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Abstract

We study the problem of building a verifiable delay function (VDF). A VDF requires
a specified number of sequential steps to evaluate, yet produces a unique output that can
be efficiently and publicly verified. VDFs have many applications in decentralized systems,
including public randomness beacons, leader election in consensus protocols, and proofs of
replication. We formalize the requirements for VDFs and present new candidate construc-
tions that are the first to achieve an exponential gap between evaluation and verification
time.

1 Introduction

Consider the problem of running a verifiable lottery using a randomness beacon, a concept
first described by Rabin [66] as an ideal service that regularly publishes random values which no
party can predict or manipulate. A classic approach is to apply an extractor function to a public
entropy source, such as stock prices [24]. Stock prices are believed to be difficult to predict for
a passive observer, but an active adversary could manipulate prices to bias the lottery. For
example, a high-frequency trader might slightly alter the closing price of a stock by executing
(or not executing) a few transactions immediately before the market closes.

Suppose the extractor takes only a single bit per asset (e.g. whether the stock finished up
or down for the day) and suppose the adversary is capable of changing this bit for k different
assets using last-second trades. The attacker could read the prices of the assets it cannot control,
quickly simulate 2k potential lottery outcomes based on different combinations of the k outcomes
it can control, and then manipulate the market to ensure its preferred lottery outcome occurs.

One solution is to add a delay function after extraction, making it slow to compute the
beacon outcome from an input of raw stock prices. With a delay function of say, one hour, by
the time the adversary simulates the outcome of any potential manipulation strategy, the market
will be closed and prices finalized, making it too late to launch an attack. This suggests the key
security property for a delay function: it should be infeasible for an adversary to distinguish the
function’s output from random in less than a specified amount of wall-clock time, even given a
potentially large number of parallel processors.

A trivial delay function can be built by iterating a cryptographic hash function. For example,
it is reasonable to assume it is infeasible to compute 240 iterations of SHA-256 in a matter of
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seconds, even using specialized hardware. However, a lottery participant wishing to verify the
output of this delay function must repeat the computation in its entirety (which might take
many hours on a personal computer). Ideally, we would like to design a delay function which
any observer can quickly verify was computed correctly.

Defining delay functions. In this paper we formalize the requirements for a verifiable delay
function (VDF) and provide the first constructions which meet these requirements. A VDF
consists of a triple of algorithms: Setup, Eval, and Verify. Setup(λ, t) takes a security parameter
λ and delay parameter t and outputs public parameters pp (which fix the domain and range
of the VDF and may include other information necessary to compute or verify it). Eval(pp, x)
takes an input x from the domain and outputs a value y in the range and (optionally) a short
proof π. Finally, Verify(pp, x, y,π) efficiently verifies that y is the correct output on x. Crucially,
for every input x there should be a unique output y that will verify. Informally, a VDF scheme
should satisfy the following properties:

− sequential : honest parties can compute (y,π) ← Eval(pp, x) in t sequential steps, while no
parallel-machine adversary with a polynomial number of processors can distinguish the output
y from random in significantly fewer steps.

− efficiently verifiable: We prefer Verify to be as fast as possible for honest parties to compute;
we require it to take total time O(polylog(t)).

− unique: for all inputs x, it is difficulty to find a y for which Verify(pp, x, y,π) = Yes, but
y ∕= Eval(pp, x).

A VDF should remain secure even in the face of an attacker able to perform polynomially
bounded pre-computation.

Some VDFs may also offer additional useful properties:

− decodable: A VDF is decodable if there exists a decoding algorithm Dec such that (Eval,Dec)
form a lossless encoding scheme. A lossless encoding scheme is a pair of algorithms (Enc,Dec)
where Enc : X → Y and Dec : Y → X such that Dec(Enc(x)) = x for all x ∈ X. We say
that a VDF is efficiently decodable if it is decodable and Dec is efficient. In this case, Eval
need not include a proof as Dec itself can be used to verify the output. There are many
different kinds of encoding schemes with different properties, including compression schemes,
error correcting codes, ciphers, etc. Of course any VDF can be turned in a trivial encoding
scheme by appending the input x to the output, however this would not have any interesting
properties as an encoding scheme. In Section 2, we will describe one interesting application
of an encoding scheme that is both an efficiently invertible ideal cipher and a VDF. The
application is to proofs-of-replication.

− incremental : a single set of public parameters pp supports multiple hardness parameters t.
The number of steps used to compute y is specified in the proof, instead of being fixed during
Setup. The main benefit of incremental VDFs over a simple chaining of VDFs to increase the
delay is a reduced aggregate proof size. This is particularly useful for applications of VDFs
to computational time-stamping or blockchain consensus.
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Classic slow functions Time-lock puzzles [68] are similar to VDFs in that they involve
computing an inherently sequential function. An elegant solution uses repeated squaring in an
RSA group as a time-lock puzzle. However, time-lock puzzles are not required to be universally
verifiable and in all known constructions the verifier uses its secret state to prepare each puzzle
and verify the results. VDFs, by contrast, may require an initial trusted setup but then must
be usable on any randomly chosen input.

