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Abstract

Two vectorial Boolean functions are “CCZ-equivalent” if there exists an affine
permutation mapping the graph of one to the other. It preserves many of the
cryptographic properties of a function such as its differential and Walsh spectra,
which is why it could be used by Dillon et al. to find the first APN permutation
on an even number of variables. However, the meaning of this form of equivalence
remains unclear. In fact, to the best of our knowledge, it is not known how to par-
tition a CCZ-equivalence class into its Extended-Affine (EA) equivalence classes;
EA-equivalence being a simple particular case of CCZ-equivalence.

In this paper, we characterize CCZ-equivalence as a property of the zeroes in the
Walsh spectrum of a function 𝐹 : F𝑛

2 → F𝑚
2 or, equivalently, of the zeroes in its Dif-

ference Distribution Table. We use this framework to show how to efficiently upper
bound the number of distinct EA-equivalence classes in a given CCZ-equivalence
class. More importantly, we prove that it is possible to go from a specific mem-
ber of any EA-equivalence class to a specific member of another EA-equivalence
class in the same CCZ-equivalence class using an operation called twisting ; so that
CCZ-equivalence can be reduced to the association of EA-equivalence and twist-
ing. Twisting a function is a simple process and its possibility is equivalent to
the existence of a particular decomposition of the function considered. Using this
knowledge, we revisit several results from the literature on CCZ-equivalence and
show how they can be interpreted in light of our new framework.

Our results rely on a new concept, the “thickness” of a space (or linear permu-
tation), which can be of independent interest.

Keywords: Boolean functions · CCZ-Equivalence · EA-equivalence · Twist ·
APN · Butterfly

1 Introduction

Boolean functions and vectorial Boolean functions are crucial components of most sym-
metric cryptosystems. Their differential and linear properties can be used to prove
that a primitive such as a block cipher or a message authentication code is safe from
differential [BS91a, BS91b] and linear [Mat94] cryptanalysis.

The Difference Distribution Table (DDT) of a function 𝐹 : F𝑛
2 → F𝑚

2 is a two-
dimensional array of positive integers of size 2𝑛 × 2𝑚 denoted 𝛿𝐹 such that 𝛿𝐹 (𝑎, 𝑏) is
the number of solutions of the equation

𝐹 (𝑥 + 𝑎) + 𝐹 (𝑥) = 𝑏 .

*This paper was accepted for publication in Finite Fields and their Applications.
†The work of Léo Perrin was supported by a post-doc grant of the Fondation Sciences Mathématiques

de Paris (FSMP).
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The maximum coefficient in the DDT for 𝑎 ̸= 0 is called the differential uniformity of
𝐹 [Nyb94]. The lower it is, the more resilient a cipher using 𝐹 may be against differential
attacks. Similarly, its Linear Approximation Table (LAT) or Walsh spectrum is a two-
dimensional array of signed integers of size 2𝑛 × 2𝑚 denoted 𝒲𝐹 such that

𝒲𝐹 (𝑎, 𝑏) =
∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥+𝑏·𝐹 (𝑥) .

The maximum coefficient in the LAT for 𝑏 ̸= 0 is the linearity of 𝐹 . Again, we want this
coefficient to be as low as possible as this may improve the security of a cipher using 𝐹
against linear attacks.

A function offering ideal protection against differential cryptanalysis is one for which
the differential uniformity is minimal. The optimal differential uniformity is equal to 2
and the functions reaching this bound are called Almost Perfect Non-linear (APN) [NK93].
There are many known infinite classes of APN functions. For example, the Gold
functions defined over the finite field F2𝑛 by the monomials of the form 𝑥2𝑖+1 with
gcd(𝑖, 𝑛) = 1 are APN for all 𝑛 > 1. However, when 𝑛 is even, they are not permuta-
tions. In fact, whether there exists an APN permutation operating on an even number
of variables is an open problem.

It was partially solved by Dillon et al. when they found an APN permutation of
F6
2 [BDMW10]. A more general solution is still missing despite a decomposition of this

permutation in [PUB16] which was followed by several generalizations of the correspond-
ing structure [CDP17, FFW17, LTYW18].

The differential uniformity is preserved by different forms of equivalence between
(vectorial) Boolean functions. For example, it is easy to see that extended-affine equiv-
alence preserves it, where EA-equivalence is defined as follows.

Definition 1 (EA-Equivalence). Two functions 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2

are extended-affine equivalent (EA-equivalent) if there exist two affine permutations
𝐴 : F𝑛

2 → F𝑛
2 , 𝐵 : F𝑚

2 → F𝑚
2 and an affine function 𝐶 : F𝑛

2 → F𝑚
2 such that

𝐹 (𝑥) = (𝐵 ∘𝐺 ∘𝐴)(𝑥) + 𝐶(𝑥) .

The most general form of function equivalence that is known to preserve the differ-
ential uniformity is CCZ-equivalence, of which EA-equivalence is a particular case. It
was named after Carlet, Charpin and Zinoviev who introduced it in [CCZ98].

Definition 2 (CCZ-Equivalence). Two functions 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 are
CCZ-equivalent if there exists an affine permutation 𝒜 of F𝑛

2 × F𝑚
2 such that{︀

(𝑥, 𝐹 (𝑥)) , 𝑥 ∈ F𝑛
2

}︀
= 𝒜

(︀{︀
(𝑥,𝐺(𝑥)) , 𝑥 ∈ F𝑛

2

}︀)︀
.

As EA-equivalence and CCZ-equivalence are equivalence relations, and since EA-
equivalence is a particular case of CCZ-equivalence, it is possible to partition the space
of all functions F𝑛

2 → F𝑚
2 into CCZ-equivalence classes and then to partition each CCZ-

equivalence class into EA-equivalence classes. For brevity, we shorten “EA-equivalence
class” into “EA-class” and “CCZ-equivalence class” into “CCZ-class”.

CCZ-equivalence played a crucial role in allowing Dillon et al. to find an APN
permutation on 6 bits. Indeed, they first found an APN quadratic function, the so-
called “Kim mapping”, and then built a permutation from it in such a way that the
permutation had to be in the same CCZ-class. Since CCZ-equivalence preserves the
differential uniformity, this permutation has to be APN as well.

Despite this usefulness, CCZ-equivalence is not well understood. It was shown by
Budaghyan and Carlet [BC10] to be more general than EA-equivalence but, to the best
of our knowledge, we do not even know how to partition the CCZ-class of a function
into its EA-classes.
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Our Contribution. In this paper, we characterize CCZ-equivalence by identifying a
simple relation between special structures in the LAT of a function 𝐹 : F𝑛

2 → F𝑚
2 (or

equivalently in its DDT) and the EA-classes of the functions CCZ-equivalent to it.
Furthermore, we show that it is possible to navigate between the EA-classes in

the CCZ-class of a function using an operation which we call 𝑡-twisting, where 𝑡 ≤
min(𝑚,𝑛). As a consequence, we show that CCZ-equivalence can be fully described
as the combination of two different forms of equivalences: EA-equivalence and twist-
equivalence. Each 𝑡-twist equivalence class contains at most two functions, in which
case they must have the structures described in Figures 1a and 1b where 𝑇𝑦 : F𝑡

2 → F𝑡
2

must be a permutation for all 𝑦 ∈ F𝑛−𝑡
2 .

𝑇 𝑈

𝑥 𝑦

𝑢 𝑣

𝑡 𝑛− 𝑡

𝑡 𝑚− 𝑡

(a) 𝐹 .

𝑇−1

𝑈

𝑢 𝑦

𝑥 𝑣

𝑡 𝑛− 𝑡

𝑡 𝑚− 𝑡

(b) 𝐺.

Figure 1: Two 𝑡-twist-equivalent functions.

A 𝑡-twist is obtained by applying a particular matrix 𝑀𝑡 called a swap matrix on
{(𝑥, 𝐹 (𝑥)),∀𝑥 ∈ F𝑛

2}. These swap matrices, together with the related concept of thick-
ness of a vector space, will play a crucial role in our proofs. They may also be of inde-
pendent interest: we show in particular that any vector space 𝑉 of F𝑛+𝑚

2 of dimension
𝑛 can be written

𝑉 = (Λ𝑇 ×𝑀𝑡)(𝒱) ,

where 𝒱 = {(𝑥, 0),∀𝑥 ∈ F𝑛
2}, and where Λ is such that Λ𝑇 (𝒱) = 𝒱.

Using this framework, we revisit some results from the literature and show how they
can be explained more intuitively with it. We are also able to provide upper and lower
bounds for the number of EA-equivalence classes in the CCZ-equivalence class of any
function.

Outline. The necessary notations and basic mathematical concepts are introduced
in Section 2. We then present our framework linking structures in the LAT to EA-
classes in Section 3. The remainder of the paper is based on this framework. Twisting
and its relationship with CCZ-equivalence are described in Section 4 where we also
introduce swap matrices and some of their properties. Section 5 presents some results
on partitioning a CCZ-equivalence class into its constitutive EA-equivalence classes. We
then revisit some results from the literature on CCZ-equivalence in light of our results
in Section 6. Section 7 concludes the paper.

2 Preliminaries

We consider vectorial Boolean functions, that is functions mapping F𝑛
2 to F𝑚

2 for some
non-zero 𝑚 and 𝑛. For such a function 𝐹 , the Difference Distribution Table (DDT) is a
2𝑛 × 2𝑚 table 𝛿𝐹 of positive integers such that, for any (𝑎, 𝑏) ∈ F𝑛

2 × F𝑚
2 ,

𝛿𝐹 (𝑎, 𝑏) = #{𝑥 ∈ F𝑛
2 , 𝐹 (𝑥 + 𝑎) + 𝐹 (𝑥) = 𝑏} .

3



Similarly, the Linear Approximation Table (LAT) or Walsh spectrum is a 2𝑛× 2𝑚 table
𝒲𝐹 of signed integers such that, for any (𝑎, 𝑏) ∈ F𝑛

2 × F𝑚
2 ,

𝒲𝐹 (𝑎, 𝑏) =
∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥+𝑏·𝐹 (𝑥) ,

where 𝑦 · 𝑧 denotes the scalar product of two elements (𝑦0, ..., 𝑦𝑘−1) and (𝑧0, ..., 𝑧𝑘−1) of

F𝑘
2 which is given by 𝑦 · 𝑧 =

∑︀𝑘−1
𝑖=0 𝑦𝑖𝑧𝑖.

It is well-known [CV95, BN13] that the DDT and the squared LAT are related by a
Fourier transform:

𝒲2
𝐹 (𝜆, 𝜇) =

∑︁
𝑎∈F𝑛

2

∑︁
𝑏∈F𝑚

2

(−1)𝑎·𝜆+𝑏·𝜇𝛿𝐹 (𝑎, 𝑏) (1)

𝛿𝐹 (𝑎, 𝑏) = 2−(𝑛+𝑚)
∑︁
𝜆∈F𝑛

2

∑︁
𝜇∈F𝑚

2

(−1)𝑎·𝜆+𝑏·𝜇𝒲2
𝐹 (𝜆, 𝜇) . (2)

If 𝐹 : F𝑛
2 → F𝑚

2 is a function and 𝛼 ∈ F𝑚
2 is not equal to 0 then 𝑥 ↦→ 𝛼 · 𝐹 (𝑥)

is a component of 𝐹 . If the Hamming weight of 𝛼 is one, the component is called a
coordinate.

An element 𝑢 ∈ F𝑛
2 is a 𝑐-linear structure for a Boolean function 𝑓 : F𝑛

2 → F2 if
𝑓(𝑥 + 𝑢) + 𝑓(𝑥) = 𝑐 for some constant 𝑐 ∈ F2 and for all 𝑥 ∈ F𝑛

2 .
We use 𝐼𝑘 to denote the identity matrix operating on F𝑘

2 , i.e. a 𝑘 × 𝑘 binary matrix
where the only non-zero coefficients are those on the diagonal.

We use Γ𝐹 to denote the codebook of a function 𝐹 : F𝑛
2 → F𝑚

2 , so that

Γ𝐹 =
{︀

(𝑥, 𝐹 (𝑥)) , 𝑥 ∈ F𝑛
2

}︀
.

We let 𝒱 = {(𝑥, 0), 𝑥 ∈ F𝑛
2} and 𝒱⊥ = {(0, 𝑥) ∈ F𝑚

2 } be two orthogonal subspaces of
F𝑛
2 × F𝑚

2 .

2.1 Particular Linear Permutations

Two types of affine permutations of F𝑛
2 × F𝑚

2 will play a crucial role in this paper: EA
(and EL) mappings, and admissible mappings. In this paper, we always represent a
linear function 𝐿 from F𝑛

2 into F𝑚
2 by an 𝑚× 𝑛-matrix 𝑀 such that 𝐿(𝑥) = 𝑀𝑥 where

the input 𝑥 ∈ F𝑛
2 is seen as an 𝑛-bit column vector.

Definition 3 (EA-mapping, EL-mapping). We call EL-mapping of F𝑛
2 × F𝑚

2 a linear
permutation of this set whose matrix representation is of the shape[︂

𝑎 0
𝑏 𝑐

]︂
,

where 𝑎 is an 𝑛-bit linear permutation, 𝑐 is an 𝑚-bit linear permutation and 𝑏 : F𝑛
2 → F𝑚

2

is a linear function. We call EA-mapping of F𝑛
2 × F𝑚

2 an affine permutation of this set
whose linear part is an EL-mapping.

The set of all EL-mappings (resp. EA-mappings) for given 𝑛 and 𝑚 is denoted ℳEL

(resp. ℳEA).

It is worth noticing that the inverse of an EL-mapping (resp. EA-mapping) is an
EL-mapping (resp. EA-mapping) too because[︂

𝑎 0
𝑏 𝑐

]︂−1

=

[︂
𝑎−1 0

𝑐−1𝑏𝑎−1 𝑐−1

]︂
.
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As the composition of two EL-mappings is also an EL-mapping and as the identity is one,
we can conclude that ℳEL (resp. ℳEA) is a group under composition. Furthermore,
such permutations have a close relationship with the vector space 𝒱 = {(𝑥, 0), 𝑥 ∈ F𝑛

2}
given by the following lemma.

Lemma 1. EL-mappings are exactly the linear mappings whose transpose maps 𝒱 to
itself. Therefore, if ℒ is a linear permutation of F𝑛+𝑚

2 such that ℒ(𝒱) = 𝒱, then ℒ𝑇 ∈
ℳEL.

Two functions 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 are CCZ-equivalent (resp. EA-
equivalent) if and only if there exists an affine permutation 𝒜 of F𝑛

2 × F𝑚
2 (resp. an

EA-mapping) such that
𝒜 (Γ𝐹 ) = Γ𝐺 .

