
Exploring Deployment Strategies
for the Tor Network [Extended Version]

Christoph Döpmann
Distributed Security Infrastructures

Technische Universität Berlin
christoph.doepmann@campus.tu-berlin.de

Sebastian Rust
Institut für Informatik

Humboldt-Universität zu Berlin
rustseba@informatik.hu-berlin.de

Florian Tschorsch
Distributed Security Infrastructures

Technische Universität Berlin
florian.tschorsch@tu-berlin.de

Abstract—In response to upcoming performance and security
challenges of anonymity networks like Tor, it will be of crucial
importance to be able to develop and deploy performance im-
provements and state-of-the-art countermeasures. In this paper,
we therefore explore different deployment strategies and review
their applicability to the Tor network. In particular, we consider
flag day, dual stack, translation, and tunneling strategies and
discuss their impact on the network, as well as common risks
associated with each of them. In a simulation based evaluation,
which stems on historical data of Tor, we show that they can
practically be applied to realize significant protocol changes in
Tor. However, our results also indicate that during the transitional
phase a certain degradation of anonymity is unavoidable with
current viable deployment strategies.

Keywords—Internet security, overlay networks

I. INTRODUCTION

The importance of anonymous communication networks
(ACNs) such as Tor [1] has steadily grown over the past years.
In order to keep up with current and future requirements—for
example strengthening anonymity against increasingly pow-
erful adversaries, or improving performance to broaden the
user base—it is of decisive importance to carry out active
research in this field. Great technological advances will fail
to reach practical importance, though, if they cannot actually
be deployed in a safe and practical manner. Yet, this is an
aspect that is oftentimes neglected in research.

With ACNs in general, deployment of system changes
becomes an especially difficult task due to two inherent
system properties: Firstly, special care must be taken not to
exclude any users from the system. Secondly, it constitutes a
non-trivial technical problem that consists in maintaining the
network’s functionality without breaking anonymity during the
deployment process. The latter is hard because, like Tor, ACNs
are oftentimes highly decentralized systems, in which no
single entity has control over individual entities. Incremental
upgrades might easily result in a network split or otherwise
harm the anonymity set that is essential to protect its users.

The main focus of this paper lies on the deployment of
changes that affect network communication or the infras-
tructure within Tor. While changes to other parts of Tor
are equally important, these are generally easier to deploy.
For instance, cryptographic primitives used in Tor have been
successfully replaced [2]. Tor’s ability to differentiate between
types of cells made this transition relatively straightforward to

implement. On the other hand, as soon as the network layer
is touched by a protocol change, this can have tremendous,
inherently backwards-incompatible consequences. Examples
of such changes that may be desirable to adopt in the future
include fundamental changes to either connection handling [3],
congestion control [4], or even substituting the transport pro-
tocol [5], [6].

In this paper, we first investigate how flag day transitions
can be applied in the context of Tor, yielding a potential
way of introducing arbitrary protocol changes. Pointing at the
deficiencies associated with this approach, we also consider
coexistence-based approaches like dual stack, translation and
tunneling, analyzing their strengths and drawbacks and relating
them to real proposed network changes. We validate their
applicability by carrying out a simulation-based evaluation.
Our work indicates that certain network changes possibly
cannot be deployed without accepting some degradation of
anonymity during the transitional phase.

The contributions of our paper can be summarized as
follows. We give an overview of deployment challenges in
Tor and identify existing mechanisms that can be leveraged
to deploy small, compatible changes. We investigate strategies
suitable for deploying more fundamental changes to the Tor
protocol and juxtapose their advantages and individual risks
regarding security and anonymity. Furthermore, we evaluate
the proposed approaches’ impact on the network and em-
phasize the importance of carefully choosing an appropriate
deployment strategy during development.

The remainder of this work is structured as follows. In
Section II, we review related work. In Section III, we de-
scribe the Tor ecosystem and provide first starting points
for deployments. Section IV deals with various deployment
strategies and discusses a suite of general approaches towards
the deployment in Tor, before evaluating their impact on the
network in Section V. We conclude our work in Section VI.

II. RELATED WORK

The deployment of software enhancements has attracted
considerable amount of attention, both within the industry
and scientific research. For instance, [7] presents a framework
for categorizing deployment strategies. Over the past years,
the process of software deployment has been revolutionized



directory

onion
proxy

entry

middle

exit server

Fig. 1. The Tor network. Each onion symbol represents a relay. The list of
all relays is provided by the directory. Clients typically select three relays to
construct a circuit. Onion routing ensures anonymity of the transmitted data.

first by the introduction of virtualization [8], and later by
containerization techniques [9].

While there has been less attention on the deployment
of network-based software, especially evolving network pro-
tocols, this field has not been ignored, either. As a prime
example, the still ongoing transition from IPv4 to IPv6 has
been generally discussed in [10] and motivated several suitable
approaches [11]. To some extent, both contributions inspired
the strategies proposed in this work. We however focus on
anonymous communication networks in general and the Tor
network in particular, which induce additional requirements
regarding security and anonymity.

