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Abstract. RIPEMD-160 is an ISO/IEC standard and has been applied to gen-
erate the Bitcoin address with SHA-256. Due to the complex dual-stream struc-
ture, the first collision attack on reduced RIPEMD-160 presented by Liu, Mendel
and Wang at Asiacrypt 2017 only reaches 30 steps, having a time complexity of
270. Apart from that, several semi-free-start collision attacks have been published
for reduced RIPEMD-160 with the start-from-the-middle method. Inspired from
such start-from-the middle structures, we propose two novel efficient collision at-
tack frameworks for reduced RIPEMD-160 by making full use of the weakness of
its message expansion. Those two frameworks are called dense-left-and-sparse-
right (DLSR) framework and sparse-left-and-dense-right (SLDR) framework. As
it turns out, the DLSR framework is more efficient than SLDR framework since
one more step can be fully controlled, though with extra 232 memory complexi-
ty. To construct the best differential characteristics for the DLSR framework, we
carefully build the linearized part of the characteristics and then solve the cor-
responding nonlinear part using a guess-and-determine approach. Based on the
newly discovered differential characteristics, we provide colliding messages pairs
for the first practical collision attacks on 30 and 31 (out of 80) steps of RIPEMD-
160 with time complexity 235.9 and 241.5 respectively. In addition, benefiting from
the partial calculation, we can attack 33 and 34 (out of 80) steps of RIPEMD-
160 with time complexity 267.1 and 274.3 respectively. When applying the SLDR
framework to the differential characteristic used in the Asiacrypt 2017 paper, we
significantly improve the time complexity by a factor of 213. However, it still can-
not compete with the results obtained from the DLSR framework. To the best of
our knowledge, these are the best collision attacks on reduced RIPEMD-160 with
respect to the number of steps, including the first colliding message pairs for 30
and 31 steps of RIPEMD-160.

Keywords: hash function, RIPEMD-160, start-from-the-middle, collision attack,
collision
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1 Introduction

A cryptographic hash function is a function which takes arbitrary long messages as
input and output a fixed-length hash value. Traditionally, such a cryptographic hash
function has to fulfill the three basic requirements of collision resistance, preimage
resistance and second preimage resistance in order to be considered secure. Most stan-
dardized hash functions, like SHA-1, SHA-2, HAS-160, or RIPEMD-160 are based on
the Merkle-Damgård paradigm [3,22] which iterates a compression function with fixed-
size input to compress arbitrarily long messages. Furthermore, the aforementioned hash
functions have in common that their compression function is built by utilization of addi-
tions, rotations, xor and boolean functions in an unbalanced Feistel network. This way
of designing hash functions has been greatly threatened, starting with a series of results
as well as advanced message modification techniques by Wang et al. [28,29,30,31].

Before Wang et al. proposed a series of collision attacks on MD-SHA hash family,
there existed substantial efforts to analyze the security of MD-SHA hash functions.
Historically, the start-from-the-middle structure was first exploited by den Boer et al.
at Eurocrypt 1993 to break the compression function of MD5 [6]. Later at FSE 1996,
Dobbertin applied the start-from-the-middle approach to break full MD4 [7]. Since the
target is the hash function rather than the compression function, the initial value must be
consistent with its definition of the primitive, which is costly under the start-from-the-
middle structure. To overcome this obstacle, Dobbertin introduced a connecting phase
to connect the correct initial value with the starting point in the middle by exploiting
the property of the round boolean function and the freedom of message words [7]. As
will be shown, our SLDR framework is almost the same with Dobbertin’s structure to
break MD4. Moreover, the neutral bits introduced by Biham and Chen [1] at Crypto
2004 serve as an important tool to analyze MD-SHA hash family as well till now. A
message bit is neutral up to step n if flipping this bit does not influence the differential
characteristic conditions up to step n with a high probability. Due to the low diffusion
of SHA-0/SHA-1’s step functions, there exist many neutral bits up to a few steps.

Soon after Wang et al. presented their exciting work on MD4/MD5/SHA-0/SHA-1,
where all the differential characteristics were hand-crafted, De Cannière and Rechberg-
er invented the first automatic search tool to solve the nonlinear part of the differential
characteristic of SHA-1 with the guess-and-determine technique [5]. With such a guess-
and-determine technique, Mendel et al. designed a tool to find the differential character-
istic of SHA-2 at Asiacrypt 2011 [18]. Later, tools to solve the nonlinear characteristics
of SHA-2, RIPEMD-128 and RIPEMD-160 progressed well and a series of results were
published [10,11,16,17,19,20,21]. After Wang et al. presented the differential charac-
teristic as well as the corresponding sufficient conditions used to break MD5 in [30],
cryptographers soon observed that the differential characteristic conditions were not
sufficient in [30]. Specifically, Stevens revealed that the differential rotations must hold
if the differential characteristic hold [24]. Consequently, Stevens further investigated the
influence of the carry and added some extra bit conditions to have the differential rota-
tions hold with probability close to 1. A highly-related work is the recently proposed
method to theoretically calculate the probability of the step function of RIPEMD-160
at Asiacrypt 2017 [16], where the authors introduced the influence of the modular dif-
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ference propagation and also presented how to add extra conditions for RIPEMD-160
to ensure the modular difference propagates correctly.

The very first theoretical collision attack on full SHA-1 was achieved by Wang et al.
at Crypto 2005 [29], which required about 269 calls to SHA-1’s compression function.
However, practical collisions were still out-of-reach. After a decade’s effort, Stevens et
al. presented the first practical collision of full SHA-1 at Crypto 2017 [25]. In that work,
Stevens et al. utilized the SHA-1 collision search GPU framework [13] and the speed-up
techniques such as neutral bits and boomerangs and finally found the practical collision
of SHA-1. Boomerangs were introduced by Joux and Peyrin at Crypto 2007 [12] to
speed up the collision search for SHA-1. It consists in carefully selecting a few bits that
are all flipped together in a way that this effectively flips only one state bit in the first
16 steps, and therefore the diffusion of uncontrollable changes is greatly slowed down.

The RIPEMD family can be considered as a subfamily of the MD-SHA-family,
since, for instance, RIPEMD [2] consists of two MD4-like functions computed in par-
allel with totally 48 steps. The security of RIPEMD was first put into question by Dob-
bertin [8] and a practical collision attack on it was proposed by Wang et al. [28]. In
order to reinforce the security of RIPEMD, Dobbertin, Bosselaers and Preneel [9] pro-
posed two strengthened versions of RIPEMD in 1996, which are RIPEMD-128 and
RIPEMD-160 with 128/160 bits output and 64/80 steps, respectively. In order to make
both computation branches more distinct from each other, not only different constants,
but also different rotation values, message expansions and boolean functions are used
for RIPEMD-128 and RIPEMD-160 in both of their branches.

Due to the complicated structure of the dual-stream RIPEMD-128 and RIPEMD-
160, collision attacks on the two primitives progressed slowly. For RIPEMD-128, a
practical collision attack on 38 steps was achieved at FSE 2012 with a new struc-
ture [19]. Later, a practical collision attack on 40 steps was achieved at CT-RSA 2014 [26].
A break-through was made at Eurocrypt 2013, when Landelle and Peyrin employed the
start-from-the-middle approach to break the compression function of full RIPEMD-
128 [14]. As for RIPEMD-160, no collision attack was presented before Asiacrypt
2017 [16]. However, several results of semi-free-start collision attacks on the com-
pression function of RIPEMD-160 were obtained with the start-from-the-middle ap-
proach [17,21], only one of them started from the first step and the remaining started
from the middle, further showing the difficulty to cryptanalyze the collision resistance
of RIPEMD-160. In the work of [21], a partial calculation to ensure that more uncon-
trolled bit conditions hold was also introduced with a few statements. Later, a thorough
discussion was presented at ToSC 2017 [27].

At Asiacrypt 2017, the authors proposed a strategy to mount collision attacks on the
dual-stream RIPEMD-160 [16]. Specifically, they inserted the difference at the message
word m15, which is used to update the last internal state of the left branch in the first
round. Then, they utilized the search tool [21] to find a differential characteristic whose
left branch was linear and sparse and the right branch was as sparse as possible. At
last, they applied single-step and multi-step message modification only to the dense
right branch to make as many bit conditions as possible hold in a very traditional way,
i.e. starting modification from the first step. Typically, multi-step message modification
requires a lot of complicated hand-crafted work for different discovered differential
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characteristics and therefore is very time-consuming. This motivates us to come up
with two efficient collision attack frameworks.

Since SHA-3 does not provide the 160-bit digest and the first collision of full SHA-
1 has been presented [25], as an ISO/IEC standard, RIPEMD-160 is often used as a
drop-in replacement of SHA-1 and therefore worth analyzing. For instance, RIPEMD-
160 and SHA-256 have been used to generate the Bitcoin address. For completeness,
we list some related work of RIPEMD-160 in Table 1.

This paper is organized as follows. The preliminaries of this paper are introduced
in Section 2, including some notations, description of RIPEMD-160, start-from-the-
middle structure to find collisions, single-step message modification, and how to esti-
mate the probability of the uncontrolled part. In Section 3, the details of the two effi-
cient collision attack frameworks are explained. Then, we will show how to construct
suitable differential characteristics for the DLSR framework and report the newly dis-
covered 30/31/33/34-step differential characteristics in Section 4. The application of the
frameworks to the differential characteristics is shown in Section 5. Finally, our paper
is summarized in Section 6.

Table 1: Summary of preimage and collision attack on RIPEMD-160.
Target Attack Type Steps Time Memory Ref.

comp. function preimage 31 2148 217 [23]
hash function preimage 31 2155 217 [23]

comp. function

semi-free-start collision 36a low negligible [17]
semi-free-start collision 36 270.4 264 [21]
semi-free-start collision 36 255.1 232 [16]
semi-free-start collision 42a 275.5 264 [21]
semi-free-start collision 48a 276.4 264 [27]

hash function

collision 30 270 negligible [16]
collision 30b 257 negligible App. A
collision 30 235.9 232 Sect. 5.1
collision 31 241.5 232 Sect. 5.2
collision 33 267.1 232 Sect. 5.3
collision 34 274.3 232 Sect. 5.4

a An attack starting at an intermediate step.
b Based on the differential characteristic in [16].

