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Abstract

In this paper we provide a formal treatment of proof of replicated storage, a novel crypto-
graphic primitive recently proposed in the context of a novel cryptocurrency, namely Filecoin.

In a nutshell, proofs of replicated storage is a solution to the following problem: A user
stores a file m on n different servers to ensure that the file will be available even if some of the
servers fail. Using proof of retrievability, the user could check that every server is indeed storing
the file. However, what if the servers collude and, in order to save on resources, decide to only
store one copy of the file? A proof of replicated storage guarantees that, unless the (potentially
colluding) servers are indeed reserving the space necessary to store n copies of the file, the user
will not accept the proofs. While some candidate proofs of replicated storage have already been
proposed, their soundness relies on timing assumptions i.e., the user must reject the proof if the
prover does not reply within a certain time-bound.

In this paper we provide the first construction of a proof of replication which does not rely
on any timing assumptions.

1 Introduction

Consider a scenario where a user A wants to use the cloud or some other decentralized network of
servers to store and distribute some file m to other users. To make sure she and other users will
be able to access the file later on, A stores several replicas of m in different locations. However,
A suspects that the servers she is using are adversarial and may collude, for instance to save on
costs by using less space than they are supposed to. So she will be interested in checking that
indeed unique space has been dedicated to each replica, and it is natural to require that this can
be verified, even if all servers are controlled by an adversary. We will call this proof of replication.

A first issue to note is that the well-known notions of proof of retrievability or proof of space
(which we discuss in more detail below) do not solve the problem if each replica is simply a copy
of m. Such proofs allow a user to check that a given file is retrievable from a server, much more
efficiently than by simply retrieving the file. However, even if A asks for a proof of retrievability of
m from each of the servers and all these proofs are successful, this may simply be because the user
is actually talking to the adversary who stores only a single copy of m.

∗This work was supported by: the Protocol Labs RFP Program; the European Research Council (ERC) under the
European Unions’s Horizon 2020 research and innovation programme under grant agreements No 669255 (MPCPRO)
and No 803096 (SPEC); the Danish Independent Research Council under Grant-ID DFF-6108-00169 (FoCC); the
Concordium Blockchain Research Center, Aarhus University, Denmark.

1



Another idea that comes to mind is that A could let each replica be an encryption of m under
some key K, but with fresh randomness for each replica. If the encryption is IND-CPA secure, the
adversary cannot distinguish this from encryptions of random independent messages, and hence
it seems they are forced to store all replicas in order for them to be retrievable later. While this
intuition can in fact be proved, this would not be a satisfactory solution: recall that we want that
anyone, not just A, can retrieve the original file, so A would have to share K with other users.
However, if any of these users collude with the adversary, the security breaks down. Besides, a
solution that does not require A to store secret information for later is clearly more practical.

The idea of proof of replication was introduced in Filecoin [Lab17a, Lab17b], a decentralized
storage network1. They articulate a list of properties that they desire from such a notion. They
define a Sybil attack which is exactly what we discussed above: if an honest client wishes to store
the same file m on n different servers, an adversary can store these using sybil identities (all servers
are controlled by one adversary) and successfully pass the storage audit, while essentially storing
only one copy of the file.

While the Filecoin paper does not give a formal treatment of proof of replication, they propose
a construction for what they call a time-bounded proof of replication. In such a notion, the file to
be stored is encoded so that the encoding process is slow: slow enough for a client to distinguish
between honest proving time, and potentially adversarial proving time which includes the time to
re-encode. Thus, the encoding process is, by design, distinguishably more expensive than honest
proving time. This notion is realized by using a block-cipher and slowing it down by block chaining,
and a time-bounded proof of replication is a proof of storage of a replica that is encoded in this
way.

The basic problem with all time-bounded schemes is the handling of recomputing attack: the
encoding has to be made so slow that even a powerful server cannot encode faster than the time a
proof takes. This is harder than it may seem at first: even if we know for sure how many operations
are needed to encode for a given value of security parameter, the actual time it takes depends on
the hardware held by the adversarial parties, and so is beyond the control of honest users. This
makes a concrete choice of parameters very difficult: should we compensate for the adversary being
more powerful than we expect and choose a very slow encoding thus making life harder also for
honest clients when they encode? Or should we choose parameters more aggressively and run a
bigger risk of being cheated? It would clearly be better if we did not have to make such a choice.

We ask if we can do better in all the above aspects: can we have a proof of replication
scheme that provably resists sybil attacks, and is not time-bounded?

Our Results. We give a formal treatment of proofs of replication, by giving a definition that
captures the desired properties as well as a construction which we prove secure according to the
definition. The construction works in the random oracle model and can be instantiated from any
one-way permutation. We concentrate on the case where the client doing the encoding is honest,
as this seems to be the most important case in practice, and is in line with the definitions of proof
of retrievability and storage.

Each replica of the file m to be stored in our construction has size O(|m|+ κ), where |m| is the
length of m and κ is the security parameter. To verify replication, the user conducts a proof of

1Other related notions in the context of data replication have been studied earlier in the cryptographic literature;
we discuss the connection and differences in the related work section.
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retrievability with each server. Any such proof can be used, so we inherit whatever communication
complexity that proof has.

Very roughly speaking, the idea in our solution is that the adversary first receives each of the
replicas to store, where each replica is a special encoding of m. The adversary may now store a
state for later use, which in the honest case would contain all replicas. What we show is that,
no matter how the adversary computes the state, if it is significantly smaller than the combined
size of all replicas, then some of the proofs of retrievability will fail, unless the adversary breaks a
computational assumption.

Let us consider what this exactly guarantees us. Since the proofs of retrievability are extractable,
the above guarantees that the replicas cannot be compressed i.e., the adversary must reserve enough
space to store all replicas, and this space must contain some data which is equivalent (up to
polynomial time computation) to the replicas of the file. But is this the best we can do? Why
don’t we ask that the adversary in fact stores a concatenation of all the replicas? Unfortunately,
this is impossible to achieve: even honest servers will most likely store the same information in
different formats (think of little- vs. big-endian representation). So we certainly cannot expect
that the adversary will store exactly the same data that was received from the client. However,
this should not matter from a security point of view, as long as the original data can be efficiently
recovered.

In conclusion: it is impossible to force the corrupted servers to store exactly the n replicas or n
copies of the file. Therefore, the best we can hope for is what we do in this paper: no matter how
the corrupted servers behave, it is possible to recover n distinct, incompressible encodings of the
same file, thus the servers cannot pass the verification unless they reserve the necessary space for
all replicas. Note, however, that in such a scenario, the corrupted servers have no incentive to do
anything else than simply store the replicas.

The main difference between our work and previously proposed solutions to the problem, is
that our solution does not require the use of time: while the original, informal definition of proof
of replication states that it should be hard for the server to recompute the encodings of the file
in the time it takes to verify the proof, our definition is much stronger as it rules out that any
polynomially bounded attacker who uses less storage than claimed can pass the verification. As
discussed above, this makes implementing proof of replications much easier, since one does not need
to worry about finding an appropriate value for the verifier timeout.