Another construction for a slow function dating to Dwork and Naor [31] is extracting modular

square roots. Given a challenge x ∈ Z∗
p (with p ≡ 3 (mod 4)), computing y =

√
x = x

p+1
4

(mod p) can be efficiently verified by checking that y2 = x (mod p). There is no known algorithm
for computing modular exponentiation which is sublinear in the bit-length of the exponent.
However, the difficulty of puzzles is limited to t = O(log p) as the exponent can be reduced
modulo p−1 before computation, requiring the use of a very large prime p to produce a difficult
puzzle. While it was not originally proposed for its sequential nature, it has subsequently been
considered as such several times [41, 48]. In particular, Lenstra and Wesolowski [48] proposed
chaining a series of such puzzles together in a construction called Sloth, with lotteries as a
specific motivation. Sloth is best characterized as a time-asymmetric encoding, offering a trade-
off in practice between computation and inversion (verification), and thus can be viewed as a
pseudo-VDF. However, it does not meet our asymptotic definition of a VDF because it does
not offer asymptotically efficient verification: the t-bit modular exponentiation can be computed
in parallel time t, whereas the output (a t-bit number) requires Ω(t) time simply to read, and
therefore verification cannot run in total time polylog(t). We give a more complete overview of
related work in Section 9.

Our contributions: In addition to providing the first formal definitions of VDFs, we contribute
the following candidate constructions and techniques:

1. A theoretical VDF can be constructed using incrementally verifiable computation [70]
(IVC), in which a proof of correctness for a computation of length t can be computed
in parallel to the computation with only polylog(t) processors. We prove security of
this theoretical VDF using IVC as a black box. IVC can be constructed from succinct
non-interactive arguments of knowledge (SNARKs) under a suitable extractor complexity
assumption [14]. In an update (May 2019) we present a simpler construction based only
on verifiable computation (Section 5).

2. We propose a construction based on injective polynomials over algebraic sets that cannot
be inverted faster than computing polynomial GCDs. Computing polynomial GCD is se-
quential in the degree d of the polynomials on machines with fewer than O(d2) processors.
We propose a candidate construction of time-asymmetric encodings from a particular fam-
ily of permutation polynomials over finite fields [39]. This construction is asymptotically
a strict improvement on Sloth, and to the best of our knowledge is the first encoding
offering an exponential time gap between evaluation and inversion. We call this a weak
VDF because it requires the honest Eval to use greater than polylog(t) parallelism to run
in parallel time t (the delay parameter).

3. In Section 7 we describe a practical efficiency boost to constructing VDFs from IVC
using time-asymmetric encodings as the underlying sequential computation, offering up
to a 7,000 fold improvement (in the SNARK efficiency) over naive hash chains. In this
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construction the SNARK proof is only used to boost the efficiency of verification as the
output (y,π) of Eval on an input x can also be verified directly without π by computing
the inverse of y, which is still faster than computing y from x.

4. We construct a VDF secure against bounded pre-computation attacks following a gener-
alization of time-lock puzzles based on exponentiation in a group of unknown order.

2 Applications

Before giving precise definitions and describing our constructions, we first informally sketch
several important applications of VDFs.

Randomness beacons. VDFs are useful for constructing randomness beacons from sources
such as stock prices [24] or proof-of-work blockchains (e.g. Bitcoin, Ethereum) [17, 63, 12]. Proof-
of-work blockchains include randomly sampled solutions to computational puzzles that network
participants (called miners) continually find and publish for monetary rewards. Underpinning
the security of proof-of-work blockchains is the strong belief that these solutions have high
computational min-entropy. However, similar to potential manipulation of asset prices by high-
frequency traders, powerful miners could potentially manipulate the beacon result by refusing
to post blocks which produce an unfavorable beacon output.

Again, this attack is only feasible if the beacon can be computed quickly, as each block is
fixed to a specific predecessor and will become “stale” if not published. If a VDF with a suitably
long delay is used to compute the beacon, miners will not be able to determine the beacon output
from a given block before it becomes stale. More specifically, given the desired delay parameter
t, the public parameters pp = (ek, vk) ←R Setup(λ, t) are posted on the blockchain, then given a
block b the beacon value is determined to be r where (r,π) = Eval(ek, b), and anyone can verify
correctness by running Verify(vk, b, r,π). The security of this construction, and in particular the
length of delay parameter which would be sufficient to prevent attacks, remains an informal
conjecture due to the lack of a complete game-theoretic model capturing miner incentives in
Nakamoto-style consensus protocols. We refer the reader to [17, 63, 12] for proposed models for
blockchain manipulation. Note that most formal models for Nakamoto-style consensus such as
that of Garay et al. [36] do not capture miners with external incentives such as profiting from
lottery manipulation.

Another approach for constructing beacons derives randomness from a collection of partic-
ipants, such as all participants in a lottery [38, 48]. The simplest paradigm is “commit-and-
reveal” paradigm where n parties submit commitments to random values r1, ..., rn in an initial
phase and subsequently reveal their commitments, at which point the beacon output is computed
as r =


i ri. The problem with this approach is that a malicious adversary (possibly controlling

a number of parties) might manipulate the outcome by refusing to open its commitment after
seeing the other revealed values, forcing a protocol restart. Lenstra and Wesolowski proposed
a solution to this problem (called “Unicorn”[48]) using a delay function: instead of using com-
mitments, each participant posts their ri directly and seed = H(r1, . . . , rn) is passed through a
VDF. The output of Eval is then posted and can be efficiently verified. The final beacon outcome
is the hash of the output of Eval. With a sufficiently long delay parameter (longer than the time
period during which values may be submitted), even the last party to publish their ri cannot
predict what its impact will be on the final beacon outcome. The beacon is unpredictable even
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to an adversary who controls n − 1 of the participating parties. It has linear communication
complexity and uses only two rounds. This stands in contrast to coin-tossing beacons which use
verifiable secret sharing and are at best resistant to an adversary who controls a minority of
the nodes [1, 69, 23]. These beacons also use super-linear communication and require multiple
rounds of interaction. In the two party setting there are tight bounds that an r-round coin-
flipping protocol can be biased with O(1/r) bias [57]. The “Unicorn” construction circumvents
these bounds by assuming semi-synchronous communication, i.e. there exists a bound to how
long an adversary can delay messages.