Our Contributions. With the start-from-the-middle structure, we propose two efficient
collision attack frameworks for reduced RIPEMD-160. For the sake of clearness, we d-
ifferentiate the two frameworks by dense-left-and-sparse-right (DLSR) framework and
sparse-left-and-dense-right (SLDR) framework. The two frameworks significantly sim-
plify the procedure of finding collisions after a differential characteristic is discovered
and provide an efficient way to choose the best differential characteristic from many
candidates discovered by a search tool. To the best of our knowledge, we obtained the
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best collision attacks on reduced RIPEMD-160 with respect to the number of steps,
including the first practical attack. Specifically, the contribution of this paper can be
summarized as follows.

• Two novel efficient collision attack frameworks for reduced RIPEMD-160 are pro-
posed. The DLSR framework is much more efficient than SLDR framework since
one more step can be fully controlled, though with extra 232 memory complexity.

• With a guess-and-determine technique, new 30/31/33/34-step differential character-
istics of RIPEMD-160 are discovered, whose left branch is dense and right branch
is linear and sparse.

• By applying the DLSR framework to the newly discovered 30-step and 31-step dif-
ferential characteristics, practical collision attacks on 30 and 31 steps of RIPEMD-
160 are achieved. The instances of collision are provided as well.

• With the partial calculation technique that fully exploits the property of the round
boolean function of RIPEMD-160 and the differential characteristic conditions, we
introduce a clever way to dynamically choose the value of free message words
under the DLSR framework. Thus, based on the newly discovered 33-step and 34-
step differential characteristics, we can mount collision attack on 33 and 34 steps
of RIPEMD-160 with time complexity 267.1 and 274.3 respectively.

• Applying the SLDR framework to the discovered 30-step differential characteristic
of Liu, Mendel and Wang [16], we improve the collision attack on 30 steps of
RIPEMD-160 by a factor of 213.

2 Preliminaries

In this section, several preliminaries of this paper will be introduced.

2.1 Notation

For a better understanding of this paper, we introduce the following notations.

1. �, ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: shift right,
rotate left, rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substraction on
32 bits.

3. M = (m0, m1, ..., m15) and M′ = (m′0, m′1, ..., m′15) represent two 512-bit message
blocks.

4. Kl
j and Kr

j represent the constant used at the left and right branch for round j.
5. Φl

j and Φr
j represent respectively the 32-bit boolean function at the left and right

branch for round j.
6. sl

i and sr
i represent respectively the rotation constant used at the left and right branch

during step i.
7. π1(i) and π2(i) represent the index of the message word used at the left and right

branch during step i.
8. Xi, Yi represent respectively the 32-bit internal state of the left and right branch

updated during step i for compressing M.
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9. V j represent the ( j + 1)-th bit of V (V can be Xi,Yi,Qi, F...), where the least signif-
icant bit is the 1st bit and the most significant bit is the 32nd bit. For example, X0

i
represents the least significant bit of Xi.

10. V p∼q(0 ≤ q < p ≤ 31) represents the (q + 1)-th bit to the (p + 1)-th bit of the 32-bit
word V (V can be Xi,Yi,Qi, F...). For example, X1∼0

i represents the two bits X1
i and

X0
i of Xi.

Moreover, we adopt the concept of generalized conditions in [5]. Some related no-
tations for differential characteristics are presented in Table 2.

Table 2: Notations for differential characteristics
(x, x∗) (0,0) (1,0) (0,1) (1,1) (x, x∗) (0,0) (1,0) (0,1) (1,1)

? X X X X 3 X X − −

− X − − X 5 X − X −

x − X X − 7 X X X −

0 X − − − A − X − X
u − X − − B X X − X
n − − X − C − − X X
1 − − − X D X − X X
] − − − − E − X X X

• x represents one bit of the first message and x∗ represents
the same bit of the second message.

2.2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damgård construction as
domain extension algorithm: the hash function is built by iterating a 160-bit compres-
sion function H which takes as input a 512-bit message block Mi and a 160-bit chaining
variable CVi :

CVi+1 = H(CVi,Mi)

where a message to hash is padded beforehand to a multiple of 512 bits and the first
chaining variable is set to the predetermined initial value IV , that is CV0 = IV . We refer
to [9] for a detailed description of RIPEMD-160.

The RIPEMD-160 compression function is a wider version of RIPEMD-128 and
is based on MD5, but with the particularity that it consists of two different and almost
independent parallel instances of it. We differentiate the two computation branches by
left and right branch. The compression function consists of 80 steps divided into 5
rounds of 16 steps each in both branches.

Initialization The 160-bit input chaining variable CVi is divided into five 32-bit words
hi (i = 0, 1, 2, 3, 4), initializing the left and right branch 160-bit internal state in the
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following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148, X−3 = Y−3 = 0x7c30f4b8, X−2 = Y−2 = 0x1d840c95,
X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

Message Expansion The 512-bit input message block is divided into 16 message word-
s mi of size 32 bits. Each message word mi will be used once in every round in a per-
muted order π for both branches.

Step Function At round j, the internal state is updated in the following way.

LQi = X≪10
i−5 �Φ

l
j(Xi−1, Xi−2, X≪10

i−3 ) � mπ1(i) � Kl
j,

Xi = X≪10
i−4 � (LQi)≪sl

i ,

RQi = Y≪10
i−5 �Φ

r
j(Yi−1,Yi−2,Y≪10

i−3 ) � mπ2(i) � Kr
j ,

Yi = Y≪10
i−4 � (RQi)≪sr

i ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean functions
and round constants for RIPEMD-160 are displayed in Table 3. The other parameters
can be found in the specification [9].

Table 3: Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression
0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z
1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)
2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)
3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)
4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z

Finalization A finalization and a feed-forward is applied when all 80 steps have been
computed in both branches. The five 32-bit words h′i composing the output chaining
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variable are computed in the following way.

h′0 = h1 � X79 � Y≪10
78 ,

h′1 = h2 � X≪10
78 � Y≪10

77 ,

h′2 = h3 � X≪10
77 � Y≪10

76 ,

h′3 = h4 � X≪10
76 � Y80,

h′4 = h0 � X80 � Y79.

2.3 Start-from-the-middle Structure

The start-from-the-middle structure was first used to break the compression function of
MD5 [6]. However, when applying such a structure to find collisions, an extra phase is
essential to match the correct initial value. Historically, Dobbertin was the first to use
it to find real collisions [7]. In order to match the correct initial value of MD4, Dob-
bertin introduced a connecting phase in the framework. Exploting the property of the
boolean function and the freedom degree of message words, Dobbertin could achieve a
connection with a very low cost. Due to the high cost once there is no efficient approach
to achieve a connection, the start-from-the-middle structure is generally applied to find
semi-free-start or free-start collisions, which do not require the match with the prede-
fined initial value. Although such a structure has been used to find collisions in [10,15],
the situation is much simpler than Dobbertin’s work [7]. Specifically, since the length of
the middle part is short, only a few message words are fixed [10,15] and the connection
can be achieved trivially.

Formally, suppose there are r consecutive internal states s1, s2, ..., sr to be connect-
ed, which are updated with the messages words mw1 ,mw2 , ...,mwr respectively. In [7],
one of mw1 ,mw2 , ...,mwr is fixed so as to extend the length of the middle part. Therefore,
an efficient approach to solve it is non-trivial. For the start-from-the-middle structure
used in [10,15] to find real collisions, none of mw1 ,mw2 , ...,mwr are fixed in order to
obtain a solution of the middle part. In this situation, they could achieve connection
trivially when computing from the first step, i.e. obtain the value of mwi according to
the already computed si, si−1, ..., si−r. However, the length of the middle part is great-
ly limited, thus leaving more uncontrolled conditions in such a situation. Or else, the
authors made a tradeoff and finally determined not to consider the complex situation.

As will be shown in our two frameworks, we also use the start-from-the-middle
approach to find real collisions in a complex situation similar to Dobbertin’s work [7].
Our motivation is to ensure that as many conditions as possible hold in the second
round, which sometimes is almost impossible with multi-step message modification
or requires sophisticated and time-consuming manual work. Therefore, in the SLDR
framework, one of the message words used to update the internal states to be connected
will be fixed. In the DLSR framework, we even fix two of the message words used to
update the internal states to be connected, thus greatly extending the controllable part
of the differential characteristic and leaving fewer uncontrolled conditions. Fortunately,
because of the property of the round boolean function and the weakness of the message
expansion of RIPEMD-160, we can manage to achieve a connection with a low cost for
the two frameworks.

8



2.4 Single-step Message Modification

Since only single-step message modification [28] will be used in this paper, we give a
brief description of it. Generally, single-step message modification can ensure all the
conditions in the first round for most MD-SHA-like hash functions. The implied reason
is that the message words are used for the first time in the first round. Therefore, the
attackers can randomly choose values for the internal states while satisfying the condi-
tions in the first round, i.e. randomly choose values for the free bits of internal states.
Then, the corresponding message words can be computed according to the already fixed
internal states in the first round. For the sake of clearness, we take the step function of
RIPEMD-160 as instance.

Suppose the following pattern represents the conditions on Xi.

Xi = -11- ---- ---- -1-- 1--- n-un -u-- --11.

Then, we can first choose a random value for Xi and then correct it in the following way
to ensure the conditions on it hold.

Xi ← Xi ∧ 0xfffff9ff,

Xi ← Xi ∨ 0x60048243.

If there are two-bit conditions on Xi, we then check them and correct them. Suppose
X4

i = X4
i−1 is one two-bit condition, we first check whether X4

i = X4
i−1 holds. If it

does not hold, we simply flip X4
i . In this way, all conditions on Xi can hold. Finally, we

compute the corresponding message word to update Xi with Xi, Xi−1, ..., Xi−5. The above
description of single-step message modification is different from the original one [28],
but the implied idea is the same.

2.5 Propagation of Modular Difference

At Asiacrypt 2017, theoretical calculation of the probability of the step function of
RIPEMD-160 was described by introducing the influence of the propagation of modu-
lar difference [16]. The complete description of the calculation procedure is complex.
Generally, the authors divided the problem into two parts. The first part is to calculate
the characteristics of Qi (LQi/RQi for the left/right branch) which satisfies an equation
like (Qi � c0)≪s = Q≪s

i � c1 (c0 and c1 are constants) to ensure the correct propagation
of modular difference. Then, they calculate the probability that the bit conditions on the
internal state (Xi/Yi for left/right branch) hold under the condition that Qi satisfies the
equation (Qi � c0)≪s = Q≪s

i � c1. In other words, they considered the dependency be-
tween the bit conditions and the propagation of modular difference and this obviously
is a more accurate assumption.