To avoid misunderstandings, we emphasize that even if our definitions and proof work with a
single adversary that handles all replicas, the actual use case includes several servers that each store
one replica (if they are honest). Since it is clearly impossible to check if a server stores something
without talking to that server, the communication complexity of our protocol must be proportional
to the number of servers2.

Finally, our main construction achieves public verifiability in the sense that if the encoder is
honest, then anyone can interact with the servers and verify the proofs. At the end of the paper
we discuss extensions which allow to cope with malicious encoders.

2Of course, if a single server would store all replicas, we can optimize the communication needed, this is also easy
to see for our protocol, but this hardly seems like an interesting use case.
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1.1 Related Work

Proofs of retrievability. A lot of user data today is outsourced for storage on the cloud both
because of large volumes of data, and for reliability in case of failure of local storage. The problem
with cloud storage is that of maintaining integrity of data and enforcing accountability of the
storage provider. Proofs of retrievability, first formalized by Juels and Kaliski in [JK07] address
this problem by allowing for audits. In a proof of retrievability, a client can store a file on the
server, while storing (a short) verification string locally. In an audit protocol, the client acts as
the verifier and the server proves that it possesses the client’s file. The property that the server
“possesses” a file is formalized by the existence of an extractor that retrieves the client’s file from
a server that makes a client accept in the audit protocol. Since their introduction, there have been
several works [SW08, DVW09] constructing proof of retrievability schemes with a proof of security
and efficient audit procedures. One property we prioritize in this work is public verifiability where
any party can take the role of the verifier in the audit protocol, not just the client who originally
stored the file. This means the client’s state storing any verification information for the file should
not contain any secrets. The construction of [SW08] gives a proof of retrievability scheme secure
in the random oracle model that allows public verifiability.

Proofs of space. A proof of space is a protocol where a prover convinces a verifier that it has
dedicated a significant amount of disk-space. Proofs of space were introduced in [DFKP15] as an
alternative to proof of work (PoW), and further studied in [RD16, AAC+17]. There have been
proposals based on proof of space like chia network [chi17] and Spacemint [PPK+15]. Very roughly,
a proof of space gives the guarantee that it is more “expensive” for a malicious server that dedicates
less space than an honest server to successfully pass an audit.

Data replication. Curtmola et al. [CKBA08] and Barsoum et al. [BH11] propose protocols that
enable proofs of data replication in the private verifier model, where the client stores a secret
key that is used for verification. The work of Hao and Yu [HY10] allows public verifiability but
nevertheless requires the client to store a secret. The work of Etemad and Küpçü [EK13] studies
replicated provable data possession, but does not formalize replicated storage, and the client need
not be aware of any replication. Finally, the protocol of Armknecht et al. [ABBK16] is also in the
private verification model, and in addition, uses RSA time-lock puzzles which results in a protocol
with a time-bounded property that we elaborate on below.

Filecoin. Filecoin is a decentralized storage network [Lab17a]. Essentially this can be seen as a
network of independent storage providers that offer verifiable file storage and retrieval services. In
the Filecoin protocol, miners earn protocol tokens by providing data storage services.

To be used in the Filecoin context, a proof of replicated storage should satisfy several properties.
First, the scheme should protect against Sybil attacks as described above e.g., a corrupt server
should not be able to impersonate n different servers while storing a single copy of the file. Then,
the scheme should be publicly verifiable, meaning that any user (not only the original encoder)
should be able to verify the proof. It is also crucial that the security definition allows the adversary
to choose the file m. This is because an adversary could request for m to be stored, and then
prove that m was stored to collect network rewards. Finally, the scheme should be resilient against
generation attacks, meaning that the adversary should not be able to reconstruct an encoding “on
the fly” when a proof of storage is requested.
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Our main construction cannot be directly used in the Filecoin context since the soundness of
the proof relies on the encoder being honest. Thus, a malicious encoder colluding with malicious
servers could perform a generation attack i.e., persuade other users that some servers are storing
several copies of a file without reserving any space. At the end of the paper, we discuss how to
extend our solution to handle malicious clients too.

Time-bounded Proofs of Replication. In a recent work by Pietrzak [Pie18], a construction for
proof of replication based on proof of space is given. A proof of replication is not formally defined,
and therefore it is not clear what is the replication property that the construction satisfies. In addi-
tion, since a proof of space is the starting point of the construction, it has the same “time-bounded”
property as the Filecoin construction, since a malicious server can pass the audit by recomputing
data. More recently, [FBBG18, BBBF18, CFMJ18, Fis18] construct proofs of replication based
on slow encodings. They have the same time-bounded flavour of other recent works and is thus
significantly different from ours.

Comparison with Hourglass scheme [VDJO+12]. We note that our construction and the
construction of [VDJO+12] are reminiscent of each other; at a high level both involve repeated
applications of inversion of a trapdoor permutation and a random permutation. However, there
are differences in both the goals and the details of the constructions.

The difference between the goal of the present work and the Hourglass schemes can be sum-
marized as follows: Hourglass only tries to guarantee incompressibility of a single encoding (such
that the original file can be receoverd), whereas the goal of our proof of replicated storage is to get
different incompressible encodings to be stored on independent servers, such that the original file
can be recovered interacting with a single server. Regarding the constructions, our work applies the
random permutation over all blocks of the file and produces randomized and independent encodings
to be stored on each server, which makes a notable difference in the our analysis3.

1.2 Technical Overview

The existing time-bounded proofs use a public deterministic encoding function. The problem is
that this always allow a malicious server to recompute encoded data and this may lead to a suc-
cessful recomputation attack if the server has sufficient computational resources. Our observation
is that one can instead make the encoding be probabilistic. Now the adversary will only see the
encoded data but not the randomness that the client used to encode. One may therefore hope that
recomputing an encoding is not only slow, but completely unfeasible. On the other hand, decoding
must still be easy for anyone.

To illustrate the idea of our solution, we start with a toy example: we assume that we are given
oracle access to a random permutation T , and its inverse4, acting on strings {0, 1}n. As is well
known (and discussed in detail later) we can instantiate such an oracle in the standard random
oracle model. In order to create replicas of a file, A will generate an instance of a one-way trapdoor
permutation f : {0, 1}n 7→ {0, 1}n, with trapdoor tf . For simplicity, we assume that the file m to
store is an (n − log n)-bit string. Then the i’th replica is defined to be (f, f−1(T (m||i))), where

3It is hard to compare our analysis with that of Hourglass since in [VDJO+12] only an informal security argument
of incompressibility is given.

