
Masking the Lightweight Authenticated Ciphers
ACORN and Ascon in Software

Alexandre Adomnicai1,2, Jacques J.A. Fournier3, and Laurent Masson1

1
Trusted Objects, Aix-en-Provence, France,

{a.adomnicai, l.masson}@trusted-objects.com
2

Mines Saint-Étienne, CEA-Tech, Centre CMP, Gardanne, France,
3

Univ. Grenoble Alpes, CEA-LETI, DSYS, Grenoble, France,
jacques.fournier@cea.fr

Abstract. The ongoing CAESAR competition aims at finding authenticated encryption schemes
that offer advantages over AES-GCM for several use-cases, including lightweight applications.
ACORN and Ascon are the two finalists for this profile. Our paper compares these two can-
didates according to their resilience against differential power analysis and their ability to
integrate countermeasures against such attacks. Especially, we focus on software implemen-
tations and provide benchmarks for several security levels on an ARM Cortex-M3 embedded
microprocessor.

Keywords: ACORN, Ascon, DPA, Masking, Side-Channel Attacks

1 Introduction

Authenticated encryption (AE) schemes provide confidentiality, integrity and authenticity
at once. The classical way to achieve such a construction is to combine several cryptographic
primitives, typically an encryption algorithm for confidentiality and a message authentication
code (MAC) for integrity and authenticity. Besides of being non optimal in terms of perfor-
mance, the generic combination may lead to implementation errors. Therefore, several mode
of operations for block ciphers have been designed to provide efficient and secure AE con-
structions such as Counter-with-CBC-MAC (CCM) [29], Galois/Counter Mode (GCM) [10]
and Offset Codebook Mode (OCB) [22]. Moreover, other algorithms than operation modes
have been investigated to design dedicated AE ciphers. Despite the variety of available de-
signs, because of a lack of widespread support and patenting issues, AES-GCM is currently
the most widely used cipher for AE. However, numerous vulnerabilities regarding AES-GCM
have been pointed out by the cryptographic community [20,6]. It is within this context
that, in January 2013, the CAESAR (Competition for Authenticated Encryption: Security,
Applicability, and Robustness) contest has arisen with the objective to come out with AE
schemes that offer advantages over AES-GCM and are suitable for widespread adoption. In
March 2014, 57 heterogeneous submissions have been received. In July 2016, the CAESAR
committee specified three use cases in order to classify the candidates. In March 2018, the
finalists for each type of use case were announced: ACORN [30] and Ascon [9] for lightweight
applications, AEGIS [32], MORUS [31] and OCB [18] for high-performance applications, and
COLM [2] and Deoxys-II [15] for defense in depth in misuse scenarios.

Our contribution. In this paper, we focus on ACORN and Ascon, both finalists for the
lightweight application profile. We compare them in terms of resilience against side-channel
analysis but also in terms of performance when implemented with countermeasures against
such attacks. While numerous benchmarks are available for the CAESAR candidates, most of
them do not take countermeasures against physical attacks into account. Nevertheless, this is



a significant criteria to consider since it can definitely be a game-changer in terms of perfor-
mance. For instance, ARX designs are very efficient in software but lose their advantage once
protected against power analysis [1]. A paper that benchmarks some CAESAR candidates,
including ACORN and Ascon, when implemented with countermeasures against side-channel
attacks has been recently published [8]. However, it only concerns hardware implementations,
leaving embedded software implementations high and dry. Moreover, although the authors
proposed a threshold implementation of ACORN , they focused on leakage detection rather
than identifying potential attack paths. Therefore, the vulnerability of ACORN to differential
power analysis (DPA) has not been explicitly established yet. In this paper, we clarify this
point by introducing the first DPA against this cryptographic primitive. This result allows
us to justify the need of countermeasures and to propose a dedicated masking scheme. Re-
garding Ascon, we briefly recall the previous security evaluations that have been published
in order to integrate suitable countermeasures. Especially, we highlight that for both can-
didates, it is sufficient to apply countermeasures to specific phases of the algorithm rather
than to its entirety. All the implementations discussed in this paper are implemented in
assembly language and executed on an ARM Cortex-M3 embedded microprocessor in order
to compare both candidates with side-channel attacks and software implementations in mind.

Outline. First, we briefly recall the two finalists ACORN and Ascon before discussing their
vulnerabilities against differential power analysis. Especially, we introduce a DPA attack
against ACORN and highlight that only a partial knowledge of the initialization vector is
necessary to recover the encryption key. These results allow us to propose a secure im-
plementation for each finalist by taking inspiration from the optimized code proposed by
the designers and masking schemes from the litterature. Finally, we present a performance
benchmark between ACORN and Ascon, with and without first-order masking.

2 ACORN

ACORN is a stream cipher based authenticated encryption with associated data (AEAD)
algorithm. AEAD schemes allow to also include information that does not need to be en-
crypted but of which the integrity and authenticity needs to still be guaranteed. ACORN uses
a 128-bit key, a 128-bit initialization vector (IV) and produces a 128-bit authentication tag.
Its internal state is 293-bit long and consists in the concatenation of six LFSRs as shown in
Fig.1.

0 23 60

⊕
⊕

61 66 106

⊕
⊕

107 111 153

⊕
⊕

154 160 192

⊕
⊕

193 196 229

⊕
⊕

230 235 288

⊕
⊕

289 292

⊕
mi

fi

Fig. 1: The concatenation of 6 LFSRs in ACORN . fi and mi indicate the overall feedback
bit and the message bit for the ith step, respectively.

ACORN relies on three main functions: an output keystream generation function, a non-
linear feedback function, and a state update function. The keystream generation function is
defined by

κ(S) = S12 ⊕ S154 ⊕Maj(S235, S61, S193)⊕ Ch(S230, S111, S66) (1)



where Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) and Ch(x, y) = (x ∧ y) ⊕ (¬x ∧ z). The
nonlinear feedback function is defined by

ϕ(S, k, ca, cb) = S0 ⊕ ¬S107 ⊕Maj(S244, S23, S160)⊕ (ca ∧ S196)⊕ (cb ∧ k) . (2)

The variables ca and cb allow to define different variants of the feedback function for
the four phases of the cipher: initialization, additional data processing, encryption and tag
generation. All of them use the state update function,the core of ACORN, which is defined
in Alg.1.

Algorithm 1 StateUpdate(S,m, ca, cb)
S289 ← S289 ⊕ S235 ⊕ S230 . Update using six LFSRs
S230 ← S230 ⊕ S196 ⊕ S193

S193 ← S193 ⊕ S160 ⊕ S154

S154 ← S154 ⊕ S111 ⊕ S107

S107 ← S107 ⊕ S66 ⊕ S61

S61 ← S61 ⊕ S23 ⊕ S0

k ← κ(S) . Keystream bit generation
f ← ϕ(S, k, ca, cb) . Nonlinear feedback bit generation
for i from 0 to 291 do

Si ← Si+1 . Shift the state
end for
S292 ← f ⊕m

Initialization. The initialization phase takes as input the encryption key and the IV. First,
the entire state is initialized to zero. Then the state is updated for 1792 steps as described
in Alg.2.