In the context of Tor, [12] constitutes a concise survey of
proposed extensions to the Tor protocol. It provides a useful
overview on what kinds of changes we have to take into
account when constructing a deployment scheme for Tor.

The challenge of deploying changes to the Tor network has
barely been covered by previous research, though. [13] reports
on challenges of deploying a low-latency anonymity network,
but mostly deals with general challenges, including the social
challenges, and not specifically to changing an existing system.
To the best of our knowledge, [14] is the only work that
covers how a specific incremental update to the Tor software
was realized. In contrast, our work has a strong focus on
the technical point of view of deployment strategies and
strives to explore generic solutions to realize complex protocol
evolvement in Tor.

III. THE TOR ECOSYSTEM

We give a concise overview of the Tor ecosystem, including
a brief description of components and their interaction. This
section also provides first hints on integrating new features.

A. Onion Routing

Tor is based on the concept of onion routing [15], which
in turn was strongly inspired by the principle of mix cas-
cades [16], introduced by David Chaum in 1981.

The main idea consists in building a multi-hop tunnel that is
used to carry the payload over a series of intermediate onion
routers (OR), casually referred to as relays. In Tor, such a
cryptographically secured tunnel, which is called a circuit,
typically consists of three relays as illustrated in Figure 1.
A circuit is constructed by extending each hop incrementally,

circuit
ID cmd payload

0 4 5 514

(a) General cell

circuit
ID

RELAY sub
cmd

’recognized’
stream

ID digest length data

0 4 5 6 8 10 14 16 514

(b) RELAY cell

Fig. 2. Structure of Tor cells. (a) depicts the general cell structure, while
(b) depicts a so-called RELAY cell. The grey part is onion encrypted.

like a telescope, where each relay removes or adds one layer
of encryption. The onion routing protocol and the circuit
construction ensures that each relay in a circuit only knows
its immediate predecessor and successor, which eventually
provides anonymity.

For bootstrapping communication as well as for authen-
ticating relays, Tor relies on a directory service, which is
maintained by a small number of trusted authorities.

B. Data Transport

Tor employs the principle of circuit switched networking
to realize the data transport. Accordingly, so-called cells are
passed along a virtual circuit and are used to carry payload
as well as control signals. Between relays, they are exchanged
over TLS-secured TCP connections.

For anonymity reasons, cells have a fixed size (originally
512 bytes and 514 bytes in the most recent version) and are
padded with null bytes if necessary.1 The general cell structure,
shown in Figure 2a, consists of three parts: The circuit ID is
a per-hop circuit identifier, enabling relays to match cells to
circuits. The command denotes the cell type, defining how
the cell should be handled. The payload contains command-
specific data, e.g. parameters. Tor defines numerous different
cell types (or commands), such as CREATE(2) for creating
a new circuit or adding a new relay to it, or RELAY to carry
encapsulated data or commands over a circuit.
RELAY cells are particularly interesting because their pay-

load is “onion encrypted”, which means that only the end
points of a circuit are able to decipher it. They are therefore
used for tunneling the client’s data through the network, but
also for implementing signaling that acts on an end-to-end
basis. For instance, Tor implements congestion control and
circuit extension requests by using RELAY cells. In order to
support the different operations, the payload of RELAY cells
contains another header and command identifier as depicted
in Figure 2b.

C. Protocol Versions in Tor

The Tor protocol [17] can be regarded as a suite of different
subprotocols that describe different aspects of the Tor network.
Table I lists the subprotocols Tor currently comprises.

1As an exception, Tor also defines variable-length cells for certain purposes,
which are not required to be padded to the fixed length. The VERSIONS cell
type is an example for this.



TABLE I
SUBPROTOCOLS DEFINED IN THE TOR PROTOCOL SPECIFICATION.

Subprotocol Versions Scope

Link 1-5 Connection handling between relays
LinkAuth 1-3 Cryptographic scheme used for authenticat-

ing relays to each other
Relay 1-2 Circuit handling (creation, data relaying, . . . )
HSIntro 3-4 Hidden services introduction points
HSRend 1-2 Hidden services rendezvous points
HSDir 1-2 Hidden services description documents
DirCache 1-2 Document fetching from directory caches
Desc 1-2 Descriptor documents as available from di-

rectories
Microdesc 1-2 Microdescriptor documents
Cons 1-2 Consensus documents

Among these, the Link and Relay protocols may be
regarded as the ones most prone to future changes that affect
the core networking functionality of the Tor network. This
is because they define the way data is carried through the
network, directly impacting on the reachable performance and
anonymity properties. Thus, they will be especially subject to
improvements amended by ongoing and future research. Note
that the protocols defining documents used within Tor (Desc,
Microdesc and Cons) are constructed in a way that allows
for new data items to be added in a backwards-compatible
way and only need to change in the event of grave syntactic
or semantic changes of the documents themselves.