In general, given a function 𝐹 : F𝑛
2 → F𝑚

2 and an affine permutation 𝒜 of F𝑛
2 × F𝑚

2 ,
there a priori does not exist a function 𝐺 such that

𝒜
(︀
{(𝑥, 𝐹 (𝑥)),∀𝑥 ∈ F𝑛

2}
)︀

= {(𝑥,𝐺(𝑥)),∀𝑥 ∈ F𝑛
2} .

Indeed, it is necessary for 𝐺 to be well-defined that the left-hand side of the output of
𝑥 ↦→ 𝒜(𝑥, 𝐹 (𝑥)) is a permutation. As a consequence, only a few permutations 𝒜 yield
valid functions 𝐺. The following definition captures this intuition.

Definition 4 (Admissible affine permutations). Let 𝐹 be a function from F𝑛
2 to F𝑚

2 .
We say that the affine permutation 𝒜 of F𝑛

2 × F𝑚
2 is admissible for 𝐹 if we can define

a function 𝐺 such that
𝒜
(︀
Γ𝐹

)︀
= Γ𝐺 .

If 𝒜(𝑥, 𝑦) = (𝒜1(𝑥, 𝑦),𝒜2(𝑥, 𝑦)) with 𝒜1 : F𝑛
2 ×F𝑚

2 → F𝑛
2 and 𝒜2 : F𝑛

2 ×F𝑚
2 → F𝑚

2 , then
𝒜 is admissible for 𝐹 if and only if 𝑥 ↦→ 𝒜1(𝑥, 𝐹 (𝑥)) is a permutation of F𝑛

2 .

For example, an EA-mapping is always admissible, which is why EA-equivalence
is well-defined. On the other hand there are functions for which there are admissible
mappings which are not EA-mappings. That is why CCZ-equivalence is more general
than EA-equivalence.

Another simple type of admissible mapping corresponds to the functional inversion.
Indeed, if 𝑃 is a permutation of F𝑛

2 , then the following mapping ℒ is admissible

ℒ =

[︂
0 𝐼𝑛
𝐼𝑛 0

]︂
as it maps the graph of 𝑃 to that of 𝑃−1.

CCZ-equivalence and equivalence of codes. The main cryptographic properties
(e.g. the APN property, the linearity...) can be interpreted as conditions on some
binary linear codes, as first shown in [CCZ98]. To this end, any function 𝐹 : F𝑛

2 →
F𝑚
2 is associated to the linear binary code 𝒞𝐹 of length 2𝑛 defined by the following

(𝑛 + 𝑚 + 1) × 2𝑛 generator matrix

𝐺𝐹 =

⎡⎣ 1 · · · 1 · · · 1
0 · · · 𝑥𝑖 · · · 𝑥2𝑛−1

𝐹 (0) · · · 𝐹 (𝑥𝑖) · · · 𝐹 (𝑥2𝑛−1)

⎤⎦ , (3)

where {0, 𝑥1, . . . , 𝑥2𝑛−1} = F𝑛
2 and each entry in the matrix is viewed as a binary column-

vector. In other words, 𝒞𝐹 is the linear subspace of F2𝑛

2 spanned by the rows of 𝐺𝐹 . It
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is worth noticing that the code 𝒞𝐹 has dimension (𝑛 + 𝑚 + 1) if and only if 𝐹 does not
have any linear component, which is the situation we focus on [CCD00, Th. 2.7].

Obviously, two linear binary codes 𝐶1 and 𝒞2 of length 𝑛 and dimension 𝑘 with
generator matrices 𝐺1 and 𝐺2 are equal if and only if there exists some 𝑘× 𝑘 invertible
matrix 𝑀 such that 𝐺2 = 𝑀𝐺1. Moreover, two linear binary codes are said equiva-
lent [MS77, Page 39] if they differ only in the order of symbols, i.e. if there exist an
𝑛× 𝑛 permutation matrix 𝑃 and a 𝑘 × 𝑘 invertible matrix 𝑀 such that 𝐺2 = 𝑀𝐺1𝑃 .

It directly follows from this definition that CCZ-equivalence coincides with the usual
notion of equivalence between the corresponding codes 𝒞𝐹 as pointed out in [BDKM09].

Proposition 1. [BDKM09, Th. 6.2] Let 𝐹1 and 𝐹2 be two functions from F𝑛
2 to F𝑚

2

without any linear component. Then, 𝐹1 and 𝐹2 are CCZ-equivalent if and only if the
linear codes 𝒞𝐹1

and 𝒞𝐹2
are equivalent.

More precisely, the affine permutation 𝒜 of F𝑛+𝑚
2 of the form 𝒜(𝑥) = 𝑀𝑥+ 𝑐 where

𝑀 is an (𝑛+𝑚)× (𝑛+𝑚) invertible matrix and 𝑐 ∈ F𝑛+𝑚
2 satisfies Γ𝐺 = 𝒜

(︀
Γ𝐹

)︀
if and

only if there exists a permutation matrix 𝑃 such that 𝐺𝐹2
= 𝑀 ′𝐺𝐹1

𝑃 where

𝑀 ′ =

⎡⎢⎢⎣
1 0 · · · 0

𝑐 𝑀

⎤⎥⎥⎦ .

2.2 CCZ-Equivalence, DDT and LAT

In Section 3, we identify necessary and sufficient conditions for a mapping 𝒜 to be
admissible. As these conditions depend on the DDT and LAT of the function, we first
recall some well-known results regarding them.

Let 𝐹 be a function from F𝑛
2 to F𝑚

2 and 𝒜 be an affine permutation of F𝑛
2 × F𝑚

2 :

𝒜 : F𝑛
2 × F𝑚

2 → F𝑛
2 × F𝑚

2

(𝑥, 𝑦) ↦→ (𝒜1(𝑥, 𝑦),𝒜2(𝑥, 𝑦))

which is admissible for 𝐹 . We define

𝐹1 : 𝑥 ↦→ 𝒜1(𝑥, 𝐹 (𝑥)) and 𝐹2 : 𝑥 ↦→ 𝒜2(𝑥, 𝐹 (𝑥))

and we note that, since 𝒜 is admissible, 𝐹1 is a permutation of F𝑛
2 . We can then define

the function 𝐺 from F𝑛
2 to F𝑚

2 by

𝐺 = 𝐹2 ∘ 𝐹−1
1 (𝑥) = 𝒜2

(︀
𝐹−1
1 (𝑥), 𝐹 ∘ 𝐹−1

1 (𝑥)
)︀
.

Proposition 2. Let 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 be such that Γ𝐺 = 𝒜(Γ𝐹 ) for some
affine permutation 𝒜 of F𝑛+𝑚

2 . Let ℒ denote the linear part of 𝒜, i.e., 𝒜(𝑥) = ℒ(𝑥) + 𝑐
for some constant 𝑐 ∈ F𝑛+𝑚

2 . Then the DDT and LAT of 𝐺 are given by

𝛿𝐺(𝑎, 𝑏) = 𝛿𝐹 (ℒ−1(𝑎, 𝑏)) ,

𝒲𝐺(𝛼, 𝛽) = (−1)𝑐·(𝛼,𝛽)𝒲𝐹 (ℒ𝑇 (𝛼, 𝛽)) .

Proof. By definition, 𝛿𝐺(𝑎, 𝑏) equals the number of pairs (𝑥, 𝑥′) of elements in F𝑛
2 such

that
𝑥 + 𝑥′ = 𝑎 and 𝐺(𝑥) + 𝐺(𝑥′) = 𝑏

or equivalently, the number of 𝑦 = 𝐹−1
1 (𝑥) and 𝑦′ = 𝐹−1

1 (𝑥′) such that

𝐹1(𝑦) + 𝐹1(𝑦′) = 𝑎 and 𝐹2(𝑦) + 𝐹2(𝑦′) = 𝑏
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This system corresponds to

ℒ1 (𝑦 + 𝑦′, 𝐹 (𝑦) + 𝐹 (𝑦′)) = 𝑎 and ℒ2 (𝑦 + 𝑦′, 𝐹 (𝑦) + 𝐹 (𝑦′)) = 𝑏

where ℒ1 and ℒ2 are the linear parts of 𝒜1 and 𝒜2. Equivalently

(𝑦 + 𝑦′, 𝐹 (𝑦) + 𝐹 (𝑦′)) = ℒ−1(𝑎, 𝑏) .

The number of pairs satisfying this equation is then 𝛿𝐹 (ℒ−1(𝑎, 𝑏)).
Let us now look at the LAT. The value of 𝒲𝐺(𝛼, 𝛽) is determined by the number of

𝑥 ∈ F𝑛
2 such that

𝛽 ·𝐺(𝑥) + 𝛼 · 𝑥 = 0 .

By setting 𝑦 = 𝐹−1
1 (𝑥), the left-hand term of this equation can be replaced by

𝛽 · 𝐹2(𝑦) + 𝛼 · 𝐹1(𝑦) = 𝛽 · 𝒜2(𝑦, 𝐹 (𝑦)) + 𝛼 · 𝒜1(𝑦, 𝐹 (𝑦))

= 𝛽 · ℒ2(𝑦, 𝐹 (𝑦)) + 𝛼 · ℒ1(𝑦, 𝐹 (𝑦)) + 𝑐 · (𝛼, 𝛽)

= (𝛼, 𝛽) · ℒ(𝑦, 𝐹 (𝑦)) + 𝑐 · (𝛼, 𝛽)

= ℒ𝑇 (𝛼, 𝛽) · (𝑦, 𝐹 (𝑦)) + 𝑐 · (𝛼, 𝛽)

by using that, for any linear function ℒ and any pair (𝑥, 𝑦), 𝑥 · ℒ(𝑦) = ℒ𝑇 (𝑥) · 𝑦 where
ℒ𝑇 is the linear function corresponding to the transpose of the matrix defining ℒ.

As a consequence, if 𝒜 is an EA-mapping then the correspondence between the DDT
of 𝐹 and that of 𝐺 is given by an EL-mapping and the correspondence between their
LATs is given by the transpose of an EL-mapping.

3 Table-Based Characterization of CCZ-Equivalence

In this section, we identify a relation between the mappings admissible for a function
𝐹 : F𝑛

2 → F𝑚
2 and the vector spaces of dimension 𝑛 in the positions of the coefficients

equal to 0 in its LAT. An identical relationship exists between EA-classes and vector
spaces of zeroes of dimension 𝑚 in the DDT. These are described in Theorem 1.

The relationship between these vector spaces and CCZ-equivalence was first hinted
in [BDMW10] where Dillon et al. found an APN permutation in dimension six through
finding a permutation in the CCZ-class of an APN function.

3.1 Vector Spaces of Zeroes

Recall that 𝒱 = {(𝑥, 0), 𝑥 ∈ F𝑛
2} and 𝒱⊥ = {(0, 𝑥) ∈ F𝑚

2 } are two subspaces of F𝑛
2 ×F𝑚

2 ,
the first being of dimension 𝑛 and the second of dimension 𝑚. Note that the span of
𝒱 ∪ 𝒱⊥ is F𝑛

2 × F𝑚
2 .

In this section, we investigate the roles played by some specific vector spaces found
in sets defined via the LAT or the DDT of a function.

Definition 5 (Walsh Zeroes). Let 𝐹 be a function from F𝑛
2 to F𝑚

2 . We call Walsh
zeroes of 𝐹 the set

𝒵𝐹 =
{︀

(𝛼, 𝛽) ∈ F𝑛
2 × F𝑚

2 , 𝒲𝐹 (𝛼, 𝛽) = 0
}︀
∪ (0, 0) .

Definition 6 (Impossible Differential Set). For a function 𝐹 from F𝑛
2 to F𝑚

2 , we denote
𝒵𝐷

𝐹 the impossible differential set of 𝐹 . It is defined as

𝒵𝐷
𝐹 = {(𝑎, 𝑏) ∈ F𝑛

2 × F𝑚
2 , 𝛿𝐹 (𝑎, 𝑏) = 0} ∪ (0, 0) .
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Using the correspondence between the DDT and the squared LAT, we observe that
these two sets are related in the following sense.

Proposition 3. Let 𝐹 be a function from F𝑛
2 to F𝑚

2 . Let 𝑉 be a linear subspace of
F𝑛
2 × F𝑚

2 of dimension 𝑛. Then, 𝑉 ⊆ 𝒵𝐹 if and only if 𝑉 ⊥ ⊆ 𝒵𝐷
𝐹 .

Proof. Using Relation (1), we get that, for any linear subspace 𝑉 of F𝑛
2 × F𝑚

2 ,∑︁
(𝜆,𝜇)∈𝑉

𝒲2
𝐹 (𝜆, 𝜇) =

∑︁
(𝜆,𝜇)∈𝑉

∑︁
(𝑎,𝑏)∈F𝑛

2 ×F𝑚
2

(−1)𝑎·𝜆+𝑏·𝜇𝛿𝐹 (𝑎, 𝑏)

=
∑︁

(𝑎,𝑏)∈F𝑛
2 ×F𝑚

2

𝛿𝐹 (𝑎, 𝑏)

⎛⎝ ∑︁
(𝜆,𝜇)∈𝑉

(−1)𝑎·𝜆+𝑏·𝜇

⎞⎠
= 2dim(𝑉 )

∑︁
(𝑎,𝑏)∈𝑉 ⊥

𝛿𝐹 (𝑎, 𝑏)

where the last equality is deduced from the fact that∑︁
(𝜆,𝜇)∈𝑉

(−1)𝑎·𝜆+𝑏·𝜇 =

{︃
2dim(𝑉 ) if (𝑎, 𝑏) ∈ 𝑉 ⊥

0 otherwise.

Obviously, 𝑉 ⊆ 𝒵𝐹 if and only if∑︁
(𝜆,𝜇)∈𝑉

𝒲2
𝐹 (𝜆, 𝜇) = 𝒲2

𝐹 (0, 0) = 22𝑛.

Moreover, we have proved that∑︁
(𝜆,𝜇)∈𝑉

𝒲2
𝐹 (𝜆, 𝜇) = 22𝑛 if and only if

∑︁
(𝑎,𝑏)∈𝑉 ⊥

𝛿𝐹 (𝑎, 𝑏) = 22𝑛−dim𝑉 .

Using that 𝛿𝐹 (0, 0) = 2𝑛, we deduce that, when dim𝑉 = 𝑛, this equivalently means
that 𝑉 ⊥ ⊆ 𝒵𝐷

𝐹 .