Algorithm 2 AcornInit(S,K, IV )

(S0, ..., S292)← (0, ..., 0) . Initialize the state to zero
for i from 0 to 127 do

S ← StateUpdate(S,Ki, 1, 1)
end for
for i from 0 to 127 do

S ← StateUpdate(S, IVi, 1, 1)
end for
S ← StateUpdate(S,K0 ⊕ 1, 1, 1)
for i from 1 to 1535 do

S ← StateUpdate(S,Ki mod 128, 1, 1)
end for

Additional Data Processing. After the initialization step, the associated data is used to
update the state. The state is updated for at least 256 steps, even if there is no associated
data to process.

Encryption. At each step of the encryption, one bit from the plaintext is encrypted. The
state is updated for at least 256 steps, even if there is no plaintext to encrypt.

Finalization. At the end, an n-bit authentication tag is computed. The state is updated
768 times and the tag consists of the last n keystream bits generated.



3 Ascon

Ascon is an AEAD algorithm based on duplex sponge modes [4]. It uses a 128-bit key, a
128-bit IV and produces a 128-bit authentication tag. The internal state is 320-bit long and
is represented by five 64-bit registers, noted x0 to x4. In the same way as ACORN, Ascon
processing consists of four phases as shown in Fig.4.

IV‖K‖N 320
pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

c
pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

r

⊕

K‖0∗

c

pa

⊕

K

k
T

Initialization Associated Data Plaintext Finalization

Fig. 2: ASCON cipher

Initilization The initial state is built from the encryption key and the initial vector before
applying a = 12 rounds of the transformation p. Finally, the secret key is XORed to the 128
last bits of the state.

Additional Data Process Each additional data block is absorbed into the state before
applying b rounds of the transformation p. Then, even if there is no additional data to
process, the last bit of the state is swapped to set up a domain separation in order to prevent
attacks that change the role of plaintext and associated data blocks.

Encryption Each plaintext block is duplexed into the state, producing a ciphertext block.
Except for the last block, the state is then updated by b rounds of the transformation p.

Finalization The encryption key is XORed to the internal state before applying a = 12
rounds of the transformation p. Finally, the n-bit tag consists of the last n bits of the state
XORed with the key.

The main component of Ascon is a 320-bit substitution-permutation network (SPN) based
transformation, noted p. It consists of three functions: a constant adder on top of nonlinear
and linear layers. The nonlinear layer consists in 64 parallel applications of a 5-bit S-box to
each bit-slice of the five registers x0,...,x4. Therefore, the S-box is intended to be implemented
in its bitsliced form as shown in Fig.3. Regarding the linear layer, it provides diffusion within
each register separately.

x0 ^= x4; x4 ^= x3; x2 ^= x1;

t0 = ~x0; t1 = ~x1; t2 = ~x2; t3 = ~x3; t4 = ~x4;

t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0;

x0 ^= t1; x1 ^= t2; x2 ^= t3; x3 ^= t4; x4 ^= t0;

x1 ^= x0; x0 ^= x4; x3 ^= x2; x2 = ~x2;

Fig. 3: Instructions to implement the Ascon S-box in a bitsliced manner

There are two recommended parameters for Ascon. The only two differences are the
block size and the number of rounds b of the transformation p when applied to the state
after absorbing the plaintext blocks. Ascon-128 works on 64-bit data blocks with b = 6 while



Ascon-128a works on 128-bit data blocks with b = 8. Because Ascon-128 is the primary
recommendation by the designers, we focus on this version and Ascon refers to Ascon-128
throughout the rest of this paper.

4 Differential Power Analysis

Side-channel attacks do not target the encryption algorithm itself, but side effects that occur
during the execution of an implementation such as computation time, electromagnetic (EM)
fields and power consumption. ACORN and Ascon do not need any conditional branches
depending on the internal state, nor do they employ look-up tables. Although they are
generally not vulnerable to timing attacks, they remain vulnerable to power or EM related
attacks such as DPA [17].

4.1 ACORN

DPA against stream ciphers can be more challenging compared to block ciphers because the
keystream is computed independently from the plaintext, which interferes in the relationship
between known values and the secret key. As a result, side-channel attacks against streamci-
phers usually focus on the initialization phase or resynchronization mechanisms rather than
the encryption step itself [26,12]. While several works have been undertaken to show how
ACORN can be defeated using fault attack [33,24], to the best of our knowledge, there is no
similar study with regards to side-channel attacks.

In the case of ACORN where the initialization is repeated each time a packet needs to
be encrypted, an adversary who has knowledge of IVs could then exploit their interactions
with the encryption key during this phase. An interesting feature of ACORN regarding DPA
is the way the initialization is processed. Instead of simply loading the key and the IV into
the state and then updating it for a certain number of steps, ACORN initalizes the state at
zero and updates it using the key and the IV as inputs. As the keystream and the 196th bits
are used to update the state (i.e. ca = cb = 1), carrying a DPA during the initialization does
not lead to a direct key recovery as only terms composed of several key bits can be retrieved.

Actually, before updating the state using the IV, the state is as follows

(S0, ..., S164) = (0, ..., 0)

(S165, ..., S198) = (¬K0, ...,¬K33)

(S199, ..., S201) = (K34 ⊕K0, ...,K36 ⊕K2)

(S202, ..., S218) = (¬K37 ⊕K3 ⊕K0, ...,¬K53 ⊕K19 ⊕K16)

(S219, ..., S223) = (K54 ⊕K20 ⊕K17 ⊕K0, ...,K58 ⊕K24 ⊕K21 ⊕K4)

(S224, ..., S229) = (¬K59 ⊕K25 ⊕K22 ⊕K5 ⊕K0, ...,¬K64 ⊕K30 ⊕K27 ⊕K10 ⊕K5)

(S230, ..., S261) = (¬K65 ⊕K11 ⊕K6, ...,¬K96 ⊕K42 ⊕K37)

(S262, ..., S272) = (K97 ⊕K43 ⊕K38 ⊕ f97, ...,K107 ⊕K53 ⊕K48 ⊕ f107)

(S273, ..., S288) = (¬K108 ⊕K54 ⊕K49 ⊕K0 ⊕ f108, ...,¬K123 ⊕K69 ⊕K64 ⊕K15 ⊕ f123)

(S289, ..., S292) = (¬K124 ⊕ f124, ...,¬K127 ⊕ f127)

(3)

where fi defines the nonlinear feedback bit.

fi =



1 if 0 ≤ i ≤ 96

Ki−97 if 97 ≤ i ≤ 99

(¬Ki−58) ∧ (¬Ki−100)⊕Ki−97 if 100 ≤ i ≤ 111

(Ki−58 ⊕Ki−112) ∧ (¬Ki−100)⊕Ki−97 if 112 ≤ i ≤ 116

¬(Ki−58 ⊕Ki−112 ⊕Ki−117) ∧ (¬Ki−100)⊕Ki−97 if 117 ≤ i ≤ 127

(4)



From step 128 to step 255, each bit of the IV will be XORed with the nonlinear feedback bit.
Running a DPA against this operation would not directly return the key bits but combina-
tions of them. Moreover, this approach only works for the first 49 bits as the corresponding
nonlinear feedback bits only depend on key bits. That is no longer the case for the next
bits because the values fi+128 for i ≥ 49 are also IV-dependent and therefore, not constant
anymore. However, it is still possible to isolate the IV bit in order to express fi in terms of
unknown constants (i.e. key-dependent only) bits. As an example, Eq. 5 details how it can
be done for f177.