In this paper, since the dense part of the differential characteristic will be first fixed
and the remaining part is very sparse and short, we can simply assume the independency
between the bit conditions and the propagation of modular difference. Thus, the product
of the probability of correct propagation of modular difference and the probability of bit
conditions will represent the final probability of the uncontrolled part. Specifically, sup-
posing Qi (LQi/RQi for left/right branch) satisfies the equation (Qi� c0)≪s = Q≪s

i � c1
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with probability p and there are q bit conditions on the corresponding internal state
(Xi/Yi for left/right branch), then the final probability is p×2−q. According to our exper-
iments, such an assumption is reasonable and almost consistent with the experiments.

Calculating the probability (Qi � c0)≪s = Q≪s
i � c1 can be found in Daum’s Ph.D

thesis [4], which was well illustrated in [16] with the help of a table. Due to the space
limitation, we refer the readers to Table 3 in [16].

3 Efficient Collision Attack Frameworks

In this section, we will present the details of the two efficient collision attack frame-
works. Both frameworks aim at ensuring as many conditions as possible in an efficient
way for specific strategies to construct differential characteristics. For the SLDR frame-
work, the differential characteristic is constructed by inserting a difference at the mes-
sage word m15, which is used to update the last internal state in the first round on the
left branch. Moreover, the differential characteristic on the left branch should be linear
and sparse. For the DLSR framework, the differential characteristic is constructed by
inserting difference at the message word m12, which is used to update the last internal
state in the first round on the right branch. In addition, the differential characteristic on
the right branch should be linear and sparse. For both frameworks, the linear and sparse
branch remains fully probabilistic. The differential characteristic patterns for SLDR and
DLSR framework are depicted in Fig. 1.

Fig. 1: Illustration of the differential characteristic patterns for both frameworks

3.1 SLDR Collision Attack Framework

Since m15 is firstly used to update Y11, for the strategy to build differential characteris-
tic by inserting difference only at m15 and making the left branch sparse at Asiacrypt
2017 [16], the following two observations can be obtained.

Observation 1. There is no condition on Yi (1 ≤ i ≤ 8).
Observation 2. The first internal state with difference on the right branch is Y11.

When considering the difference propagating to Y12, we are actually considering the
difference propagation of Y11 ⊕ (Y10 ∨ ¬Y≪10

9 ) where only Y11 has differences. If all
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the bits (pi, pi+1, ..., p j) with difference in Y11 are flipped by adding conditions Y pi
10 = 1,

Y pi+1
10 = 1, ..., Y p j

10 = 1 when constructing the differential characteristic, there will not be
conditions on Y9 either.

The above two observations motivate us to consider the start-from-the-middle struc-
ture to find collisions. Therefore, we carefully investigated the message expansion on
the right branch and finally found an efficient collision attack framework for such a
strategy to construct differential characteristics.

The overview of SLDR attack framework is illustrated in Fig. 2. Such a framework
contains 4 steps, as specified below and illustrated in Fig. 3.

Fig. 2: Overview of SLDR collision attack framework for RIPEMD-160

Fig. 3: Specification of SLDR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.

Step 1: Fix the internal states located in the middle part from Y10 to Y19, which can
be easily finished via single-step message modification since only m3 is used
twice to update the internal states. Specifically, randomly choose values for Yi

(10 ≤ i ≤ 18) while keeping their conditions hold via single-step message
modification since (m3,m12,m6,m11) are used for the first time. Then, we reuse
m3 to compute Y19 and check its condition. If the condition does not hold,
choose another solution of Yi (10 ≤ i ≤ 18) and repeat until we find a solution
of Yi (10 ≤ i ≤ 19). We call a solution of Yi (10 ≤ i ≤ 19) a starting point.

Step 2: Apply single-step message modification to ensure the conditions on Yi (20 ≤
i ≤ 23) since their corresponding message words (m7,m0,m13,m5) are used for
the first time.
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Step 3: Randomly choose values for the free message words m14 and m9. Compute
from the first step until Y5. Then achieve connection in Y10, whose correspond-
ing message word m6 has been fixed in the starting point. The costly condition
Y7 = 0 is used to ensure Y10 is irrelevant to Y8, which can be satisfied by con-
suming the freedom degree of m2.

Y7 = 0.

Y6 = ((Y7 � Y≪10
3 )≫15 � (m11 � Kr

0)) ⊕ (Y5 ∨ Y≪10
4 ).

m2 = (Y6 � Y≪10
2 )≫15 � (ONX(Y5,Y4,Y≪10

3 ) � Y≪10
1 � Kr

0).
Y9 = ((Y10 � Y≪10

6 )≫7 � (Y≪10
5 � m6 � Kr

0)) ⊕ 0xffffffff.
Y8 = ((Y9 � Y≪10

5 )≫7 � (Y≪10
4 � m13 � Kr

0)) ⊕ (Y7 ∨ Y≪10
6 ),

m4 = (Y8 � Y≪10
4 )≫5 � (ONX(Y7,Y6,Y≪10

5 ) � Y≪10
3 � Kr

0).

Compute m15, m8, m1, m10 to achieve connection in Yi (11 ≤ i ≤ 14). More
specifically, m15 is computed by Yi (6 ≤ i ≤ 11), m8 is computed by Yi (7 ≤ i ≤
12), m1 is computed by Yi (8 ≤ i ≤ 13) and m10 is computed by Yi (9 ≤ i ≤ 14).

Step 4: All message words have been fixed after connection. Then we verify the prob-
abilistic parts in both branches. If they do not hold, return Step 2 until we find
colliding messages. The degree of freedom is provided by m0, m5, m7, m9, m13
and m14.

Such a general framework can ensure all the bit conditions on Yi (10 ≤ i ≤ 23)
trivially, which is almost impossible via multi-step message modification once the con-
ditions are dense. However, more attention should be paid when applying it to a specific
differential characteristic. In this framework, Y7 is fixed to zero to achieve an efficient
connection in Y10, thus resulting in RQ11 = Y≫sr

11
11 . If the differential characteristic con-

ditions on Y11 always make RQ11 fail to satisfy its corresponding equation, this frame-
work cannot be applied directly. Although we can fix some bits of Y7 to one to solve it,
this will influence the success probability of connection. Therefore, when constructing
the differential characteristic, such a bad case should be considered and avoided.

3.2 DLSR Collision Attack Framework

Now, we consider an opposite strategy to construct differential characteristics by in-
serting difference only at m12 and making the right branch sparse. In this way, X13 is
the first internal state with difference. To propagate the difference in X13 to X14, we are
actually propagating the difference of X13 ⊕ X12 ⊕ X≪10

11 . Since there is no difference
in X11 or X12 and it is an XOR operation, there will be always conditions on X11 and
X12. However, there will not be conditions on Xi (1 ≤ i ≤ 10). This also motivates us to
consider the start-from-the-middle approach.

The overview of DLSR framework is shown in Fig. 4. The attack procedure can be
divided into four steps as well, as illustrated in Fig. 5.

Step 1: Fix the internal states located in the middle part from X11 to X23, which can
be easily finished via single-step message modification since only m15 is used

12



Fig. 4: Overview of DLSR collision attack framework for RIPEMD-160

Fig. 5: Specification of DLSR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.

twice to update the internal states. If there are too many bit conditions on X23,
we can firstly fix the internal states from X12 to X23 via single-step message
modification since all the corresponding message words (m7, m4, m13, m1, m10,
m6 and m15) are used for the first time. Then, we compute X11 by using Xi

(12 ≤ i ≤ 16) and m15. At last, we check the conditions on X11 and the modular
difference of X15. If they do not hold, choose another solution of Xi (12 ≤ i ≤
23) via single-step message modification and repeat until we can find a solution
for the starting point Xi (11 ≤ i ≤ 23). After a starting point is fixed, we have
to achieve connection in five consecutive internal states Xi (11 ≤ i ≤ 15).
However, m10 and m13 have been already fixed. Thus, an efficient approach to
achieve connection in X11 and X14 is quite important and non-trivial.
To achieve connection in X14, we pre-compute a solution set S for (X9, X10)
according to the following equation by exhausting all possible values of X9.
For each X9, compute the corresponding X10 and store X9 in a two-dimensional
array with X9 ⊕ X10 denoting the row number. Both the time complexity and
memory complexity of the pre-computation are 232.

X14 = X10
≪10 � (XOR(X13, X12, X11

≪10) � X9
≪10 � m13 � Kl

0)≪7.

Step 2: Apply single-step message modification to ensure the conditions on X24 since
its corresponding message word m3 is not fixed in the starting point and is used
for the first time. We have to stress that we have considered the influence of
the propagation of modular difference and have added extra bit conditions to
control its correct propagation with probability 1.

Step 3: Randomly choose values for the free message words m0, m2 and m5. Compute
from the first step until X8 and then achieve connection in X11 and X14 as fol-

13



lows. First, we calculate the value of var.

var = ((X11 � X≪10
7 )≫14 � (X≪10

6 � m10 � Kl
0)) ⊕ X≪10

8 .

Second, find solutions of (X9, X10) from S which satisfy X9 ⊕ X10 = var. The
corresponding solutions are stored in the row numbered var. In this way, each
solution of (X9, X10) will ensure the connection in X11 and X14. At last, com-
pute m8 and m9 as follows to ensure X9 and X10 can be the computed value for
connection. Since there are 232 valid pairs of (X9, X10) in S and var is a ran-
dom 32-bit variable, we expect one solution of (X9, X10) for a random var on
average.

m8 = (X9 � X≪10
5 )≫11 � (XOR(X8, X7, X≪10

6 ) � X≪10
4 � Kl

0).
m9 = (X10 � X≪10

6 )≫13 � (XOR(X9, X8, X≪10
7 ) � X≪10

5 � Kl
0).

Compute m11, m12 and m14 to achieve connection in X12, X13 and X15. Specif-
ically, m11 is computed by Xi (7 ≤ i ≤ 12), and m12 is computed by Xi

(8 ≤ i ≤ 13), and m14 is computed by Xi (10 ≤ i ≤ 15).
Step 4: All message words have been fixed after connection. Then we verify the prob-

abilistic part in both branches. If they do not hold, return Step 2 until we find
colliding messages. The degree of freedom is provided by m0, m2, m3 and m5.