4One can think of the random permutation T as a random oracle which can be invoked in both directions.
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|| denotes concatenation and f is a specification of the 1-way permutation. Clearly, anyone can
easily compute m from a replica by computing f in the forward direction and calling T−1. It
turns out that this construction is secure if the adversary computes the state to store for later in
a very restricted way, namely he forgets all information about at least one replica, say the i’th
one. Namely, the adversary forgets both the encoding (f, f−1(T (m||i))) and the intermediate value
T (m||i).

We can now argue that if the adversary is nevertheless able to produce the i’th replica, he will
have to invert the one-way permutation: from the output of the adversary (f, f−1(T (m||i))) we can
(as the encoding can be decoded efficiently), extract T (m||i). But, we assumed that the state did
not contain any information about this value (except for a negligible amount following from the
fact that it must be different from other outputs). Hence he must call the oracle to get T (m||i).
Therefore, in a security reduction, we can take a challenge value y and reprogram T such that
T (m||i) = y. Now, the i’th replica (that we assumed the adversary could produce) is exactly the
preimage of y under f .

Of course, we cannot reasonably assume that the adversary behaves in this simple-minded way.
As mentioned, we only want to assume that the state stored is smaller than the combined size of
the replicas, say by a constant factor. To overcome this problem, we iterate the above construction
several times, so that T is called several times while preparing a replica. Now there are many more
outputs from T than the adversary can remember, and we show that by the setting the parameters
right, at least one of these is almost uniform in the view of the adversary. Now we can place a
challenge value for the one-way permutation in this position by an argument similar to the above.

2 Preliminaries

Notation. We denote the concatenation of two bit strings x and y by x||y. Throughout, we use
κ to denote the security parameter. We denote a probabilistic polynomial time algorithm by PPT.
A function is negligible if for all large enough values of the input, it is smaller than the inverse of
any polynomial. We use negl to denote a negligible function. We use [1, n] to represent the set of
numbers {1, 2, . . . , n}. For a randomized algorithm Alg, we use y ← Alg(x) to denote that y is the

output of Alg on x. We write y
R← Y to mean sampling a value y uniformly from the set Y.

2.1 Trapdoor permutations

A collection of trapdoor permutations is a family F = {fpk : Dpk → Dpk} such that:

• There exists a PPT algorithm KeyGen such that (pk, sk)← KeyGen(1κ), fpk is a permutation.

• There exists a PPT algorithm that given pk samples uniformly from Dpk.

• There exists a PPT algorithm that on input pk and x ∈ Dpk, computes fpk(x).

• There exists a PPT algorithm that on input sk and fpk(x), computes x, that is, f−1sk (fpk(x)) =
x.
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Definition 1. A trapdoor permutation family F = {fpk : Dpk → Dpk} is said to be hard to invert
if the following holds: for all PPT algorithms A, there exists a negligible function negl such that

Pr[fpk(z) = y : (pk, sk)← KeyGen(1κ), x← Dpk, y ← fpk(x),

z ← A(pk, y)] ≤ negl(κ)

When the domain and range is clear from context, we omit the subscript pk and only write D.

Definition 2. We call a trapdoor permutation family a B-leakage trapdoor permutation if the
following holds: For all PPT algorithms (A1, A2), there exists a negligible function negl such that

Pr[fpk(z) = y : (pk, sk)← KeyGen(1κ), x← Dpk,
L← A1(x, pk), y ← fpk(x), z ← A2(y, L(x))] ≤ negl(κ)

where the output length of L is bounded by B bits.

Note that every trapdoor function family is also a B-leakage trapdoor permutation family for
B = log κ.

RSA trapdoor permutation. The RSA trapdoor permutation is given by:

• KeyGen(1κ): Choose κ-bit primes p, q, letN = pq. Choose e such that gcd(e, (p−1)(q−1)) = 1,
let d be such that ed = 1 mod (p− 1)(q − 1). Return (pk = (e,N), sk = d)

• For x ∈ Z∗N , given pk = (e,N), compute fpk(x) = y = xe mod N .

• For y ∈ Z∗N , and sk = d, compute f−1sk (y) = yd mod N

The RSA inversion problem is assumed to be hard for any A running in time polynomial in κ.

Invertible Random Oracle. We assume the algorithms of the construction and the adversary
have access to an invertible random oracle (IRO): that is oracle access to Π : D → D and Π−1 :
D → D.

We discuss here how to plausibly implement such an oracle: The indifferentiablity framework,
first proposed by Maurer et al. [MRH04], informally says that given ideal primitives G and F , a
construction CG is indifferentiable from F , if there exists a simulator S with oracle access to F
such that (CG, G) is indistinguishable from (F, SF ). Coron et al. [CHK+16] showed that a 14-round
Feistel network where the round functions are independent random oracles is indifferentiable from a
random permutation. A series of subsequent works [DKT16, DS16] show that 8 rounds is sufficient.
Thus, using a Feistel network appears like a plausible way of instantiating the oracle we need.

Unfortunately, the indifferentiability composition theorem is not known to apply to security
notions that are captured by games that have multiple stages [RSS11]. Our security notion of proof
of replication is captured using a multi-stage game, and therefore the result of [RSS11] applies.

Therefore, the construction described below should only be seen as a plausible instantiation of
an invertible random oracle.
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A plausible oracle instantiation. In our constructions, we make use of an invertible random
oracle H that acts on strings of arbitrary length, and an invertible random oracle T that has the
same domain as a trapdoor permutation. H is instantiated using a regular Feistel network. In the
following we discuss an heuristic instantiation of T on pairs of outputs of RSA and obtain trapdoor
permutation f and IRO T with the same domain.

We define a trapdoor permutation f : (ZN )2 → (ZN )2 as follows: f(x1, x2) = (f ′(x1), f
′(x2))

where f ′ is the RSA permutation f ′ : ZN → ZN . Note that N is part of the public key of the RSA
permutation. The input and output of T are elements in (ZN )2. We note that we can instantiate
the Feistel construction in this domain as well by replacing XOR with multiplication modulo N
i.e., given a random oracle G that maps inputs in Z∗N to strings that are twice the length, we can
define F : (ZN )2 → (ZN )2 on pairs of values modulo N as follows:

FH(L||R) = s||t, where s = L ·G(R) mod N, t = R ·G(s) mod N

where · is product modulo N . Note that G(x) mod N is close to uniform in Z∗N , therefore, F is
invertible except with negligible probability i.e., if F is not invertible then a non-trivial factor of
N is found.

2.2 Proof of retrievability

Proofs of retrievability, introduced by Juels and Kaliski [JK07] allow a client to store data on
a server that is untrusted, and admit an audit protocol in which the server proves to the client
that it is still storing all of the data. A scheme without random oracle was given in [DVW09],
whereas [SW08] allows public verifiability. A proof of retrievability (PoR) scheme consists of three
algorithms, Gen,P,V. We recall the definition from [SW08, DVW09] below.

• The generation algorithm takes as input a file F ∈ {0, 1}∗ and outputs a file to be stored on
the server and a tag (verification information) for the client.