Tor provides basic mechanisms to support evolution of these
subprotocols. The single protocol versions that are supported
by each relay are published in the directory data, together
with a span of minimum recommended and minimum required
supported version. However, Tor relays do not generally rely
on this data for normal operation. Instead, the protocol ver-
sions are engineered in a way that enables seamless interaction,
agreeing on a common version when necessary. For example,
the Link protocol version is at the time of writing chosen by
exchanging VERSIONS cells, but was previously determined
through subtle, compatible differences in the handshake.

In general, Tor offers two ways of rolling out protocol
changes in a backwards-compatible way. Firstly, new cell
types and RELAY cell subcommands can easily be introduced.
Unknown cell types will be ignored by legacy nodes. Secondly,
support for specific protocol versions can be signaled through
the relay descriptors in the directory.

D. Roles and Entities

In order to reveal the challenges that arise when designing
an appropriate deployment scheme for the Tor network, it is
important to understand that Tor is an inherently decentralized
system. As such, various different entities take part in the
network. A deployment strategy must take this into account,
ensuring that the rollout process can handle differently-paced
adaptation throughout the network.

Onion Routers: Onion routers (or relays) form the backbone
of the Tor network. They implement the onion routing proto-
col and pass traffic through an overlay network. Relays are

typically run by volunteers, implying that their resources and
level of maintenance differ significantly. In Tor, relays can take
different roles. Non-exit relays purely act within the network,
carrying data between other relays. In contrast, exit relays are
the circuits’ endpoint, facing the Internet. The heterogeneity of
relays and the different roles make deployments challenging.

Clients: The client software is the user’s entry point into the
Tor network, oftentimes referred to as the Onion Proxy. Like
the exit relay, the client takes a special role as an endpoint of
a circuit. Since the client builds the circuit, however, it knows
all relays and is able to control the use of specific protocol
versions or to coordinate an interoperability scheme.

Directories: Clients and relays rely on a directory service,
which describes the current network state. In constant time
intervals, currently once per hour, directory servers (also called
directory authorities) publish a list of relays known to be
active in the network. For each relay, so-called descriptors
include various meta information that is published along with
the relays’ “contact details”. Most importantly, the descriptors
include public cryptographic keys that are used for authen-
ticating relays. In addition, relays can be assigned flags that
denote special roles within the network. Descriptors also list
supported subprotocol versions for each relay.

The descriptors are assembled based on self-reported in-
formation by the relays. Directory servers collect these infor-
mation and exchange their current view of the network with
the other directories. The directory servers mutually agree on a
common network state and publish the result as the consensus.
The consensus is trusted by clients and relays if it is signed
by more than half of the known directories. As of today, there
is a fixed set of 10 (semi-)trusted directory servers, whose
identities are distributed with the Tor software.

In order to distribute load, there are numerous directory
caches that serve the resulting signed descriptor documents to
clients and relays.

The Tor Project: The Tor Project is a non-profit organization
that coordinates the development of Tor. While Tor is open
source and a community-driven project, the role of The Tor
Project in providing binary releases of the Tor software may
not be underestimated. Through the distribution of software
releases and updates, it comes closest to controlling the
software that is run in the network. Note however, that they do
not have ultimate control over the single nodes. After all, the
software and protocols are open source, which is an integral
part of the project’s security strategy.

IV. DEPLOYMENT STRATEGIES

In this section, we develop general approaches towards
deploying changes to the Tor network and relate them to
existing Tor research, which serve as examples. Depending on
the proposed change, different deployment challenges are to be
tackled. In the context of Tor, there are two main problems that
arise. Firstly, communication through Tor constitutes a multi-
hop scenario, meaning that more than two nodes are actively
involved into the data transfer. Far-reaching changes to the Tor
protocol may require all relays on a circuit (or even the whole



network) to support the new feature. It is essential to have
mechanisms in place for dealing with different versions in the
network, stemming from incremental deployment. Otherwise,
some pairs of relays will not be able to work together anymore.
A situation like this is to be avoided under all circumstances as
it would effectively result in a network split, heavily reducing
the users’ anonymity set. That said, maintaining the anonymity
set is the second notable challenge. Tor is only effective if
the users’ communications are hidden by a sufficiently large
set of relays and users, among which a single user’s stream
of communication is not identifiable. Therefore, backwards
compatibility is of utmost importance.

There are two general approaches that we consider, flag day
and co-existence.

A. Flag Day: Building a Global Switch

The flag day strategy consists in incrementally rolling out
a software update but keeping it disabled until a coordinated,
simultaneous activation. This way, any change to the network
can be deployed, with no backwards compatibility required.
Even changes as fundamental as deploying a new transport
protocol would be feasible. While early versions of Tor carried
out a flag day transition [18], developers did not actually
implement a coordinated deployment process, but the update
only resulted in backwards incompatibility. At today’s network
scale, however, a coordinated switch to new network behavior
would be necessary.