Resource-efficient blockchains. Amid growing concerns over the long-term sustainability
of proof-of-work blockchains like Bitcoin, which consume a large (and growing) amount of en-
ergy, there has been concerted effort to develop resource-efficient blockchains in which miners
invest an upfront capital expenditure which can then be re-used for mining. Examples include
proof-of-stake [46, 55, 45, 28, 13], proof-of-space [61], and proof-of-storage [56, 2]. However,
resource-efficient mining suffers from costless simulation attacks. Intuitively, since mining is not
computationally expensive, miners can attempt to produce many separate forks easily.

One method to counter simulation attacks is to use a randomness beacon to select new
leaders at regular intervals, with the probability of becoming a leader biased by the quality of
proofs (i.e. amount of stake, space, etc) submitted by miners. A number of existing blockchains
already construct beacons from tools such as verifiable random functions, verifiable secret shar-
ing, or deterministic threshold signatures [45, 28, 23, 4]. However, the security of these beacons
requires a non-colluding honest majority; with a VDF-based lottery as described above this can
potentially be improved to participation of any honest party.

A second approach, proposed by Cohen [26], is to combine proofs-of-resources with incremen-
tal VDFs and use the product of resources proved and delay induced as a measure of blockchain
quality. This requires a proof-of-resource which is costly to initialize (such as certain types
of proof-of-space). This is important such that the resources are committed to the blockchain
and cannot be used for other purposes. A miner controlling N units of total resources can
initialize a proof π demonstrating control over these N units. Further assume that the proof
is non-malleable and that in each epoch there is a common random challenge c, e.g. a block
found in the previous epoch, and let H be a random oracle available to everyone. In each
epoch, the miner finds τ = min1≤i≤N{H(c,π, i)} and computes a VDF on input c with a delay
proportional to τ . The first miner to successfully compute the VDF can broadcast their block
successfully. Note that this process mimics the random delay to find a Bitcoin block (weighted
by the amount of resources controlled by each miner), but without each miner running a large
parallel computation.

Proof of replication. Another promising application of VDFs is proofs of replication, a special
type of proof of data storage which requires the prover to dedicate unique storage even if the
data is available from another source. For instance, this could be used to prove that a number
of replicas of the same file are being stored. Classic proofs of retrievability [43] are typically
defined in a private-key client/server setting, where the server proves to the client that it can
retrieve the client’s (private) data, which the client verifies using a private key.

Instead, the goal of a proof of replication [6, 2, 3] is to verify that a given server is storing a
unique replica of some data which may be publicly available. An equivalent concept to proof-
of-replication was first introduced by Sergio Demian Lerner in 2014 under the name “proof of
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unique blockchain storage” [49]. Lerner proposed using time-asymmetric encodings to apply
a slow transformation to a file using a unique identifier as a key. During a challenge-response
protocol, a verifier periodically challenges the server for randomly sampled blocks of the uniquely
encoded file. The basic idea is that the server should fail to respond quickly enough if it has
deleted the encoding. Verifying that the received blocks of the encoding are correct is fast in
comparison due to the time-asymmetry of the encoding. Lerner proposed using a Pohlig-Hellman
cipher, using the permutation x3 on Z∗

p, which has asymmetry roughly equivalent to modular
square roots. Armknecht et al. [6] proposed a similar protocol in the private verifier model using
RSA time-lock puzzles. The verification of this protocol may be outsourced, but is still less
transparent as it fundamentally requires a designated private-key verifier per file.

Efficiently decodable VDFs can be used to improve Lerner’s publicly verifiable and trans-
parent construction by using the VDF as the time-asymmetric encoding. As VDFs achieve
an exponential gap between parallel-time computation and verification they would improve the
challenge-response protocol by reducing the frequency of polling. The frequency needs to be
set such that the server cannot delete and recompute the encoding between challenges. Tech-
nically, the security property we need the VDF to satisfy is that a stateless adversary running
in parallel time less than T cannot predict any component of the output on any given input,
which is stronger than the plain sequentiality requirement of a VDF. A formal way to capture
this requirement is to model the VDF as an ideal delay cipher [35], namely as an oracle that
implements an ideal cipher and takes T sequential steps to respond to queries on any point.

We review briefly the construction, now based on VDFs. The replicator is given an input
file, a unique replicator identifier id, and public parameters pp ←R Setup(λ, t), and computes a
slow encoding of the file using the VDF cipher. This takes sequential time T to derive. In more
detail, the encoding is computed by breaking the file into b-bit blocks B1, . . . , Bn and storing
y1, ..., yn where (yi,⊥) = Eval(pp, Bi ⊕H(id||i)) where H is a collision-resistant hash function
H : {0, 1}∗ → {0, 1}b. To verify that the replicator has stored this unique copy, a verifier can
query an encoded block yi (which must be returned in significantly less time than it is feasible
to compute Eval). The verifier can quickly decode this response and check it for correctness,
proving that the replicator has stored (or can quickly retrieve from somewhere) an encoding of
this block which is unique to the identifier id. If the unique block encoding yi has not been
stored, the VDF ensures that it cannot be re-computed quickly enough to fool the verifier, even
given access to Bi . The verifier can query for as many blocks as desired; each query has a 1− ρ
chance of exposing a cheating prover that is only storing a fraction ρ of the encoded blocks.

More generally, if the inputs B1, .., Bn are fixed and known to the verifier then this construc-
tion is also a proof of space [32]. A proof of space is an interactive protocol in which the prover
can provide a compact proof that it is persistently using Ω(N) space. This construction is in
fact a tight PoS, meaning that it requires an honest prover to use N space and for any  > 0 it
can be tuned so that an adversary who uses (1 − )N space will be caught with overwhelming
probability. A proof-of-replication is a special kind of proof of space that is quite delicate to
formally define and has been developed further in followup work [35].