(F ∗, τ)← Gen(F )

• The P,V algorithms define an audit protocol to prove retrievability of the file. The P algo-
rithm takes as input the processed file F ∗ and the V algorithm takes the tag τ . At the end
of the audit protocol, the verifier outputs a bit indicating whether the proof succeeds or not.

{0, 1} ← 〈P(F ∗),V(τ)〉

A PoR scheme needs to satisfy correctness and soundness. Correctness requires that for all file
F ∈ {0, 1}∗, and for all (F ∗, τ) output by Gen(F ), an honest prover will make the verifier accept in
the audit protocol.

〈P(F ∗),V(τ)〉 = 1

Informally, a PoR scheme is sound if for any prover that convinces the verifier that it is storing
the file, there exists an algorithm called the extractor that interacts with the prover and extracts
the file. We give the formal definition below.
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Experiment ExptPoR-sound
A (κ)

• The adversary A picks a file F ∈ {0, 1}n.

• The challenger creates (F ∗, τ)← Gen(F ) and returns F ∗ to A.

• A can interact with V(τ) by running many proofs and seeing whether V outputs 0 or 1.

• A outputs a prover algorithm (ITM) P∗ and returns this to the challenger.

• The challenger runs b← 〈P∗,V(τ)〉, and runs the extractor, F̃ = extP
∗
(τ, n, κ)

• Output 1 if b = 1 ∧ F̃ 6= F , or 0 otherwise.

Figure 1: Soundness for Proofs of Retrievability.

Definition 3 (Soundness for Proof of Retrievability). A proof of retrievability (PoR) Gen,P,V
satisfies soundness if for any PPT adversary A, there exists an extractor ext such that the advantage
of A

AdvPoR-Sound
A (κ) = Pr[ExptPoR-Sound

A (κ) = 1]

in the experiment described in Figure 1 is negligible in κ.

The definition in [DVW09] discusses the notion of knowledge soundness versus information
soundness. If the definition holds for the class of efficient extractors, the scheme satisfies knowledge
soundness. A somewhat weaker notion is that of information soundness where the running time of
the extractor is not restricted.

2.3 Min entropy

Recall that the predictability of a random variable X is maxx Pr[X = x] and its min-entropy
H∞(X) is − log (maxx Pr[X = x]). The average case min-entropy is defined as follows. Let X and
Y be random variables.

H̃∞(X|Y ) = − log
(
Ey←Y

(
2−H∞(X|Y=y)

))
We make use of the following lemma which states that the average min-entropy of a variable

(from the point of view of an adversary) does not go down by more than the number of bits
(correlated with the variable) observed by the adversary. We recall the entropy weak chain rule for
average case min entropy below in Lemma 1.

Lemma 1. ([DORS08]) Let X and Y be random variables. If Y has at most 2λ values, then

H̃∞(X|Y ) ≥ H∞(X)− H0(Y ) = H∞(X)− λ

where H0(Y ) = log |support(Y )|
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Experiment soundA1,A2

• The adversary A1 chooses a file m ∈ {0, 1}k

• The challenger outputs n encodings of m

y(i) ← rEnc(κ,m)

for i ∈ [1, n] and returns (y(1), . . . , y(n)) to A1.

• A1 outputs a state state← A1(y
(1), . . . , y(n))

• The challenger runs A2 on state.

(ỹ(1), . . . , ỹ(n))← A2(κ, state)

• Let vi = 1 if ỹ(i) = y(i), and 0 otherwise. Output v =
∑n

i=1 vi.

Figure 2: Soundness of a Replica Encoding scheme

3 Defining Proof of Replication

While several candidates of proof of replication have already been proposed, they all use timing
assumptions, and we are not aware of any formal definition of the security properties that such
a proof should satisfy without timing assumption. It is indeed non-trivial to come up with the
“right” definition, due to the fact that we ask the adversary to store many copies of the same file.
Thus simply requiring the existence of an extractor algorithm (as in proof of knowledge or proof of
storage) is not sufficient: it is not enough that the adversary knows the file, the adversary should
know multiple replicas of the same file. But what does it mean for an extractor to extract replicas
of the same file? Before providing our definition, we introduce some notions of encodings which
will be used to build up our solution.

3.1 Replica Encodings

We now define ReplicaEncoding as a tuple of algorithms (rEnc, rDec) where rEnc takes a message
m ∈ {0, 1}∗ and outputs a replica encoding of m ∈ {0, 1}∗,

y ← rEnc(κ,m)

The rDec algorithm takes a replica encoding and returns a message i.e., m← rDec(y).

Definition 4 (Replica encoding). A pair (rEnc, rDec) is a secure replica encoding if the following
holds:
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• Completeness: The probability of incorrect decoding is negligible i.e.,

Pr[rDec(rEnc(κ,m)) 6= m] < negl(κ)

• Soundness: Consider the game soundA1,A2 between an adversary and a challenger defined
in Figure 2. A replica encoding scheme is c-sound (for a constant c, 0 < c < 1) if for any
(A1,A2), there exists a negligible function negl such that the following holds.

Pr [|state| < cvβ|v ← soundA1,A2 ] ≤ negl(κ)

where β is the bit-length of an encoding y.

• Efficiency: |y| = |m|+O(κ).

Discussion. The main measure of efficiency for a replica encoding is its expansion factor, in other
words the ratio |y|/|m|. Clearly, the smaller the expansion factor the more interesting the scheme
is. Looking ahead, all our constructions will have |y| = |m|+O(κ).

We motivate here some of the choices in our definition. First note that the completeness
requirement allows the file to be reconstructed from a single replica encoding. This captures the
functional requirement in the honest usage of proofs of replication, where a client would store
different encodings of the file on different servers and should be able to recover the file as long as
one server is storing their encoding.

When defining soundness, we consider a monolithic adversary A which controls all colluding
servers. To be able to meaningfully talk about the space that the adversary uses for storing the
file, we split the adversary A into two parts A1 and A2, where A1 receives the replica encoding
from the challenger (representing the honest client) and A2 is the part of the adversary returning
(some of) the encodings to the client at a later stage, using the state that A1 transferred to A2.
We do not require that A2 outputs all of the received encoding, instead, we use the variable v to
count how many of the replica encodings A2 is able to return. The definition of soundness then
intuitively states that the adversary can at most return the number of replicas that “fit” into the
state (where we allow for a constant “slack” c, to avoid trivial attacks where the adversary forgets
few bits and then “guesses” them right before returning the encodings – in practice one should
think of c as any constant close to 1).