The immediate and main challenge of flag day transitions
consists in deciding when to carry out the activation. Hard-
coding an activation time appears to be suboptimal as it does
not give any guarantees on the share of the network that has
adopted the change and can therefore continue to work after
activation of the system change. Instead, the decision should
be based on consensus or central activation, e.g. directed by
the Tor directories. For example, as a condition for carrying
out the switch, a minimum share of relays that have upgraded
could be defined. The possibility of Sybil attacks to trigger a
premature activation has to be taken into account, though.

While building a reliable flag day transition is far from
trivial and generally undesired by the Tor community [19], it is
conceivable and may have to be considered for large, breaking
system changes. When designing a flag day transition, the
goal is to minimize the impact on the network, which we will
investigate in our evaluation.

Note, however, that this network perspective is not neces-
sarily sufficient to evaluate the impact of carrying out a flag
day. In particular, it has to be made sure that most clients
support the novel behavior before switching over. This is a
hard challenge because, in contrast to relays, the clients do not
publish version information about themselves in the directory.
With this major obstacle in mind, we realize that carrying out a
flag day transition in a robust way, without putting an unknown
number of end users to the risk of being excluded from the Tor
network, is currently infeasible. This could, however, change
in the future with the advent of PrivCount [20], which aims
at enabling the privacy-preserving collection of user statistics.

B. Co-existence: Implementing Interoperability
In contrast to the previous all-or-nothing approach, strate-

gies that are based on a co-existence model allow relays
of different versions or feature sets to properly interoperate.
This is a very desirable property since it mitigates the risk
of splitting the network. In order to ease the future design
and implementation of appropriate co-existence schemes, we
present a categorization of different models.

While co-existence can be an integral part of a system
change, e.g. the protocol change is inherently backwards
compatible, we here focus on situations in which this is
not a priori given. That is, we primarily focus on how the
deployment strategy deals with circuits that comprise relays
with different software versions. In the following, we call
relays that have not (yet) upgraded legacy nodes.

Before diving into the discussion of different co-existence
strategies, we would like to note another challenge: In order
for one of the following strategies to handle circuits of both
legacy and upgraded relays, interoperation between relays has
to be achieved.

The most straightforward approach consists in using the
publicly available directory information. Based on that, the
client can coordinate interoperability during the construction
of the circuit. Due to Tor’s telescope-like circuit construction,
clients can instruct each relay without breaking anonymity.

Another conceivable strategy could rely on hop-by-hop
decisions. If possible, such a scheme may be preferable over
coordination that relies on data from the directory. While
the directory already contains a relay’s set of supported
subprotocol versions, being able to interoperate with local
information only is considered to be more robust, as it is
for instance agnostic about recent version changes not yet
reflected in the directory. This point of view is also built
into the current Tor protocol specification, for instance by
agreeing on a common Link subprotocol by making use
of VERSIONS cells. However, this way of locally deciding
which interop scheme to use may not be possible for many
far-reaching protocol changes.

In the following we assume that a suitable mechanism to
negotiate an interoperability scheme is in place or can be built
with reasonable effort.

Dual Stack: For the dual stack strategy, we assume that even
nodes that have upgraded still support the legacy protocol and
are able to use them selectively or in parallel. This way, a
circuit can make use of the newest supported protocol version
that all relays support. As a consequence, single circuits may
already benefit from the newly deployed technology at a time
when the rest of the network has not upgraded yet. Similarly,
legacy nodes continue to work as before, resulting in the circuit
to stick to the previous behavior until upgraded.

A dual stack approach can be used to deploy a wide range
of complex changes to the network. However, it comes with
certain drawbacks. Most prominently, the time it takes until
clients as well as the network itself can benefit from the new
feature, might be relatively long. We will quantify and evaluate
this delay in our evaluation.



A dual stack strategy might also lead to weakened
anonymity. For example, consider the case of an extensive
change to the underlay transport protocol, e.g. the replacement
of TCP with UDP. If this change is active for some circuits
already while others still rely on TCP, an adversary may be
able to exploit this. By observing which variant is used for
a specific circuit, a passive network adversary or a malicious
relay can deduce which relays may be involved in the circuit.
When observing UDP instead of TCP, this would mean that
only new, upgraded relays are part of the circuit. Such observa-
tions could potentially have a severe impact on the anonymity
set that defines a user’s degree of anonymity. While the UDP-
vs-TCP example is an extreme case, more subtle changes like
traffic pattern deviations may be exploited by a sophisticated
adversary, as well.

We argue that this issue cannot completely be avoided (and
also might apply to other deployment strategies). At least
active relays will always be able to determine the protocol
version in use—otherwise, a dual stack approach would not
be necessary. Therefore, such relays could infer version infor-
mation about distant nodes, impacting on the anonymity set.
The degree to which this is problematic should be evaluated
individually prior to introducing a dual stack system. Our
evaluation methodology can be used as a starting point to
quantify the impact.