Computational timestamping. All known proof-of-stake systems are vulnerable to long-
range forks due to post-hoc stakeholder misbehavior [46, 55, 45, 13]. In proof-of-stake protocols,
at any given time the current stakeholders in the system are given voting power proportionate to
their stake in the system. An honest majority (or supermajority) is assumed because the current
stakeholders are incentivized to keep the system running correctly. However, after stakeholders
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have divested they no longer have this incentive. Once the majority (eq. supermajority) of
stakeholders from a point in time in the past are divested, they can collude (or sell their key
material to an attacker) in order to create a long alternate history of the system up until the
present. Current protocols typically assume this is prevented through an external timestamping
mechanism which can prove to users that the genuine history of the system is much older.

Incremental VDFs can provide computational evidence that a given version of the state’s sys-
tem is older (and therefore genuine) by proving that a long-running VDF computation has been
performed on the genuine history just after the point of divergence with the fraudulent history.
This potentially enables detecting long-range forks without relying on external timestamping
mechanisms.

We note however that this application of VDFs is fragile as it requires precise bounds on the
attacker’s computation speed. For other applications (such as randomness beacons) it may be
acceptable if the adversary can speed up VDF evaluation by a factor of 10 using faster hardware;
a higher t can be chosen until even the adversary cannot manipulate the beacon even with a
hardware speedup. For computational timestamping, a 10-fold speedup would be a serious
problem: once the fraudulent history is more than one-tenth as old as the genuine history, an
attacker can fool participants into believing the fraudulent history is actually older than the
genuine one.

3 Model and definitions

We now define VDFs more precisely. In what follows we say that an algorithm runs in parallel
time t with p processors if it can be implemented on a PRAM machine with p parallel processors
running in time t. We say total time (eq. sequential time) to refer to the time needed for
computation on a single processor.

Definition 1. A VDF V = (Setup,Eval,Verify) is a triple of algorithms as follows:

• Setup(λ, t) → pp = (ek, vk) is a randomized algorithm that takes a security parameter λ and
a desired puzzle difficulty t and produces public parameters pp that consists of an evaluation
key ek and a verification key vk. We require Setup to be polynomial-time in λ. By conven-
tion, the public parameters specify an input space X and an output space Y. We assume
that X is efficiently sampleable. Setup might need secret randomness, leading to a scheme
requiring a trusted setup. For meaningful security, the puzzle difficulty t is restricted to be
sub-exponentially sized in λ.

• Eval(ek, x) → (y,π) takes an input x ∈ X and produces an output y ∈ Y and a (possibly
empty) proof π. Eval may use random bits to generate the proof π but not to compute y. For
all pp generated by Setup(λ, t) and all x ∈ X , algorithm Eval(ek, x) must run in parallel time
t with poly(log(t),λ) processors.

• Verify(vk, x, y,π) → {Yes,No} is a deterministic algorithm takes an input, output and proof
and outputs Yes or No. Algorithm Verify must run in total time polynomial in log t and λ.
Notice that Verify is much faster than Eval.

Additionally V must satisfy Correctness (Definition 2), Soundness (Definition 3), and Sequen-
tiality (Definition 4).

7



Correctness and Soundness Every output of Evalmust be accepted by Verify. We guarantee
that the output y for an input x is unique because Eval evaluates a deterministic function on X .
Note that we do not require the proof π to be unique, but we do require that the proof is sound
and that a verifier cannot be convinced that some different output is the correct VDF outcome.
More formally,

Definition 2 (Correctness). A VDF V is correct if for all λ, t, parameters (ek, vk) ←R Setup(λ, t),
and all x ∈ X , if (y,π) ←R Eval(ek, x) then Verify(vk, x, y,π) = Yes.

We also require that for no input x can an adversary get a verifier to accept an incorrect
VDF output.

Definition 3 (Soundness). A VDF is sound if for all algorithms A that run in time O (poly(t,λ))

Pr


Verify(vk, x, y,π) = Yes

y ∕= Eval(ek, x)


pp = (ek, vk) ←R Setup(λ, t)

(x, y,π) ←R A(λ,pp, t)


≤ negl(λ)

Size restriction on t Asymptotically t must be subexponential in λ. The reason for this
is that the adversary needs to be able to run in time at least t (Eval requires this), and if t
is exponential in λ then the adversary might be able to break the underlying computational
security assumptions that underpin both the soundness as well as the sequentiality of the VDF,
which we will formalize next.

Parallelism in Eval The practical implication of allowing more parallelism in Eval is that
“honest” evaluators may be required to have this much parallelism in order to complete the
challenge in time t. The sequentiality security argument will compare an adversary’s advan-
tage to this optimal implementation of Eval. Constructions of VDFs that do not require any
parallelism to evaluate Eval in the optimal number of sequential steps are obviously superior.
However, it is unlikely that such constructions exist (without trusted hardware). Even com-
puting an iterated hash function or modular exponentiation (used for time-lock puzzles) could
be computed faster by parallelizing the hash function or modular arithmetic. In fact, for an
decodable VDF it is necessary that |Y| > poly(t), and thus the challenge inputs to Eval have size
poly log(t). Therefore, in our definition we allow algorithm Eval up to poly log(t) parallelism.

3.1 VDF Security

We call the security property needed for a VDF scheme σ-sequentiality. Essentially, we require
that no adversary is able to compute an output for Eval on a random challenge in parallel time
σ(t) < t, even with up to “many” parallel processors and after a potentially large amount of pre-
computation. It is critical to bound the adversary’s allowed parallelism, and we incorporate this
into the definition. Note that for an efficiently decodable VDF, an adversary with |Y| processors
can always compute outputs in o(t) parallel time by simultaneously trying all possible outputs
in Y. This means that for efficiently decodable VDFs it is necessary that |Y| > poly(t), and
cannot achieve σ-sequentiality against an adversary with greater than |Y| processors.