However, observe that there will be difference in X13 and X14 when inserting dif-
ference at m12. Therefore, LQ13 = (X13 � X≪10

9 )≫6 and LQ14 = (X14 � X≪10
10 )≫7 have

to satisfy their corresponding equations to ensure the correct propagation of modular
difference. Since X9 and X10 cannot be controlled, we have to verify whether LQ13 and
LQ14 satisfy their corresponding equations when obtaining a solution of (X9, X10). A
way to reduce the verifying phase is to filter the wrong pair of (X9, X10) in the pre-
computing phase. However, we cannot expect one solution of (X9, X10) for a random
var anymore. In other words, whatever the case is, the influence of the correct propaga-
tion of modular difference of X13 and X14 must be taken into account when estimating
the success probability.

Therefore, under our DLSR framework, except the modular difference of X13 and
X14, all the conditions on Xi (11 ≤ i ≤ 24) can hold trivially with an efficient method,
which sometimes is almost impossible with multi-step message modification or at least
very time-consuming and requires sophisticated manual work, especially when the con-
ditions are dense in the second round. For the dense left branch, since there is no con-
dition on Xi (1 ≤ i ≤ 10), we only need focus on the the uncontrolled conditions on
internal states Xi (i ≥ 25) and the modular difference of X13 and X14. Thus, to construct
the best differential characteristic for this framework, there should be minimum active
bits in Xi (i ≥ 23) and the modular difference of X13 and X14 should hold with a high
probability. Moreover, to select the best differential characteristic from many discovered
candidates, we only need to analyze the probability of the conditions on Xi (i ≥ 25),
consisting of the number of bit conditions and the influence of the modular difference
propagation, as well as the probability of the correct propagation of the modular differ-
ence of X13 and X14. Obviously, we significantly simplify the procedure to construct and
select differential characteristics as well as find collisions with the DLSR framework.
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3.3 Comparison

Under the SLDR framework, we can only control until Y23 by adding an extra costly
condition Y7 = 0 to achieve efficient connection. For the DLSR framework, we can con-
trol until X24 by consuming extra 232 memory to achieve efficient connection. Hence,
the SLDR framework has the obvious advantage of having no memory requirement.
However, when there is sufficient memory available, there is a great advantage to lever-
age the DLSR framework, since we can control the internal state until the 24th step.
In other words, one more step can be fully controlled with the DLSR framework, thus
having the potential to leave fewer uncontrolled conditions. It should be noted that the
number of steps that can be controlled highly depends on the message expansion. Thus,
we rely on the specifics of RIPEMD-160’s message expansion and extend to more steps
as well as find an efficient approach to achieve connection in the complex situation.

A direct application of the SLDR framework to the 30-step differential characteris-
tic in [16] will improve the collision attack by a factor of 211. With a partial calculation
technique, two more uncontrolled bit conditions can be controlled. Thus, the collision
attack on 30 steps of RIPEMD-160 is improved to 257. Actually, the 30-step differential
characteristic in [16] is not perfect under our SLDR framework since there are three bit
conditions on Y9. Although the three bit conditions can be eliminated by generating a
new differential characteristic with Observation 2 taken into account, the time com-
plexity is still too high. As will be shown, we can attack 30 steps of RIPEMD-160 with
time complexity 235.9 under the DLSR framework. Therefore, considering its improv-
ing factor, we decided not to generate a new differential characteristic for the SLDR
framework and we refer the readers to Appendix A for the details of the improvement
for the collision attack at Asiacrypt 2017 [16]. The source code to verify the correct-
ness of the SLDR framework is available at https://github.com/Crypt-CNS/
Improved_Collision_Attack_on_Reduced_RIPEMD-160.git.

Actually, not only the framework but also the characteristic of the fully probabilistic
branch has influences on the final effect of the collision attack. Taking the two factors
into consideration, we finally determined to utilize the DLSR framework.

4 Differential Characteristics

As stated in the previous section, to construct the best differential characteristic for the
DLSR framework, the uncontrolled part should hold with a high probability. To achieve
this, according to the boolean function IFX used in the second round on the left branch,
we have to control that there are a few active bits in Xi (i ≥ 23) so that the number of bit
conditions on Xi (i ≥ 25) is minimal. Suppose we will analyze the collision resistance
of t steps of RIPEMD-160. According to the finalization phase of the compression
function of RIPEMD-160, to achieve a minimal number of active bits in Xi (i ≥ 23), it
is better to let only one of Yt−1,Yt−2,Yt−3,Yt−4 have differences and ∆Yt = 0. In this way,
only one of Xt, Xt−1, Xt−2, Xt−3 has differences and ∆Xt−4 = 0.

Based on such a strategy to construct differential characteristics, we firstly deter-
mine the characteristics on the fully probabilistic right branch for 30/31/33/34 steps
of RIPEMD-160, which can be found in Table 11, Table 12, Table 13 and Table 14
respectively.
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Then, we construct the sparse characteristics on the left branch starting from X23 for
30/31/33/34 steps of RIPEMD-160, which are displayed in Table 4.

Table 4: Sparse characteristics on the left branch

i 30 steps of RIPEMD-160 31 steps of RIPEMD-160
23 u - - - - - - - - - - - - - - - - - - - - - - - - - - - - u - - - - - - - - - n - - n - - - - - - - - - - - - - - - - - - - - -
24 - - - - - - - - - - - - - - - - - - - - n - - n - - - - - - - - - u - - - - - - - - - - - - - - - - - - - - - - - - - - - - u -
25 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
26 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
28 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
29 - - n - - - - - - - - - - - - - - - - - - - - - - - - - - - - n - - - - - - - - - u - - u - - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

i 33 steps of RIPEMD-160 34 steps of RIPEMD-160
23 - - - - - - - - u - - u - - - - - - - - - - - n - - - - - - - - - n - - - - - - - - - - - u - - - - - - - - - - - - - - - - u -
24 - - u - - - - - - - - - - u - - - - - - - - - - - - - - - - - u - - - n - - - - - - - - - - - - - - - - - u - - n - - - - - - -
25 - - - - - - - - - - - - - - - - - - - - n - - n - - - - - - - - - - - - - - - - - - n - - u - - - - - - - - - - - - - - - - - -
26 - - - - - - - - - - - - - u - - u - - - - - - - - - - - - - - - - - - u - - n - - - - - - - - - - - - - - - - - - - - - - - - -
27 n - - n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - n - - u - - - - - -
28 - - - - - - - - - - - - - - - - - - - - u - - u - - - - - - - - - - - - - - - - - - u - - n - - - - - - - - - - - - - - - - - -
29 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
33 - - u - - - - - - - - - - - - - - - - - - - - - - - - - - - - u - - - - - - - - - - - - - - - - - - - - - u - - n - - - - - - -
34 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

At last, we utilize a search tool [11,18,19,20,21] to solve the nonlinear characteristic
located at Xi (11 ≤ i ≤ 22) based on a guess-and-determine technique [5]. To choose
the best nonlinear characteristic from many candidates, we only need focus on the con-
ditions on Xi (i ≥ 25), consisting of the number of bit conditions and the probability of
the correct propagation of the modular difference, as well as the probability that LQ13
and LQ14 satisfy their corresponding equations. The best 30-step, 31-step, 33-step and
34-step differential characteristics for RIPEMD-160 that we eventually determined are
displayed in Table 11, Table 12, Table 13 and Table 14 respectively. To save space,
we only list the uncontrolled two-bit conditions located at the fully probabilistic right
branch and Xi (i ≥ 25), which cannot be denoted by generalized conditions. The two-bit
conditions located at Xi (11 ≤ i ≤ 24) as well as the equations to ensure the correct prop-
agation of modular difference of Xi (15 ≤ i ≤ 24) are not listed in the four tables since
all these conditions can hold trivially under the DLSR framework. In addition, from the
differential characteristics and the corresponding starting points in next section, it is not
difficult to extract all these information.

If we construct characteristic for 32 steps of RIPEMD-160 in a similar way, there
will be many bit conditions in Xi (i ≥ 23), which is even greater than that of 33 steps.
This is because ∆X28 , 0 and ∆X29 , 0. Therefore, for the attack with high time
complexity, we only provide the results for more steps.

Thanks to the efficiency of our DLSR framework, once a differential characteristic
for collision attack is determined, the uncontrolled probability can be calculated imme-
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diately. Therefore, for each characteristic in Table 11, Table 12, Table 13 and Table 14,
we also present the corresponding total uncontrolled probability in these tables, consist-
ing of the number of bit conditions on the right branch and Xi (i ≥ 25), as well as the
equations to ensure the correct propagation of modular difference on the right branch
and of X13, X14 and Xi (i ≥ 25). The probability estimated in these four tables repre-
sents the success probability to find the collision when the DLSR framework is directly
applied to the differential characteristics.

For the best 34-step differential characteristic given in Table 14, a direct application
of the DLSR framework is infeasible since it is beyond the birthday attack. However,
by benefiting from the partial calculation, which fully exploits the property of the round
boolean function and the existing differential characteristic conditions, we significantly
improve this probability. Such a technique will be also used to improve the collision at-
tack on 31 and 33 steps of RIPEMD-160. The details will be explained in next section.
It should be noted that the effect of partial calculation highly depends on the existing
differential characteristic conditions. Therefore, when selecting differential characteris-
tics from many candidates, we actually have taken the effect of partial calculation into
account as well.

5 Application

5.1 Practical Collision Attack on 30 Steps of RIPEMD-160

By applying the DLSR framework to the discovered 30-step differential characteristic
in Table 11, we can mount collision attack on 30 steps of RIPEMD-160 with time
complexity 235.9 and memory complexity 232. It should be noted that there are sufficient
free bits in m0, m2, m3 and m5 to generate a collision. The collision is displayed in
Table 5. For completeness, the starting point can be found in Table 7.

5.2 Collision Attack on 31 Steps of RIPEMD-160

According to Table 12, the time complexity to mount collision attack on 31 steps is 242.5

if the DLSR framework is directly applied. However, we can make it slightly better with
partial calculation technique by using the property of the boolean function IFX. This is
based on the following observation.