Candidates for being deployed with a dual stack approach
are for example DefenestraTor [4] and BackTap [6]. Defen-
estraTor solely aims at replacing Tor’s end-to-end conges-
tion control with a custom scheme based on hop-by-hop
information. BackTap goes even further and introduces a
novel transport protocol, which tries to tackle this and other
performance issues in Tor. Both require the interaction of every
relay on the circuit in order to work properly.

Translation: A different approach can be used when relays
on a circuit have differing feature sets. That is, neither all
nor none of the circuit’s relays have upgraded yet. In this
case, a translation between the protocol versions may be
applied. Depending on the change that is to be deployed, this
can provide a benefit of partially running the new protocol
version, even when the whole circuit has not yet upgraded.
For instance, assume the protocol enhancement works in a
hop-by-hop manner and improves performance by applying it
to this segment. With translation, clients can benefit from such
an enhancement earlier.

Note that translation can be as simple as dropping or slightly
modifying messages, but may just as well prove impossible to
be done in a meaningful way. If compatibility can be achieved
by converting between cell types, for example, the translation
is straightforward to implement. On the other hand, if a
protocol change requires end-to-end feedback, similar to Tor’s
congestion control, this could not necessarily be deployed
using a translation scheme.

One real-world proposed Tor enhancement that could well
be deployed relying on translation is TCP-over-DTLS [5]. It
strives to improve latency in Tor by avoiding head-of-line
blocking, which occurs in normal Tor operation due to the

multiplexing of multiple circuits over single TCP connections.
In order to achieve this, it relies on a user space TCP
implementation whose emitted segments are then tunneled
over Datagram TLS (DTLS), which is based on UDP, to the
next relay. Deploying this protocol change using a translation
scheme is possible because the carried cells can simply be
received via the novel DTLS stream, and forwarded to a legacy
relay over a normal TCP connection. A circuit that consists
of a mix of legacy and upgraded relays can therefore, to a
certain degree, already benefit from TCP-over-DTLS without
the need for the whole circuit to support it.

Tunneling: If the circuit consists of relays whose feature
sets form a “gap”, that is, a relay in the middle of the circuit
still lacks support for the new feature, yet another strategy is
conceivable. In this case, the protocol data that is exchanged
between the novel relays around the gap may be tunneled
through the circuit segment of one or more legacy nodes.

The core idea behind a scheme like this is the following:
If the new feature relies on an end-to-end flow of information
through the circuit, the mechanism may become usable even if
not the whole circuit supports it, yet. If, for instance, the Tor
client relies on feedback from the exit, this may be deployed
even if not all relays in between have upgraded.

Tunneling is not necessarily a special case of (twofold)
translation since it may be applicable when there are no
two consecutive relays of the same version, in which case
translation is impossible.

The ways tunneling can be implemented may vary greatly.
If a new feature exclusively relies on the circuit endpoints
communicating with each other, the implementation can be
trivial. As Tor provides a mechanism for clients to transpar-
ently communicate with any relay within the circuit by using
RELAY cells, this can be leveraged to bridge legacy relays. If
such a solution is not applicable, it may instead be possible
to encode the necessary information within other legacy cells.

Tunneling could, for instance, be applied to proposals like
UDP-OR [21]. Like TCP-over-DTLS, UDP-OR proposes to
use UDP as the underlying transport protocol. However, it is
not meant to operate on a hop-by-hop basis, but end-to-end.
More specifically, the UDP transport is used for carrying TCP
segments from one end of the circuit to the other, that is, client
and exit perform the TCP algorithm over the complete circuit.
Intermediate relays are not actively involved in this behavior,
and carry RELAY cells only. Therefore, UDP-OR could be
tunneled through legacy relays by falling back to cell transport
via TCP connections. The semantics of encapsulated data is
only relevant to the endpoints of the circuit.

UDP-OR also constitutes an example showing that the
approaches we present still require careful consideration when
choosing them for a certain protocol change. In this specific
case, tunneling UDP-OR cells over legacy TCP connections
will eventually result in a TCP-over-TCP situation, whose
performance could be worse than expected.



V. EVALUATION

Having given an overview on several general approaches
towards deploying changes to the Tor network, we now aim
at quantifying the impact of each of them.

Note that the methods presented only constitute basic con-
ceptual ideas. Implementing them for a specific deployment
scenario will most probably require tailoring and fine-tuning.
The applicability of each method and the significance of
this evaluation may therefore greatly vary depending on the
specific use case. Nevertheless, we aim at generating general
insight on the benefits and drawbacks that are associated with
the proposed strategies.

A. Methodology

In order to compare against a realistic model of relays’
upgrade behavior, we base our evaluation on historical data
of software version distribution within the Tor network. Thus,
we make use of data collected by the Tor Metrics project [22].
We consider a time span of March 2013 to January 2018.
Over this period of time, we track the share of relays that
have upgraded to Tor version 0.2.5 or higher, which was
released at the beginning of this time span. We chose to
analyze the deployment of this particular Tor version for the
following reasons: Firstly, the predecessor, version 0.2.4, had
great prevalence within the network and is still run by a notable
amount of onion routers, even years after its release. Deploying
against such a persistent legacy system comes close to a
realistic worst case scenario for deployment. Secondly, version
0.2.5 is the first version released under the current maintenance
and release model of publishing versions with different long-
term support every six months. Choosing the first of these
versions gives us the maximum possible simulation duration
while keeping the results comparable to today’s situation.