We define the following sequentiality game applied to an adversary A := (A0,A1):
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pp ←R Setup(λ, t) // choose a random pp

L ←R A0(λ,pp, t) // adversary preprocesses pp

x ←R X // choose a random input x

yA ←R A1(L,pp, x) // adversary computes an output yA

We say that (A0,A1) wins the game if yA = y where (y,π) := Eval(pp, x).

Definition 4 (Sequentiality). For functions σ(t) and p(t), the VDF is (p,σ)-sequential if no
pair of randomized algorithms A0, which runs in total time O(poly(t,λ)), and A1, which runs
in parallel time σ(t) on at most p(t) processors, can win the sequentiality game with probability
greater than negl(λ).

The definition captures the fact that even after A0 computes on the parameters pp for a
(polynomially) long time, the adversary A1 cannot compute an output from the input x in time
σ(t) on p(t) parallel processors. If a VDF is (p,σ)-sequential for any polynomial p, then we
simply say the VDF is σ-sequential. In the sequentiality game we do not require the online
attack algorithm A1 to output a proof π. The reason is that in many of our applications, for
example in a lottery, the adversary can profit simply by learning the output early, even without
being able to prove correctness to a third party.

Values of σ(t) Clearly any candidate construction trivially satisfies σ(t)-sequentiality for some
σ (e.g. σ(t) = 0). Thus, security becomes more meaningful as σ(t) → t. No construction can
obtain σ(t) = t because by design Eval runs in parallel time t. Ideal security is achieved
when σ(t) = t − 1. This ideal security is in general unrealistic unless, for example, time steps
are measured in rounds of queries to an ideal oracle (e.g. random oracle). In practice, if
the oracle is instantiated with a concrete program (e.g. a hash function), then differences in
hardware/implementation would in general yield small differences in the response time for each
query. An almost-perfect VDF would achieve σ(t) = t − o(t) sequentiality. Even σ(t) = t − t
sequentiality for small  is sufficient for most applications. Security degrades as  → 1. The naive
VDF construction combining a hash chain with succinct verifiable computation (i.e. producing a
SNARG proof of correctness following the hash chain computation) cannot beat  = 1/2, unless
it uses at least ω(t) parallelism to generate the proof in sublinear time (exceeding the allowable
parallelism for VDFs, though see a relaxation to “weak” VDFs below).

Unpredictability and min-entropy Definition 4 captures an unpredictability property for
the output of the VDF, similar to a one-way function. However, similar to random oracles, the
output of the VDF on a given input is never indistinguishable from random. It is possible that
no depth σ(t) circuit can distinguish the output on a randomly sampled challenge from random,
but only if the VDF proof is not given to the distinguisher. Efficiently decodable VDFs cannot
achieve this stronger property.

For the application to random beacons (e.g. for lotteries), it is only necessary that on a
random challenge the output is unpredictable and also has sufficient min-entropy1 conditioned

1A randomness extractor can then be applied to the output to map it to a uniform distribution.
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on previous outputs for different challenges. In fact, σ-sequentiality already implies that min-
entropy is Ω(log λ). Otherwise some fixed output y occurs with probability 1/poly(λ) for ran-
domly sampled input x; the adversary A0 can computes O(poly(λ)) samples of this distribution
in the preprocessing to find such a y′ with high probability, and then A1 could output y′ as
its guess. Moreover, if σ-sequentiality is achieved for t superpolynomial (sub-exponential) in λ,
then the preprocessing adversary is allowed 2o(λ) samples, implying some o(λ) min-entropy of the
output must be preserved. By itself, σ-sequentiality does not imply Ω(λ) min-entropy. Stronger
min-entropy preservation can be demonstrated in other ways given additional properties of the
VDF, e.g. if it is a permutation or collision-resistant. Under suitable complexity theoretic as-
sumptions (namely the existence of subexponential 2o(n) circuit lower bounds) a combination of
Nisan-Wigderson type PRGs and extractors can also be used to generate poly(λ) pseudorandom
bits from a string with min-entropy log λ.

Random “Delay” Oracle In the random oracle model, any unpredictable string (regardless
of its min-entropy) can be used to extract an unpredictable λ-bit uniform random string. For
the beacon application, a random oracle H would simply be applied to the output of the VDF
to generate the beacon value. We can even model this construction as an ideal object itself, a
Random Delay Oracle, which implements a random function H ′ and on any given input x it
waits for σ(t) steps before returning the output H ′(x). Demonstrating a construction from a
σ-sequential VDF and random oracle H that is provably indifferentiable [53] from a Random
Delay Oracle is an interesting research question.2

Remark: Removing any single property makes VDF construction easy. We note the existence
of well-known outputs if any property is removed:

• If Verify is not required to be fast, then simply iterating a one-way function t times yields
a trivial solution. Verification is done by re-computing the output, or a set of ℓ intermedi-
ate points can be supplied as a proof which can be verified in parallel time Θ(t/ℓ) using ℓ
processors, with total verification time remaining Θ(t).

• If we do not require uniqueness, then the construction of Mahmoody et al. [52] using hash
functions and depth-robust graphs suffices. This construction was later improved by Cohen
and Pietrzak [19]. This construction fails to ensure uniqueness because once an output y is
computed it can be easily mangled into many other valid outputs y′ ∕= y, as discussed in
Section 9.1.

• If we do not require σ-sequentiality, many solutions are possible, such as finding the discrete
log of a challenge group element with respect to a fixed generator. Note that computing an
elliptic curve discrete log can be done in parallel time o(t) using a parallel version of the
Pollard rho algorithm [71].