As a sanity check of our definition, let’s consider a construction of replica encoding that is
“too trivial”: define y(i) = (m, ri) i.e., every replica is simply the message concatenated with some
random string ri. Due to incompressibility of random data the adversary needs to store all the
ri’s, but clearly only needs to store one copy of m and can still recompute all encodings. This is of
course not desirable, so our definition had better not accept this construction. Indeed it does not:
the adversary can break the soundness property because he can choose to return v ≥ 2 encodings
using storage only |m|+ v|r| < cv|y| - which is trivially true for any interesting case (remember in
efficient encodings |y| ≈ |m| and c is close to 1).

3.2 Proof of Replication

We now use the notion of encodings to meaningfully capture the replication property. A proof of
replication scheme consists of a tuple of algorithms create, retrieve and an audit protocol defined by
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two algorithms, P,V for the prover and verifier respectively. create is a randomized algorithm that
takes as input a file m ∈ {0, 1}∗, that is to be replicated and stored, a replication factor n; and
produces n replicas y(1), . . . , y(n) together with verification information ver. Each replica y(i) is sent
the server i to be stored, and ver with the client to be used for verification in the audit protocol.
retrieve is a deterministic algorithm run by anyone that takes as input a replica y(i) and outputs a
file m∗.

In the audit protocol, each server (prover) has a replica y(i), and the client (verifier) has ver.
At the end of the audit, the verifier outputs a bit b indicating whether the audit was successful or
not. We denote the protocol executing the prover and verifier algorithms by 〈Pi(ỹ(i)),V(ver, i)〉.

We require the scheme to satisfy completeness and soundness properties as defined below. Note
that when considering the honest usage of the our protocol (e.g., completeness), each server is
able to prove to the client that they are storing the file independently5. On the other hand, when
considering adversarial behaviour (e.g., soundness), we assume that all servers are under the control
of a monolithic adversary.

All our algorithms below are parametrized by a security parameter, even when omitted as in
the description below.

Definition 5 (Proof of Replication). A scheme PoRep = (create, retrieve,P,V) where,

(y(1), . . . , y(n), ver)← create(m,n), for m ∈ {0, 1}∗, n ∈ Z

m∗i = retrieve(y(i)), i ∈ [1, n]

{0, 1} ← 〈Pi(ỹ(i)),V(ver, i)〉

is a proof of replication scheme if the following properties are satisfied.

• Completeness. For an honest client and honest server,

– for (y(1), . . . , y(n), ver)← create(m,n),m∗i = retrieve(y(i)),m∗i = m ∀i ∈ [1, n]

– The audit protocol interaction between honest client and honest server succeeds, that is,
the client accepts and outputs b = 1.

〈Pi(ỹ(i)),V(ver, i)〉 = 1

• Soundness. We define the soundness game soundEA1,A2
between an adversary and a challenger

in Figure 3. The scheme PoRep is c-sound (for a constant c, 0 < c < 1) if for any (A1,A2),
there exists an extractor E and a negligible function negl such that the following holds.

Pr
[
u < v ∨ |state| < cvβ|(u, v)← soundEA1,A2

]
≤ negl(κ)

where β is the bitlength of an encoding y.

The definition above guarantees that the malicious servers, even colluding, cannot make the
verifier accept more proofs than the storage they have used.

5For instance, an honest server does not need to communicate with the other servers, nor know that they exist.
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Experiment soundEA1,A2

– The adversary A1 chooses a file m ∈ {0, 1}k

– The challenger runs (y(1), . . . , y(n), ver)← create(m,n) and returns (y(1), . . . , y(n)) to A1.

– A1 outputs a state state← A1(y
(1), . . . , y(n))

– The challenger runs 〈A2(state),V(ver, i)〉, let vi be the output of V for all i ∈ [1, n] and
v =

∑n
i=1 vi.

– The challenger runs the extractor.

(ỹ(1), . . . , ỹ(n)) = EA2(κ, ver, k)

– For all i ∈ [1, n], define ui = 1 if ỹ(i) = y(i), and u =
∑n

i=1 ui

The output of the game soundEA1,A2
is (u, v).

Figure 3: Soundness of a proof of replication scheme

4 Constructing Proof of Replication

We begin by giving a high-level overview of our construction. Following the idea behind our
definition, we create many independent encodings, and use a proof of retrievability on the encodings.
Even though each encoding can independently be decoded to the same file without any secret
information, the proof of retrievability on the encodings enforces that the server stores each encoding
and therefore dedicates space for each replica. Recall that in Section 1.2 we have already described
a simple solution which works in a restricted model in which the adversary is restricted to either
store or delete entire replicas. Of course this is not a realistic threat model and a malicious server
could choose to forget arbitrary parts of each encoding (say, a constant fraction). Now, to pass
the audit, the server would have to compute a preimage of the underlying trapdoor permutation,
but given a constant fraction of bits of the preimage. Unfortunately, the definition of security for
trapdoor permutation does not allow us to say that this is not possible; in other words, we cannot
construct a reduction for this kind of adversaries.

To address this problem, we use the following approach: we start by applying an (invertible)
random oracle (IRO) on the message concatenated with a short seed (which is different for each
replica), and then we use the trapdoor permutation on the result. We then iterate the IRO and
the trapdoor permutation as a round function sufficiently many times. Intuitively the trapdoor
permutation of the round function ensures that the adversary has to do something “hard” in every
round, while the IRO of the round function is used to make sure that the “hard tasks” are all
independent.

Again, in any given round, we cannot rule out that the adversary might have stored some (small)
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information that allows to easily invert the trapdoor permutation. However, since we repeat this
for many rounds and the adversary must store some pre-image information at every round to
potentially break the trapdoor permutation, eventually the total information that the adversary
would have to store will exceed the bound necessary for replicated storage.

When dealing with large files (e.g., larger than the size of the input/output of T ), we split
the file in blocks. To make sure that all blocks depend on the entire file (for instance, to prevent
the server from “de-duplicating” individual blocks which might appear in multiple files), we first
apply a “large” IRO on the entire file. Then, in the round function, we apply a “small” IRO on
each individual block. Thanks to this, the number of rounds in the encoding only needs to be
proportional to the block size, instead of the entire file size (as it was the case in an earlier version
of this paper).

Note that our combination of the RSA trapdoor permutation with a random oracle is reminiscent
of full domain hash-signatures and, to a greater extent, CCA secure encryption via RSA and OAEP.
Note however that, in our construction, we apply the oracle and the trapdoor permutation for
multiple rounds, and the domain of the random oracle is a pair of blocks for the RSA permutation.
The idea of iterating a combination of RSA with a random oracle was used before in [VDJO+12],
however (apart from their work having a less in-depth treatment) there are two major differences,
namely that they did not consider replication as an application, and that they use a strictly weaker
notion of security, namely “near-incompressibility”.

Efficiency of decoding. We note that, when instantiating the construction with the RSA trap-
door permutation, it is possible to use a small exponent (i.e., e = 3). Now decoding would be much
faster then encoding, which is a desirable property in applications where a single user uploads a
file which is then retrieved by a large number of users.