Lemma 2 then shows that the Walsh zeroes (resp. the impossible differential sets)
of two CCZ-equivalent functions are strongly related.

Lemma 2. For two functions 𝐹 and 𝐺 mapping F𝑛
2 to F𝑚

2 , if Γ𝐺 = 𝒜(Γ𝐹 ) for some
affine permutation 𝒜 of F𝑛+𝑚

2 , then

𝒵𝐺 = (ℒ𝑇 )−1(𝒵𝐹 ) and 𝒵𝐷
𝐺 = ℒ(𝒵𝐷

𝐹 ) ,

where ℒ is the linear part of 𝒜.

These sets must contain some specific vector spaces in all cases, as formally stated
by the following proposition.

Proposition 4. Let 𝐹 be a function from F𝑛
2 to F𝑚

2 , let 𝒵𝐹 be its Walsh zeroes and let
𝒵𝐷

𝐹 be its impossible differential set. Then the following is always true:

𝒱 ⊆ 𝒵𝐹 and 𝒱⊥ ⊆ 𝒵𝐷
𝐹 .

Proof. We prove the proposition in terms of Walsh zeroes. The formulation in terms of
impossible differential set then follows directly using Proposition 3.

If (𝑎, 𝑏) ∈ 𝒱, then 𝑏 = 0. For all such elements with 𝑎 ̸= 0,

𝒲𝐹 (𝑎, 𝑏) =
∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥+0·𝐹 (𝑥) =
∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥 = 0,

so that (𝑎, 𝑏) ∈ 𝒵𝐹 . As we have imposed (0, 0) ∈ 𝒵𝐹 , we conclude that 𝒱 ⊆ 𝒵𝐹 for any
𝐹 .

8



The following theorem is what most of our results are based on. It gives a simple
necessary and sufficient condition for an affine mapping to be admissible.

Theorem 1. Let 𝐹 be a function from F𝑛
2 to F𝑚

2 , let 𝒜 be an affine permutation of
F𝑛
2 × F𝑚

2 , and ℒ its linear part. Then, the following three statements are equivalent:

1. 𝒜 is admissible for 𝐹

2. ℒ𝑇 (𝒱) ⊆ 𝒵𝐹

3. ℒ−1(𝒱⊥) ⊆ 𝒵𝐷
𝐹 .

Proof. Recall that 𝒜 is admissible for 𝐹 if and only if 𝑥 ↦→ ℒ1(𝑥, 𝐹 (𝑥)) is a permutation,
where ℒ(𝑥, 𝑦) = (ℒ1(𝑥, 𝑦),ℒ2(𝑥, 𝑦)).

1 ⇔ 2. The function 𝑥 ↦→ ℒ1(𝑥, 𝐹 (𝑥)) is a permutation if and only if all of its compo-
nents are balanced, i.e. if and only if∑︁

𝑥∈F𝑛
2

(−1)𝑎·ℒ1(𝑥,𝐹 (𝑥)) = 0, ∀𝑎 ∈ (F𝑛
2 )* ,

which can be re-written as∑︁
𝑥∈F𝑛

2

(−1)(𝑎,0)·ℒ(𝑥,𝐹 (𝑥)) = 0, ∀𝑎 ∈ (F𝑛
2 )* .

Using the fact that (𝑎, 𝑏) · ℒ(𝑥, 𝑦) = ℒ𝑇 (𝑎, 𝑏) · (𝑥, 𝑦), we have that ℒ (and 𝒜) are
admissible for 𝐹 if and only if∑︁

𝑥∈F𝑛
2

(−1)ℒ
𝑇 (𝑎,0)·(𝑥,𝐹 (𝑥)) = 0, ∀𝑎 ∈ (F𝑛

2 )* ,

which is equivalent to saying that ℒ𝑇 (𝒱) ⊆ 𝒵𝐹 .

2 ⇔ 3. From Proposition 3, we have that ℒ𝑇 (𝒱) ⊆ 𝒵𝐹 if and only if
(︀
ℒ𝑇 (𝒱)

)︀⊥ ⊆ 𝒵𝐷
𝐹 .

We now use the fact that an element 𝑥 belongs to
(︀
ℒ𝑇 (𝒱)

)︀⊥
if and only if it

satisfies for all 𝑣 ∈ 𝒱
𝑥 · ℒ𝑇 (𝑣) = 0 ⇔ ℒ(𝑥) · 𝑣 = 0 .

This equivalently means that ℒ(𝑥) belongs to 𝒱⊥, i.e., 𝑥 ∈ ℒ−1(𝒱⊥).

In terms of codes. It is well-known that the weight distribution of the code 𝒞𝐹
associated to 𝐹 carries exactly the same information as the squared Walsh spectrum of
the function [CCZ98, BDKM09]. Indeed, the weights of all codewords in 𝒞𝐹 correspond
to

𝒲 = {wt ((𝜀, 𝑎, 𝑏)𝐺𝐹 ) , 𝜀 ∈ F2, 𝑎 ∈ F𝑛
2 , 𝑏 ∈ F𝑚

2 }

where 𝐺𝐹 is the generator matrix defined by (3). Using that

wt ((𝜀, 𝑎, 𝑏)𝐺𝐹 ) = 2𝑛−1 + (−1)𝜀+1𝒲𝐹 (𝑎, 𝑏) ,

we deduce that
𝒲 =

{︀
2𝑛−1 ±

⃒⃒
𝒲𝐹 (𝑎, 𝑏)

⃒⃒
, 𝑎 ∈ F𝑛

2 , 𝑏 ∈ F𝑚
2

}︀
.

Therefore, the Walsh zeroes of 𝐹 , 𝒵𝐹 , correspond to the balanced codewords in 𝒞𝐹 .
Moreover, any linear subspace of dimension 𝑛 in 𝒵𝐹 coincides with a subcode of 𝒞𝐹
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of dimension (𝑛 + 1), composed of the all-zero word, the all-one word and balanced
codewords. It is well-known that any code with this weight distribution is equivalent
to the first-order Reed-Muller code (i.e., the extended Simplex code) [CV09]. It follows
that Theorem 1 equivalently means that there is a correspondence between admissible
mappings for 𝐹 and the first-order Reed-Muller subcodes of 𝒞𝐹 . This property has
been already observed by Dillon et al. [BDMW10] with a slightly different formulation
since they focused on functions with 𝐹 (0) = 0 and considered the simplex subcodes of
a shortened version of 𝒞𝐹 .

3.2 A First Partition of CCZ-Classes

The mappings admissible for a given function 𝐹 : F𝑛
2 → F𝑚

2 are then exactly the map-
pings whose transpose of the linear part maps 𝒱 to a linear subspace of 𝒵𝐹 . In order to
further characterize the CCZ-class of 𝐹 , we then gather together all affine permutations
having the same ℒ𝑇 (𝒱).

Definition 7. Let 𝑉 be a linear subspace of F𝑛+𝑚
2 such that dim𝑉 = 𝑛. We denote by

𝒮(𝑉 ) the set of all affine permutations of F𝑛+𝑚
2 whose linear part ℒ satisfies ℒ𝑇 (𝒱) = 𝑉 .

We have then proved that the set of all mappings admissible for 𝐹 corresponds to
the union of all 𝒮(𝑉 ), where 𝑉 varies in the set of all 𝑛-dimensional linear spaces in 𝒵𝐹 .

The following lemma gives a simple relation between EA-classes and the sets 𝒮(𝑉 ).

Lemma 3. Let 𝐹 : F𝑛
2 → F𝑚

2 , 𝐺 : F𝑛
2 → F𝑚

2 and 𝐺′ : F𝑛
2 → F𝑚

2 be three functions such
that Γ𝐺 = 𝒜(Γ𝐹 ) and Γ𝐺′ = 𝒜′(Γ𝐹 ) for some affine permutations 𝒜 and 𝒜′ of F𝑚+𝑛

2 .
If both 𝒜 and 𝒜′ belong to the same 𝒮(𝑉 ) for some 𝑛-dimensional linear space 𝑉 ,

then 𝐺 and 𝐺′ are EA-equivalent.

Proof. Let ℒ and ℒ′ denote the linear parts of 𝒜 and 𝒜′. The two affine permutations
𝒜 and 𝒜′ belong to the same 𝒮(𝑉 ) if and only if ℒ𝑇 (𝒱) = ℒ′𝑇 (𝒱), or equivalently
((ℒ𝑇 )−1 ∘ ℒ′𝑇 )(𝒱) = 𝒱. As (ℒ′ ∘ ℒ−1)𝑇 leaves 𝒱 unchanged, Lemma 1 imposes the
existence of an EL-mapping Λ such that (ℒ′ ∘ ℒ−1) = Λ. We deduce that ℒ′ = Λ × ℒ.

We know from the hypothesis that Γ𝐺′ = ℒ′(Γ𝐹 ) + 𝑐′ for some constant 𝑐′ ∈ F𝑛+𝑚
2 .

Using the equality we established in the previous paragraph, we deduce that

Γ𝐺′ = (Λ ∘ ℒ)(Γ𝐹 ) + 𝑐′ = Λ(Γ𝐺 + 𝑐) + 𝑐′ = Λ(Γ𝐺) + 𝑐′′

for some constant 𝑐′′ ∈ F𝑛+𝑚
2 . Since Λ is an EL-mapping, we thus have that 𝐺 and 𝐺′

are EA-equivalent.

In other words, if two mappings 𝒜 and 𝒜′ are both admissible for 𝐹 because of the
same subspace of 𝒵𝐹 , then applying them to the codebook of 𝐹 yields two functions
that are in the same EA-class. We deduce the following direct corollary.

Corollary 1. The number of EA-classes in the CCZ-class of a function 𝐹 : F𝑛
2 → F𝑚

2

is upper-bounded by the number of vector spaces of dimension 𝑛 in 𝒵𝐹 .

While we have established that two admissible mappings in the same set 𝒮(𝑉 ) lead to
two functions in the same EA-class, the converse is not true. A simple counterexample
appears when 𝐹 : F𝑛

2 → F𝑛
2 is an involution. In this case,[︂
𝐼𝑛 0
0 𝐼𝑛

]︂
⏟  ⏞  

ℒ

(Γ𝐹 ) =

[︂
0 𝐼𝑛
𝐼𝑛 0

]︂
⏟  ⏞  

ℒ′

(Γ𝐹 )

so that ℒ and ℒ′ send Γ𝐹 to the same EA-class (namely that of 𝐹 ) despite the fact that
ℒ(𝒱) = 𝒱 ≠ ℒ′(𝒱) = 𝒱⊥.
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3.3 Thickness and its Properties

We now introduce a new quantity, named thickness, related to any vector space in
F𝑛+𝑚
2 which is invariant under EL-mappings but not under general linear permuta-

tions of F𝑛+𝑚
2 . We naturally extend this definition to obtain the thickness of a linear

permutation.

Definition 8 (Thickness). Let 𝑉 be a vector space of F𝑛+𝑚
2 of dimension 𝑛. We call

thickness of 𝑉 the dimension of the projection of 𝑉 on 𝒱⊥. It is denoted 𝑡(𝑉 ). If ℒ is
a linear permutation of F𝑛+𝑚

2 such that 𝑉 = ℒ(𝒱) and such that

ℒ =

[︂
𝑎 𝑏
𝑐 𝑑

]︂
,

then 𝑡(𝑉 ) = rank(𝑐).
We thus define the thickness of a linear permutation of F𝑛+𝑚

2 as the rank of its
bottom left block matrix of dimension 𝑚× 𝑛.

The thickness of a vector space (or of a linear permutation) of F𝑛+𝑚
2 is an integer

in {0, ...,min(𝑚,𝑛)}.

This thickness has multiple properties formalized by the following lemma.

Lemma 4 (Thickness Properties). Thickness is not influenced by EL-mappings. More
formally, the following two points always hold.

1. Let ℒ : F𝑛+𝑚
2 → F𝑛+𝑚

2 be a linear permutation and let Λ1 and Λ2 be two EL-
mappings. Then

𝑡(ℒ) = 𝑡(Λ𝑇
2 × ℒ× Λ𝑇

1 ) .

2. Let 𝑉 ⊂ F𝑛+𝑚
2 be a vector space of dimension 𝑛 and Λ be an EL-mapping. Then

𝑡(Λ𝑇 (𝑉 )) = 𝑡(𝑉 ).

Proof. We prove the first point. The second follows directly.
Let Λ1,Λ2 and ℒ be as in the lemma. Due to their structure, Λ𝑇

1 and Λ𝑇
2 are such

that

Λ𝑇
1 =

[︂
𝑎 𝑏
0 𝑐

]︂
and Λ𝑇

2 =

[︂
𝑎′ 𝑏′

0 𝑐′

]︂
for some linear permutations 𝑎 and 𝑎′ (resp. 𝑐 and 𝑐′) of F𝑛

2 (resp. F𝑚
2 ). We also write

ℒ =

[︂
𝑑 𝑒
𝑓 𝑔

]︂
,

so that 𝑡(ℒ) = rank(𝑓) and that the bottom-left block matrix of Λ𝑇
2 ×ℒ×Λ𝑇

1 is equal to
𝑐′𝑓𝑎. As 𝑐′ and 𝑎 are permutations, we have that rank(𝑐′𝑓𝑎) = rank(𝑓) and thus that
𝑡(ℒ) = 𝑡(Λ𝑇

2 ∘ ℒ ∘ Λ𝑇
1 ).

It is worth noticing that we cannot alternatively consider the dimension of the pro-
jection of 𝑉 on 𝒱 instead of its projection on 𝒱⊥, since this second quantity is not
invariant under EL-mappings.

We now use the concept of thickness to introduce a new quantity which is invariant
under EA-equivalence but not under CCZ-equivalence.

Definition 9 (Thickness Spectrum of a Function). Let 𝐹 : F𝑛
2 → F𝑚

2 be a function and
let Σ𝐹 be the set of all vector spaces of dimension 𝑛 in 𝒵𝐹 . The thickness spectrum of
𝐹 is the set of all pairs of positive integers (𝑡𝑖, 𝑁𝑖) such that, for all 𝑖:

# {𝑉 ∈ Σ𝐹 , 𝑡(𝑉 ) = 𝑡𝑖} = 𝑁𝑖 > 0 .
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For example, the thickness spectrum of a function always contains (0, 1) as 𝒱 is
always in 𝒵𝐹 and it is the only space of dimension 𝑛 with a thickness of 0.

Lemma 4 directly implies the following proposition.

Proposition 5. If two functions 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 are EA-equivalent,
then they have the same thickness spectra.

However, we will detail in Section 6.3 some examples of functions in the same CCZ-
class with different thickness spectra. It then follows that such functions belong to
distinct EA-classes.