Weaker VDFs For certain applications it is still interesting to consider a VDF that requires
even more than polylog(t) parallelism in Eval to compute the output in parallel time t. For

2The difficulty in proving indifferentiability arises because the distinguisher can query the VDF/RO construc-
tion and the RO itself separately, therefore the simulator must be able to simulate queries to the random oracle
H given only access to the Random Delay Oracle. Indifferentiability doesn’t require the simulator to respond in
exactly the same time, but it is still required to be efficient. This becomes an issue if the delay t is superpolynomial.
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example, in the randomness beacon application only one party is required to compute the VDF
and all other parties can simply verify the output. It would not be unreasonable to give this one
party a significant amount of parallel computing power and optimized hardware. This would
yield a secure beacon as long as no adversary could compute the outputs of Eval in faster that
t steps given even more parallelism than this party. Moreover, for small values of t it may be
practical for anyone to use up to O(t) parallelism (or more). With this in mind, we define a
weaker variant of a VDF that allows additional parallelism in Eval.

Definition 5. We call a system V = (Setup,Eval,Verify) a weak-VDF if it satisfies Definition 1
with the exception that Eval is allowed up to poly(t,λ) parallelism.

Note that (p,σ)-sequentiality can only be meaningful for a weak-VDF if Eval is allowed
strictly less that p(t) parallelism, otherwise the honest computation of Eval would require more
parallelism than even the adversary is allowed.

4 VDFs from Incrementally Verifiable Computation

VDFs are by definition sequential functions. We therefore require the existence of sequential
functions in order to construct any VDF. We begin by defining a sequential function.

Definition 6 ((t, )-Sequential function). f : X → Y is a (t, )-sequential function if for λ =
O(log(|X|)), if the following conditions hold.

1. There exists an algorithm that for all x ∈ X evaluates f in parallel time t using poly(log(t),λ)
processors.

2. For all A that run in parallel time strictly less than (1− ) · t with poly(t,λ) processors:

Pr

yA = f(x)

 yA ←R A(λ, x), x ←R X

≤ negl(λ)

.

In addition we consider iterated sequential functions that are defined as the iteration of some
round function. The key property of an iterated sequential function is that iteration of the round
function is the fastest way to evaluate the function.

Definition 7 (Iterated Sequential Function). Let g : X → X be a (t, )-sequential function. A
function f : N × X → X defined as f(k, x) = g(k)(x) = g ◦ g ◦ · · · ◦ g  

k times

is said to be an iterated

sequential function (with round function g) if for all k = 2o(λ) the function h : X → X defined
by h(x) = f(k, x) is (k · t, )-sequential as in Definition 6.

It is widely believed that the function obtained from iterating a hash function like SHA-256
is an iterated sequential function with t = O(λ) and  negligible in λ. The sequentiality of
such functions can be proved in the random oracle model [47, 52]. We will use the functions g
explicitly and require it to have an explicit arithmetic circuit representation. Modeling g as an
oracle, therefore, does not suffice for our construction.

Another candidate for an iterated sequential function is exponentiation in a finite group of
unknown order, where the round function is squaring in the group. The fastest known way to
compute this is by repeated squaring which is an iterative sequential computation.
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Based on these candidates, we can make the following assumption about the existence of
iterated sequential functions:

Assumption 1. For all λ ∈ N there exist (1) an , t with t = poly(λ), and (2) a function
gλ : X → X, where log2 |X| = λ and X can be sampled in time poly(λ). This gλ satisfies: (i)
gλ is a (t, )-sequential function, and (ii) the function f : N×X → X with round function gλ is
an iterated sequential function.

An iterated sequential function by itself gives us many of the properties needed for a secure
VDF. It is sequential by definition and the trivial algorithm (iteratively computing g) uses only
poly(λ) parallelism. Such a function by itself, however, does not suffice to construct a VDF.
The fastest generic verification algorithm simply recomputes the function. While this ensures
soundness it does not satisfy the efficient verification requirement of a VDF. The verifier of a
VDF needs to be exponentially faster than the prover.

SNARGs and SNARKs A natural idea to improve the verification time is to use verifiable
computation. In verifiable computation the prover computes a succinct argument (SNARG)
that a computation was done correctly. The argument can be efficiently verified using resources
that are independent of the size of the computation. A SNARG is a weaker form of a succinct
non-interactive argument of knowledge (SNARK) [37] for membership in an NP language L with
relation R (Definition 8). The additional requirement of a SNARK is that for any algorithm
that outputs a valid proof of membership of an instance x ∈ L there is also an extractor that
“watches” the algorithm and outputs a witness w such that (x,w) ∈ R. In the special case of
providing a succinct proof that a (polynomial size) computation F was done correctly, i.e. y
is the output of F on x, the NP witness is empty and the NP relation simply consists of pairs
((x, y),⊥) such that F (x) = y.

Definition 8 (Verifiable Computation / SNARK). Let L denote an NP language with relation
RL, where x ∈ L iff ∃w RL(x,w) = 1. A SNARK system for RL is a triple of polynomial time
algorithms (SNKGen, SNKProve, SNKVerify) that satisfy the following properties:

Completeness:

∀(x,w) ∈ RL : Pr


SNKVerify(vk, x,π) = 1


(vk, ek) ←R SNKGen(1λ)

π ←R SNKProve(ek, x, w)


= 1

Succinctness: The length of a proof and complexity of SNKVerify is bounded by
poly


λ, log(|y|+ |w|)


.