f177 = Maj(S244, S23, S160)⊕ S196 ⊕ S154 ⊕Maj(S235, S61, S193)⊕ 1

= S244 ∧ S160 ⊕ S196 ⊕ S154 ⊕Maj(S235, S61, S193)⊕ 1

= (f128 ⊕K69 ⊕K10 ⊕K15 ⊕K74 ⊕K15 ⊕K20 ⊕ IV0) ∧ S160 ⊕ S196 ⊕ S154 ⊕Maj(S235, S61, S193)⊕ 1

= f
′
177 ⊕ IV0 ∧ S160

(5)

Therefore, a DPA against f177 ⊕ IV49 require to make hypotheses on two variables f ′177
and S160 instead of f177. Note that it increases exponentially the attack complexity as two
unknown variables have to be considered. Moreover, the attack complexity increases through-
out the state update as more and more IV-dependent bits are involved. Anyway, one can
still run an attack against several components as shown above. The number of hypothetical
variables to consider in order to successfully carry a DPA depends on the nonlinear feedback
bit index as summarised in Table 1.

Table 1: Number of additional variables x to guess when running a DPA against
f128+i ⊕ IVi for i ∈ I

I [0, 48] [49, 57] [58, 62] [63, 96] · · · [126, 127]

x 0 1 2 3 · · · 33

Consequently, unless the attacker is able to target each bit independently (e.g. hardware
implementation or enough traces to compute a partial correlation [28]), a DPA becomes too
computationally expensive for the last bits to be practical. However, it is not necessary to
attack all the 128 XOR operations to recover the entire key. Indeed, all key bits K0 to K127

are involved in the first 49 combinations (i.e. from f128 to f176). These latter can be seen as
a nonlinear system of Boolean equations as defined in Eq.6.

F =



¬ (K70 ⊕K11 ⊕K16) ∧ ¬K28 ⊕K31 = f128
¬ (K71 ⊕K12 ⊕K17) ∧ ¬K29 ⊕K32 = f129
¬ (K72 ⊕K13 ⊕K18) ∧ ¬K30 ⊕K33 = f130

¬ (K73 ⊕K14 ⊕K19) ∧ ¬K31 ⊕ ¬ (K34 ⊕K0) = f131
¬ (K74 ⊕K15 ⊕K20) ∧ ¬K32 ⊕ ¬ (K35 ⊕K1) = f132

¬ (K75 ⊕K16 ⊕K21) ∧ (K33 ⊕K0)⊕ ¬ (K36 ⊕K2)⊕ ¬ (K84 ⊕K25 ⊕K30) ∧ ¬K0 = f133
¬ (K76 ⊕K17 ⊕K22) ∧ ¬ (K34 ⊕K1 ⊕K0)⊕K37 ⊕K3 ⊕K0 ⊕ ¬ (K85 ⊕K26 ⊕K31) ∧ ¬K1 = f134

...

(¬ (K69 ⊕K10 ⊕K15) ∧ ¬K27 ⊕K30 ⊕K127 ⊕K68 ⊕K9 ⊕K73 ⊕K19) ∧ · · · = f176

(6)

However, because F defines a system of 49 nonlinear equations with 128 unknowns, there
are too many solutions. By taking advantage of leakages related to further nonlinear feedback
bits, one can extend F by increasing the number of equations in order to reduce the set of
solutions. In the rest of this section, Fi denotes the system of equations resulting from a
DPA against f128+j⊕IVj for 0 ≤ j ≤ i. Because additional hypotheses have to be considered



in order to isolate IV bits within nonlinear feedback bits, Fi reaches 128 equations from
i = 74 according to Table 1.

The task of recovering the initial key bits from Fi can be reduced to a variant of the
Boolean satisfiability (SAT) problem, which decides whether a given propositional formula
in conjunctive normal form (CNF) is satisfiable. In our case, we know that the CNF derived
from Fi is satisfiable, at least by the encryption key K. As a result, we are interested in
obtaining all of the truth assignments of SAT, which is another problem called All-SAT. In
order to evaluate the practical difficulty of solving F74, we computed the values it defines
for an arbtirary random key K. Then, mainly two tools were used to solve the related
All-SAT problem. First, the bc2cnf tool [16] allowed to translate the Boolean system of
equations into CNF formulae, before giving it as input of the SAT solver CryptoMiniSat5

[25]. An interesting feature of CryptoMiniSat5 is the option --maxsol n which returns up
to n solutions, allowing us to turn it into an All-SAT solver by providing a sufficiently large
upper bound. Regarding F74, 329 values for K verify the system. By iteratively increasing
the parameter i, we come to the conclusion that Fi has a unique solution if and only if
i ≥ 81. Indeed, F81 which defines a system of 158 equations and 128 unknowns has a single
solution, which equals the random key K used for our experiments.

As a result, it is theoretically possible to extract the encryption key during the initializa-
tion of ACORN by means of DPA. Moreover, the attack introduced above does not require
the knowledge of the entire IV since only the first 82 bits are necessary to return a single key.
In cases where less IV bits are known, one can still run the attack to reduce the key search
space in order to make a brute-force attack practical. Note that our approach makes the
assumption that every nonlinear feedback bit is recovered correctly and thus does not take
erroneous results into account. Such errors would make the related SAT problem unsatisfi-
able by the encryption key and thus the attack unsuccessful. To overcome this difficulty, the
usage of pseudo-Boolean optimizers instead of SAT solvers in the presence of errors should
be preferred [19]. Another error-tolerant technique that deals with inaccurate side-channel
measurements was introduced in [34].

This is the only attack path we identified to mount a DPA against ACORN. However,
note that the key is used again to update the state for the last 1536 steps of the initialization
phase. Exploiting the leakages related to these computations would result in a way more
complex Boolean system to solve. Still, we suggest to protect the entire initialization against
DPA. Integrating countermeasures during the encryption process should not bring any benefit
since it is assumed that the secret key of ACORN cannot be recovered from the state after
initialization.

4.2 Ascon

The side-channel vulnerablities of Ascon have already been evaluated in two papers [13,23].
Both of them consist in focusing on the initialization step as explained below. At the begin-
ning, the register x0 is initialized with a constant, x1 and x2 are initialized with the key, and
x3 and x4 are initialized with the IV. Because the variables x3 and x4 vary at each run and
are public, it is possible exploit leakages related to the interaction between these variables
and x1 and x2 during the first round of the permutation, in order to recover the encryption
key.

Moreover, another trivial attack path against Ascon occurs during the finalization phase.
Indeed, because the key is XOR-ed to the last permutation output to produce the tag, and
because the tag a is public value, an attacker could take advantage of its knowledge to



perform a DPA using the XOR as selection function. Therefore, the intermediate value that
is targeted consists of the last 128 bits of the state, just after the last permutation. Note
that the number of key bits that can be recovered equals the tag length. Therefore, it could
benefit to lightweight applications that truncate the tag to minimize the size of the packet.
However even if the tag is half truncated, a brute force attack against the 64 remaining bits
might be carried in practice.