For analyzing flag day transitions, we take a general evalu-
ation approach that allows us to quantify a flag day’s impact
independently of a specific protocol change. We do so by
leveraging generic Tor version distribution information.

The evaluation of co-existence schemes requires to op-
erate on a more fine-grained, circuit-level scale. Since the
effectiveness of these strategies is highly dependent on the
configuration of every single circuit, we simulate the circuit
selection. To this end, we use the Tor Path Simulator (TorPS),
introduced in [23]. Given the historical Tor network data, it
simulates the circuit selection process of clients and allows us
to gather aggregate data on specific properties of the simulated
circuits. In order to measure the applicability of each of the co-
existence strategies for given circuit configurations, we assume
prototypical protocol changes that may practically be deployed
using one of the discussed approaches. We use the examples
provided when introducing the different schemes as mental
templates and derive a compatibility matrix, shown in Table II.

Throughout the evaluation of co-existence schemes, we
assume the client software to be up to date. The study thus
investigates to what degree a modern client can benefit from
technological progress as it is rolled out in the Tor network
over time.

TABLE II
APPLICABILITY OF CO-EXISTENCE SCHEMES.

Circuit configuration Applicable schemes
(entry-middle-exit) Dual Stack Translation Tunneling

7 7 7

7 7 3

7 7 7

7 3 3

7 3 7

7 3 3

7 3 7

3 3 3

upgraded legacy

B. Flag day

We first analyze the impact of a flag day strategy on the
network. We define the following metrics: For any given point
in time, we evaluate which network relays have upgraded.
These are the relays that would keep working if a flag day
was carried out at that time. From this set, we calculate the
share of relays that are retained (in comparison to the overall
network). Moreover, we also consider the share of bandwidth
that is retained. In order to decide when carrying out the
flag day would be appropriate, both metrics need to be taken
into account. Note that they stand for fundamentally different
goals Tor tries to achieve. While the available bandwidth
can be used as a rough metrics for Tor’s performance, the
number of available relays is crucial for the diversity of the
network, directly impacting the level of anonymity Tor can
offer. We obtain the necessary data by evaluating historical
directory data from Tor Metrics—relays do not only publish
their software version, but also the bandwidth that they are
able to contribute to the Tor network.

Figure 3 shows the results of evaluating the historical data
for the introduction of Tor version 0.2.5. Note that the share
of nodes that are retained in a flag day is equal to the share
of nodes that have upgraded at least to the target version.

Recall that this version was deliberately chosen as a worst
case scenario. Consequently, our results show that the upgrade
progress is slow over the network. After one year, still less
than 10 percent of the relays have upgraded. On the other
hand, these account for an disproportionally high fraction of
network bandwidth that is available already. We deduce from
this observation that high-bandwidth relays are more likely
to be upgraded more quickly due to a higher level of admin
activity or consciousness for the relevance of regular updates.
Moreover, from the data, we observe that this is particularly
the case for exit relays (not shown in the figure).

Despite the initially slow upgrade behavior, a clear rise
can be observed approximately one and a half years after
version 0.2.5 was initially published. Afterwards, half of the
relays have upgraded, providing about 70 percent of the
network bandwidth. The upgrade process continues slowly, the
90 percent landmark of upgraded relays is reached four years



0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

up
gr

ad
ed

no
de

s
North America Europe overall

0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

up
gr

ad
ed

ne
tw

or
k

ba
nd

w
id

th

Fig. 3. Share of Tor network resources that would remain part of the network
after a flag day transition, plotted over time. We assume versions 0.2.4 and
below to be legacy.

after the initial release (March 2017).
Also note that there is a temporary decline in upgrade

progress around April 2014. This effect is closely related to the
Heartbleed vulnerability [24] that affected OpenSSL and thus
also the Tor software. After not having applied appropriate
fixes, the Tor directory authorities decided to exclude relays
from the network that were still vulnerable [25]. Due to the
fact that several old versions at that time were not affected
by Heartbleed because they were relying on too old OpenSSL
versions, this resulted in a temporary shift towards software
of older versions being active in the network.

When evaluating the retained network resources, we also
considered their geographical distribution to assess network
diversity. Therefore, Figure 3 also distinguishes between re-
sources located in Europe and North America, respectively.
Together, these two regions account for the overwhelming
majority of resources within the Tor network. We observe
that the flag day does not introduce any significant additional
imbalance to the network. The results reflect the existing
bias towards European relay operators, which is especially
prominent in the case of network bandwidth. However, the
ratio between European and North American resources stays
nearly constant throughout the time span we considered. This
hints at a relatively similar upgrade behavior in these regions.

