show that the above facts imply that the k-bit integer committed in c
does not belong to Set. For the sake of contradiction, let us assume that a PPT
adversary can produce X ′′ and r′′0,1, . . . , r

′′
1,m which form a valid opening of c,

but X ′′ ∈ Set. It follows from the binding property of the KTX commitment
that X ′′ = X ′. Also, the collision-resistance of the Merkle tree implies that
Y ′, Z ′ ∈ Set. Moreover, since the tree paths associated with these two set elements
are determined by the bits representing V ′ and W ′ = V ′ + 1, respectively, it
comes that Y ′ = SV ′ and Z ′ = SV ′+1. If V ′ = 0, then we will have X ′ < S1. If
V ′ = M , then we will have X ′ > SM . If V ′ ∈ [1,M − 1], then SV ′ and SV ′+1

are consecutive elements of Set and SV ′ < X ′ < SV ′+1. In either case, we obtain
that X ′′ = X ′ 6∈ Set, which yields a contradiction.

The security of our protocol thus relies on the binding property of the com-
mitment COM used in the interaction, the binding property of the commitment
used to commit X, and the security of the Merkle hash tree being used. These
ingredients all rely on the assumption that SIVPÕ(n) is hard.

If we repeat the protocol κ = ω(log n) times to achieve negligible soundness
error, then the total communication cost will be of order(
O
(
(m1 + m2) log q

)
+O

(
N + |T |

))
· κ = O(n log2 q · logM) · κ = Õ(n · logM).

The above description of the protocol assumes that the bit-size k of all
elements {Si}Mi=1 equals k = ndlog qe, which is necessary to build the Merkle tree
in a bottom-up fashion by recursively hashing strings using the same SIS-based
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hash function as in [45]. If set elements {Si}Mi=1 cost less than ndlog qe bits to
represent, we can simply pad them with zeroes until they reach the desired
length. In applications where their binary representation exceeds ndlog qe bits,
we can first apply a collision-resistant hash function in order to have strings of
length k = ndlog qe. In this case, the leaves of the Merkle tree should be sorted
in the lexicographical order of their k-bit hash values. In order to preserve the
compatibility of the whole protocol with zero-knowledge arguments, we can use a
SIS-based hash function HSIS : {0, 1}m → Znq like Ajtai’s function [2] as it allows
proving that a committed m-bit element hashes into some k-bit string which is
not a leaf of the Merkle tree.
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