These two attack paths are the only ones we identified to mount a DPA against Ascon.
Indeed, a state recovery after the initizalization or before the finalization neither leads to
the recovery of the key nor allows universal forgeries. Therefore, DPAs against either the
additional data processing or the encryption step could be applied but would only allow to
recover n bits of the state because of the sponge construction, where n refers to the block
size, without compromising the security of the algorithm.

5 The Masking Countermeasure

5.1 Overview

A common approach to thwart side-channel attacks is the use of masking. The principle of
masking is to apply secret sharing at the implementation level. More precisely, it consists in
blinding the processed values by means of random masks, so that intermediate variables are
impossible to predict. Thus, an attacker has to analyze multiple point distributions, which
exponentially increases the attack complexity with the number of shares. This kind of attack
is called higher-order DPA and at least n+ 1 shares have to be used to overcome an attack
of order n.

Computing a linear function λ on the shares of a variable is straightforward. If we repre-
sent a native variable x by its Boolean shares xi (x =

⊕
i xi) we can compute the shares yi of

y = λ(x) by simply applying λ on the individual shares (yi = λ(xi)). A function that consists
of the addition of a constant (e.g. bitwise NOT) can be applied to a single share. On the
other hand, computing a nonlinear function on the shares is a more challenging task. If all
separate operations are performed on n+1 shares that are independent of sensitive variables,
then it provides protection against n-order DPA. Regarding ACORN and Ascon, they can
be implemented in software by relying exclusively on the following five bitwise operations:
AND, XOR, NOT, shift and rotation. Therefore, the only nonlinear operation that have to
be considered is the bitwise AND.

5.2 Secure AND Computation

Several methods have been proposed to compute secure AND gates with Boolean shares [27,7].
All these techniques require additional randomness during the computation to refresh the
mask, even for first-order masking. Recently, a new masking scheme for secure AND gates
that do not require any intermediate random has been published [5]. On top of that, it is
faster than previous solutions since it only costs 7 basic operations, versus 8 for the previous
most efficient known methods. We recall the sequence of operations in Alg. 3. Protection
against high-order implementations for bitwise AND can be achieved thanks to the Ishai-
Sahai-Wagner (ISW) scheme [14] which has a complexity of O(n2) and requires to generate
n× (n+ 1)/2 random numbers of the same size of the share, at each execution.



Algorithm 3 First-Order Secure AND [5]
Require: x1 = x⊕ x2 ; y1 = y ⊕ y2 ; x2 ; y2
Ensure: (z1, z2) s.t. z1 ⊕ z2 = x ∧ y
z1 ← (x1 ∧ y1)⊕ (x1 ∨ ¬y2)
z2 ← (x2 ∧ y1)⊕ (x2 ∨ ¬y2)

5.3 Masking Scheme for ACORN

As discussed in the previous section, ACORN only requires protection against DPA during
the initialization phase. Our secure implementation of ACORN consists in generating enough
randomness at the beginning of the initialization in order to mask the entire state. All the
subsequent operations are performed using the shares in such a way that the processed
variables are independent from the key. Note that even if the IV and the key are not directly
masked, they will be rearranged in random shares once integrated into the internal state
through the XOR with the nonlinear feedback bit. Finally, the shares are recombined at the
end of the initialization, and the remaining computations are processed without masking.

5.4 Masking Scheme for Ascon

Contrary to ACORN, protection of the initialization phase is not sufficient for Ascon since
its finalization phase is also vulnerable to DPA. Our proposal for a secure implementation
of Ascon is as follows. First, the entire state is masked before applying transformation p.
All the subsequent operations when applying the permutation are performed masked and
the shares are recombined at the end of the initialization, after the addition of the key.
Then, the processing of associated data and plaintext blocks are performed without masking.
At the beginning of the finalization phase, the internal state is masked again. Note that
reusing the random shares used during the initialization should not compromise the security
of the masking scheme, saving the generation of additional random numbers. Finally, the
recombination of the shares should be done only after the final key addition, since the DPA
from the authentication tag targets the output of the last transformation p.

IV‖K‖N ⊕

Mr‖Mc

320
pa

⊕

0∗‖K

⊕

M ′c

c

⊕⊕

M ′r

r

A1

pb
⊕

As

c

pb

⊕

0∗‖1

c

⊕r

P1 C1

pb
c

⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

⊕

M ′c

c ⊕

K‖0∗

pa
⊕r

M ′r

⊕

K

k ⊕

M ′′c

T

Initialization Associated Data Plaintext Finalization

Fig. 4: Our proposed masking scheme for Ascon

6 Embedded Software Implementations

6.1 Methodology

All CAESAR submissions had to be accompanied by a software implementation in order to
support public understanding of the cipher. For consistency purposes, all implementations



are provided in C language programming and are compliant with a specific API. Especially,
the function to encrypt a message is defined below.

int crypto aead encrypt(unsigned char *c, unsigned long long *clen,

unsigned char *m, unsigned long long *mlen,

const unsigned char *ad, unsigned long long adlen,

const unsigned char *nsec, const unsigned char *npub, const unsigned char *k);

In order to integrate the implementations of ACORN and Ascon into our embedded platform,
the core routine of each finalist (i.e. the state update and the transformation p, respectively)
is implemented in assembly language. This choice is mainly motivated by performance and
security purposes. Indeed, masking should be applied at the lowest level in order to avoid side
effects from the compiler, such as instruction reordering or removal, and ensure that each
register always has a distribution independent from any sensitive variable. Moreover, all
auxiliary functions called from crypto aead encrypt are declared with the keyword inline

to save function-call overheads and therefore provide a fair comparison of both finalists in
terms of running time.

6.2 Core Functions Implementations

ACORN Although ACORN is designed to process one bit per step, up to 32 steps can be
processed in parallel. In this way, each function defined in Sect. 2 should be seen as operating
on 32-bit words Wi instead of bits Si. An optimized implementation that stores each LFSR
into a 64-bit word, including the last 4 bits S289, ..., S292 has been proposed by the designer.
As a result, the 293-bit internal state actually requires 7× 64 = 448 bits in RAM. Although
more compact implementations can be achieved, dedicating each LFSR to a register allow
to save instructions in order to build 32-bit working variables, as simple bit masks can be
applied on 64-bit words, resulting in a timememory trade-off. Nervertheless, operands Wi

for i ∈ {12, , 24, 66, 111, 160, 196, 235, 244} still require some bit manipulation to be built.
We followed this approach for our implementation as it offers the best performance. Because
our platform uses a 32-bit processor, the 293-bit internal state fits into thirteen 32-bit words
instead of seven 64-bit ones, resulting in 13× 32 = 416 bits. The assembly code is provided
in Appendix A.

Ascon Because its state consists of five 64-bit registers and it can be implemented only using
bitwise operations on 64-bit words, Ascon achieves very good performance on high-end CPUs.
However, it remains efficient on 32-bit platforms since it consists in splitting 64-bit words
into 32-bit ones and applying operations on each half. The only drawback comes from the
bitwise rotation used in the linear layer, which is defined on 64-bit words and thus requires 4
instructions instead of 2 for the other operations. The 320-bit internal state is represented by
ten 32-bit words. Our implementation of the transformation p is straightforward and follows
the bitsliced approach as described in its specification. The assembly code is provided in
Appendix B.