Table 5: Collision for 30 steps of RIPEMD-160

M 1fbb5316 8ad15821 bf04a498 b85ed58f 4d2d28f6 977b64cd 8c7769dc 961cce16
9d7a5bc6 f6519d38 37316e69 206d429 2f451be9 e748e57f 5c73a141 e753c86

M′ 1fbb5316 8ad15821 bf04a498 b85ed58f 4d2d28f6 977b64cd 8c7769dc 961cce16
9d7a5bc6 f6519d38 37316e69 206d429 2f449be9 e748e57f 5c73a141 e753c86

hash value cdcf5aec cf44ca54 70a8cdbb e1fd7e6d bea2687d
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Table 6: Collision for 31 steps of RIPEMD-160

M 3d604874 ff13f724 d60f43b4 c02645eb a9df768c 172f15dc d8cfa4bb edb8f36f
c898dd5e 71c62ade d13c6647 bfa932ef fc2b5325 fc5c01e5 5f7658c8 e5e50cc1

M′ 3d604874 ff13f724 d60f43b4 c02645eb a9df768c 172f15dc d8cfa4bb edb8f36f
c898dd5e 71c62ade d13c6647 bfa932ef fc2bd325 fc5c01e5 5f7658c8 e5e50cc1

hash value 5244127c c976d649 362154bb 59070fc 8e5212e1

Table 7: Starting points for differential characteristics

30 steps 31 steps
m1 = 0x8ad15821, m1 = 0xff13f724,
m4 = 0x4d2d28f6, m6 = 0x8c7769dc, m4 = 0xa9df768c, m6 = 0xd8cfa4bb,
m7 = 0x961cce16, m10 = 0x37316e69, m7 = 0xedb8f36f, m10 = 0xd13c6647,
m13 = 0xe748e57f, m15 = 0xe753c86. m13 = 0xfc5c01e5, m15 = 0xe5e50cc1.
X11 11111100011000001100000101110001 X11 01011100111011101010100010101010
X12 01101010111011111100011001000101 X12 01010101010111001010110111110101
X13 1000111011u100000000101011010110 X13 1101nuuuuuu000001111000111110110
X14 010n1110101011100110010000001000 X14 101u0101010001000101101011100101
X15 1n000100111100001001110101u11101 X15 0u100010101001100101100111110101
X16 101011111100000011n110110u0n0110 X16 001000000100011001n1100101nn1001
X17 n0000100101u01101100010101011101 X17 u00101010101100nuuuu0100110101nu
X18 01100n001100110000unnu01nun00101 X18 0011010110u100101u001nun1n111001
X19 1100001u00n1nuun0un0100000010nun X19 0nu1100un1011110101110u000001111
X20 1u1nn0u011u00110110110101nu1100n X20 010110111uu11001nn1un00101n10011
X21 10011101100101000001011un100u0uu X21 01n11n11100110101001110101001000
X22 1001011111uuu00n0011u10010001000 X22 000001100111unnnnnnnnnn01u111100
X23 u1101000111100011010000110100u11 X23 1001001n11n001000111101011011100
X24 011--1----1------110n01n-----0-- X24 1u10001111111--0-1001101011011u1

33 steps 34 steps
m1 = 0xf2470729, m1 = 0x58a0be2,
m4 = 0xd19ebad5, m6 = 0x1f2c0d0e, m4 = 0x8d38c100, m6 = 0x7214c160,
m7 = 0xc4f488a9, m10 = 0x236883a, m7 = 0xea755943, m10 = 0xa6a0ee3e,
m13 = 0x8425047b, m15 = 0x6458c5e3. m13 = 0xb9e9de76, m15 = 0xb949ab42.
X11 10010000100111110011110000011111 X11 10111101100001000010011010001000
X12 00101100110001010110101110010100 X12 01010010100101101101010100000010
X13 0101100111n000100110111101010111 X13 11000011nuu110100100010100010101
X14 110u0110110001011011110110000111 X14 110n0000000101101000100100100000
X15 1u000010011001111110111001u11101 X15 0n001011110001101101110000u000n0
X16 011111100000000100n10011un1u0001 X16 000000110010010001n0111u00uu0110
X17 n0010111111n1110000u010110u00011 X17 u00100010110100n0uuu101n1000101n
X18 000unn1unnn1011101u1u11unn001111 X18 0101101000uu101101110110nuu1011u
X19 u0nn101111un110u01011001000u0101 X19 u1nuun01010n01011nnuu0100010111n
X20 0u101110u1110010nn0n1n0u1110u011 X20 1001u00n0nu1u11u0001n11n100u000u
X21 n1n110000uu1u10100n1000n010001un X21 u1nu0010u1000u001000nu10u100nu10
X22 0100unn0101011110001111nunnnu0un X22 010010010010n0uuu00uu0uu011nu101
X23 00110111u11u10101101010n00100001 X23 0n01010111001u0011111111010111u1
X24 11u0101101011u01000101-111100--u X24 100n011--11111110101-u00n1010111
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Observation 3. Let F = X25X24 ⊕ X25X≪10
23 , then

F i =


Xi

24 (Xi
24 = Xi−10

23 )
Xi

24 (Xi
25 = 1)

Xi−10
23 (Xi

25 = 0).

Note that X26 is updated by the free message word m0 and Xi (21 ≤ i ≤ 24) can be
fully controlled. Although X25 cannot be controlled and unknown, we can use partial
calculation to ensure several bit conditions on X26 hold.

Specifically, consider the 31-step differential characteristic in Table 12. We write
X25, X24, X≪10

23 in binary as follows for a better understanding. Consider the following
calculation of F, we can know several bits of F if the conditions on X25 hold, where
a denotes that the bit value is possible to be determined by carefully choosing values
of X24 and X23, and b denotes that the bit value cannot be determined with existing
differential characteristic conditions.

X25 = 10-- ---- ---- ---- ---- ---- ---- -10-.

X24 = 1u10 0011 1111 1--0 -1-0 1-01 0--- --u1.

X≪10
23 = n001 0001 1110 1-11 01-- ---0 ---- -n-1.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

Consider the calculation of sum0 = X≪10
21 � Kl

1 after adding four bit conditions on X21.
In this way, the higher 12 bits of sum0 are constant.

X≪10
21 = 0110 1010 0110 010- 0--0 0-01 n1-n ---0.

Kl
1 = 0101 1010 1000 0010 0111 1001 1001 1001.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

Then, we consider the calculation of sum1 = sum0 � m0 by pre-fixing the pattern of m0
as follows.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

m0 = 0-11 110- ---- ---- ---- ---- ---- ----.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

Next, we consider the calculation of sum2 = sum1 � F as follows.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

sum2 = 1bbb 0bbb bbbb bbbb bbbb bbbb bbbb bbbb.

At last, consider the calculation of X26 after adding three extra bit conditions on X22.

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12 = X≪10

22 � sum≪12
2 .

sum≪12
2 = bbbb bbbb bbbb bbbb bbbb 1bbb 0bbb bbbb.

X≪10
22 = 11un nnnn nnnn n0-u ---- 0000 01-1 10-1.

X26 = bbbb bbbb bbbb bbbb bbbb 1bbb bbbb bbbb.
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Therefore, X11
26 = 1 can hold with probability 1. In the same procedure to perform the

partial calculation, if we choose the following pattern of m0, X11
26 = 1 can always hold

as well.

m0 = 0100 000- ---- ---- ---- ---- ---- ----.

It should be noted that m0 is randomly chosen at the third step when applying the
DLSR framework. Therefore, with our partial calculation, we can choose the value for
m0 in a clever way to have the condition X11

26 = 1 always hold. Therefore, the time
complexity of a collision attack on 31 steps of RIPEMD-160 is improved to 241.5.

According to the above analysis, it is not difficult to observe that such an approach
to make only one bit condition hold is costly since at least 6 bits of m0 have to be
fixed. In the case when there are sufficient free bits in the free message words, such a
method is feasible. However, when the success probability is low, we have to carefully
consume the degree of freedom. As will be shown in the collision attack on 33/34
steps of RIPEMD-160, we dynamically choose a value for m0 to save the degree of
freedom. Moreover, partial calculation will show its significant effect to decrease the
time complexity when attacking 33 and 34 steps of RIPEMD-160.

Verification. Both the correctness of the framework and the partial calculation are
fully verified. The collision for 31 steps of RIPEMD-160 is displayed in Table 6 and
the corresponding starting point is provided in Table 7.

5.3 Collision Attack on 33 Steps of RIPEMD-160

If we directly apply the DLSR framework to the discovered 33-step differential charac-
teristic in Table 13, the time complexity is 271.6 and the memory complexity is 232. With
the partial calculation, we can choose m0 in a clever way to ensure more uncontrolled
bit conditions hold.

Write X25, X24, X≪10
23 in binary according to Table 13 as follows for a better under-

standing. Thus, several bits of F = X25X24 ⊕ X25X≪10
23 can be known if the conditions

on X25 hold based on Observation 3.

X25 = -11- ---- ---- -1-- 1--- n--n ---- --11.

X24 = 11u0 10-- 0--1 1u01 0001 01-1 1110 0--u.

X≪10
23 = 1u10 --1- 0-01 0n00 100- 0100 1-01 1-u1.

F = 1110 aaaa 0aa1 b10b 000a 01a0 1abb baa1.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that the higher 12 bits of F can be fully fixed by properly setting values for X24
and X23. Moreover, X≪10

21 �Kl
1 and X≪10

22 are all constants after a starting point is found.
Therefore, it is feasible to have a clever choice of the higher 12 bits of m0 rather than
in a random way to ensure the conditions on the lower 12 bits of X26. To explain more
precisely, we firstly present the starting point of the 33-step differential characteristic in
Table 7.
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From this starting point, the following information can be extracted.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

Then, we add some extra conditions on m0 to ensure that there is always a carry from
the 20th bit to 21st bit when calculating F � X≪10

21 � Kl
1 � m0. The reason why there

is a carry is as follows. Suppose sum3 = X≪10
21 � Kl

1 � m0. When m0 satisfies such a
pattern, sum19∼18

3 = 112. Since F18 = 1, there will be always carry from the 20th bit
when calculating F � sum3.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

m0 = ---- ---- ---- 101- ---- ---- ---- ----.

Therefore,

(F ∧ 0xfff00000) � ((X≪10
21 � Kl

1) ∧ 0xfff00000) � 0x100000 = 0x3a200000.

Moreover, to ensure that the modular difference of X26 can hold with a probability
close to 1, we add an extra bit condition X9

26 = 1. The reason can be found in the
following calculation of LQ≪12

26 = X26�X≪10
22 . In this way, LQ31∼30

26 = 002 can hold with
probability 1, thus resulting (LQ26 � 0x407fff7e)≪12 = LQ≪12

26 � 0xfff7e408
holds with a probability close to 1.

X26 = ---1 ---- ---- -u-- u--- 1010 1--- ----.

X≪10
22 = 1011 ---- 0--- -nun nnu0 un0- 0-un n010.

LQ≪12
26 = ---- ---- ---- ---- ---- 00-- ---- ----.