4.1 Replica Encodings

We now proceed to describe our construction in detail, and first construct a replica encoding scheme
ReplicaEncoding = (rEnc, rDec) in Figures 4 and 5.

Soundness of the scheme. Before formally proving the soundness of the scheme, we give an
overview of the proof idea. If the state state that is passed from A1 to A2 is small, then the
adversary A2 cannot “remember” all the answers to the queries that A1 made in the first part
of the game since the outputs of a random oracle are incompressible. However, we can extract
the outputs of the random oracle used during the encoding from the adversary since the replica
encodings can be efficiently decoded. This implies that the adversary must make some queries to
the random oracle in phase 2 of the game. Now, for each of the queries the adversary makes, there
are two options: either the response to the query has full entropy in the view of the adversary, or it
doesn’t. If it has full entropy, i.e., if the state contained no (or very little) information about what
the oracle would answer, then we are done, as we will elaborate next. But first let us consider if
not; that is, the response to the query made did not have full entropy in A2’s view. This means
that the state must have contained some information about the answer to the query. Now, since the
encoding uses the random oracle in each round, and since the state that the adversary is allowed to
remember is small, by carefully accounting for the entropy budget for each query made, we argue
that after a certain round, the entropy in the state is exhausted and therefore there is at least one
query that the adversary had to make to the oracle whose response has full entropy in order to
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Let m ∈ {0, 1}k′ be a message to be encoded.

• Choose a string r uniformly at random from {0, 1}κ, and let y0 = H(m||r), where H :
{0, 1}λ → {0, 1}λ is a invertible random oracle (IRO), and λ = k′ + κ.

• Let (KeyGen, f−1, f) be trapdoor permutation over domain D. (sk, pk) ← KeyGen(1κ).
Divide y0 into s blocks such that each block is in D. That is, y0 = Y10|| · · · ||Ys0. Let
T : D → D be an IRO over D. We then iterate the following round function: For each
round j from 1 to r, and for each block t ∈ [1, s] define

– Apply the IRO T ,
Ztj = T (Ytj−1)

– Invert the trapdoor permutation block-wise,

Ytj = f−1sk (Ztj)

Let yj = Y1j || · · · ||Ysj

• Let R = (yr, pk)

• Return R

Figure 4: The Replica Encoding Algorithm rEnc(κ,m)

For a replica R = (yr, pk), Parse yr as Y1r|| · · · ||Ysr. For each round j from r down to 1, and
each block t ∈ [1, s], compute

• Round j:

– Apply the trapdoor permutation block-wise,

Ztj = fpk(Ytj)

– Invert the IRO,
Ytj−1 = T−1(Ztj)

• Let y0 = Y10|| · · · ||Ys0. Compute H−1(y0) and parse the output as m||r where m is the
first k′ bits. Return m.

Figure 5: The replica decoding algorithm rDec(R)
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win the game. Finally, once we have found such a query for which we know that the output of the
oracle has full entropy that A2 had to make to win the game, we can reprogram the random oracle
with a challenge for the trapdoor permutation. Thus since A2 is nevertheless able to produce the
replicas, we use it to break the assumption and reach a contradiction.

Theorem 1. Assuming T,H are invertible random oracles, the construction ReplicaEncoding =
(rEnc, rDec) using trapdoor permutation f is a secure replica encoding scheme, replication parameter

n as per Definition 4. For number of rounds r > (cn+1)k
B , it is complete and c-sound with soundness

error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q the number of
queries to the RO and the advantage of any adversary in B-leakage inversion of the permutation f
is at most ε′.

Proof. We use the notation R(i) to identify the encoding stored on server i.

Completeness. For n encodings that are created honestly, R(i) ← rEnc(m,κ), m∗ = rDec(R(i)).
Then, due to the invertibility of T,H and the trapdoor permutation f , m∗ = m, ∀i.

Soundness. Assume there exists an adversary (A1,A2) such that

Pr [|state| < cvβ|v ← soundA1,A2 ] > ε .

Therefore, the adversary AT2 outputs R(i1), · · · , R(iv), where each ij ∈ [1, n]. Let I ⊂ [1, n], |I| =
v be the set of indices indicating the replicas that A2 outputs correctly. We argue that if the state
is too small, then the adversary does not have enough entropy to store information about R(i),
∀i ∈ I and therefore one of the R(i) must have been recomputed, (by making relevant queries to T ),
which we use to invert the B-leakage trapdoor permutation. The proof idea is that since the state
is small, in round r, A2 must have learned some of the Z values of round r from responses of T . If
the response of T to these queries do not have full entropy in A2’s view given the state, then this
deficit must be accounted for in the size of the state. We continue this argument for every round
going backwards from the last round, by reasoning about the set of relevant queries made in each
round, and accounting for every query made that did not have entropy in A2’s view with B bits
in the state. We then hit a round where the response of T for one of A2’s queries must have high
enough entropy from A2’s point of view. Such a query is guaranteed to exist since the state size
is used up after enough queries of the former kind. We use the response to this query to embed a
challenge and invert the trapdoor permutation. We now proceed to give the reduction.

Let B be an adversary whose task is to invert the trapdoor permutation. B receives a challenge
(p̂k, x̂), and wins if it outputs ŷ such that fp̂k(ŷ) = x̂. B interacts with (A1,A2) in the soundness

game. B receives a file m ∈ {0, 1}k′ from A1. B creates encoded replicas honestly, except for
one of the replicas chosen at random (call its index i∗ ∈ [1, n]), in which the challenge will be
embedded. For now we only use the public key p̂k. Since B does not know the corresponding secret
key, B cannot compute this encoding honestly. Thus, B defines the encoding R(i∗) as (p̂k, yr) for a
uniformly random yr. Then it “decodes” yr down to y0 (by following the decoding procedure) and
finally programs the random oracle H such that H−1(y0) = (m||r(i∗)) for some random string r(i

∗).
More in detail:
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• Choose random y
(i∗)
r ∈ {0, 1}λ.

• For each round j from r down to 1, parse y
(i∗)
j = Y1j || · · · ||Ysj and, for each block t ∈ [1, s],

compute:

– Apply the trapdoor permutation block-wise,

Ztj = fp̂k(Ytj)

– Invert the IRO,
Ytj−1 = T−1(Ztj)

• Let y0 = Y10|| · · · ||Ys0.

• Pick a random value r ∈ {0, 1}κ and program the IRO H to output y0 on input (m, r).