6.3 Practical Results

All results presented below were obtained using the STM32F100RBT6B development board
which comes with 128KB of flash memory and 8KB of RAM, embedding an ARM Cortex-M3
core running at 24 MHz. The C code was compiled using the GNU ARM C compiler 5.06
(update 2) with the -O2 optimization.



The two finalists are compared in terms of performances with and without masking. For
our benchmark, we consider plaintexts from 8 to 256 bytes. We justify this choice by the
fact that while some IoT networks only support short payloads (e.g. 12 bytes for Sigfox),
other technologies allow to transfer larger packets (e.g. up to 243 bytes for LoRa [21]). All
computations take as input an additional data of 16 bytes, in order to take this processing
phase into account. Note that the results presented in Fig. 5 do not take the generation
of random numbers into account, since our microcontroller does not support this feature.
The code size in ROM of each implementation is reported in Fig. 6. It follows from Fig. 5
that without any protection against DPA, Ascon outperforms ACORN for short messages
only. Regarding protected implementations, the overhead introduced by the masking coun-
termeasure is constant and does not depend on the input length. Especially, we measure an
extra running time of around 13 000 clock cycles for ACORN and 10 000 for Ascon. Therefore,
the integration of masking does not fundamentally change the previous results and Ascon
remains more efficient than ACORN for messages less than 128 bytes. As a result, high-order
masked implementations should lead to pretty similar analyses, depending on randomness
requirements.

Plaintext length (in bytes)
0 8 16 32 64 128 256

R
u
n
n
in
g
ti
m
e
(i
n
cl
o
ck

cy
cl
es
)

×104

0

1

2

3

4

5

6

7

8

ACORN unmasked

Ascon unmasked

ACORN with 1-st order masking

Ascon with 1-st order masking

Fig. 5: Execution times comparison

AEAD cipher
ACO RN Ascon

C
o
d
e
si
ze

(i
n
b
y
te
s)

0

500

1000

1500

2000

2500

3000

3500

4000

Without masking

With first-order masking

Fig. 6: Code sizes (encryption + decryption)

6.4 Randomness Complexity

Another aspect to consider regarding masked implementations is the randomness complexity,
which does matter for ACORN and Ascon since they are intended to run on embedded
platforms where the generation of random numbers might be troublesome. Because our
first-order masked implementations rely on Alg. 3 that do not require additional random
numbers to compute AND gates, the total amount of randomness that has to be generated
equals the size of the state. Although the implementation of ACORN discussed in this paper
uses additional memory in order to align several words to save some instructions, only the
293 effective bits have to be masked. Therefore, the randomness requirements for first-order
masking are very similar for ACORN and Ascon, consisting of 293 and 320 random bits,
respectively.

However, high-order masked implementations lead to complications since each AND gate
requires additional randomness. Referring to 32-bit implementations, it would precisely re-
quire (n2 + n)/2 32-bit random numbers at each secure AND computation. Because such
requirements can be impossible to achieve in practice, reducing the amount of randomness



for masking schemes is an active research field. Regarding secure AND calculaltions, it has
been shown in [3] that the randomness complexity at order n can be reduced from O(n2)
to O(n). Another recent work investigates how to recycle the randomn numbers previously
generated in order to re-use them for other operations [11]. Anyway, the fewer secure AND
there will be to compute, the fewer random numbers there will be to generate.

In the case of ACORN, the number of AND computations during a state update can be
minimized by considering thatMaj(x, y, z) = (x⊕y)∧(y⊕z)⊕y in order to save two nonlinear
gates compared to the original definition. As a result, each state update can be implemented
using 6 AND computations. However because two of them are performed with the control bits
ca and cb as other operands, either equal to 0x00000000 or 0xffffffff, they can be easily
computed without requiring secure AND calculations. As the initialization phase consists of
1792 steps, parallel 32-bit implementations require 1792/32 = 56 state updates, resulting in
a total 56 × (6 − 2) = 224 secure AND calculations for a masked initialization of ACORN.
Regarding Ascon, there are only 5 AND calculations within the transformation p, which
results in 10 operations for 32-bit implementations. As p is iterated for 12 rounds at both
initialization and finalization phases, a total of 10×12×2 = 240 secure AND calculations are
required for a masked implementation of Ascon, according to our masking scheme defined in
Sect. 5.4. Because our masking schemes require roughly the same number of AND gates to
secure for both ciphers, the randomness complexity should not be a significant differentiation
criterion for higher-order masking.

7 Conclusion

In this paper we analysed the side-channel resistance of both CAESAR finalists for the
lightweight applications profile, ACORN and Ascon. While numerous security evaluations
have already been published regarding Ascon, we introduced the first DPA attack against
ACORN, justifying the need of countermeasures at the implementation level. Our attack does
not return the encryption key itself but a system of boolean equations to solve, introducing
an All-SAT problem. Our practical investigations using the CryptoMiniSat5 tool led to the
conclusion that at least the first 82 updates with the IV as input have to be considered in
order to get a system with only one solution. We also recalled the previous results regarding
Ascon and underlined that the finalization should be protected as well as the initialization.

After recalling the principle of the masking countermeasure, we proposed a masking
scheme for each finalist. It results from our study that only subparts of the algorithms can
be protected against side-channel attacks in order to minimize the impact on performance.
Subsequently, we justified our software implementation strategies on a microcontroller em-
bedding an ARM Cortex-M3 CPU. Finally, we compared the clock cycles required by our
implementations to encrypt and authenticate messages of different lengths. It results that,
regardless of masking, Ascon outperforms ACORN for messages less than 128 bytes, while
ACORN is significantly more efficient for larger inputs. This is mainly explained by the fact
that ACORN bears the cost of its heavy initialization phase. On the other hand, ACORN offers
the best results in terms of code size and allows to achieve more compact implementations.
Although our benchmark only considers unsecure and first-order masked implementations,
we argued that similar results should be observed at higher-order as our masking schemes
require roughly the same number of nonlinear gates to secure for both ciphers.



References

1. Adomnicai, A., Fournier, J.J.A., Masson, L.: Bricklayer Attack: A Side-Channel Analysis on the ChaCha
Quarter Round. In: Patra, A., Smart, N.P. (eds.) Progress in Cryptology – INDOCRYPT 2017. pp. 65–84.
Springer International Publishing, Cham (2017)

2. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tischhauser, E., Yasuda, K.:
COLM v1. Submission to the CAESAR competition: https://competitions.cr.yp.to/round3/colmv1.
pdf (2016)

3. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.: Randomness Com-
plexity of Private Circuits for Multiplication. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology
– EUROCRYPT 2016. pp. 616–648. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based encryption, authentication and
authenticated encryption. DIAC - Directions in Authenticated Ciphers (2012)

5. Biryukov, A., Dinu, D., Le Corre, Y., Udovenko, A.: Optimal First-Order Boolean Masking for Embedded
IoT Devices. In: Eisenbarth, T., Teglia, Y. (eds.) Smart Card Research and Advanced Applications. pp.
22–41. Springer International Publishing, Cham (2018)

6. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting Adversaries: Prac-
tical Forgery Attacks on GCM in TLS. In: Proceedings of the 10th USENIX Conference on Of-
fensive Technologies. pp. 15–25. WOOT’16, USENIX Association, Berkeley, CA, USA (2016), http:

//dl.acm.org/citation.cfm?id=3027019.3027021

7. Coron, J.S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from Arithmetic to Boolean Masking
with Logarithmic Complexity, pp. 130–149. Springer Berlin Heidelberg, Berlin, Heidelberg (2015), https:
//doi.org/10.1007/978-3-662-48116-5_7

8. Diehl, W., Abdulgadir, A., Farahmand, F., Kaps, J.P., Gaj, K.: Comparison of cost of protection against
differential power analysis of selected authenticated ciphers. In: 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). pp. 147–152 (April 2018)

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to the CAESAR compe-
tition: http://competitions.cr.yp.to/round3/asconv12.pdf (2016), http://ascon.iaik.tugraz.at

10. Dworkin, M.J.: SP 800-38D. Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. Tech. rep., Gaithersburg, MD, United States (2007)

11. Faust, S., Paglialonga, C., Schneider, T.: Amortizing randomness complexity in private circuits. Cryptol-
ogy ePrint Archive, Report 2017/869 (2017), https://eprint.iacr.org/2017/869

12. Gierlichs, B., Batina, L., Clavier, C., Eisenbarth, T., Gouget, A., Handschuh, H., Kasper, T., Lemke-Rust,
K., Mangard, S., Moradi, A., Oswald, E.: Susceptibility of eSTREAM candidates towards side channel
analysis pp. 123–150 (07 2018)

13. Gross, H., Wenger, E., Dobraunig, C., Ehrenhfer, C.: Ascon Hardware Implementations and Side-channel
Evaluation. Microprocess. Microsyst. 52(C), 470–479 (Jul 2017), https://doi.org/10.1016/j.micpro.
2016.10.006

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh,
D. (ed.) Advances in Cryptology - CRYPTO 2003. pp. 463–481. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

15. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submission to the CAESAR competi-
tion: https://competitions.cr.yp.to/round3/deoxysv141.pdf (2016), http://www1.spms.ntu.edu.

sg/~syllab/m/index.php/Deoxys

16. Junttila, T.A., Niemelä, I.: Towards an Efficient Tableau Method for Boolean Circuit Satisfiability Check-
ing. In: Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, L.M., Sagiv, Y.,
Stuckey, P.J. (eds.) Computational Logic — CL 2000. pp. 553–567. Springer Berlin Heidelberg, Berlin,
Heidelberg (2000)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of the 19th Annual Interna-
tional Cryptology Conference on Advances in Cryptology. pp. 388–397. CRYPTO ’99, Springer-Verlag,
London, UK, UK (1999), http://dl.acm.org/citation.cfm?id=646764.703989

18. Krovetz, T., Rogaway, P.: OCB (v1.1). Submission to the CAESAR competition: https://competitions.
cr.yp.to/round3/ocbv11.pdf (2016)

19. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic Side-Channel Analysis in the Presence of Errors.
In: Mangard, S., Standaert, F.X. (eds.) Cryptographic Hardware and Embedded Systems, CHES 2010.
pp. 428–442. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

20. Procter, G., Cid, C.: On Weak Keys and Forgery Attacks Against Polynomial-Based MAC Schemes.
Journal of Cryptology 28, 769–795 (2013)

21. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low Power Wide Area Networks: A Survey. CoRR
abs/1606.07360 (2016), http://arxiv.org/abs/1606.07360

https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
http://dl.acm.org/citation.cfm?id=3027019.3027021
http://dl.acm.org/citation.cfm?id=3027019.3027021
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
http://competitions.cr.yp.to/round3/asconv12.pdf
http://ascon.iaik.tugraz.at
https://eprint.iacr.org/2017/869
https://doi.org/10.1016/j.micpro.2016.10.006
https://doi.org/10.1016/j.micpro.2016.10.006
https://competitions.cr.yp.to/round3/deoxysv141.pdf
http://www1.spms.ntu.edu.sg/~syllab/m/index.php/Deoxys
http://www1.spms.ntu.edu.sg/~syllab/m/index.php/Deoxys
http://dl.acm.org/citation.cfm?id=646764.703989
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
http://arxiv.org/abs/1606.07360


22. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-cipher Mode of Operation for Efficient
Authenticated Encryption. In: Proceedings of the 8th ACM Conference on Computer and Communica-
tions Security. pp. 196–205. CCS ’01, ACM, New York, NY, USA (2001), http://doi.acm.org/10.1145/
501983.502011

23. Samwel, N., Daemen, J.: DPA on Hardware Implementations of Ascon and Keyak. In: Proceedings of
the Computing Frontiers Conference. pp. 415–424. CF’17, ACM, New York, NY, USA (2017), http:

//doi.acm.org/10.1145/3075564.3079067

24. Siddhanti, A., Sarkar, S., Maitra, S., Chattopadhyay, A.: Differential Fault Attack on Grain v1, ACORN
v3 and Lizard. In: SPACE (2017)

25. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT Solvers to Cryptographic Problems. In: The-
ory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings. pp. 244–257 (2009), https://doi.org/10.1007/

978-3-642-02777-2_24

26. Strobel, D.: Side Channel Analysis Attacks on Stream Ciphers. Master’s thesis, Ruhr-Universitt Bochum
(2010), https://www.emsec.rub.de/media/crypto/attachments/files/2010/04/mt_strobel.pdf

27. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on Masked Data. Cryptology
ePrint Archive, Report 2003/236 (2003), https://eprint.iacr.org/2003/236

28. Tunstall, M., Hanley, N., McEvoy, R., Whelan, C., Murphy, C., Marnane, W.: Correlation Power Analysis
of Large Word Sizes (2007), http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf

29. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). RFC 3610, RFC Editor
(September 2003), http://www.rfc-editor.org/rfc/rfc3610.txt, http://www.rfc-editor.org/rfc/
rfc3610.txt

30. Wu, H.: ACORN: A Lightweight Authenticated Cipher (v3). Submission to the CAESAR competition:
https://competitions.cr.yp.to/round3/acornv3.pdf (2016)

31. Wu, H., Huang, T.: The Authenticated Cipher MORUS (v2). Submission to the CAESAR competition:
https://competitions.cr.yp.to/round3/morusv2.pdf (2016)

32. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm (v1.1). Submission to the
CAESAR competition: https://competitions.cr.yp.to/round3/aegisv11.pdf (2016)

33. Zhang, X., Feng, X., Lin, D.: Fault Attack on ACORN v3. The Computer Journal p. bxy044 (2018),
http://dx.doi.org/10.1093/comjnl/bxy044

34. Zhao, X., Zhang, F., Guo, S., Wang, T., Shi, Z., Liu, H., Ji, K.: MDASCA: An Enhanced Algebraic Side-
Channel Attack for Error Tolerance and New Leakage Model Exploitation. In: Schindler, W., Huss, S.A.
(eds.) Constructive Side-Channel Analysis and Secure Design. pp. 231–248. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

http://doi.acm.org/10.1145/501983.502011
http://doi.acm.org/10.1145/501983.502011
http://doi.acm.org/10.1145/3075564.3079067
http://doi.acm.org/10.1145/3075564.3079067
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://www.emsec.rub.de/media/crypto/attachments/files/2010/04/mt_strobel.pdf
https://eprint.iacr.org/2003/236
http://www.geocities.ws/mike.tunstall/papers/THMWMM.pdf
http://www.rfc-editor.org/rfc/rfc3610.txt
http://www.rfc-editor.org/rfc/rfc3610.txt
http://www.rfc-editor.org/rfc/rfc3610.txt
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
http://dx.doi.org/10.1093/comjnl/bxy044