After the above preparation, we give a complete description of how to choose m0
in a clever way to ensure the bit conditions on the lower 12 bits of X26. After choosing
values for X24 via single-step message modification and computing the corresponding
m3, we will determine the value of m0 according to the following procedure.

step 1: Randomly choose values for the lower 12 bits of X26 while keeping the condi-
tions on this part hold.

step 2: Compute the lower 12 bits of X26 � X≪10
22 . Then, the higher 12 bits of LQ26 are

known.
step 3: Based on LQ26 = m0�F �X≪10

21 �Kl
1, we can compute the higher 12 bits of m0

since the higher 12 bits of LQ26 and F � X≪10
21 � Kl

1 as well as the carry from
the 20-th bit are all known. The remaining free bits of m0 are set to a random
value.

In this way, we can ensure that 4 extra bit conditions on X26 and the modular d-
ifference of it hold. Therefore, the time complexity of collision attack on 33 steps of
RIPEMD-160 becomes 271.6−4.5 = 267.1. It should be noted that there are sufficient free
bits in m0, m2, m3 and m5 to generate a collision even though m0 is not fully random
anymore. Specifically, it is equivalent to fixing 8 bits of m0.
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Verification. Our program has verified the correctness of the above optimizing strat-
egy of partial calculation. Moreover, due to the low time complexity of the left branch
after applying such a strategy, we can find a group solution of message words to ensure
the dense left branch as shown in Table 8.

Table 8: Solution of dense left branch

Solution for 33-step left branch
m0 0xdc0b0468 m1 0xf2470729 m2 0xee83478c m3 0x3c25962
m4 0xd19ebad5 m5 0x1aed1d2b m6 0x1f2c0d0e m7 0xc4f488a9
m8 0x586e5bed m9 0x1a444ebb m10 0x236883a m11 0xd38ea539
m12 0x61e4d55f m13 0x8425047b m14 0xe8649646 m15 0x6458c5e3

Solution for 34-step left branch
m0 0xc2056cdf m1 0x58a0be2 m2 0xe114b874 m3 0xb7f045ff
m4 0x8d38c100 m5 0x4e926b96 m6 0x7214c160 m7 0xea755943
m8 0x496a5788 m9 0x857f0518 m10 0xa6a0ee3e m11 0xcd1f88a9
m12 0x14a4951c m13 0xb9e9de76 m14 0x65df3f3a m15 0xb949ab42

5.4 Collision Attack on 34 Steps of RIPEMD-160

The best 34-step differential characteristic is displayed in Table 14. A direct applica-
tion of the DLSR framework to this differential characteristic is infeasible since the
uncontrolled part holds with probability 2−81.4. Fortunately, we can exploit the partial
calculation of X26 as above to ensure a lot of bit conditions on X26 hold. Different from
the 33-step differential characteristic where the lower 12 bits of X26 can be controlled
with probability 1, only the higher 20 bits of X26 can be controlled with probability
2−2 for the discovered 34-step differential characteristic. However, there are a lot of
conditions on the higher 20 bits of X26. Therefore, there is a great advantage if exploit-
ing such a strategy even though it succeeds with probability 2−2. The details will be
explained in the following, which share many similarities with the procedure for the
33-step differential characteristic.

Let F = X25X24⊕X25X≪10
23 . We write X25, X24, X≪10

23 in binary according to Table 14
as follows. Thus, many bits of F can be controlled by properly choosing values for the
free bits of X24 and X23.

X25 = ---1 ---- --n- -u0- ---- 00-1 1--- ----.

X24 = 100n 011- -111 111- -10- -u00 n10- -111.

X≪10
23 = 001u -01- 1-11 -101 011- u1-n -1-- ----.

F = b0b0 ab1a aa11 a10a a1ba 11a0 01aa aaaa.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that there are only two possible values for the lower 20 bits of F depending
on X13

25 after setting values for X24 and X23 properly. Moreover, X≪10
21 � Kl

1 and X≪10
22
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are all constants after a starting point is found. Therefore, it is feasible to have a clever
choice of the lower 20 bits of m0 rather than in a random way to ensure the conditions
on the higher 20 bits of X26. To explain more precisely, we firstly present the starting
point of the 34-step differential characteristic in Table 7.

From this starting point, the following information can be extracted.

F ∧ 0x000fffff = 0000 0000 0000 1101 01b1 1100 0101 0111.

X≪10
21 � Kl

1 = 0110 1100 1001 1101 1001 0100 1110 0100.

Therefore, (F � X≪10
21 � Kl

1)∧ 0x000fffff can only take two possible values, which
are 0xaf13b and 0xb113b.

Moreover, it should be observed that the modular difference of X26 holds with a very
low probability of 2−3.1. Therefore, adding extra bit conditions to control the modular
difference is vital as well. We add four extra bit conditions X31

26 = 1, X30
26 = X20

22 , X29
26 = 0

and X27
26 = 0, all of which are located at the higher 20 bits of X26. The reason can be

found in the following calculation of LQ≪12
26 = X26 � X≪10

22 . In this way, LQ19∼16
26 =

00002 can hold with probability 1, thus resulting (LQ26 � 0xe06be)≪12 = LQ≪12
26 �

0xe06be000 holds with probability 1.

X26 = 1-0u 0-n- --00 -11- ---- ---- -1-- ----.

X≪10
22 = 1-n0 uuu0 -uu0 uu01 1nu1 01-1 00-0 --0-.

LQ≪12
26 = 0000 ---- ---- ---- ---- ---- ---- ----.

Since we are trying to control the higher 20 bits of X26, the influence of the carry
from the 12th bit must be taken into account when calculating X≪10

22 � LQ≪12
26 . The

carry behaves randomly since m0 is random and the higher 12 bits of F � X≪10
21 � Kl

1
are random. However, since X1∼0

22 = 012, there is a bias that there is no carry from the
12th bit. Therefore, in the implementation, we always assume there is no carry, which
holds with probability slightly higher than 2−1.

After the above preparation, we give a complete description of how to choose m0 in
a clever way to ensure the 10 bit conditions on the higher 20 bits of X26. After choosing
values for X24 via single-step message modification and computing the corresponding
m3, we will determine the value of m0 in the following procedure.

step 1: Randomly choose values of the higher 20 bits of X26 while keeping the 10 bit
conditions on this part hold.

step 2: Compute the higher 20 bits of X26 � X≪10
22 by assuming there is no carry from

the 12th bit. Then, the lower 20 bits of LQ26 are known.
step 3: Based on LQ26 = m0 � F � X≪10

21 � Kl
1, we can compute the lower 20 bits of

m0 since the lower 20 bits of LQ26 and F � X≪10
21 � Kl

1 are known. Randomly
choose one value of the 20 bits of F � X≪10

21 � Kl
1 from the two possible values

and compute the corresponding lower 20 bits of m0. The remaining free bits of
m0 are set to a random value.

In this way, we can ensure that 6 bit conditions on X26 and the modular difference of
it hold. Therefore, the time complexity of collision attack on 33 steps of RIPEMD-160
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is improved to 281.4−9.1+2 = 274.3. It should be noted that there are sufficient free bits in
m0, m2, m3 and m5 to generate a collision even though m0 is not fully random anymore.
Specifically, it is equivalent to fixing 10 bits of m0.

Verification. The above partial calculation to ensure 10 bit conditions on the higher
20 bits of X26 has been verified with the program, which is consistent with our estimated
success probability 2−1−1 = 2−2. In addition, we also found a solution for the dense left
branch as shown in Table 8.

Experiment Details The verification is briefly described above. To make this paper
more complete, we give a relatively detailed description of our experiments. For the
efficiency of the search, we store the solutions for (X9, X10) in RAM. However, due to
the memory limit of our PC (Linux system) or Linux server, we could only store 228

solutions for (X9, X10) in a two-dimensional dynamic array in RAM for one program,
thus resulting that the success probability of connection becomes 2−4.

Therefore, for our DLSR framework, we count the total times T1 to start from Step
2 (where we start choosing another random values for free message words) and the total
times T2 to start verifying the probabilistic part Xi (i ≥ 25) and Y j ( j ≥ 14) after the
connection succeeds. It is found that T1/T2 = 17, which is consistent with the success
probability of connection. Obviously, it is expected that the total number of attempts to
find the collision is T2 when all the 232 solutions can be stored in RAM for one program.

To find the collision for 30 steps of RIPEMD-160 in this paper, T2 = 0x4c11e4a5
and T1/T2 = 17. To find the collision for 31 steps of RIPEMD-160 in this paper, T2 =

0xfa3bab4a47 and T1/T2 = 17.
Note that the estimated probability to find the collision for 30/31 steps of RIPEMD-

160 is 2−35.9 and 2−41.5 when all the 232 solutions can be stored in RAM. Therefore,
according the value of T2, we believe that the estimated probability is reasonable. Sim-
ilar experiments have been conducted for the collision attack on 33 and 34 steps of
RIPEMD-160. The source code can be found at https://github.com/Crypt-CNS/
DLSR_Framework_RIPEMD160.

6 Conclusion

Inspired from the start-from-the-middle approach, we discovered two efficient collision
frameworks for reduced RIPEMD-160 by making full use of the weakness of message
expansion. With the DLSR framework, we achieved the first practical collision attack
on 30 and 31 steps of RIPEMD-160. Benefiting from the partial calculation techniques,
the random message word can be chosen in a clever way so as to ensure more uncon-
trolled bit conditions hold. In this way, with the newly discovered 33-step and 34-step
differential characteristics, collision attack on 33 and 34 steps of RIPEMD-160 can be
achieved with time complexity 267.1 and 274.3 respectively. When applying the SLDR
framework to the differential characteristic at Asiacrypt 2017, the time complexity is
significantly improved, though it still cannot compete with the result obtained from the
DLSR framework.
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A Application of the SLDR Framework

A direct application of this framework to the 30-step differential characteristic in [16]
will improve the collision attack by a factor of 211. The constraints on RQi and the
starting point are displayed in Table 9 and Table 10 respectively.