4 Twist and CCZ-Equivalence

As we have established, a CCZ-class can be partitioned into its constitutive EA-classes
using vector spaces of zeroes in the LAT or in the DDT of the function. In this section, we
show that it is always possible to go from an EA-class to another in the same CCZ-class
by applying a simple operation called 𝑡-twisting. Thus, together with EA-mappings,
𝑡-twists fully describe CCZ-equivalence.

The 𝑡-twist is closely related with a type of matrix called “swap matrix” which
provides a link between the thickness of a vector space and a particular decomposition
of it.

4.1 Function Twisting

In order to introduce function twisting, we first need to describe an object called swap
matrix.

Let 𝑒0, ..., 𝑒𝑝−1 be the canonical basis of F𝑝
2 for any 𝑝. We define the linear projection

𝜌𝑖,𝑗 as follows:

𝜌𝑖,𝑗

(︃
𝑝−1∑︁
𝑘=0

𝜆𝑘𝑒𝑘

)︃
=

𝑗−1∑︁
𝑘=𝑖

𝜆𝑘𝑒𝑘 ,

so that 𝜌0,𝑡 + 𝜌𝑡,𝑝 = 𝐼𝑝. If 𝐴 is an 𝑛 × 𝑛 matrix, then 𝜌𝑖,𝑗 × 𝐴 is obtained by setting
all rows in 𝐴 with index not in {𝑖, ..., 𝑗 − 1} to 0. Conversely, 𝐴 × 𝜌𝑖,𝑗 is obtained by
setting all columns with index not in {𝑖, ..., 𝑗 − 1} in 𝐴 to 0.

Definition 10 (Swap Matrix). Let 𝑚,𝑛 be non-zero integers and let 𝑡 ≤ min(𝑚,𝑛).
The 𝑡-swap matrix, denoted 𝑀𝑡, is an (𝑛 + 𝑚)-bit linear permutation defined as

𝑀𝑡 =

[︂
𝜌𝑡,𝑛 𝜌0,𝑡
𝜌0,𝑡 𝜌𝑡,𝑚

]︂
=

⎡⎢⎢⎣
0 0 𝐼𝑡 0
0 𝐼𝑛−𝑡 0 0
𝐼𝑡 0 0 0
0 0 0 𝐼𝑚−𝑡

⎤⎥⎥⎦ .

Swap matrices derive their name from the fact that they simply swap two 𝑡-bit parts
of their input. Indeed, if (𝑎, 𝑏, 𝑐, 𝑑) is a tuple from F𝑡

2 × F𝑛−𝑡
2 × F𝑡

2 × F𝑚−𝑡
2 then

𝑀𝑡 × [𝑎 𝑏 𝑐 𝑑]𝑇 = [𝑐 𝑏 𝑎 𝑑]𝑇 .

For any 𝑡, 𝑀𝑡 is an orthogonal involution:

𝑀𝑡 = 𝑀𝑇
𝑡 = 𝑀−1

𝑡 .

A particular case of such a matrix is obtained when 𝑡 = 𝑚 = 𝑛. In this case,

𝑀𝑛 =

[︂
0 𝐼𝑛
𝐼𝑛 0

]︂
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and applying this matrix to Γ𝐹 for a permutation 𝐹 : F𝑛
2 → F𝑛

2 yields Γ𝐹−1 . Conversely,
if 𝑡 = 0 then 𝑀0 is the identity.

Using such matrices for 0 ≤ 𝑡 ≤ min(𝑚,𝑛), we will be able to define a more general
operation which we call function twisting. Let 𝐹 : F𝑛

2 → F𝑚
2 be a function and let 𝑡 be

an integer such that 0 ≤ 𝑡 ≤ min(𝑛,𝑚). Then F𝑛
2 can be identified with F𝑡

2 × F𝑛−𝑡
2 , F𝑚

2

with F𝑡
2 × F𝑚−𝑡

2 and 𝐹 can be written as

𝐹 (𝑥, 𝑦) = (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) where

{︃
∀𝑦 ∈ F𝑛−𝑡

2 , 𝑇𝑦 : F𝑡
2 → F𝑡

2

∀𝑥 ∈ F𝑡
2, 𝑈𝑥 : F𝑛−𝑡

2 → F𝑚−𝑡
2 .

This decomposition is represented in Figure 2. We call (𝑇,𝑈) the TU-projection of 𝐹
for 𝑡.

𝑇 𝑈

𝑥 𝑦

𝑢 𝑣

𝑡 𝑛− 𝑡

𝑡 𝑚− 𝑡

Figure 2: TU projection.

In [BLNW12], Bogdanov et al. showed that the existence of a balanced restriction of
a function 𝐹 : F𝑛

2 → F𝑚
2 is equivalent to a particular condition on 𝒵𝐹 . In the following

proposition, we state a particular case of their Proposition 1 and give a similar condition
based on 𝒵𝐷

𝐹 .

Proposition 6. Let 𝐹 be a function from F𝑛
2 to F𝑚

2 , let 𝑡 be an integer such that
1 ≤ 𝑡 ≤ min(𝑛,𝑚) and let (𝑇,𝑈) be the TU-projection of 𝐹 for 𝑡.

Then 𝑇𝑦 is a permutation for all 𝑦 if and only if

𝑀𝑡(𝒱) ⊆ 𝒵𝐹 .

Similarly, in terms of the DDT, 𝑇𝑦 is a permutation for all 𝑦 if and only if

𝑀𝑡(𝒱⊥) ⊆ 𝒵𝐷
𝐹 .

Proof. We prove the proposition using the impossible differential set. The case of the
Walsh zeroes follows directly using Proposition 3.

The functions 𝑇𝑦 are permutations for all 𝑦 if and only if, for all nonzero 𝑎 ∈ F𝑡
2, it

holds that
𝑇𝑦(𝑥 + 𝑎) + 𝑇𝑦(𝑥) ̸= 0

for all 𝑥 ∈ F𝑡
2. As 𝐹 (𝑥, 𝑦) = (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)), 𝑇𝑦(𝑥 + 𝑎) + 𝑇𝑦(𝑥) ̸= 0 is equivalent to

𝐹 (𝑥 + 𝑎, 𝑦) + 𝐹 (𝑥, 𝑦) ̸= (0, 𝑧) for all (𝑥, 𝑦, 𝑧) ∈ F𝑡
2 × F𝑛−𝑡

2 × F𝑚−𝑡
2 . We deduce that 𝑇𝑦

always being a permutation is equivalent to 𝛿𝐹 [(𝑎, 0), (0, 𝑏)] = 0 for all (𝑎, 𝑏) ̸= (0, 0),
which can be written 𝑀𝑡(𝒱⊥) ⊆ 𝒵𝐷

𝐹 .

Definition 11 (Function Twisting). Let 𝐹 be a function from F𝑛
2 to F𝑚

2 , let 𝑡 be an
integer such that 1 ≤ 𝑡 ≤ min(𝑚,𝑛) and let (𝑇,𝑈) be the TU-projection of 𝐹 for 𝑡.

If 𝑇𝑦 is a permutation for all 𝑦 ∈ F𝑛−𝑡
2 then 𝐹 is 𝑡-twist equivalent to 𝐺 : F𝑛

2 → F𝑚
2

defined as follows:

𝐺(𝑥, 𝑦) =
(︁
𝑇−1
𝑦 (𝑥), 𝑈𝑇−1

𝑦 (𝑥)(𝑦)
)︁
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for any (𝑥, 𝑦) ∈ F𝑡
2 × F𝑛−𝑡

2 . In this case, it holds that

Γ𝐺 = 𝑀𝑡(Γ𝐹 ) .

This process is summarized in Figure 3.

𝑇 𝑈

𝑥 𝑦

𝑢 𝑣

𝑡 𝑛− 𝑡

𝑡 𝑚− 𝑡

(a) Starting point.

𝑇−1

𝑈

𝑢 𝑦

𝑥 𝑣

𝑡 𝑛− 𝑡

𝑡 𝑚− 𝑡

(b) End point.

Figure 3: Function twisting.

Function twisting is its own inverse. Indeed, 𝑡-twisting 𝐺 yields 𝐹 ′ such that

𝐹 ′(𝑥, 𝑦) =
(︁(︀

𝑇−1
𝑦

)︀−1
(𝑥), 𝑈𝑇−1

𝑦 ((𝑇−1
𝑦 )−1(𝑥))(𝑦)

)︁
= (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) = 𝐹 (𝑥, 𝑦) .

This is also a direct consequence of the fact that 𝑀𝑡 is always an involution.
The link between swap matrix and 𝑡-twist has the following obvious consequence.

Lemma 5. For any 0 ≤ 𝑡 ≤ min(𝑚,𝑛), 𝑡-twist equivalence is a particular case of
CCZ-equivalence.

This lemma can be seen as a generalization of Lemma 2 of [PUB16] which states the
CCZ-equivalence of the closed and open butterfly structures.

To capture the fact that a function without a 𝑡-twist equivalent can be in the EA-class
of a function which has one, we introduce the following notion.

Definition 12 (𝑡-twistable function). Let 𝐹 : F𝑛
2 ↦→ F𝑚

2 be a function. If there exists
𝑡 ≤ min(𝑚,𝑛) such that 𝐹 is EA-equivalent to a function 𝐹 ′ such that 𝐹 ′(𝑥, 𝑦) =
(𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) for some 𝑡-bit keyed permutation 𝑇 and for all (𝑥, 𝑦) ∈ F𝑡

2 × F𝑛−𝑡
2 then

we say that 𝐹 is 𝑡-twistable.

4.2 Some Special Twists

Some particular degenerate cases of function twisting are interesting as they have simple
interpretations. They are listed in Section 4.2.1. Section 4.2.2 discusses the possibility
of a 1-twist and shows its equivalence to the existence of linear structures.

4.2.1 Degenerate Cases

t = 0. In this case, no twist is actually performed as 𝑀𝑡 = 𝐼𝑛+𝑚. It is always possible.

t = m = n. As stated before, we have in this case

𝑀𝑛 =

[︂
0 𝐼𝑛
𝐼𝑛 0

]︂
and applying 𝑀𝑛 to the graph of a permutation returns the graph of its functional
inverse. In other words, an 𝑛-bit permutation is 𝑛-twistable.
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t = m, with m < n. The case 𝑛 > 𝑚 and 𝑚 = 𝑡 can be seen as a generalization of
the case of the functional inversion. In this case,

𝑀𝑚 =

[︂
𝜌𝑚,𝑛 𝜌0,𝑚
𝜌0,𝑚 0

]︂
=

⎡⎣ 0 0 𝐼𝑚
0 𝐼𝑛−𝑚 0
𝐼𝑚 0 0

⎤⎦
and 𝑀𝑚 is admissible for 𝐹 : F𝑚

2 × F𝑛−𝑚
2 → F𝑚

2 if and only if 𝐹 (𝑥, 𝑦) = 𝑇𝑦(𝑥) for some
keyed permutation 𝑇 . In this case, applying 𝑀𝑚 to the graph of 𝐹 returns the graph
of 𝐺 : (𝑥, 𝑦) ↦→ 𝑇−1

𝑦 (𝑥). Diagrams representing 𝐹 and 𝐺 are given in Figures 4a and 4b
respectively.

Such a degenerate twist is observed for modular addition as explained in Section 6.1.
It also exists in each S-Box of the DES [DES77] due to the fact that each of their row
is a 4-bit permutation; so that they are all 4-twistable.

n = t, with m > n. In this case,

𝑀𝑛 =

[︂
0 𝜌0,𝑛

𝜌0,𝑛 𝜌𝑛,𝑚

]︂
=

⎡⎣ 0 𝐼𝑛 0
𝐼𝑛 0 0
0 0 𝐼𝑚−𝑛

⎤⎦
and 𝑀𝑛 is admissible for 𝐹 : F𝑛

2 → F𝑛
2 × F𝑚−𝑛

2 if and only if 𝐹 (𝑥) = (𝑇 (𝑥), 𝑈(𝑥)) for
some permutation 𝑇 . In this case, applying 𝑀𝑚 to the graph of 𝐹 returns the graph of
𝐺 : 𝑥 ↦→

(︀
𝑇−1(𝑥), 𝑈(𝑇−1(𝑥))

)︀
. Diagram representing 𝐹 and 𝐺 are given in Figures 4c

and 4d respectively.

𝑇

𝑥 𝑦

𝑢

𝑚 𝑛−𝑚

𝑚

(a) 𝑡 = 𝑚.

𝑇−1

𝑢 𝑦

𝑥

𝑚 𝑛−𝑚

𝑚

(b) 𝑡 = 𝑚.

𝑇 𝑈

𝑥

𝑢 𝑣

𝑛

𝑚− 𝑛𝑛

(c) 𝑡 = 𝑛.

𝑇−1

𝑈

𝑢

𝑥 𝑣

𝑛

𝑚− 𝑛𝑛

(d) 𝑡 = 𝑛.

Figure 4: Some degenerate cases of function twisting.

4.2.2 On 1-Twistable Functions

Suppose that 𝑡 = 1. In this case, we can give a better description of 𝑇𝑦 using the
following lemma.

Lemma 6. A function 𝐹 : F𝑛
2 → F𝑚

2 is 1-twistable if and only if its EA-class contains
𝐹 ′ : F𝑛

2 → F𝑚
2 such that

𝐹 ′(𝑥, 𝑦) =
(︀
𝑥 + 𝑓(𝑦), 𝑈𝑥(𝑦)

)︀
, ∀(𝑥, 𝑦) ∈ F2 × F𝑛−1

2 ,

where 𝑓 : F𝑛−1
2 → F2 is a Boolean function. In this case, 𝐹 ′ is 1-twist equivalent to

𝐺(𝑥, 𝑦) =
(︀
𝑥 + 𝑓(𝑦), 𝑈𝑥+𝑓(𝑦)(𝑦)

)︀
= 𝐹 ′(︀𝑥 + 𝑓(𝑦), 𝑦

)︀
+ (𝑓(𝑦), 0) .

15



Proof. As we have established, 𝐹 is 1-twistable if and only if it is EA-equivalent to 𝐹 ′

such that 𝐹 ′(𝑥, 𝑦) = (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) for some 𝑇 where 𝑇𝑦 is a permutation of F2 for any
𝑦 ∈ F𝑛−1

2 . As the only permutations of F2 are 𝑥 ↦→ 𝑥 and 𝑥 ↦→ 𝑥 + 1, there must exist a
Boolean function 𝑓 such that 𝑇𝑦(𝑥) = 𝑥 + 𝑓(𝑦). The lemma follows.