• Return R(i∗) = (y(i
∗), p̂k)

B responds to any other oracle queries of A1 honestly, and finally gives (R(1), · · · , R(n)) to A1,
where R(i) for i 6= i∗ is created honestly. A1 outputs a state state. Now, B interacts with A2. It
runs A2 on state, and receives and responds to A2’s oracle queries in the following way. B chooses a
random round j∗ ∈ [1, r], and a random block t∗ ∈ [1, s] to embed the challenge x̂ in. If A2 queries

T on Y
(i∗)
t∗j∗−1, B sets the response to embed its challenge x̂ in the following way. Set Zt∗j∗ = x̂ and,

T (Y
(i∗)
t∗j∗−1) = Zt∗j∗

The rest of the queries are answered honestly. If A2 makes a query Y
(i∗)
t∗j∗ = ŷ such that,

fp̂k(ŷ) = x̂, B outputs ŷ. If there is no such query, B outputs ⊥. We now compute the probability

that B wins in the trapdoor permutation inversion game. Consider the case when (m||r) fits into
D, and therefore there is only one block in the encoding. We later show how the argument extends
to multiple blocks. Let k be the block length, that is, the bit length of elements in D. We therefore
have |state| < cvk, c < 1. Consider the min-entropy of the random variable state, which is at most
the bit length, H∞(state) ≤ cvk. A2 on state returns,

{R(i)}i∈I ← A2(state)

for R(i) = (y
(i)
r , pki). Since there is only one block in the encoding, y

(i)
r ∈ D and can be decoded to

obtain z
(i)
r = fpki(y

(i)
r ).

Let Yr = y
(i1)
r || · · · ||y(iv)r and Zr = z

(i1)
r || · · · ||z(iv)r , ij ∈ I.

Since each replica is computed by using independent randomness ri, the queries to the oracle

are different for each replica, and therefore each z
(i)
r is unpredictable. We have,

H∞(z(i)r |z(1)r , · · · , z(i−1)r , z(i+1)
r , · · · , z(n)r ) = k

and therefore, H∞(Zr) = vk. Since Zr can be extracted from AT2 (state) by decoding, either the
state contains information about each z(i) in z(1)|| · · · ||z(v), or A2 must make relevant RO queries,
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that is, query the RO on the inputs corresponding to z(i). By the conditional rule for average case
min-entropy (Lemma 1),

H̃∞(Zr|state) ≥ H∞(Zr)− H0(state)

H̃∞(Zr|state) ≥ H∞(Zr)− cvk = vk − cvk

Zr is extracted by making no RO queries only with probability less than 2−vk(1−c) < 2−k(1−c)

which is negligible for constant c (even in the worse case where the adversary replies with a single
replica). Therefore, there is at least one RO query. Let Qr be the indices in I that indicates the

queries which are y-values of round r. That is, ∀u ∈ Qr, A2 queried T on y
(u)
r−1, and T (y

(u)
r−1) = z

(u)
r .

Let qr = |Q| denote the number of “relevant” r-round queries. For each query, either the state
contains information about the response or not; we consider the two cases where the state stores
< B bits of information or ≥ B of information of a query response. If the state contains < B bits of
information about responses in round r, then B wins if the challenge is embedded in that response

and we are done. Otherwise, the state contains information about each z
(u)
r which means the state

stores at least B bits of information for each query.

H∞(state) ≥ qrB

Now, let us consider the set of queries made with indices in Qr. For each y
(u)
r−1, u ∈ Qr,

we can extract z
(u)
r−1 by computing the decoding. That is, z

(u)
r−1 = fpku(y

(u)
r−1), for y

(u)
r−1 ∈ D.

These qr elements are outputs of RO on different inputs, and therefore have full entropy. Let

Zr−1 = z
(u1)
r−1 || · · · ||z

(uqr )
r−1 where each ui ∈ Qr. We have H∞(Zr−1) = qrk. If Zr−1 can be extracted

from AT2 (state), either the state contains information about z
(i)
r−1, ∀i ∈ Qr, or A2 must make more

RO queries. If there are no more queries, then H∞(state) ≥ vk. Therefore, there must be more
queries on inputs corresponding to the indices in Qr.

Let qr−1 be the number of relevant round (r − 1) queries. Define a set of query indices Qr−1,
from which we can extract Zr−2 = z

(u1)
r−2 || · · · ||z

(uqr−1 )

r−2 , for ui ∈ Qr−1. Again, for each query, either
the state dedicates < B bits of information, in which case B wins if the challenge is embedded in
that response and we are done. Otherwise, the state stores at least B bits of information about

each y
(u)
r−1, and therefore we have,

H∞(state) ≥ qrB + qr−1B

Making a similar argument as before, there must be more RO queries corresponding to the
indices in set Qr−1. Thus, we have, after r rounds, Zr, . . . ,Z1 are extracted from A2(state), and
we have

H∞(state) ≥
r∑
i=1

qiB

Let A2 make RO queries in each round j for the replicas given by the indices in Qj such that the
reduction could not successfully embed a challenge in any of the responses. Then after r rounds,
setting,

r∑
i=1

qiB − cvk = k
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We get H̃∞(Z1|state) ≥ k, when r > k(cv + 1)/B.
Therefore, at some round ` ≤ r, the entropy of the response is full when making an RO query

at round `. That is, ∃` ∈ [1, r], w ∈ [1, n] such that,

H̃∞(z
(w)
` |state) = k

When there are multiple blocks, we have |state| < cvβ. Since the permutation H is applied to
the entire file concatenated with a random string r, before r rounds of T and f , the adversary can
find files such that the output of H results in the same blocks only with probability ((qs)2 + 1)/2k

where q is the number of queries and s the number of blocks. Then the above argument holds for
each block independently.

The probability that the challenge is programmed into the RO response of one of the blocks of

z
(w)
` is the probability that i∗ = w, j∗ = ` which is 1/vrs > 1/nrs (in the worse case where n = v).

Thus the probability that B wins is at least ε
nrs − 2−k(1−c) − qs22−k.

As any trapdoor function is also trivially B-leakage secure for B = log(k), we obtain the
following corollary.

Corollary 1. Assuming T,H are invertible random oracles, the construction ReplicaEncoding =
(rEnc, rDec) using trapdoor permutation f is a secure replica encoding scheme for replication pa-

rameter n as per Definition 4. For number of rounds r > (cn+1)k
log k , it is complete and c-sound with

soundness error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q the number of queries
to the RO and the advantage of any adversary in inverting the permutation f is at most ε′.

Of course, for specific trapdoor permutations, it might be possible to assume B-leakage security
for larger values of B thus achieving better round complexity.

4.2 From Replica Encodings to Proofs of Replication

We now construct a proof of replication scheme create, retrieve,P,V. The idea is very simple: to
construct a proof of replication we use the replica encoding scheme from the previous section to
create replicas, and then apply a proof of retrievability on the encoded replicas. The proof of
security is also simple, as an adversary that breaks soundness for the proof of replication can be
used to break the soundness property of the proof of retrievability scheme or the soundness of the
replica encoding scheme.

The create procedure is formally described in Figure 6. The prover, and verifier algorithms P,V
are the same as the prover and verifier in the proof of retrievability. Finally, the retrieve algorithm
simply runs the replica decoding algorithm rDec if the proof of retrievability accepts.