While these statistics reveal that a flag day strategy can

0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

ci
rc

ui
ts

su
pp

or
te

d
by

co
-e

xi
st

en
ce

sc
he

m
e

Dual Stack
Translation
Tunnelling

Fig. 4. Share of circuits that support the respective co-existence scheme.
Results are based on the introduction of version 0.2.5.

potentially require a considerable amount of time until a
protocol change has been distributed sufficiently for switching
over, they also show that, for far-reaching changes to the
network, a flag day may constitute a conceivable strategy.

This is especially true when taking into account the novel
versioning scheme that was introduced for Tor with the version
we considered. The novel approach of periodically releasing
LTS versions of overlapping support periods is expected to
lower the time it takes for new versions to be adopted. At the
same time, it leads to a more diverse network, in which several
different versions are active. This, in turn, makes it more
difficult to effectively apply a co-existence scheme. In this
regard, a flag day transition can serve as a serious alternative.

However, it remains unclear to what degree a flag day at any
time would affect end users, running the Tor client software.
Due to the fact that this factor cannot currently be assessed as
necessary, we conclude that carrying out flag day changes in
the Tor network currently remains infeasible.

C. Co-existence

We now evaluate to what extent deployment schemes based
on co-existence enable the use of the novel protocol extension
during the transition phase, at which only parts of the network
have upgraded and circuits may thus comprise both, legacy and
upgraded relays.

Figure 4 presents the results we obtained from running our
TorPS simulations. Based on how often each of the circuit
configurations from Table II occurred in the simulation, it
depicts how well each of the co-existence schemes under
consideration is suitable to enable the partial activation of the
protocol change during the transition phase.

The first thing that can be noted is that both, translation
and tunneling, are considerably more effective than dual stack.
As the dual stack approach can only be used for circuits in
which all relays have already upgraded, this was is in line
with our expectations. In contrast, by applying a tunneling
or translation deployment scheme, an increasing fraction of
established circuits in the network can apply the protocol
change at least to a part of the circuit earlier in the deployment



0

0.2

0.4

0.6

0.8

1

07
/20

13

01
/20

14

07
/20

14

01
/20

15

07
/20

15

01
/20

16

07
/20

16

01
/20

17

07
/20

17

01
/20

18

sh
ar

e
of

ci
rc

ui
ts

su
pp

or
te

d
by

co
-e

xi
st

en
ce

sc
he

m
e Dual Stack

Translation
Tunnelling

Fig. 5. Share of circuits that support the respective co-existence scheme.
Results are based on the introduction of version 0.2.8.

process. For example, one and a half years after the new
version was released, already 60 percent of the circuits could
have, in parts, utilized it when applying a translation or
tunneling scheme. At the same time, dual stack would only
enable it for approximately 10 percent. The degree to which
this makes sense and is useful in the spirit of the protocol
change, of course, depends on the change itself. Moreover, as
we have noted before, the precise circuit configurations that
are suitable for each deployment strategy may also vary.

Nevertheless, we see that applying a deployment scheme
that does not require the complete circuit to be upgraded can
result in a clear improvement of applicability of the protocol
extension during the transition phase. While this does not
imply that the deployment of changes to the Tor network can
now be performed by mechanically applying a pre-defined rule
set, it validates the approach of rolling out protocol changes to
the Tor network incrementally by relying on general strategies
that help to retain backwards compatibility with legacy nodes
where possible.

To further validate this result, we also simulated the intro-
duction of a more recent version (Tor version 0.2.8), shown in
Figure 5. Our key observations remain the same. In addition,
the results show that the new update policy in fact leads to
lower deployment times, even when ignoring the effects of
Heartbleed on version 0.2.5.

VI. LESSONS LEARNED AND CONCLUSION

In this work, we explored the problem of deploying changes
to the Tor network. We find that, through its directory service
and the extensible cell structure, Tor can in principle be ex-
tended to feature novel functionalities. Evolving the protocol at
its core networking routines is a particularly challenging task,
though. When altering its behavior at the link and transport
layer special care must be taken to maintain maximum possible
compatibility with legacy nodes. Otherwise, the consequences
on anonymity may be severe. We therefore developed various
deployment strategies and analyzed their applicability and
impact on the Tor network. To this end, we provide a set of
potential tools to ease the deployment of changes and validate

their general applicability using a simulation study.
As a first strategy, we identified that a flag day transition

could be used to deploy virtually any system change in a
coordinated way. While being a very versatile and powerful
strategy, we also see various risks and weaknesses, including
network splits, Sybil attacks, and abandoning clients. This
brings us to the conclusion that a flag day should currently not
be considered as a deployment strategy for the Tor network.

As the second class of strategies, we came up with co-
existence schemes, which allow a new protocol version to co-
exist with the legacy system. In this regard, we introduce the
notions of dual stack, translation and tunneling. We generally
observe the transitional phase to be rather long in Tor. With our
deployment strategies, though, a significant number of users
might be able to benefit already from upgrades during that
period.