We can deduce a simple relation between the fact that a function is 1-twistable and
the existence of a linear structure.

Corollary 2. A function 𝐹 : F𝑛
2 → F𝑚

2 with 𝑚,𝑛 ≥ 2 is 1-twistable if and only if some
of its components have a linear structure.

Proof. We simply need to show that 𝐹 is EA-equivalent to 𝐹 ′ such that

𝐹 ′(𝑥, 𝑦) =
(︀
𝑥 + 𝑓(𝑦), 𝑈𝑥(𝑦)

)︀
, ∀(𝑥, 𝑦) ∈ F2 × F𝑛−1

2 ,

where 𝑓 : F𝑛−1
2 → F2 is a Boolean function if and only if there exists a component of

𝐹 that has a linear structure. We will use that functions in a given EA-class have the
same number of components with the same number of linear structures. Indeed, for
𝐹 ′ = 𝐴2 ∘ 𝐹 ∘ 𝐴1 + 𝐴0, where the 𝐴𝑖 are affine functions with linear parts 𝐿𝑖, we have
that 𝑢 ∈ F𝑛

2 is a linear structure of 𝑥 ↦→ 𝜆 ·𝐹 ′(𝑥) if and only if 𝐿1(𝑢) is a linear structure
of 𝑥 ↦→ 𝐿𝑇

2 (𝜆) · 𝐹 (𝑥). This comes from the fact that

𝜆 · [𝐹 ′(𝑥 + 𝑢) + 𝐹 ′(𝑥)] = 𝐿𝑇
2 (𝜆) · [𝐹 (𝐴1(𝑥) + 𝐿1(𝑢)) + 𝐹 (𝐴1(𝑥))] + 𝜆 · 𝐿0(𝑢) .

⇒ Let 𝐹 ′ be such that 𝐹 ′(𝑥, 𝑦) =
(︀
𝑥+𝑓(𝑦), 𝑈𝑥(𝑦)

)︀
and let 𝐹 ′

0 be its left-most bit. Then
𝐹 ′
0(𝑥+ 1, 𝑦) = 𝑥+ 1 + 𝑓(𝑦) = 𝐹 ′

0(𝑥, 𝑦) + 1. Thus, one coordinate of 𝐹 ′ has a linear
structure, implying that one component of 𝐹 has a linear structure.

⇐ Suppose that one of the components of 𝐹 has a linear structure: (𝛼 · 𝐹 )(𝑧 + 𝑢) +
(𝛼 · 𝐹 )(𝑧) = 𝜀 for some 𝛼 ∈ F𝑚

2 , 𝑢 ∈ F𝑛
2 and 𝜀 ∈ F2. Then we choose a linear

permutation 𝐿1 of F𝑛
2 such that 𝐿1(10 · · · 0) = 𝑢 and a linear permutation 𝐿2 of

F𝑚
2 such that 𝐿𝑇

2 (10 · · · 0) = 𝛼. Then, 10 · · · 0 is a linear structure of the left-most
bit of 𝐹 ′ = 𝐿2 ∘ 𝐹 ∘ 𝐿1 + 𝐿0 for any linear function 𝐿0. Then, we choose for 𝐿0

a function whose left-most coordinate ℓ is such that ℓ(10 · · · 0) = 𝜀 + 1. It follows
that the left-most coordinate of (𝐹 ′(𝑥 + 10 · · · 0) + 𝐹 ′(𝑥)) is given by

𝐹 ′
0(𝑥 + 10 · · · 0) + 𝐹 ′

0(𝑥) = 𝐿𝑇
2 (10 · · · 0) · [𝐹 ∘ 𝐿1(𝑥 + 10 · · · 0) + 𝐹 ∘ 𝐿1(𝑥)]

+ℓ(10 · · · 0)

= 𝛼 · [𝐹 (𝐿1(𝑥) + 𝑢) + 𝐹 (𝐿1(𝑥))] + 𝜀 + 1 = 1 .

Then, the first coordinate of 𝐹 ′ can be written as (𝑥, 𝑦) ↦→ 𝑥 + 𝑓(𝑦),

4.3 Swap Matrices and Space Thickness

It turns out that composing EA-mappings and functional twists is sufficient to fully
describe CCZ-equivalence. We prove this statement in Section 4.4 but we first need to
establish the following theorem which relates the thickness of a vector space to swap
matrices. The remainder of this section then explores some consequences of this theorem.

Theorem 2. Let 𝑉 ⊆ F𝑛+𝑚
2 be a vector space of dimension 𝑛. Then there exists an

EL-mapping Λ such that
𝑉 =

(︀
Λ𝑇 ×𝑀𝑡

)︀
(𝒱) ,

where 𝑡 = 𝑡(𝑉 ) ≤ min(𝑚,𝑛).
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Moreover, Λ can be written as

Λ =

[︂
𝑃 0

𝜌0,𝑡 × ℓ 𝑄

]︂
for an 𝑛-bit linear permutation 𝑃 , an 𝑚-bit linear permutation 𝑄 and a linear function
ℓ : F𝑛

2 → F𝑚
2 .

Proof. Let 𝑉 be as defined in the theorem. Then there must exist two linear functions
𝐿1 : F𝑛

2 → F𝑛
2 and 𝐿2 : F𝑛

2 → F𝑚
2 such that

𝑉 =

{︂[︂
𝐿1(𝑥)
𝐿2(𝑥)

]︂
,∀𝑥 ∈ F𝑛

2

}︂
.

As by definition 𝑡 = rank(𝐿2), there exist two linear permutations 𝑄′ and 𝑅 of F𝑚
2 and

F𝑛
2 such that 𝐿2 = 𝑄′𝜌0,𝑡𝑅. We then let 𝑦 = 𝑅(𝑥) in the previous expression and write

𝑉 =

{︂[︂
𝐿1𝑅

−1(𝑦)
𝑄′𝜌0,𝑡(𝑦)

]︂
,∀𝑦 ∈ F𝑛

2

}︂
.

Since 𝜌0,𝑡 + 𝜌𝑡,𝑛 = 𝐼𝑛, we write 𝐿1𝑅
−1 = 𝐿1𝑅

−1𝜌0,𝑡 + 𝐿1𝑅
−1𝜌𝑡,𝑛 and we further let

ℓ′ : F𝑛
2 → F𝑚

2 and 𝑃 ′ : F𝑛
2 → F𝑛

2 be such that ℓ′𝜌0,𝑡 = 𝐿1𝑅
−1𝜌0,𝑡 and 𝐿1𝑅

−1𝜌𝑡,𝑛 = 𝑃 ′𝜌𝑡,𝑛.
We then have

𝑉 =

{︂[︂
ℓ′𝜌0,𝑡(𝑦) + 𝑃 ′𝜌𝑡,𝑛(𝑦)

𝑄′𝜌0,𝑡(𝑦)

]︂
,∀𝑦 ∈ F𝑛

2

}︂
. (4)

Now, because Λ has the particular form given in the theorem, we have

Λ𝑇𝑀𝑡 =

[︂
𝑃𝑇 ℓ𝑇 𝜌0,𝑡
0 𝑄𝑇

]︂
×
[︂

𝜌𝑡,𝑛 𝜌0,𝑡
𝜌0,𝑡 𝜌𝑡,𝑚

]︂
=

[︂
𝑃𝑇 𝜌𝑡,𝑛 + ℓ𝑇 𝜌0,𝑡 𝑃𝑇 𝜌0,𝑡

𝑄𝑇 𝜌0,𝑡 𝑄𝑇 𝜌𝑡,𝑚

]︂
,

so that

Λ𝑇𝑀𝑡(𝒱) =

{︂[︂
ℓ𝑇 𝜌0,𝑡(𝑥) + 𝑃𝑇 𝜌𝑡,𝑛(𝑥)

𝑄𝑇 𝜌0,𝑡(𝑥)

]︂
,∀𝑥 ∈ F𝑛

2

}︂
. (5)

In order to prove the lemma, we simply need to show that Equations (4) and (5) can
be made to be equal.

As 𝑄′ is a permutation, we can simply set 𝑄𝑇 = 𝑄′. Similarly, as there is no specific
condition on ℓ, we can freely set ℓ𝑇 = ℓ′.

However, as 𝑃𝑇 is assumed to be a permutation, we need to show that 𝑃 ′𝜌𝑡,𝑛 has
rank 𝑛 − 𝑡 to be able to set 𝑃𝑇 = 𝑃 ′. Suppose that the image of {𝜌𝑡,𝑛(𝑥),∀𝑥 ∈ F𝑛

2}
under 𝑃 ′𝜌𝑡,𝑛 is of dimension 𝑑. Using Equation (4), we deduce that dim(𝑉 ) = 𝑡+ 𝑑. As
we assume dim(𝑉 ) = 𝑛, it must then hold that rank(𝑃 ′𝜌𝑡,𝑛) = 𝑛− 𝑡 so that there must
exist a permutation 𝑃𝑇 of F𝑛

2 such that 𝑃𝑇 𝜌𝑡,𝑛 = 𝑃 ′𝜌𝑡,𝑛. We deduce the theorem.

Below, we will use this theorem to study CCZ-equivalence. However, we first use it
to derive a simple lemma which will allow us to interpret the results given in Section 3.3,
especially the notion of thickness spectrum, in terms of vector spaces in the DDT rather
than in the LAT. Intuitively and informally, the roles of 𝒱 and 𝒱⊥ are swapped when
we switch between vector spaces of zeroes in the DDT and in the LAT. Thus, we would
expect the relevant quantity for the vector spaces in the DDT to be the dimension of
the projection on 𝒱 rather than on 𝒱⊥. This intuition is correct because of the following
lemma.

Lemma 7. Let 𝑈 be a vector space of dimension 𝑛 in F𝑛+𝑚
2 and let 𝑈⊥ be its orthogonal.

Note that 𝜌0,𝑛(F𝑛+𝑚
2 ) = 𝒱 and 𝜌𝑛,𝑛+𝑚(F𝑛+𝑚

2 ) = 𝒱⊥. Then the following always holds:

dim
(︀
𝜌0,𝑛(𝑈⊥)

)︀
= dim

(︀
𝜌𝑛,𝑛+𝑚(𝑈)

)︀
= 𝑡(𝑈) .
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Proof. By definition of the thickness of 𝑈 , we have that dim
(︀
𝜌𝑛,𝑛+𝑚(𝑈)

)︀
= 𝑡(𝑈). Thus,

we only need to show that
dim

(︀
𝜌0,𝑛(𝑈⊥)

)︀
= 𝑡(𝑈) .

By applying Theorem 2, we derive the existence of an EL-mapping Λ such that 𝑈 =
Λ𝑇𝑀𝑡(𝒱) where 𝑡 = 𝑡(𝑈). Thus, we can write

𝑈⊥ =
(︀
(Λ𝑇𝑀𝑡)

−1
)︀𝑇

(𝒱⊥) = Λ−1𝑀𝑡(𝒱⊥) .

The inverse of an EL-mapping is another EL-mapping, so there must exist linear per-
mutations 𝐴 and 𝐵 of F𝑛

2 and F𝑚
2 as well as a linear function 𝐶 : F𝑛

2 → F𝑚
2 such

that

Λ−1 =

[︂
𝐴 0
𝐶 𝐵

]︂
,

from which we deduce that

𝜌0,𝑛(𝑈⊥) =

(︂[︂
𝐼𝑛 0
0 0

]︂
×
[︂

𝐴 0
𝐶 𝐵

]︂
×
[︂

𝜌𝑡,𝑛 𝜌0,𝑡
𝜌0,𝑡 𝜌𝑡,𝑚

]︂)︂
(𝒱⊥)

=

(︂[︂
𝐴 0
0 0

]︂
×
[︂

𝜌𝑡,𝑛 𝜌0,𝑡
𝜌0,𝑡 𝜌𝑡,𝑚

]︂)︂
(𝒱⊥)

=

[︂
𝐴𝜌𝑡,𝑛 𝐴𝜌0,𝑡

0 0

]︂
(𝒱⊥) .

As 𝒱⊥ = {(0, 𝑥),∀𝑥 ∈ F𝑚
2 }, we deduce that dim

(︀
𝜌0,𝑛(𝑈⊥)

)︀
= rank(𝐴𝜌0,𝑡) = 𝑡. The

lemma follows.

We directly deduce the following alternative formulation of Definition 9.

Corollary 3 (Thickness Spectrum in terms of DDT). Let 𝐹 : F𝑛
2 → F𝑚

2 be a function
and let Σ𝐷

𝐹 be the set of all vector spaces of dimension 𝑚 in 𝒵𝐷
𝐹 . The thickness spectrum

of 𝐹 is the set of all pairs of positive integers (𝑡𝑖, 𝑁𝑖) such that, for all 𝑖:

𝑁𝑖 = #
{︀
𝑉 ∈ Σ𝐷

𝐹 ,dim(𝜌0,𝑛(𝑉 )) = 𝑡𝑖
}︀
.

4.4 Twisting and CCZ-Equivalence

Now, we use Theorem 2 to provide a complete description of CCZ-equivalence. Let
𝐹 : F𝑛

2 → F𝑚
2 and 𝐺 : F𝑛

2 → F𝑚
2 be two CCZ-equivalent functions such that Γ𝐺 = 𝒜(Γ𝐹 )

for some affine permutation 𝒜 of F𝑛+𝑚
2 . As we have established in Theorem 1, this

implies ℒ𝑇 (𝒱) ⊆ 𝒵𝐹 , where ℒ is the linear part of 𝒜.
Using Theorem 2, we find that there exists a positive integer 𝑡 ≤ min(𝑚,𝑛) and an

EL-mapping Λ such that ℒ𝑇 (𝒱) = Λ𝑇𝑀𝑡(𝒱) as ℒ𝑇 (𝒱) is a vector space of dimension 𝑛.
We deduce that (Λ𝑇𝑀𝑡)

𝑇 = 𝑀𝑡Λ is an admissible mapping for 𝐹 and thus that there
exists a function 𝐺′ such that Γ𝐺′ = (𝑀𝑡 ∘ Λ)(Γ𝐹 ). Furthermore, since Λ𝑇𝑀𝑡(𝒱) =
ℒ𝑇 (𝒱), we can apply Lemma 3 and thus obtain that 𝐺′ is EA-equivalent to 𝐺. We
conclude that there must exist an EA-mapping 𝐴 such that Γ𝐺 = 𝐴(Γ𝐺′), so that
Γ𝐺 = (𝐴 ∘𝑀𝑡 ∘ Λ)(Γ𝐹 ).

We deduce the following theorem which allows us to fully characterize CCZ-equivalence
using only two types of operations.