Observe that m14 is randomly chosen in the SLDR framework and used to update
Y25. When the starting point is extended to Y20, sum0 = Y≪10

20 � Kr
1 = 0xf45c8129

is constant. Let F = IFZ(Y24,Y23,Y≪10
22 ) = (Y24

∧
Y≪10

22 ) ⊕ (Y23
∧

Y≪10
22 ). Adding

six extra bit conditions on Y23 (Y26∼24
23 = 0002) and Y22 (Y16∼14

22 = 0002) will make
F26∼24 = 0002. Then, adding four bit conditions on m14 (m26∼23

14 = 10002) will make
RQ26∼25

25 = 002 since RQ25 = F � sum0 � m14. In this way, the condition Y1∼0
25 = 012
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can always hold. Since all the newly added conditions can be fully controlled under
this framework, two more probabilistic bit conditions are controlled, thus improving
the collision attack by a factor of 213 in total. A solution for the dense right branch is
as follows: m0 = 0x284ca581, m1 = 0x55fd6120, m2 = 0x694b052c, m3 =

0xd5f43d9f, m4 = 0xa064a7c8, m5 = 0xb9f7b3cd, m6 = 0x1221b7bb,
m7 = 0x42156657, m8 = 0x121ecfee, m9 = 0xce7a7105, m10 = 0xf2d47e6f,
m11 = 0xf567ac2e, m12 = 0x20d0d1cb, m13 = 0x9d928b7d, m14 = 0x5c6ff19b,
m15 = 0xc306e50f.

Table 9: Starting point for the differential characteristic presented at Asiacrypt’17

Y10 01110000001111110100000010001010 Y16 1111n1uu000n1n110001n1111nuuuuuu
Y11 101101110000110110010000000nuuuu Y17 1u10111un110111100u10unnn0nnn011
Y12 nuuuuuuuuuuuuuuuu0n0n00100001100 Y18 010010000n1011111n00001001000001
Y13 0unn1uu0111110100nuunn11011011un Y19 1u000101100100100101001000011101
Y14 010000111111111110nu101011nu1111 Y20 000000010110011000000nu110101100
Y15 000010111100u1u11010000u11010101

Table 10: Information of RQi
Equation: (RQi � in)≪shift = RQ≪shift

i � out
i shift in out Pr. i shift in out Pr.
11 8 0x1000000 0x1 1a 26 7 0x1000800 0x80040000 ≈ 2−1

12 11 0x15 0xa800 0.999 27 12 0x7ffc0000 0xbffff800 ≈ 2−1.4

13 14 0x6ffba800 0xea001bff ≈ 2−1 28 7 0x0 0x0 1
24 11 0xffffff00 0xfff80000 0.999 29 6 0xc0000000 0xfffffff0 ≈ 2−0.4

25 7 0x80000 0x4000000 ≈ 2−0.02 30 15 0x10 0x80000 0.999
a The condition Y7 = 0 makes it hold with probability 1.

B Differential Characteristics

We present the differential characteristics used for collision attack in this section.
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Table 11: 30-Step differential characteristic

∆m12 = −215

i X π1(i) Y π2(i)
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
11 - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
12 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
13 - - - - - - - - - - u - - 0 - - - - - - - - - - - - - - - - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
14 - - - n - 1 - - - - - - - - - - - - - - - - - - - - - - 1 - - - 13 - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - 10
15 - n 0 0 0 - - - - 1 - 1 0 0 0 0 1 0 0 1 - 1 - - 0 1 u 1 - - - - 14 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 3
16 - 0 1 0 1 1 1 - 1 1 - 0 - - - 0 1 1 n 1 - - - - 0 u 0 n 0 1 1 0 15 - - - - - - - - - - u - - - - - - - - - - - - - - - - - - - - - 12
17 n - - - - 1 - 0 1 0 - u - - - - 1 1 0 0 0 1 0 1 0 1 0 1 1 - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
18 0 - - 0 0 n - 0 1 1 0 0 1 1 0 0 0 0 u n n u - - n u n - - 1 0 1 4 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 11
19 - 1 0 0 0 0 1 u 0 0 n - n u u n 0 u n 0 1 0 0 - 0 0 0 - - n u n 13 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 3
20 - u - n n - u 0 1 1 u 0 0 1 1 0 1 1 0 1 1 0 - 0 1 n u 1 1 0 0 n 1 u - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
21 - - - - 1 1 0 1 1 - 0 - - - - 0 - - - 1 0 1 - u n 1 0 0 u 0 u u 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
22 1 0 - - - - - - - - u u u - - n 0 - - 1 u 1 0 - 1 0 0 - - 0 0 0 6 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 13
23 u - - - - - 0 0 1 - 1 1 0 0 0 1 - - 1 0 0 0 - 1 - - - - - u - - 15 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 5
24 0 1 1 - - 1 - - - - 1 - - - - - - 1 1 0 n 0 - n - - - - - 0 - - 3 - - - - - - - - - - - - - - - - - - - - - u n - - - - - - - - - 10
25 - - - - - - - - - - - - - - - - - - - 0 0 - 0 0 - - - - - - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
26 - - - - - - - - - - 0 - - 1 - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - 0 - 0 1 - - - - - - - - - 15
27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - 1 - 1 1 - - - - - - - - - 8
28 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - u - u n - - - - - - - - - - - - - - - - - - - 12
29 - - n - - - - - - - - - - - - - - - - - - - - - - - - - - - - n 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9

Other uncontrolled bit X29
28 = X19

27 , X0
28 = X22

27 .
conditions on the left branch

Other uncontrolled bit Y31
18 = Y31

17 ,Y
9
22 = Y9

21, Y20
26 = Y20

25 , Y19
26 = Y19

25 .
conditions on the right branch

Modular difference

(RQ16 � 0xffff8000)≪6 = RQ≪6
16 � 0xffe00000. Pr. : Negligible.

(RQ28 � 0xffff8000)≪7 = RQ≪7
28 � 0xffc00000. Pr. : Negligible.

(LQ13 � 0xffff8000)≪6 = LQ≪6
13 � 0xffe00000. Pr. : Negligible.

(LQ14 � 0x200000)≪7 = LQ≪7
14 � 0x10000000. Pr. = 2−0.1.

(LQ25 � 0x458)≪7 = LQ≪7
25 � 0x22c00. Pr. : Negligible.

(LQ26 � 0xfffdc200)≪12 = LQ≪12
26 � 0xdc200000. Pr. = 2−0.3.

(LQ27 � 0x24000000)≪15 = LQ≪15
27 � 0x1200. Pr. = 2−0.3.

(LQ28 � 0xffffee00)≪9 = LQ≪9
28 � 0xffdc0000. Pr. : Negligible.

(LQ29 � 0x240000)≪11 = LQ≪11
29 � 0x20000001. Pr. = 2−0.2.

Total uncontrolled probability 2−(10+0.9+25) = 2−35.9
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Table 12: 31-Step differential characteristic

∆m12 = 215

i X π1(i) Y π2(i)
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
12 - - - 1 - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
13 - - - - n u u u u u u - - - - - - - - - - - - - - - - - - - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
14 - - - u 0 - - - - - - - - - - - - - - - - - - - - - 1 - 0 - - - 13 - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - 10
15 - u - - - - - - 1 0 - - - 1 1 0 0 1 0 - - - - - - 1 1 - 0 - - - 14 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 3
16 - 0 - 0 - - - - - - - - - - - 0 0 - n - 1 - - - - 1 n n - - 0 1 15 - - - - - - - - - - n - - - - - - - - - - - - - - - - - - - - - 12
17 u - - - - - - - - - 0 1 - - - n u u u u 0 1 - 0 - 1 0 1 - - n u 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
18 0 0 - - - - - 1 1 - u - - - - 0 1 u 0 0 1 n u n - n - 1 - 0 0 1 4 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 11
19 - n u 1 1 0 0 u n 1 0 - 1 - - - - 0 - 1 1 0 u 0 - 0 - - - - - - 13 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 3
20 0 1 0 - - - - - 1 u u 1 1 0 - 1 n n - u n - 0 - - 1 n 1 - 0 1 - 1 n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
21 0 1 n - - n - - - 0 0 1 1 - - 0 1 0 - 1 1 - 0 1 0 - 0 - - 0 0 - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
22 0 - 0 - - 1 1 0 - 1 1 1 u n n n n n n n n n n 0 - u - - - - - 0 6 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 13
23 - 0 - - - - - n - 1 n 0 0 1 0 0 0 1 1 1 1 0 1 - 1 1 0 1 - - - - 15 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 5
24 1 u 1 0 0 0 1 1 1 1 1 1 1 - - 0 - 1 - 0 1 - 0 1 0 - - - - - u 1 3 - - - - - - - - - - - - - - - - - - - - - n u - - - - - - - - - 10
25 1 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0 - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
26 - - - - - - - - - - - - - - - - - - - - 1 - - 1 - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - 0 - 0 1 - - - - - - - - - 15
27 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - 1 - 1 1 - - - - - - - - - 8
28 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - n - n u - - - - - - - - - - - - - - - - - - - 12
29 - - - - - - - - - u - - u - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
30 - - - - - - - - - 0 - - 0 - - - - - - - - - - - - - - - - - - - 14 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

Other uncontrolled bit X19
28 = X9

27, X22
28 = X12

27 .
conditions on the left branch

Other uncontrolled bit Y31
18 = Y31

17 ,Y
9
22 = Y9

21,Y
20
26 = Y20

25 , Y19
26 = Y19

25 , Y0
30 = Y0

29, Y29
30 = Y29

29 , Y30
30 = Y30

29 .
conditions on the right branch

Modular difference

(RQ16 � 0x8000)≪6 = RQ≪6
16 � 0x200000. Pr. : Negligible.

(RQ28 � 0x8000)≪7 = RQ≪7
28 � 0x400000. Pr. : Negligible.

(LQ13 � 0x8000)≪6 = LQ≪6
13 � 0x200000. Pr. : Negligible.

(LQ14 � 0xffe00000)≪7 = LQ≪7
14 � 0xf0000000. Pr. = 2−0.1.

(LQ25 � 0xdfffffff)≪7 = LQ≪7
25 � 0xffffff70. Pr. = 2−0.2.

(LQ26 � 0x90)≪12 = LQ≪12
26 � 0x90000. Pr. : Negligible.

(LQ27 � 0xfff70000)≪15 = LQ≪15
27 � 0x7ffffffc. Pr. = 2−1.1.

(LQ28 � 0x80000004)≪9 = LQ≪9
28 � 0x900. Pr. = 2−1.1.

(LQ29 � 0xfffff700)≪11 = LQ≪11
29 � 0xffb80000. Pr. : Negligible.