Knowledge extraction:[sub-exponential adversary knowledge extractor] For all ad-
versaries A running in time 2o(λ) there exists an extractor EA running in time 2o(λ)

such that for all auxiliary inputs z of size poly(λ):

Pr


SNKVerify(vk, x,π) = 1

RL(x,w) ∕= 1



(vk, ek) ←R SNKGen(1λ)
(x,π) ←R A(z, ek)
w ←R EA(z, ek)


≤ negl(λ)
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Impractical VDF from SNARGs. Consider the following construction for a VDF from
a (t, )-sequential function f . Let pp = (ek, vk) ←R SNKGen(λ) be the public parameter of a
SNARG scheme for proving membership in the language of pairs (x, y) such that f(x) = y. On
input x ∈ X the Eval computes y = f(x) and a succinct argument π ←R SNKProve(ek, (x, y),⊥).
The prover outputs ((x, y),π). On input ((x, y),π) the verifier checks y = f(x) by checking
SNKVerify(vk, (x, y),π) = 1.

This construction clearly satisfies fast verification. All known SNARK constructions are
quasi-linear in the length of the underlying computation f [11]. Assuming the cost for computing
a SNARG for a computation of length t is k ·t log(t) then the SNARG VDF construction achieves

σ(t) = (1−)·t
(k+1)·log(t) sequentiality. This does not even achieve the notion of (1− ′)t sequentiality

for any adversary. This means that the adversary can compute the output of the VDF in a small
fraction of the time that it takes the honest prover to convince an honest verifier. If, however,
SNKProve is sufficiently parallelizable then it is possible to partially close the gap between the
sequentiality of f and the sequentiality of the VDF. The Eval simply executes SNKProve on a
parallel machine to reduce the relative total running time compared to the computation of f .
SNARK constructions can run in parallel time polylog(t) on O(t · polylog(t)) processors. This
shows that a VDF can theoretically be built from verifiable computation.

The construction has, however, two significant downsides: First, in practice computing a
SNARG is more than 100,000 times more expensive than evaluating the underlying computa-
tion [72]. This means that to achieve meaningful sequentiality, the SNARG computation would
require massive parallelism using hundreds thousands of cores. The required parallelism addi-
tionally depends on the time t. Second, the construction does not achieve (1− )t sequentiality,
which is the optimal sequentiality that can be achieved by a construction which involves the
evaluation of f .

We therefore, now give a VDF construction3 with required parallelism independent of t
and σ-sequentiality asymptotically close to (1 − )t where  will be defined by the underlying
sequential computation.

Incremental Verifiable Computation (IVC). IVC provides a direction for circumventing
the problem mentioned above. IVC was first studied by Valiant [70] in the context of computa-
tionally sound proofs [54]. Bitansky et al. [14] generalized IVC to distributed computations and
to other proof systems such as SNARKs. IVC requires that the underlying computation can
be expressed as an iterative sequence of evaluations of the same Turing machine. An iterated
sequential function satisfies this requirement.

The basic idea of IVC is that at every incremental step of the computation, a prover can
produce a proof that a certain state is indeed the current state of the computation. This proof is
updated after every step of the computation to produce a new proof. Importantly, the complexity
of each proof in proof size and verification cost is bounded by poly(λ) for any sub-exponential
length computation. Additionally the complexity of updating the proof is independent of the
total length of the computation.

Towards VDFs from IVC. Consider a VDF construction that runs a sequential computation
and after each step uses IVC to update a proof that both this step and the previous proof were

3The construction is largely subsumed by the subsequently added simpler construction in Section 5. This
simpler construction is built directly from verifiable computation.
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correct. Unfortunately, for IVC that requires knowledge extraction we cannot prove soundness
of this construction for t > O(λ). The problem is that a recursive extraction yields an extractor
that is exponential in the recursion depth [14].

The trick around this is to construct a binary tree of proofs of limited depth [70, 14]. The
leaf proofs verify computation steps whereas the internal node proofs prove that their children
are valid proofs. The verifier only needs to check the root proof against the statement that all
computation steps and internal proofs are correct.

We focus on the special case that the function f is an iterated sequential function. The
regularity of the iterated function ensures that the statement that the verifier checks is succinct.
We impose a strict requirement on our IV C scheme to output both the output of f and a final
proof with only an additive constant number of additional steps over evaluating f alone.

We define tight IVC for an iterated sequential functions, which captures the required primi-
tive needed for our theoretical VDF. We require that incremental proving is almost overhead free
in that the prover can output the proof almost immediately after the computation has finished.
The definition is a special case of Valiant’s definition [70].

Definition 9 (Tight IVC for iterated sequential functions). Let fλ : N×X → X be an iterated
sequential function with (t, )-sequential round function gλ iterated k = 2o(λ) times. An IVC
system for fλ is a triple of polynomial time algorithms (IVCGen, IVCProve, IVCVerify) that satisfy
the following properties:

Completeness:

∀x ∈ X : Pr


IVCVerify(vk, x, y, k,π) = Yes


(vk, ek) ←R IVCGen(λ, f)

(y,π) ←R IVCProve(ek, k, x)


= 1

Succinctness: The length of a proof and the complexity of SNKVerify is bounded by
poly


λ, log(k · t)


.

Soundness:[sub-exponential soundness] For all algorithms A running in time 2o(λ):

Pr


IVCVerify(vk, x, y, k,π) = Yes

f(k, x) ∕= y


(vk, ek) ←R IVCGen(λ, f)
(x, y, k,π) ←R A(λ, vk, ek)


≤ negl(λ)

Tight Incremental Proving: There exists a k′ such that for all k ≥ k′ and k =
2o(λ), IVCProve(ek, k, x) runs in parallel time k · t+O(1) using poly(λ, t)-processors.