Theorem 3 (A full description of CCZ-Equivalence). Let 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 →

F𝑚
2 be two CCZ-equivalent functions. Then we can obtain 𝐺 from 𝐹 (and vice-versa)

by composing an EA transformation, a 𝑡-twist and an EA transformation.
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This result imposes that both functions 𝐹 and 𝐺 are EA-equivalent to functions that
are twist-equivalent. We deduce the following corollary.

Corollary 4. Let 𝐹 : F𝑛
2 → F𝑚

2 and 𝐺 : F𝑛
2 → F𝑚

2 be two CCZ-equivalent functions
that are not EA-equivalent. Then it is necessary that there exists some integer 1 ≤ 𝑡 ≤
min(𝑚,𝑛) such that both 𝐹 and 𝐺 are 𝑡-twistable.

We can easily find which value of 𝑡 is such that a function is 𝑡-twistable—if there is
any—using the following corollary.

Corollary 5. Let 𝐹 : F𝑛
2 → F𝑚

2 be a function. If 𝑉 ⊆ 𝒵𝐹 is a vector space of dimension
𝑛 then 𝐹 is 𝑡-twistable where 𝑡 = 𝑡(𝑉 ).

Similarly, if 𝑉 ′ ⊆ 𝒵𝐷
𝐹 is a vector space of dimension 𝑚, then 𝐹 is 𝑡-twistable where

𝑡 is the dimension of the projection of 𝑉 ′ on 𝒱.

Remark 1. It is well-known that, while it preserves the extended Walsh spectrum and
differential spectrum, CCZ-equivalence does not preserve the algebraic degree. Because
of Theorem 3 and because the algebraic degree is constant in an EA-class, the twist has
to be responsible for this difference.

Remark 2. While it is necessary to perform a 𝑡-twist to leave an EA-class, it is not
sufficient.

Indeed, it is possible for two functions to be both 𝑡-twist equivalent and EA-equivalent.
Consider a function 𝐹 : F𝑡

2 × F𝑛−𝑡
2 → F𝑛

2 × F𝑛−𝑡
2 such that 𝐹 (𝑥, 𝑦) = (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) for

which 𝑇𝑦 is always an involution of F𝑡
2 and for which 𝑈𝑥(𝑦) = 𝑈(𝑦) does not depend on

𝑥. Then a 𝑡-twist of 𝐹 yields 𝐹 ′ such that

𝐹 ′(𝑥, 𝑦) =
(︀
𝑇−1
𝑦 (𝑥), 𝑈𝑇−1

𝑦 (𝑥)(𝑦)
)︀

=
(︀
𝑇𝑦(𝑥), 𝑈(𝑦)

)︀
, (6)

so that 𝐹 ′ = 𝐹 . Such a function is such that 𝑀𝑡(𝒱) ⊂ 𝒵𝐹 and yet its CCZ-class may
be reduced to a unique EA-class.

5 Partitioning CCZ-Classes

The question we now focus on is the partition of CCZ-classes into EA-classes. We have
seen in Section 3.2 that the number of distinct EA-classes within a CCZ-class is at most
the number of vector spaces of dimension 𝑛 in 𝒵𝐹 . Here, we combine the partition given
by these vector spaces in 𝒵𝐹 with Theorem 3. It allows us to bound the number of
EA-classes in the CCZ-class of a given function and gives us a simple description of all
the admissible mappings of a function.

Let 𝐹 : F𝑛
2 → F𝑚

2 be a function, let Adm(𝐹 ) be the set of all admissible mappings
for 𝐹 , and let Σ𝐹 be the set of all vector spaces of dimension 𝑛 in 𝒵𝐹 . Finally, recall
that ℳEA denotes the set of all EA-mappings.

5.1 Theoretical Tools

In order to better understand the discrepancy between the number of EA-classes and the
number of vector spaces of zeroes, we introduce two concepts: the automorphisms of a
function and EA-similarity. The latter will capture the fact that, when functions 𝐹 and
𝐺 are EA-equivalent, there may exist 𝒜 ̸∈ ℳEA such that Γ𝐺 = 𝒜(Γ𝐹 ). Automorphisms
will turn out to play a significant role in the study of EA-similarity.
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Definition 13 (Automorphism for a function). For a function 𝐹 : F𝑛
2 → F𝑚

2 , we call
automorphism for 𝐹 an affine permutation 𝒜 of F𝑛+𝑚

2 such that 𝒜(Γ𝐹 ) = Γ𝐹 . The set of
all such mappings is denoted Aut(𝐹 ). It corresponds to the automorphism group [MS77,
Page 229] of the associated code 𝒞𝐹 .

This notion can be seen as a generalization of self-equivalence as defined in [BDBP03];
where a “self-equivalent” function is non-trivially affine equivalent to itself. If 𝐹 : F𝑛

2 →
F𝑚
2 is self-equivalent in that sense, then there exist affine permutations 𝐴 : F𝑛

2 → F𝑛
2

and 𝐵 : F𝑚
2 → F𝑚

2 such that 𝐹 = 𝐵 ∘ 𝐹 ∘ 𝐴. It thus corresponds to an automorphism
of 𝐹 because Γ𝐹 = {(𝑥, (𝐵 ∘ 𝐹 ∘𝐴)(𝑥)) , 𝑥 ∈ F𝑛

2} =
{︀(︀

𝐴−1(𝑦), (𝐵 ∘ 𝐹 )(𝑦)
)︀
, 𝑦 ∈ F𝑛

2

}︀
=

ℒ(Γ𝐹 ), where

ℒ =

[︂
𝐴−1 0

0 𝐵

]︂
.

The automorphism set of a given function has several properties given in the following
lemma.

Lemma 8. For a function 𝐹 : F𝑛
2 → F𝑚

2 , Aut(𝐹 ) is a group under composition. Fur-
thermore, let 𝐺 : F𝑛

2 → F𝑚
2 be such that Γ𝐺 = 𝒜(Γ𝐹 ) for some affine permutation 𝒜.

Then Aut(𝐹 ) and Aut(𝐺) are isomorphic as 𝜑𝒜 : 𝑀 ↦→ 𝒜−1 ∘𝑀 ∘𝒜 is an isomorphism
such that Aut(𝐺) = 𝜑𝒜(Aut(𝐹 )).

Proof. The identity is obviously in Aut(𝐹 ). Furthermore, ℒ ∈ Aut(𝐹 ) if and only if
ℒ(Γ𝐹 ) = Γ𝐹 , which is equivalent to Γ𝐹 = ℒ−1(Γ𝐹 ) and thus to ℒ−1 ∈ Aut(𝐹 ). Finally,
if ℒ and ℒ′ are in Aut(𝐹 ), then ℒ−1(Γ𝐹 ) = Γ𝐹 = ℒ′(Γ𝐹 ), so that ℒ ∘ ℒ′ ∈ Aut(𝐹 ). As
a consequence, Aut(𝐹 ) is a group.

Let now 𝐺 : F𝑛
2 → F𝑚

2 and 𝒜 : F𝑛+𝑚
2 → F𝑛+𝑚

2 be as in the lemma and let ℒ ∈ Aut(𝐺).
Then ℒ(Γ𝐺) = Γ𝐺, which is equivalent to (ℒ ∘ 𝒜)(Γ𝐹 ) = 𝒜(Γ𝐹 ), so that 𝒜−1ℒ𝒜 =
𝜑𝒜(ℒ) ∈ Aut(𝐹 ). As 𝜑𝒜 is an isomorphism, the two groups are isomorphic.

Definition 14 (EA-similarity). For a function 𝐹 : F𝑛
2 → F𝑚

2 , we say that two mappings
𝒜 and 𝒜′ of Adm(𝐹 ) are EA-similar for 𝐹 if there exists an EA-mapping 𝐵 such that

𝒜(Γ𝐹 ) = (𝐵 ∘ 𝒜′)(Γ𝐹 ) ,

so that the functions 𝐺 and 𝐺′ with codebooks 𝒜(Γ𝐹 ) and 𝒜′(Γ𝐹 ) are EA-equivalent.

For example, the identity as well as all other EA-mappings are always EA-similar.
However, it is possible for two mappings 𝒜 and 𝒜′ to be EA-similar for a function
without being EA-mappings as noticed in Remark 2. This is the case for instance of
involutions.

Lemma 9. For any function 𝐹 : F𝑛
2 → F𝑚

2 , EA-similarity for 𝐹 is an equivalence
relation.

Proof. Let 𝐹 be such a function and let 𝒜 and 𝒜′ be admissible mappings for 𝐹 .
As 𝒜(Γ𝐹 ) = (𝐼𝑛+𝑚 ∘ 𝒜)(Γ𝐹 ), EA-similarity is reflexive. If there is an EA-mapping
𝐵 such that 𝒜 = 𝐵𝒜′ then 𝒜′ = 𝐵−1𝒜 and, as 𝐵−1 is also an EA-mapping, EA-
similarity is symmetric. Finally, let 𝒜0,𝒜1 and 𝒜2 be admissible for 𝐹 and verify both
𝒜1(Γ𝐹 ) = 𝐵1𝒜0(Γ𝐹 ) and 𝒜2(Γ𝐹 ) = 𝐵2𝒜0(Γ𝐹 ) for some EA-mappings 𝐵1 and 𝐵2. Then
it holds that 𝐵−1

1 𝒜1(Γ𝐹 ) = 𝐵−1
2 𝒜2(Γ𝐹 ) = 𝒜0(Γ𝐹 ), so that 𝒜1(Γ𝐹 ) = 𝐵1𝐵

−1
2 𝒜2(Γ𝐹 ).

As the product of two EA-mappings is an EA-mapping, we conclude that EA-similarity
is also transitive.

As EA-similarity is an equivalence relation, we can partition the set of all admissible
mappings into its equivalence classes for this relation.
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The equivalence classes for EA-similarity may be larger than |ℳEA|. Indeed, there
is a 1-to-1 correspondence between EA-similarity classes and EA-classes. As a con-
sequence, the counter-example based on an involution can be reused here: if 𝐹 is an
involution of F𝑛

2 , then 𝑀𝑛 is in the EA-similarity class of the identity although it is not
in ℳEA.

An affine permutation 𝒜′ is EA-similar to an admissible mapping 𝒜 if 𝒜′(Γ𝐹 ) =
𝐵𝒜(Γ𝐹 ) for an EA-mapping 𝐵. It means that the set of all 𝒜′ EA-similar to 𝒜 is the
set of all 𝒜′ such that (𝒜−1𝐵−1𝒜′)(Γ𝐹 ) = Γ𝐹 , i.e. such that 𝒜−1𝐵−1𝒜′ ∈ Aut(𝐹 ).
This is equivalent to having 𝒜′ ∈ 𝐵𝒜(Aut(𝐹 )). We deduce the following lemma.

Lemma 10. Let 𝐹 : F𝑛
2 → F𝑚

2 be a function and 𝒜 be a mapping admissible for 𝐹 . The
set 𝐸𝐹 (𝒜) of all affine permutations EA-similar to 𝒜 for 𝐹 can be written as

𝐸𝐹 (𝒜) = {𝐵 ∘ 𝒜 ∘ 𝐽,𝐵 ∈ ℳEA, 𝐽 ∈ Aut(𝐹 )} .

Note that there may be repetition in this definition, i.e. different pairs (𝐵, 𝐽) and
(𝐵′, 𝐽 ′) of ℳEA × Aut(𝐹 ) such that 𝐵 ∘ 𝒜 ∘ 𝐽 = 𝐵′ ∘ 𝒜 ∘ 𝐽 ′.

5.2 Partitioning

In Section 3.2, we have partitioned the set of all admissible mappings with respect to
the vector spaces 𝑉 of dimension 𝑛 in 𝒵𝐹 : let 𝒮(𝑉 ) be the set of all affine permutations
of F𝑛+𝑚

2 whose linear part ℒ satisfies ℒ𝑇 (𝒱) = 𝑉 , and Σ𝐹 be the set of all vector spaces
of dimension 𝑛 in 𝒵𝐹 . Then,

Adm(𝐹 ) =
⋃︁

𝑉 ∈Σ𝐹

𝒮(𝑉 ) .

Moreover, Lemma 3 implies that all elements in a given 𝒮(𝑉 ) are EA-similar. Therefore,
each class 𝐸𝐹 (𝒜) corresponds to a collection of sets 𝒮(𝑉 ). We now refine this result as
follows.

Proposition 7. Let 𝐹 : F𝑛
2 → F𝑚

2 be a function, 𝒜 be a mapping admissible for 𝐹 , ℒ
be its linear part and 𝑉 = ℒ𝑇 (𝒱). The set 𝐸𝐹 (𝒜) of all affine permutations EA-similar
to 𝒜 for 𝐹 is given by

𝐸𝐹 (𝒜) =
⋃︁

𝐽∈Aut0(𝐹 )

𝒮(𝐽𝑇 (𝑉 )) ,

where Aut0(𝐹 ) is the set of all linear parts of the elements in Aut(𝐹 ).

Proof. From Lemma 10, we have that

𝐸𝐹 (𝒜) = {𝐵 ∘ 𝒜 ∘ 𝐽,𝐵 ∈ ℳEA, 𝐽 ∈ Aut(𝐹 )} .

Then, the linear part of any such (𝐵∘𝒜∘𝐽) is of the form (Λ∘ℒ∘𝐽0) for some Λ ∈ ℳEL

and 𝐽0 ∈ Aut0(𝐹 ). Its transpose then maps 𝒱 to

(Λ ∘ ℒ ∘ 𝐽0)𝑇 (𝒱) = (𝐽𝑇
0 ∘ ℒ𝑇 ∘ Λ𝑇 )(𝒱) = (𝐽𝑇

0 ∘ ℒ𝑇 )(𝒱) = 𝐽𝑇
0 (𝑉 ) .

Some of the vector spaces 𝐽𝑇 (𝑉 ) may be equal when 𝐽 varies in Aut0(𝐹 ) but we
have the following trivial bounds:

|ℳEA| ≤ |𝐸𝐹 (𝒜)| ≤ |ℳEA| × |Aut(𝐹 )| . (7)

We can now derive some bounds on the number of EA-classes., which improve Corol-
lary 1.
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Theorem 4 (Number of EA-classes in a CCZ-class). Let 𝐹 : F𝑛
2 → F𝑚

2 be a function.
Let Σ𝐹 be the set of all vector spaces of dimension 𝑛 in 𝒵𝐹 and 𝑒𝐹 be the number of
distinct EA-classes of functions that are CCZ-equivalent to 𝐹 . Then the following holds:

|Σ𝐹 |
|Aut(𝐹 )|

≤ 𝑒𝐹 ≤ |Σ𝐹 | .