A ARM Assembly Code for the ACORN State Update

;state [0]: S_31 ...S_0 (32 bits)

;state [1]: S_60 ... S_32 (29 bits)

;state [2]: S_92 ... S_61 (32 bits)

;state [3]: S_106 ... S_93 (14 bits)

;state [4]: S_138 ... S_107 (32 bits)

;state [5]: S_153 ... S_139 (15 bits)

;state [6]: S_185 ... S_154 (32 bits)

;state [7]: S_192 ... S_186 (7 bits)

;state [8]: S_224 ... S_193 (32 bits)

;state [9]: S_229 ... S_225 (5 bits)

;state [10]: S_261 ... S_230 (32 bits)

;state [11]: S_288 ... S_262 (27 bits)

;state [12]: S_292 ... S_289 (4 bits)

acorn_asm

; r0 points to the internal state

PUSH {r4 -r11 , lr}

SUB sp, sp, #0x1c

; --- computes temp data ---

; computes S_275 ... S_244

LDRD r4, r5 , [r0 ,#0x28]

LSR r4, r4, #14

ORR r4, r4, r5, LSL #18

STR r4, [sp, #0x18]

; computes S_266 ... S_235

LDR r4, [r0, #0x28]

LSR r4, r4, #5

ORR r4, r4, r5, LSL #27

STR r4, [sp, #0x14]

; computes S_227 ... S_196

LDRD r4, r5 , [r0, #0x20]

LSR r4, r4, #3

ORR r4, r4, r5, LSL #29

STR r4, [sp, #0x10]

; computes S_191 ... S_160

LDRD r4, r5 , [r0, #0x18]

LSR r4, r4, #6

ORR r4, r4, r5, LSL #26

STR r4, [sp, #0x0c]

; computes S_142 ... S_111

LDRD r4, r5 , [r0, #0x10]

LSR r4, r4, #4

ORR r4, r4, r5, LSL #28

STR r4, [sp, #0x08]

; computes S_97 ... S_66

LDRD r4, r5 , [r0, #0x08]

LSR r4, r4, #5

ORR r4, r4, r5, LSL #27

STR r4, [sp, #0x04]

; computes S_54 ... S_23

LDRD r4, r5 , [r0]

LSR r4, r4, #23

ORR r4, r4, r5, LSL #9

STR r4, [sp]

; --- updates LFSRs ---

; updates LFSR 5

LDR r4, [r0, #0x28]

LDR r5, [r0, #0x30]

LDR r6, [sp, #0x14]

EOR r6, r4, r6

EOR r5, r5, r6

STR r5, [r0, #0x30]

; updates LFSR 4

LDR r5, [r0, #0x20]

LDR r6, [sp, #0x10]

EOR r6, r5, r6

EOR r4, r4, r6

STR r4, [r0, #0x28]

; updates LFSR 3

LDR r4, [r0, #0x18]

LDR r6, [sp, #0x0c]

EOR r6, r4, r6

EOR r5, r5, r6

STR r5, [r0, #0x20]

; updates LFSR 2

LDR r5, [r0, #0x10]

LDR r6, [sp, #0x08]

EOR r6, r5, r6

EOR r4, r4, r6

STR r4, [r0, #0x18]

; updates LFSR 1

LDR r4, [r0, #0x08]

LDR r6, [sp, #0x04]

EOR r6, r4, r6

EOR r5, r5, r6

STR r5, [r0, #0x10]

; updates LFSR 0

LDR r5, [r0]

LDR r6, [sp]

EOR r6, r5, r6

EOR r4, r4, r6

STR r4, [r0, #0x08]

; --- generates the keystream ---

; computes maj(W_235 , W_61 , W_193)

LDR r5, [r0, #0x20]

LDR r6, [sp, #0x14]

AND r7, r4, r5

AND r4, r4, r6

AND r5, r5, r6

EOR r4, r4, r5

EOR r4, r4, r7

; computes ch(W_230 , W_111 , W_66)

LDRD r5, r6 , [sp, #0x04]

LDR r7, [r0, #0x28]

AND r6, r6, r7

MVN r7, r7

AND r7, r5, r7

EOR r6, r6, r7

; finalizes keystream computation

EOR r4, r4, r6

LDR r5, [r0, #0x18] ; W_154

EOR r4, r4, r5

; computes S_43 ... S_12

LDRD r5, r6 , [r0]

LSR r5, r5, #12

ORR r5, r5, r6, LSL #20

EOR r4, r4, r5

; --- computes the ciphertext ---

EOR r5, r1, r4

STR r5, [r2]

; --- generates the feedback word ---

; computes (c_a & W_196) ^ (c_b & ks)

LDRD r5, r6 , [r3]

AND r4, r4, r6

LDR r6, [sp, #0x10]

AND r5, r5, r6

EOR r4, r4, r5

EOR r1, r1, r4

; computes maj(W_244 , W_23 , W_160)

LDR r4, [sp, #0x18]

LDR r5, [sp]

LDR r6, [sp, #0x0c]

AND r7, r4, r5

AND r4, r4, r6

AND r5, r5, r6

EOR r4, r4, r5

EOR r4, r4, r7

EOR r1, r1, r4

; computes state [0] ^ (~ state [2])

LDR r4, [r0, #0x10]

MVN r4, r4

EOR r1, r1, r4

LDR r4, [r0]

EOR r1, r1, r4

; --- state [6] ^= feedback << 4 ---

LDR r4, [r0, #0x30]

EOR r4, r4, r1, LSL #4

STR r4, [r0, #0x30]

; --- shifts all LFSRs by 32 bits ---

; 1st word

LDRD r4, r5 , [r0, #0x04]

ORR r4, r4, r5, LSL #29

STR r4, [r0]

; 2nd word

LSR r5, r5, #3

STR r5, [r0, #0x04]

; 3rd word

LDRD r4, r5 , [r0, #0x0c]

ORR r4, r4, r5, LSL #14

STR r4, [r0, #0x08]

; 4th word

LSR r5, r5, #18

STR r5, [r0, #0x0c]

; 5th word

LDRD r4, r5 , [r0, #0x14]

ORR r4, r4, r5, LSL #15

STR r4, [r0, #0x10]

; 6th word

LSR r5, r5, #17

STR r5, [r0, #0x14]

; 7th word

LDRD r4, r5 , [r0, #0x1c]

ORR r4, r4, r5, LSL #7

STR r4, [r0, #0x18]

; 8th word

LSR r5, r5, #25

STR r5, [r0, #0x1c]

; 9th word

LDRD r4, r5 , [r0, #0x24]

ORR r4, r4, r5, LSL #5

STR r4, [r0, #0x20]

; 10th word

LSR r5, r5, #27

STR r5, [r0, #0x24]

; 11th word

LDRD r4, r5 , [r0, #0x2c]

ORR r4, r4, r5, LSL #27

STR r4, [r0, #0x28]