However, our research also suggests that, with currently
available techniques, one cannot always realize incremental
deployment without partly sacrificing some of Tor’s anonymity
promises during the transitional phase. In essence, this is due
to the risk of unintentionally making circuits distinguishable.

With our work, we also hope to raise awareness of the
issue among the research community, motivating to integrate
suitable deployment strategies directly into their Tor research.

ACKNOWLEDGMENT

Christoph Döpmann was supported by HU Berlin within the
Excellence Initiative of the states and the federal government.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in USENIX Security ’04: Proceedings of the
13th USENIX Security Symposium, 2004.

[2] N. Mathewson, “Git merge of ntor handshake protocol into the Tor
code base,” Jan. 2013. [Online]. Available: https://gitweb.torproject.org/
tor.git/commit/?id=b1bdecd703879ca09bf63bf1453a70c4b80ac96d

[3] M. AlSabah and I. Goldberg, “PCTCP: per-circuit TCP-over-IPsec
transport for anonymous communication overlay networks,” in CCS ’13:
Proceedings of the 20th ACM Conference on Computer and Communi-
cations Security, 2013.

[4] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage,
and G. Voelker, “DefenestraTor: Throwing out windows in Tor,” in
PETS ’11: Proceedings of the 11th Privacy Enhancing Technologies
Symposium, 2011.

[5] J. Reardon and I. Goldberg, “Improving Tor using a TCP-over-DTLS
tunnel,” in USENIX Security ’09: Proceedings of the 18th USENIX
Security Symposium, 2009.

[6] F. Tschorsch and B. Scheuermann, “Mind the gap: Towards a
backpressure-based transport protocol for the Tor network,” in NSDI ’16:
Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation, 2016.

[7] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. van der Hoek,
and A. L. Wolf, “A characterization framework for software deployment
technologies,” Colorado State University, Tech. Rep., 1998.

[8] A. Dearie, “Software deployment, past, present and future,” in
FOSE ’07: Proceedings of the 7th Workshop on the Future of Software
Engineering, 2007.

[9] C. Pahl, “Containerization and the PaaS cloud,” IEEE Cloud Computing,
vol. 2, no. 3, 2015.

[10] D. Thaler, “Planning for protocol adoption and subsequent transitions,”
Internet Requests for Comments, RFC Editor, RFC 8170, 2017.

[11] E. Cordeiro, R. Carnier, and W. L. Zucchi, “Comparison Between IPv4
to IPv6 Transition Techniques,” arXiv e-print arXiv:1612.00309, 2016.
[Online]. Available: http://arxiv.org/abs/1612.00309



[12] M. AlSabah and I. Goldberg, “Performance and security improvements
for Tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2,
2016.

[13] R. Dingledine, N. Mathewson, and P. Syverson, “Challenges in deploy-
ing low-latency anonymity,” Tech. Rep., 2005.

[14] R. Jansen and M. Traudt, “Tor’s been KIST: A case study of
transitioning Tor research to practice,” arXiv e-print arXiv:1709.01044,
2017. [Online]. Available: http://arxiv.org/abs/1709.01044

[15] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding Routing
Information,” in IHW ’01: Proceedings of the 1st International Workshop
on Information Hiding.

[16] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, 1981.

[17] R. Dingledine and N. Mathewson, “Tor protocol specification.” [Online].
Available: https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt

[18] R. Dingledine, “Tor 0.0.6 is out,” May 2004. [Online]. Available: https:
//lists.torproject.org/pipermail/tor-announce/2004-May/000063.html

[19] The Tor Project, “Tor proposal process,” Jan. 2007. [Online]. Available:
https://gitweb.torproject.org/torspec.git/tree/proposals/001-process.txt

[20] N. Mathewson, T. Wilson-Brown, and A. Johnson, “Tor proposal 288:
Privacy-preserving statistics with Privcount in Tor (Shamir version),”
Dec. 2017. [Online]. Available: https://gitweb.torproject.org/torspec.git/
tree/proposals/288-privcount-with-shamir.txt

[21] C. Viecco, “UDP-OR: A fair onion transport design,” in HotPETS ’08:
1st Workshop on Hot Topics in Privacy Enhancing Technologies, 2008.

[22] The Tor Project, “Tor Metrics Portal.” [Online]. Available: https:
//metrics.torproject.org/

[23] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. F. Syverson,
“Users get routed: traffic correlation on tor by realistic adversaries,”
in CCS ’13: Proceedings of the 20th ACM Conference on Computer
and Communications Security, 2013.

[24] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The matter
of heartbleed,” in IMC ’14: Proceedings of the 14th ACM SIGCOMM
Conference on Internet Measurement, 2014.

[25] R. Dingledine, “Recommended reject lines for relays affected by
heartbleed,” Apr. 2014. [Online]. Available: https://lists.torproject.org/
pipermail/tor-relays/2014-April/004362.html