Moreover, if Aut(𝐹 ) ⊆ ℳEA then 𝑒𝐹 is lower-bounded by the number of different thick-
nesses in the thickness spectrum of 𝐹 , i.e.

#{𝑡 : 0 ≤ 𝑡 ≤ 𝑛 , ∃𝑉 ∈ Σ𝐹 with 𝑡(𝑉 ) = 𝑡} ≤ 𝑒𝐹 .

Proof. Let 𝑠𝐹 = |Σ𝐹 | be the number of vector spaces of zeroes of dimension 𝑛 in 𝒵𝐹 .
We can compute the total number of admissible mappings for 𝐹 in two different ways:

|Adm(𝐹 )| = 𝑠𝐹 × |ℳEA|

=
∑︁

𝑒 ∈ {EA-similarity classes of 𝐹}

|𝑒| .

Let 𝑒𝐹 be the number of EA-classes in the CCZ-class of 𝐹 . It is also equal to the number
of EA-similarity classes for 𝐹 in the set of all affine permutations of F𝑛+𝑚

2 . Using the
second expression and Equation (7), we deduce the following inequality:

|Adm(𝐹 )| ≤ 𝑒𝐹 × |ℳEA| × |Aut(𝐹 )| .

We then use the fact that |Adm(𝐹 )| = 𝑠𝐹 × |ℳEA| to obtain

𝑠𝐹 × |ℳEA| ≤ 𝑒𝐹 × |ℳEA| × |Aut(𝐹 )| ,

leading to the first part of the theorem.
The second part of the theorem is a direct consequence of Proposition 7. Indeed, if

Aut0(𝐹 ) ⊆ ℳEL, then all subspaces 𝐽𝑇 (𝑉 ) have the same thickness as 𝑉 (see Lemma 4).

The situation where Aut(𝐹 ) ⊆ ℳEA is of special interest since it corresponds to a
case where it is necessary and sufficient to perform a twist to leave the EA-class of a
function. This situation occurs for instance for all APN quadratic power mappings, i.e.,
𝑥 ↦→ 𝑥2𝑖+1 over F2𝑛 with gcd(𝑖, 𝑛) = 1, as proved by Berger and Charpin [BC96]. Then,
we deduce the following corollary.

Corollary 6. Let 𝐹 : 𝑥 ↦→ 𝑥2𝑖+1 over F2𝑛 with gcd(𝑖, 𝑛) = 1 be an APN power mapping
of degree 2. Then, Aut(𝐹 ) ⊆ ℳEA and the number of EA-classes in the CCZ-class of 𝐹
is lower-bounded by the number of different thicknesses in the thickness spectrum of 𝐹 .

Proof. The result is directly deduced from Proposition 5 in [BC96] which shows that
Aut(𝐹 ) is the semi-affine group AΓL(1, 2𝑛). It is then easy to check that all transfor-
mations in this group belong to ℳEA.

6 Applications

We apply our new results to both reinterpret some known results and to provide sev-
eral new ones. Section 6.1 revisits a result of Schulte-Geers on addition modulo 2𝑚;
Section 6.2 provides new simpler proofs of some general results; and finally Section 6.3
focuses on quadratic APN functions.
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6.1 Modular Addition

Let us first recall the result of Schulte-Geers.

Proposition 8 (Theorem 1 of [SG13]). Let “�” denote addition modulo 2𝑚, “+” denote
the XOR, let 𝑛 = 2𝑚, and let 𝑞 be the quadratic function mapping an element (𝑥, 𝑦) of
(F𝑚

2 )2 = F𝑛
2 to

𝑞(𝑥, 𝑦) = (0, 𝑥0𝑦0, 𝑥0𝑦0 + 𝑥1𝑦1, ..., 𝑥0𝑦0 + ... + 𝑥𝑛−2𝑦𝑛−2).

Further, let Γ� and Γ𝑞 be the graphs of those functions so that

Γ� = {(𝑥, 𝑦, 𝑥� 𝑦), (𝑥, 𝑦) ∈ F𝑛
2}

Γ𝑞 = {(𝑥, 𝑦, 𝑞(𝑥, 𝑦)), (𝑥, 𝑦) ∈ F𝑛
2}.

Then it holds that Γ� = 𝐿(Γ𝑞), where

𝐿 =

⎡⎣ 𝐼𝑚 0 𝐼𝑚
0 𝐼𝑚 𝐼𝑚
𝐼𝑚 𝐼𝑚 𝐼𝑚

⎤⎦ .

We can reinterpret this proposition in light of Theorem 3. First, we note that

𝐿−1 =

⎡⎣ 𝐼𝑚 0 0
𝐼𝑚 𝐼𝑚 0
𝐼𝑚 0 𝐼𝑚

⎤⎦
⏟  ⏞  

𝐴1

×

⎡⎣ 0 0 𝐼𝑚
0 𝐼𝑚 0
𝐼𝑚 0 0

⎤⎦
⏟  ⏞  

𝑀𝑚

×

⎡⎣ 𝐼𝑚 0 0
𝐼𝑚 𝐼𝑚 0
0 𝐼𝑚 𝐼𝑚

⎤⎦
⏟  ⏞  

𝐴2

,

where the two outer matrices are EA-mappings and the center one is a degenerate swap
matrix 𝑀𝑚 where the bottom right corner is all zero because, in this case, 𝑡 = 𝑚 is the
output size.

As 𝐿−1 = 𝐴1 ×𝑀𝑛 ×𝐴2, Proposition 8 implies Γ𝑞 = (𝐴1 ×𝑀𝑛 ×𝐴2) = Γ�. Let us
look at the action of this matrix product on Γ�. First, it holds that

𝐴2(Γ�) =
{︀

(𝑥, 𝑥 + 𝑦, (𝑥� 𝑦) + 𝑦) , (𝑥, 𝑦) ∈ F𝑛
2

}︀
=
{︀(︀

𝑥, 𝑧, (𝑥� (𝑥 + 𝑧)) + 𝑥 + 𝑧
)︀
, (𝑥, 𝑧) ∈ F𝑛

2

}︀
=
{︀(︀

𝑥, 𝑧, 𝑇�
𝑧 (𝑥)

)︀
, (𝑥, 𝑧) ∈ F𝑛

2

}︀
,

where 𝑇�
𝑧 (𝑥) = (𝑥� (𝑥 + 𝑧)) + 𝑥 + 𝑧. The swap incurred by 𝑀𝑛 is possible if and only

if 𝑇�
𝑧 is a permutation for all 𝑧. It is indeed the case and this permutation is in fact

linear for each fixed 𝑧, as given by the following lemma.

Lemma 11. Let 𝑇�
𝑧 be the function mapping F𝑚

2 to itself defined by

𝑇�
𝑧 (𝑥) = (𝑥� (𝑥 + 𝑧)) + 𝑥 + 𝑧 ,

where 𝑧 ∈ F𝑚
2 . Then, for all 𝑧, 𝑇�

𝑧 is a linear permutation and so is its inverse.
Furthermore, the function (𝑥, 𝑧) ↦→ 𝑇�

𝑧 (𝑥) has degree 𝑚 and (𝑥, 𝑧) ↦→ (𝑇�
𝑧 )−1(𝑥) is

quadratic.

Proof. As recalled in [SG13], 𝑥 � 𝑦 = 𝑥 + 𝑦 + 𝑐(𝑥, 𝑦), where 𝑐(𝑥, 𝑦) denotes the carry
vector and is inductively defined by 𝑐0(𝑥, 𝑦) = 0 and 𝑐𝑖+1(𝑥, 𝑦) = maj(𝑥𝑖, 𝑦𝑖, 𝑐𝑖) where
maj is the majority function such that maj(𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑐(𝑏 + 𝑎). We also note that if
𝑢 = 𝑥� 𝑦, then 𝑐𝑖 = 𝑢𝑖 + 𝑥𝑖 + 𝑦𝑖, so that

𝑢 = 𝑥� 𝑦 if and only if

{︃
𝑢0 = 𝑥0 + 𝑦0

𝑢𝑖+1 = 𝑥𝑖+1 + 𝑦𝑖+1 + maj(𝑥𝑖, 𝑦𝑖, 𝑢𝑖 + 𝑥𝑖 + 𝑦𝑖) .
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Let 𝑣 = 𝑇�
𝑧 (𝑥) = (𝑥� (𝑥 + 𝑧)) + 𝑥 + 𝑧. By substituting 𝑦 for 𝑥 + 𝑧 in the above, we

first write

𝑢 = 𝑥� (𝑥 + 𝑧) if and only if

{︃
𝑢0 = 𝑧0

𝑢𝑖+1 = 𝑧𝑖+1 + maj(𝑥𝑖, 𝑥𝑖 + 𝑧𝑖, 𝑢𝑖 + 𝑧𝑖)

and then substitute 𝑢 with 𝑣 + 𝑥 + 𝑧 to obtain

𝑣 = 𝑇�
𝑧 (𝑥) if and only if

{︃
𝑣0 = 𝑥0

𝑣𝑖+1 = 𝑥𝑖+1 + maj(𝑥𝑖, 𝑥𝑖 + 𝑧𝑖, 𝑣𝑖 + 𝑥𝑖) .

We can simplify the expression of 𝑣𝑖+1 using that

maj(𝑥𝑖, 𝑥𝑖 + 𝑧𝑖, 𝑣𝑖 + 𝑥𝑖) = 𝑥𝑖(𝑥𝑖 + 𝑧𝑖) + (𝑥𝑖 + 𝑥𝑖 + 𝑧𝑖)(𝑣𝑖 + 𝑥𝑖)

= 𝑥𝑖𝑥𝑖 + 𝑥𝑖𝑧𝑖 + 𝑧𝑖𝑣𝑖 + 𝑧𝑖𝑥𝑖

= 𝑥𝑖 + 𝑧𝑖𝑣𝑖 ,

so that

𝑣 = 𝑇�
𝑧 (𝑥) if and only if

{︃
𝑣0 = 𝑥0

𝑣𝑖+1 = 𝑣𝑖𝑧𝑖 + 𝑥𝑖 + 𝑥𝑖+1 .

A simple induction based on this result shows that 𝑣𝑖 has degree 1 in 𝑥 and degree
𝑖+1 in total as it contains the term 𝑥0𝑧0𝑧1...𝑧𝑖−1. Besides, since 𝑇�

𝑧 (0) = 0, 𝑇�
𝑧 is linear

for all 𝑧. Furthermore, the bit of highest algebraic degree in (𝑥, 𝑧) ↦→ 𝑇�
𝑧 (𝑥) is the bit

of highest weight. It has index 𝑚− 1 and thus degree 𝑚.
We also deduce that 𝑇�

𝑧 is invertible for all 𝑧 as the bits of 𝑥 = (𝑇�
𝑧 )−1(𝑣) can be

computed one-by-one using that

𝑥 = (𝑇�
𝑧 )−1(𝑣) if and only if

{︃
𝑥0 = 𝑣0

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖+1 + 𝑧𝑖𝑣𝑖 .
(8)

While this induction formula is extremely similar to the one giving 𝑣 as a function of
𝑥, it has a crucial difference: the only non-linear term in the expression of 𝑥𝑖+1 does
not involve 𝑥𝑖, meaning that we cannot have a sequence of multiplication whose length
increases as 𝑖 increases. Thus, (𝑥, 𝑦) ↦→ (𝑇�

𝑧 )−1(𝑥) is quadratic.

We deduce from Lemma 11 that

(𝑀𝑛 ×𝐴2)(Γ�) =
{︀(︀

𝑇�
𝑧 (𝑥), 𝑧, 𝑥

)︀
, (𝑥, 𝑧) ∈ F𝑛

2

}︀
=
{︀(︀

𝑢, 𝑧, (𝑇�
𝑧 )−1(𝑢)

)︀
, (𝑢, 𝑧) ∈ F𝑛

2

}︀
.

Since 𝐿−1 = 𝐴1 ×𝑀𝑛 ×𝐴2, it holds that

𝐿−1(Γ�) = 𝐴1

(︁{︀(︀
𝑢, 𝑧, (𝑇�

𝑧 )−1(𝑢)
)︀
, (𝑢, 𝑧) ∈ F𝑛

2

}︀)︁
=
{︀(︀

𝑢, 𝑢 + 𝑧, 𝑢 + (𝑇�
𝑧 )−1(𝑢)

)︀
, (𝑢, 𝑧) ∈ F𝑛

2

}︀
=
{︀(︀

𝑢, 𝑤, 𝑢 + (𝑇�
𝑤+𝑢)−1(𝑢)

)︀
, (𝑢,𝑤) ∈ F𝑛

2

}︀
.

Re-using Equation (8), i.e. the expression of 𝑇�
𝑧 we found in the proof of Lemma 11,

we have that 𝑎 = (𝑇�
𝑤+𝑢)−1(𝑢) + 𝑢 if and only if{︃
𝑎0 + 𝑢0 = 𝑢0

𝑎𝑖+1 + 𝑢𝑖+1 = (𝑎𝑖 + 𝑢𝑖) + 𝑢𝑖+1 + (𝑢𝑖 + 𝑤𝑖)𝑢𝑖 ,
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which is equivalent to {︃
𝑎0 = 0

𝑎𝑖+1 = 𝑎𝑖 + 𝑢𝑖𝑤𝑖 ,

which is in turn the induction computing 𝑎 = 𝑞(𝑢,𝑤).
In light of these results, we can provide a new interpretation of Proposition 8. Indeed,

the addition modulo 2𝑚 is CCZ-equivalent to a quadratic function because (𝑥, 𝑦) ↦→ 𝑥�𝑦
is EA-equivalent to (𝑥, 𝑧) ↦→ (𝑥 � (𝑥 + 𝑧)) + 𝑥 + 𝑧, a function with a degenerate TU-
decomposition where 𝑇 takes the whole output and 𝑇𝑦 is a permutation for all 𝑘. Then,
(𝑥, 𝑦) ↦→ 𝑇−1

𝑦 (𝑥) is quadratic because the induction defining it is obtained by swapping
the roles of the output and one of the inputs in the one defining (𝑥, 𝑦) ↦→ 𝑇𝑦(𝑥). This
breaks the unique chain of non-linear operation that appears when computing 𝑇𝑦(𝑥).
As the chain is broken, the algebraic degree cannot increase and stays stuck at 2.

It may be possible to deduce a way to generate finite automata-based compression
functions (𝑥, 𝑦) ↦→ 𝐹 (𝑥, 𝑦) with a degree which increases with the bit position and which
are CCZ-equivalent to quadratic functions, those being hopefully easier to study.