Theorem 2. PoRep = (create, retrieve,P,V) is a proof of replication scheme for replication param-
eter n secure as per Definition 5. It is complete and c-sound with soundness error γ ≤ δ + ε where
the underlying PoR scheme has soundness error δ, and the replica encoding scheme has soundness
error ε.
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Let PoR = (Gen,P,V) be a proof of retrievability scheme. Given a file m ∈ {0, 1}k′ , and a
replication factor n:

• For each i ∈ [1, n]

– Run R(i) ← rEnc(m,κ)

– ({R̃(i)}i, τi) = PoR.Gen(R(i))

• Set ver = {τi}i

• R̃(i) is sent to the server i for storage and ver is returned to the client.

Figure 6: create(m,n): Create replicated storage

Proof. We first argue completeness: Given R(i) and pk, for encodings that are created honestly,
an honest server can recover m∗ = retrieve(R(i)). By completeness of the replica encoding scheme
rEnc, we have rDec(R(i)) = rDec(y(i), pk(i)) = m, ∀i.

We now argue the soundness of the construction. Let (A1,A2) be an adversary, that wins the
soundness game soundEA1,A2

with advantage γ. Let (u, v)← soundEA1,A2
.We consider the two cases:

Case 1. u < v. Let ext be the extractor of the PoR scheme, and let the file output by ext
be {R̃(i)}ni=1. By assumption that u < v there must be an index i ∈ [1, n] such that the
adversary A2 succeeds in the audit protocol (i.e., vi = 1), but R̃(i) 6= R(i) (i.e., ui = 0). By
the soundness of the proof of retrievability scheme PoR, this happens only with probability
δ.

Case 2. |state| ≤ cvβ. In this case the adversary AT2 succeeds in v audit protocols, and since u ≥ v,
the extractor E outputs R̃(i) = R(i) for i ∈ I ⊂ [1, n], |I| = v. Let (B1,B2) be an adversary
whose task is to break the soundness of the replica encoding scheme rEnc. B1 interacts with
(A1,A2) in the soundness game. B1 receives a file m ∈ {0, 1}k′ from A1, and outputs m to its
challenger. B1 receives n replica encodings (R(1), · · · , R(n)) from the challenger, where the bit
length of each encoding is β. B1 runs the PoR on the replicas. ({R̃(i)}i, ver)← PoR.Gen{R(i)}i
and returns {R̃(i)}i to A1. B1 outputs as state whatever A1 outputs with |state| ≤ cvβ. For
every successful audit proof given by A2, B2 runs the extractor E(ver, n, κ) of the scheme.
Thus B2 outputs R̃(i) = R(i) for each i ∈ I with probability at least γ.

5 Dealing with Malicious Clients

We discuss here some limitations and possible extensions of our approach.
Our definition and construction so far has concentrated on the case where the client is honest.

This is not a problem for our base use-case where a user wants to make sure they will be able
to retrieve their files in the future, but it is a problem in the Filecoin use case where servers are
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rewarded for the files they store. In this case, we need to prevent against the so called generation
attack and it is therefore important to have some security guarantees when the client is corrupt
and might work with a set of corrupt servers to convince honest users that they store many replicas
whereas in fact the replicas are generated “on-the-fly” for each proof.

Our solution from the previous section does not work in this case, as a corrupt user could share
the trapdoor function secret key with the servers and now they can indeed encode a replica on the
fly. If the client who owns the file is corrupt and is the only user involved in the encoding process,
then the adversary knows everything about the encoding process, and a different solution is needed.
One way to go is to involve several users in the encoding process and work under the assumption
that at least one of them is honest.

In a Filecoin-like scenario one could implement such a solution by rewarding users for helping
others to encode. We now describe two different approaches to such multi-user encoding.

Parallel Encoding. Given one-way trapdoor functions f1, ..., fn that act on k-bit strings, we
define a new function F on kn bit strings by F (x1, ..., xn) = (f1(x1), ..., fn(xn)), where each xi is
a k-bit string. It is clear that F is a one-way trapdoor function even with respect to an adversary
who knows all but one of the trapdoors for f1, ..., fn. Namely, if the j’th trapdoor is unknown,
we can take a challenge yj , choose yi = fi(xi) for i 6= j and random xi and give (y1, ..., yn) to the
adversary. If he computes a preimage, then the j’th component is the answer to challenge yj .

Note that our main result gives a construction that is secure based on any one-way trapdoor
function and so it also works for F .

Now, in the practical use-case, we will assume that n users are involved, such that user i has fi
as part of his public key and knows the corresponding trapdoor. A public-key infrastructure is one
of several ways to realize this. Then the n users can collaborate to encode: whenever we need to
compute F , we can assume the input to the current round is known (initially it will be the file to
encode), so each user i can apply the permutation oracle and compute and broadcast f−1i on his
part of the result.

It follows immediately from the above that if at least one user is honest, then this construction
results in a secure replica encoding. Note also that the contributions of each user can be verified by
computing his function in the forward direction. Moreover, the overhead in encoding size and the
cost per bit of encoding and decoding is the same as for the single honest user case. On the other
hand, we need a number of rounds for the encoding protocol that equals the number of rounds in
the encoding process.

Sequential Encoding. An obvious alternative is to do the encoding sequentially. Namely, the
first user does an encoding of the input file using his (set of) trapdoor functions and broadcasts
the result. The second user encodes the output of the first, etc. In the end, we have an encoding
that is essentially done just like our original construction, only with more rounds. Note that one
can decode the output of each user and check the result is correct.

The intuition behind the security of this approach is the following: under the assumption that
at least one user is honest, we have the same security as in the original construction assuming
that at least one of the users is honest. This is simply because the adversary does not know the
trapdoors for the honest member, and his encoding process involves the same number of random
oracle responses that we considered in the original proof. This approach increases the size of the
encodings but not significantly (the complexity would grow from O(|m|+ κ) to O(|m|+n · κ) with
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n users). The cost of encoding and decoding in this solution is a factor n larger than for the single
honest user case. On the other hand, the number of rounds in the encoding protocol is n, which
may be better than parallel encoding, depending on the concrete scenario.

6 Conclusions and Future Work

We gave two possible solutions to multi-user encoding above. However, there is also a solution
of a different nature that comes to mind: namely we can share a trapdoor (say, an RSA key)
between a set of users and have them collaborate to compute the encoding using that trapdoor
function securely. This has the advantage that an encoding looks just like what an honest client
would produce, we are not forced to have larger block size when many users are involved. Also,
decoding is as fast as in the honest client case, and one can set up the protocol such that just
one participating client needs to be honest in order for the secret key to not leak. On the other
hand, encoding requires more work. For the encoding protocol, one can take advantage of the huge
body of literature on distributed RSA key generation and distributed signing. Finding the optimal
solution for this approach is left for future work.

We also leave as an open question the problem of finding a secure replica encoding where the
number of rounds in the encoding process does not depend on the number of replicas.
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