Total uncontrolled probability 2−(12+2.5+28) = 2−42.5
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Table 13: 33-Step differential characteristic

∆m12 = 215

i X π1(i) Y π2(i)
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
12 - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
13 - - - - - - - - - - n - - 0 - - - - - - - - 1 1 - - 0 - 0 - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
14 - - - u - - - - - - - - - - - - - - - - - - - - - - - 0 0 1 - - 13 - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - 10
15 - u 0 0 0 - - - - - - 0 - - - - - - 1 - - 1 - - - 1 u - - 1 - - 14 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 3
16 - 1 1 1 - - - - - - - 0 - 0 - 1 0 0 n 1 0 - - 1 u n 1 u 0 - 0 1 15 - - - - - - - - - - n - - - - - - - - - - - - - - - - - - - - - 12
17 n 0 - 1 - 1 - 1 1 1 1 n 1 1 - - 0 - 0 u 0 1 - 1 1 0 u 0 - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
18 0 0 0 u n n 1 u n n n 1 - - 1 1 0 1 u 1 u 1 - u n n 0 0 - 1 - 1 4 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 11
19 u 0 n n 1 0 - 1 1 1 u n 1 - - u 0 1 0 1 1 0 0 1 0 0 0 u 0 - 0 1 13 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 3
20 0 u 1 0 1 1 1 0 u 1 1 1 0 0 1 0 n n 0 n - n 0 u - 1 1 0 u 0 1 1 1 n - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
21 n 1 n - 1 0 0 - 0 u u 1 u - - 1 0 0 n 1 - 0 0 n 0 1 0 0 0 - u n 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
22 0 - 0 - u n n 0 1 0 1 0 1 1 - - - - 0 - - - - n u n n n u 0 u n 6 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 13
23 0 0 1 - 0 1 1 - u 1 1 u 1 0 - - 1 - 0 - 0 1 0 n 0 0 1 0 0 - 0 1 15 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 5
24 1 1 u 0 1 0 - - 0 - - 1 1 u 0 1 0 0 0 1 0 1 - 1 1 1 1 0 0 - - u 3 - - - - - - - - - - - - - - - - - - - - - n u - - - - - - - - - 10
25 - 1 1 - - - - - - - - - - 1 - - 1 - - - n - - n - - - - - - 1 1 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
26 - - - 1 - - - - - - - - - u - - u - - - 1 0 - 0 1 - - - - - - - 0 - - - - - - - - - - - - - - - - - - - 0 - 0 1 - - - - - - - - - 15
27 n - - n - - - - - - 1 - - 0 - - 0 - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - 1 - 1 1 - - - - - - - - - 8
28 0 - - 1 - - 1 - - - - - - - - - - - - - u - - u - - - - - - - - 5 - - - - - - - - - n - n u - - - - - - - - - - - - - - - - - - - 12
29 - - - - - - - - - - - - - - - - - - - - 0 - 1 0 - 1 - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
30 - - - - - - - - - - 1 - - 1 - - - - - - - - - - - - - - - - - - 14 - - - - - - - - - 1 - - 1 - - - - - - - - - - - - - - - - - - - 9
31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1
32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - n - - - - - - - - - - - - - - - - - - - - - - - - - - - - n 2
33 - - u - - - - - - - - - - - - - - - - - - - - - - - - - - - - u 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15

Other uncontrolled bit X31
26 = X21

25 , X11
27 = X1

26, X
8
27 = X30

26 .
conditions on the left branch

Other uncontrolled bit Y31
18 = Y31

17 ,Y
9
22 = Y9

21,Y
20
26 = Y20

25 , Y19
26 = Y19

25 , Y0
30 = Y0

29, Y29
30 = Y29

29 , Y30
30 = Y30

29 .
conditions on the right branch

Modular difference

(RQ16 � 0x8000)≪6 = RQ≪6
16 � 0x200000. Pr. : Negligible.

(RQ28 � 0x8000)≪7 = RQ≪7
28 � 0x400000. Pr. : Negligible.

(LQ13 � 0x8000)≪6 = LQ≪6
13 � 0x200000. Pr. : Negligible.

(LQ14 � 0xffe00000)≪7 = LQ≪7
14 � 0xf0000000. Pr. = 2−0.1.

(LQ25 � 0x33ef815)≪7 = LQ≪7
25 � 0x9f7c0a81. Pr. = 2−1.5.

(LQ26 � 0x407fff7e)≪12 = LQ≪12
26 � 0xfff7e408. Pr. = 2−0.5.

(LQ27 � 0x39ff8)≪15 = LQ≪15
27 � 0xcffc0002. Pr. = 2−0.3.

(LQ28 � 0xc007fffe)≪9 = LQ≪9
28 � 0xffffb80. Pr. = 2−0.6.

(LQ29 � 0xfffffb80)≪11 = LQ≪11
29 � 0xffdc0000. Pr. : Negligible.

(LQ30 � 0x240000)≪7 = LQ≪7
30 � 0x12000000. Pr. = 2−0.2.

(LQ31 � 0xee000000)≪13 = LQ≪13
31 � 0xfffffdc0. Pr. = 2−0.2.

(LQ32 � 0x240)≪12 = LQ≪12
32 � 0x240000. Pr. : Negligible.

(LQ33 � 0xffdc0000)≪11 = LQ≪11
33 � 0xdfffffff. Pr. = 2−0.2.

Total uncontrolled probability 2−(31+3+3.6+34) = 2−71.6
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Table 14: 34-step differential characteristic

∆m12 = 215

i X π1(i) Y π2(i)
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5
2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11
8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15
12 - - - - - - - - - - - - - - - - - - - 1 0 - - - - - - 0 - - - - 11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8
13 - - - - - - - - n u u 1 - 0 - - - - - - - - - - - - 0 - - - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
14 - 1 - n 0 0 - - - 0 0 1 0 1 1 0 1 - 0 0 1 0 - - - - - - - - - - 13 - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - 10
15 - n 0 0 1 0 - - 1 1 0 0 - - - - - - - - - - - 0 - - u 0 0 0 n - 14 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 3
16 - 0 0 - 0 - - - - 0 1 0 0 1 0 - - 1 n 0 1 1 1 u - 0 u u 0 1 1 0 15 - - - - - - - - - - n - - - - - - - - - - - - - - - - - - - - - 12
17 u 0 0 1 0 0 - - - 1 1 0 1 0 0 n 0 u u u 1 0 1 n 1 - 0 0 1 0 1 n 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6
18 0 1 0 1 1 0 1 - 0 0 u u - 0 1 1 0 1 1 1 0 - 1 0 n u u 1 - 1 1 u 4 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 11
19 u 1 n u u n 0 1 0 1 0 n 0 1 - 1 1 n n u u 0 1 0 0 0 1 0 - - 1 n 13 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - 3
20 1 0 0 1 u 0 0 n 0 n u 1 u 1 1 u 0 0 0 1 n 1 1 n 1 0 0 u 0 0 0 u 1 u - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7
21 u 1 n u 0 0 1 - u 1 - 0 0 u 0 0 1 - - 0 n u 1 0 u 1 0 0 n u - 0 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0
22 - 1 0 0 - 0 - - 0 - 1 - n 0 u u u 0 - u u 0 u u 0 1 1 n u 1 0 1 6 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 13
23 - n - 1 - - - - - - 0 0 1 u - 0 1 - 1 - 1 1 - 1 0 1 0 1 1 - u 1 15 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 5
24 1 0 0 n 0 1 1 - - 1 1 1 1 1 1 - - 1 0 - - u 0 0 n 1 0 - - 1 1 1 3 - - - - - - - - - - - - - - - - - - - - - u n - - - - - - - - - 10
25 - - - 1 - - - - - - n - - u 0 - - - - - 0 0 - 1 1 - - - - - - - 12 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14
26 - - - u - - n - - - 0 0 - 1 1 - - - - - - - - - - 1 - - - - - - 0 - - - - - - - - - - - - - - - - - - - 0 - 0 1 - - - - - - - - - 15
27 1 - - - - - 0 - - - - - - - - - - - - - - - n - - u - - - - - - 9 - - - - - - - - - - - - - - - - - - - 1 - 1 1 - - - - - - - - - 8
28 - - - - - - - - - - u - - n - - - - - - - - 0 - - - - - 1 - - - 5 - - - - - - - - - n - u n - - - - - - - - - - - - - - - - - - - 12
29 - - - - - - - - - - 0 - 1 0 - 1 - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4
30 1 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 - - - - - - - - - 1 - - 1 - - - - - - - - - - - - - - - - - - - 9
31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 1
32 - - - - - - - - - - - - - - - - - - - - - 0 - - 0 - - - - - - - 8 - - u - - - - - - - - - - - - - - - - - - - - - - - - - - - - n 2
33 - - - - - - - - - - - - - - - - - - - - - u - - n - - - - - - - 3 - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 15
34 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5

Other uncontrolled bit conditions X25
25 = X15

24 , X
9
26 = X31

25 , X18
27 = X8

26, X
21
27 = X11

26 .
on the left branch

Other uncontrolled bit Y31
18 = Y31

17 ,Y
9
22 = Y9

21,Y
20
26 = Y20

25 , Y19
26 = Y19

25 , Y0
30 = Y0

29, Y29
30 = Y29

29 , Y30
30 = Y30

29 .
conditions on the right branch

Modular difference

(RQ16 � 0x8000)≪6 = RQ≪6
16 � 0x200000. Pr. : Negligible.

(RQ28 � 0x8000)≪7 = RQ≪7
28 � 0x400000. Pr. : Negligible.

(LQ13 � 0x8000)≪6 = LQ≪6
13 � 0x200000. Pr. : Negligible.

(LQ14 � 0x200000)≪7 = LQ≪7
14 � 0x10000000. Pr. = 2−0.1.

(LQ25 � 0x84201be3)≪7 = LQ≪7
25 � 0x100df1c2. Pr. = 2−1.2.

(LQ26 � 0xe06be)≪12 = LQ≪12
26 � 0xe06be000. Pr. = 2−3.1.

(LQ27 � 0x11802000)≪15 = LQ≪15
27 � 0x100008c0. Pr. = 2−0.2.

(LQ28 � 0xdffff900)≪9 = LQ≪9
28 � 0xfff1ffc0. Pr. = 2−0.2.

(LQ29 � 0xfff20000)≪11 = LQ≪11
29 � 0x90000000. Pr. = 2−0.9.

(LQ30 � 0x70000000)≪7 = LQ≪7
30 � 0x38. Pr. = 2−0.9.

(LQ31 � 0xffffffc8)≪13 = LQ≪13
31 � 0xfff90000. Pr. : Negligible.

(LQ32 � 0x70000)≪12 = LQ≪12
32 � 0x70000000. Pr. = 2−0.9.

(LQ33 � 0x90000000)≪11 = LQ≪11
33 � 0xfffffc80. Pr. = 2−0.9.

Total uncontrolled probability 2−8.4−37−36 = 2−81.4
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