6.2 Other Proofs of Some Known Results

In this section, we recall several simple results pertaining to CCZ-equivalence and prove
them again using our framework.

Proposition 9 (Theorem 1 of [BC11]). The CCZ-class of a bent function mapping
F𝑛
2 → F𝑚

2 is limited to its EA-class.

Proof. The coefficients of the Walsh spectrum of a bent function take only one non-zero
value (up to its sign) except for those in 𝒱. Thus, there cannot be another vector space
of dimension 𝑛 in 𝒵𝐹 .

Proposition 10 (Theorem 1 of [BC10]). Two functions mapping F𝑛
2 to F2 are CCZ-

equivalent if and only if they are EA-equivalent.

Proof. The only way for a Boolean function mapping 𝑛 bits to 1 to have a non-trivial
CCZ-equivalence class is for it to be 𝑡-twistable for some 1 ≤ 𝑡 ≤ min(1, 𝑛). In this case,
it means it has to be 1-twistable. As we have established in Lemma 6, this happens if and
only if 𝑇𝑦(𝑥) = 𝑥+𝑓(𝑦), so that in our case it would hold that 𝐹 (𝑥, 𝑦) = 𝑥+𝑓(𝑦) for some
Boolean function 𝑓 . However, the result of twisting this function would be 𝐺 : F𝑛

2 → F2

such that 𝐺(𝑥, 𝑦) = 𝑇−1
𝑦 (𝑥) = 𝑥 + 𝑓(𝑦), i.e. 𝐹 itself. As we have established, it is

necessary to perform a twist in order to leave the EA-class of a function. However, the
only possible one in this case fails to do so. As a consequence, the CCZ-class is reduced
to a unique EA-class.

Proposition 11 (Proposition 2 of [BC10]). Let 𝐹 and 𝐹 ′ be two functions mapping
F𝑛
2 to F𝑚

2 which are CCZ-equivalent but not EA-equivalent. Then for any integer 𝑘
and any function 𝐶 : F𝑛

2 → F𝑘
2 , there exists 𝐶 ′ : F𝑛

2 → F𝑘
2 such that the functions

𝐺 : 𝑥 ↦→ (𝐹 (𝑥), 𝐶(𝑥)) and 𝐺′ : 𝑥 ↦→ (𝐹 ′(𝑥), 𝐶 ′(𝑥)) mapping F𝑛
2 to F𝑚+𝑘

2 are CCZ-
equivalent but not EA-equivalent.

Proof. We consider without loss of generality the case where, for any (𝑥, 𝑦) ∈ F𝑡
2×F𝑛−𝑡

2 ,
𝐹 (𝑥, 𝑦) = (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) and 𝐹 ′(𝑥, 𝑦) = (𝑇−1

𝑦 (𝑥), 𝑈𝑇−1
𝑦 (𝑥)(𝑦)). As 𝐹 and 𝐹 ′ are CCZ-

equivalent but not EA-equivalent, such decompositions must exist for some members of
their respective EA-classes.

In this context, we see that 𝐺 and 𝐺′ must both be 𝑡-twistable and we can further
give an expression of 𝐶 ′. Indeed, 𝐺 is such that

𝐺(𝑥, 𝑦) =
(︀
𝑇𝑦(𝑥), 𝑈𝑥(𝑦), 𝐶(𝑥, 𝑦)

)︀
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and 𝑡-twisting it yields 𝐺′ such that

𝐺′(𝑥, 𝑦) =
(︀
𝑇−1
𝑦 (𝑥), 𝑈𝑇−1

𝑦 (𝑥)(𝑦), 𝐶
(︀
𝑇−1
𝑦 (𝑥), 𝑦

)︀ )︀
,

so that 𝐶 ′(𝑥, 𝑦) = 𝐶
(︀
𝑇−1
𝑦 (𝑥), 𝑦

)︀
for any (𝑥, 𝑦) ∈ F𝑡

2 × F𝑛−𝑡
2 . Indeed, 𝐺 and 𝐺′ are not

EA-equivalent.

6.3 On Quadratic APN Functions

6.3.1 New Results

We can use Corollary 2 to study quadratic functions. First, we recall the following result
from [MS77, Chapter 15].

Proposition 12. Let 𝑓 : F𝑛
2 → F2 be a quadratic Boolean function. Let LS(𝑓) be the

linear space of 𝑓 , i.e.

LS(𝑓) = {𝑎 ∈ F𝑛
2 , 𝑓(𝑥 + 𝑎) + 𝑓(𝑥) = 𝑐,∀𝑥 ∈ F𝑛

2} ,

where 𝑐 ∈ F2. Then 𝑠 = dim(LS(𝑓)) has the parity of 𝑛 and the maximum coefficient in
the Walsh spectrum of 𝑓 has absolute value 2(𝑛+𝑠)/2.

In the case where 𝑓 is not bent, the maximum coefficient is strictly greater than
2(𝑛+1)/2 and thus the linear space of 𝑓 is not empty. As a consequence, we can apply
Corollary 2 to obtain the following proposition.

Proposition 13. Let 𝐹 : F𝑛
2 → F𝑚

2 be a quadratic function. If it has at least one
non-bent component then it is 1-twistable.

It is worth noticing that a function derived from a quadratic function by any 1-twist
has degree at most 3. Moreover, it follows from the expression of the resulting function
given in Lemma 6 that it is very unlikely that it has degree 2.

On the other hand, if such functions are APN then some twists are impossible.

Proposition 14. Let 𝑛 be even and let 𝐹 : F𝑛
2 → F𝑛

2 be a quadratic APN function.
Then 𝐹 is never 𝑛− 1-twistable.

Proof. The second item in Corollary 3 of [BCCLC06] states that any APN quadratic
function has at least 2(2𝑛 − 1)/3 bent components. Thus, as at most a third of the
components of 𝐹 have zeroes in their Walsh spectrum, it is impossible to find a vector
space of dimension 𝑛 in 𝒵𝐹 with a projection of dimension 𝑛 − 1 on 𝒱⊥. We deduce
that an (𝑛− 1)-twist is always impossible.

6.3.2 Revisiting the CCZ-Equivalence of Some Functions

We should not expect the members of the EA-classes obtained by twisting quadratic

functions to be quadratic themselves as (𝑥, 𝑦) ↦→
(︁
𝑇−1
𝑦 (𝑥), 𝑈𝑇−1

𝑦 (𝑥)(𝑦)
)︁

should a priori

not be quadratic even when (𝑥, 𝑦) ↦→ (𝑇𝑦(𝑥), 𝑈𝑥(𝑦)) is. Indeed, the functional inverse of
a quadratic function may have a higher degree and (𝑥, 𝑦) ↦→ 𝑈𝑇−1

𝑦 (𝑥)(𝑦) should a priori

not be quadratic since 𝑈 has degree 2 and 𝑇−1
𝑦 has degree at least 2. For instance,

the functions obtained by applying any 1-twist to a quadratic function are expected to
have degree 3. Informally, being quadratic is a brittle property which is unlikely to be
preserved under twisting.

This observation provides a possible interpretation of the main result in [BBMN11]:
the only quadratic functions which are CCZ-equivalent to Gold functions are EA-
equivalent to it. This result was later generalized in [Yos17] to all power functions
that are both plateaued, APN, and operate on an even block size. This class includes
in particular quadratic APN functions. We recall his result below.
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Proposition 15 (Theorem 3 of [Yos17]). Let 𝐹 and 𝐺 be plateaued APN functions
on F2𝑛 with 𝑛 even. Assume that 𝐹 is a power function, i.e. 𝐹 (𝑥) = 𝑥𝑑. Then 𝐹 is
CCZ-equivalent to 𝐺 if and only if 𝐹 is EA-equivalent to 𝐺.

By combining this result with the fact that all automorphisms of an APN quadratic
power mapping are EA-mappings (Corollary 6), we deduce the following.

Corollary 7. Let 𝐹 : 𝑥 ↦→ 𝑥2𝑖+1 over F2𝑛 with gcd(𝑖, 𝑛) = 1 be an APN power mapping
of degree 2. Then, applying any admissible t-twist to 𝐹 , with 𝑡 > 0, leads to an APN
function of degree at least 3.

We can also use our framework to better understand results from [BL08] and [BCP06].
One of the results in this first paper is the following.

Lemma 12 ([BL08]). The CCZ-class of 𝑃3 : 𝑥 ↦→ 𝑥3 in F5
2 contains 3 distinct EA-

classes.

Experimentally, we found 64 vector spaces of zeroes of dimension 5 in 𝒵𝑃3
of which 1

has thickness 0 (𝒱), 31 have thickness 4 and 32 have a thickness of 5. We looked at
a member of the EA-class corresponding to each of these vector spaces and found that
these could be sorted into 3 categories based on their thickness spectra. These are
described in Table 1.

Representative Algebraic Degree Thickness Spectrum

𝑥3 2 (0, 1), (1, 31), (5, 32)

𝐹 ′ 3 (0, 1), (1, 1), (2, 30), (4, 32)

𝑥1/3 3 (0, 1), (4, 62), (5, 1)

Table 1: EA-classes in the CCZ-class of 𝑥3 for 𝑛 = 5.

The functions in the second class are obtained from 𝑥3 by applying an EA-mapping
followed by a 1-twist. The functions in the third one are obtained from 𝑥3 via an
EA-mapping followed by a 5-twist, i.e. a functional inversion.

We know a representative of the class obtained via a 1-twist thanks to Budaghyan
et al.. Indeed, they showed in [BCP06] that the polynomial

𝐹 ′(𝑥) = 𝑥2𝑖+1 + (𝑥2𝑖 + 𝑥)Tr(𝑥2𝑖+1 + 𝑥)

which maps F2𝑛 to itself (𝑛 ≥ 4 odd, gcd(𝑖, 𝑛) = 1) is CCZ-equivalent to 𝐺 : 𝑥 ↦→ 𝑥2𝑖+1

and, as such, APN. Using our terminology, they showed that the involution ℒ : (F2𝑛)2 →
(F2𝑛)2 defined for 𝑎 ̸= 0 by

ℒ(𝑥, 𝑦) =
(︀
ℓ𝑎(𝑥, 𝑦), ℓ𝑎2𝑖+1(𝑦, 𝑥)

)︀
where ℓ𝑎 : (F𝑛

2 )2 → F𝑛
2 is the linear function defined by

ℓ𝑎(𝑥, 𝑦) = 𝑥 + 𝑎Tr(𝑥𝑎−1) + 𝑎Tr(𝑦𝑎−(2𝑖+1))

is admissible for 𝐺 and showed that the graph of 𝐹 ′ is obtained from that of 𝐺 by
applying ℒ and then an EA-mapping to it. As the rank of the linear function 𝑦 ↦→
𝑎Tr(𝑦𝑎−(2𝑖+1)) is equal to 1, ℒ𝑇 has thickness 1, implying that it corresponds to a 1-
twist and, for 𝑛 = 5, it has to be in the EA-class corresponding to the second row of
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Table 1. Besides, our Proposition 13 explains why such a twist is possible in the first
place.

For 𝑛 ≥ 4 even and gcd(𝑖, 𝑛) = 1, they showed a similar result:

𝐹 ′′(𝑥) = 𝑥2𝑖+1 + (𝑥2𝑖 + 𝑥 + 1)Tr(𝑥2𝑖+1)

is CCZ-equivalent to a Gold function. The corresponding admissible linear mapping is
again defined for any non-zero 𝑎 ∈ F2𝑛 by ℒ(𝑥, 𝑦) =

(︀
𝑥+𝑎Tr(𝑦𝑎−(2𝑖+1)), 𝑦

)︀
. As before,

the rank of the top right corner of the corresponding matrix is equal to 1, meaning that
𝐹 ′′ is obtained from a Gold function via a 1-twist and some EA-mappings.

The bulk of [BCP06] consists in proofs of the CCZ-equivalence of the new functions
they provide with the Gold function. However, as we have seen, applying a linear
mapping to the graph of a function may yield a function in the same EA-class even
when a twist is implied. Budaghyan et al. solved this problem by looking at the
algebraic degree of their functions and showing that it was strictly greater than 2. As
the algebraic degree is constant in an EA-class, the new function cannot be in that of
the Gold functions. But this result can be directly deduced from Corollary 7 which
shows that applying a 1-twist to 𝐺 : 𝑥 ↦→ 𝑥2𝑖+1 with gcd(𝑖, 𝑛) = 1 leads to a function of
degree at least 3, which cannot belong to the EA-class of 𝐺.

7 Conclusion

By looking at the interaction between CCZ-equivalence and both the DDT and LAT,
we were able to derive several new results. In particular, we have shown that CCZ-
equivalence is the combination of EA-equivalence and a new form of equivalence between
two functions which we called 𝑡-twist equivalence. To prove this result, we have designed
new theoretical tools such as swap matrices and space thickness which might be of
independent interest. These results allowed us to reinterpret several results from the
literature as well as to derive some new ones.

Using our results, the problem of exploring the EA-classes inside the CCZ-class of a
function can be reduced to a search for vector spaces. Indeed, the ability to efficiently
recover the vector spaces of dimension 𝑛 in the Walsh zeroes of a function will directly
allow us to iterate over all EA-classes. However, we may visit the same EA-class multiple
times. In order to avoid this problem, we would need an efficient algorithm checking for
the EA-equivalence of two functions.
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[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a the-
orem: Decomposing the only known solution to the big APN problem. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Sci-
ence, pages 93–122. Springer, Heidelberg, August 2016.

[SG13] Ernst Schulte-Geers. On CCZ-equivalence of addition mod 2𝑛. Designs,
Codes and Cryptography, 66(1):111–127, Jan 2013.

30



[Yos17] Satoshi Yoshiara. Equivalences among plateaued APN functions. Designs,
Codes and Cryptography, 85(2):205–217, Nov 2017.

31


	Introduction
	Preliminaries
	Particular Linear Permutations
	CCZ-Equivalence, DDT and LAT

	Table-Based Characterization of CCZ-Equivalence
	Vector Spaces of Zeroes
	A First Partition of CCZ-Classes
	Thickness and its Properties

	Twist and CCZ-Equivalence
	Function Twisting
	Some Special Twists
	Degenerate Cases
	On 1-Twistable Functions

	Swap Matrices and Space Thickness
	Twisting and CCZ-Equivalence

	Partitioning CCZ-Classes
	Theoretical Tools
	Partitioning

	Applications
	Modular Addition
	Other Proofs of Some Known Results
	On Quadratic APN Functions
	New Results
	Revisiting the CCZ-Equivalence of Some Functions


	Conclusion