; 12th word

LSR r5, r5, #5

STR r5, [r0, #0x2c]

; 13th word

LSR r4, r1, #28

STR r4, [r0, #0x30]

ADD sp, sp, #0x1c

POP {r4-r11 , lr}

BX lr



B ARM Assembly Code for the transformation p of Ascon

permutation_ascon

; r0 points to the internal state

PUSH {r2 -r11 , lr}

SUB sp, sp, #0x08

; for each round

loop

; --- loads the entire state ---

LDRD r2, r3 , [r0]

LDRD r4, r5 , [r0, #0x08]

LDRD r6, r7 , [r0, #0x10]

LDRD r8, r9 , [r0, #0x18]

LDRD r10 , r11 , [r0, #0x20]

; --- adds round constant ---

EOR r7, r7, r1

; --- applies the nonlinear layer ---

EOR r2, r2, r10 ; x0 ^= x4

EOR r3, r3, r11 ; x0 ^= x4

STRD r2, r3 , [r0]

EOR r10 , r10 , r8 ; x4 ^= x3

EOR r11 , r11 , r9 ; x4 ^= x3

STRD r10 , r11 , [r0, #0x20]

EOR r6, r6, r4 ; x2 ^= x1

EOR r7, r7, r5 ; x2 ^= x1

STRD r6, r7 , [r0, #0x10]

MVN r2, r2 ; ~x0

MVN r3, r3 ; ~x0

AND r2, r2, r4 ; ~x0 & x1

AND r3, r3, r5 ; ~x0 & x1

STRD r2, r3 , [sp]

MVN r4, r4 ; ~x1

MVN r5, r5 ; ~x1

AND r4, r4, r6 ; ~x1 & x2

AND r5, r5, r7 ; ~x1 & x2

MVN r6, r6 ; ~x2

MVN r7, r7 ; ~x2

AND r6, r6, r8 ; ~x2 & x3

AND r7, r7, r9 ; ~x2 & x3

MVN r8, r8 ; ~x3

MVN r9, r9 ; ~x3

AND r8, r8, r10 ; ~x3 & x4

AND r9, r9, r11 ; ~x3 & x4

MVN r10 , r10 ; ~x4

MVN r11 , r11 ; ~x4

LDRD r2, r3 , [r0]

AND r10 , r10 , r2 ; ~x4 & x0

AND r11 , r11 , r3 ; ~x4 & x0

EOR r2, r2, r4 ; x0 ^= ~x1 & x2

EOR r3, r3, r5 ; x0 ^= ~x1 & x2

STRD r2, r3 , [r0]

LDRD r2, r3 , [r0, #0x08]

EOR r2, r2, r6 ; x1 ^= ~x2 & x3

EOR r3, r3, r7 ; x1 ^= ~x2 & x3

STRD r2, r3 , [r0, #0x08]

LDRD r2, r3 , [r0, #0x10]

EOR r2, r2, r8 ; x2 ^= ~x3 & x4

EOR r3, r3, r9 ; x2 ^= ~x3 & x4

STRD r2, r3 , [r0, #0x10]

LDRD r2, r3 , [r0, #0x18]

EOR r2, r2, r10 ; x3 ^= ~x4 & x0

EOR r3, r3, r11 ; x3 ^= ~x4 & x0

STRD r2, r3 , [r0, #0x18]

LDRD r10 , r11 , [r0, #0x20]

LDRD r2, r3 , [sp]

EOR r10 , r10 , r2 ; x4 ^= ~x0 & x1

EOR r11 , r11 , r3 ; x4 ^= ~x0 & x1

LDRD r2, r3 , [r0]

LDRD r4, r5 , [r0, #0x08]

LDRD r6, r7 , [r0, #0x10]

LDRD r8, r9 , [r0, #0x18]

EOR r4, r4, r2 ; x1 ^= x0

EOR r5, r5, r3 ; x1 ^= x0

EOR r2, r2, r10 ; x0 ^= x4

EOR r3, r3, r11 ; x0 ^= x4

EOR r8, r8, r6 ; x3 ^= x2

EOR r9, r9, r7 ; x3 ^= x2

MVN r6, r6 ; ~x2

MVN r7, r7 ; ~x2

STRD r8, r9 , [r0, #0x18]

STRD r10 , r11 , [r0, #0x20]

; --- applies the linear layer ---

; linear diffusion on x0

LSR r10 , r2, #19

ORR r10 , r10 , r3 , LSL #13

LSR r11 , r3, #19

ORR r11 , r11 , r2 , LSL #13

LSR r8, r2, #28

ORR r8, r8, r3, LSL #4

LSR r9, r3, #28

ORR r9, r9, r2, LSL #4

EOR r2, r2, r10

EOR r3, r3, r11

EOR r2, r2, r8

EOR r3, r3, r9

STRD r2, r3 , [r0]

; linear diffusion on x1

LSR r10 , r5, #29

ORR r10 , r10 , r4 , LSL #3

LSR r11 , r4, #29

ORR r11 , r11 , r5 , LSL #3

LSR r8, r5, #7

ORR r8, r8, r4, LSL #25

LSR r9, r4, #7

ORR r9, r9, r5, LSL #25

EOR r4, r4, r10

EOR r5, r5, r11

EOR r4, r4, r8

EOR r5, r5, r9

STRD r4, r5 , [r0, #0x08]

; linear diffusion on x2

LSR r10 , r6, #1

ORR r10 , r10 , r7 , LSL #31

LSR r11 , r7, #1

ORR r11 , r11 , r6 , LSL #31

LSR r8, r6, #6

ORR r8, r8, r7, LSL #26

LSR r9, r7, #6

ORR r9, r9, r6, LSL #26

EOR r6, r6, r10

EOR r7, r7, r11

EOR r6, r6, r8

EOR r7, r7, r9

STRD r6, r7 , [r0, #0x10]

; linear diffusion on x3

LDRD r6, r7 , [r0, #0x18]

LSR r10 , r6, #10

ORR r10 , r10 , r7 , LSL #22

LSR r11 , r7, #10

ORR r11 , r11 , r6 , LSL #22

LSR r8, r6, #17

ORR r8, r8, r7, LSL #15

LSR r9, r7, #17

ORR r9, r9, r6, LSL #15

EOR r6, r6, r10

EOR r7, r7, r11

EOR r6, r6, r8

EOR r7, r7, r9

STRD r6, r7 , [r0, #0x18]

; linear diffusion on x4

LDRD r6, r7 , [r0, #0x20]

LSR r10 , r6, #7

ORR r10 , r10 , r7 , LSL #25

LSR r11 , r7, #7

ORR r11 , r11 , r6 , LSL #25

LSR r8, r7, #9

ORR r8, r8, r6, LSL #23

LSR r9, r6, #9

ORR r9, r9, r7, LSL #23

EOR r6, r6, r10

EOR r7, r7, r11

EOR r6, r6, r8

EOR r7, r7, r9

STRD r6, r7 , [r0, #0x20]

; --- loop iteration check ---

SUB r1, r1, #0x0f

CMP r1, #0x4b

BGE loop

ADD sp, sp, #0x08

POP {r2-r11 , lr}

BX lr


	Masking the Lightweight Authenticated Ciphers ACORN and Ascon in Software