Existence of tight IVC. Bitansky et al. [14] showed that any SNARK system such as [62]
can be used to construct IVC. Under strong knowledge of exponent assumptions there exists an
IVC scheme using a SNARK tree of depth less than λ (Theorem 1 of [14]). In every computation
step the prover updates the proof by computing λ new SNARKs each of complexity poly(λ), each
verifying another SNARK and one of complexity t which verifies one evaluation of gλ, the round
function of fλ. Ben Sasson et al. [10] discuss the parallel complexity of the Pinocchio SNARK [62]
and show that for a circuit of size m there exists a parallel prover using O(m · log(m)) processors
that computes a SNARK in time O(log(m)). Therefore, using these SNARKs we can construct
an IVC proof system (IVCGen, IVCProve, IVCVerify) where, for sufficiently large t, IVCProve uses
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Õ(λ+ t) parallelism to produce each incremental IVC output in time λ · log(t+λ) ≤ t. If t is not
sufficiently large, i.e. t > λ · log(t+ λ) then we can construct an IVC proof system that creates
proofs for k′ evaluations of gλ. The IVC proof system chooses k′ such that t ≤ λ · log(k′ · t+ λ).
Given this the total parallel runtime of IVCProve on k iterations of an (t, )-sequential function
would thus be k · t+λ · log(k′ · t+λ) = k · t+O(1). This shows that we can construct tight IVC
from existing SNARK constructions.

VDFIVC construction. We now construct a VDF from a tight IVC. By Assumption 1 we

are given a family {fλ}, where each fλ : N×Xλ → Xλ is defined by fλ(k, x) = g
(k)
λ (x). Here gλ

is a (s, )-sequential function on an efficiently sampleable domain of size O(2λ).
Given a tight IVC proof system (IVCGen, IVCProve, IVCVerify) for f we can construct a VDF
that satisfies σ(t)-sequentiality for σ(t) = (1− ) · t−O(1):

• Setup(λ, t) : Let gλ be a (t, )-sequential function and fλ the corresponding iterated sequential
function as described in Assumption 1. Run (ek, vk) ←R IVCGen(λ, fλ). Set k to be the largest
integer such that IVCProve(ek, k, x) takes time less than t. Output pp =


(ek, k), (vk)


.

• Eval((ek, k), x): Run (y,π) ←R IVCProve(ek, k, x), output (y,π).

• Verify(vk, x, (y,π)): Run and output IVCVerify(vk, x, y, k,π).

Note that t is fixed in the public parameters. It is, however, also possible to give t directly to
Eval. VDFIVC is, therefore, incremental.

Lemma 1. VDFIVC satisfies soundness (Definition 3)

Proof. Assume that an poly(t,λ) algorithm A outputs (with non-negligible probability in λ)
a tuple (x, y,π) on input λ, t, and pp ←R Setup(λ, t) such that Verify(pp, x, y,π) = Yes but
fλ(k, x) ∕= y. We can then construct an adversary A′ that violates IVC soundness. Given
(vk, ek) ←R IVCGen(λ, fλ) the adversary A′ runs A on λ, t, and (vk, ek). Since (vk, ek) is sampled
from the same distribution as pp ←R Setup(λ, t) it follows that, with non-negligible probabil-
ity in λ, A′ outputs (x, y,π) such that Verify(pp, x, y,π) = IVCVerify(vk, x, y, k,π) = Yes and
fλ(k, x) ∕= y, which directly violates the soundness of IVC.

Theorem 1 (VDFIVC). VDFIVC is a VDF scheme with σ(t) = (1− )t−O(1) sequentiality.

Proof. First note that the VDFIVC algorithms satisfy the definition of the VDF algorithms.
IVCProve runs in time ( ts − 1) · s + s = t using poly(λ, s) = poly(λ) processors. IVCVerify
runs in total time poly(λ, log(t)). Correctness follows from the correctness of the IVC scheme.
Soundness was proved in Lemma 1. The scheme is σ(t)-sequential because IVCProve runs in
time k · s + O(1) < t. If any algorithm that uses poly(t,λ) processors can produce the VDF
output in time less than (1− )t−O(1) he can directly break the t, -sequentiality of fλ. Since
s is independent of t we can conclude that VDFIVC has σ(t) = (1− )t−O(1) sequentiality.

5 VDFs from Verifiable Computation (added May 2019)

We next present a VDF construction from verifiable computation. This construction is simpler
than the one in the previous section in that it does not require tight incremental verifiable
computation. Verifiable computation is sufficient.
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The core idea is that we can run a sequential computation and, in parallel, compute multiple
SNARGs that prove the correctness of different parts of the computation. The protocol we
propose computes logN SNARGs in parallel for segments of geometrically decreasing size.

Let f be an iterated sequential function obtained from iterating a round function k times.
As a warmup, assume that constructing a SNARG for an evaluation of f takes exactly the same
time as computing the function f . The VDF prover first iterates the round function k/2 times,
to complete half the computation of f on a given input. It then iterates the round function
k/2 more times, and in parallel, computes a SNARG for the first k/2 iterations. This way the
SNARG computation and the function evaluation will complete at the same time. The prover
then continues by constructing a SNARG for the next k/4 iterations of the round function, then
the next k/8 iterations, and so on. All these SNARGs are constructed in parallel to computing
the function. The final iteration requires no SNARG as the verifier can check it directly. All
these SNARG computations are done in parallel. Using log2(k) processors, the evaluation of f
and all the SNARG computations will complete at exactly the same time. Hence, constructing
the SNARGs adds no time to the evaluation of f , but requires log2 k parallelism at the evaluator.

We will now describe a more general construction that allows for arbitrary gaps between
the SNARG prover time and the function evaluation time. The construction uses an iterated
sequential function and a SNARG proof system. However, an analogous construction can be
built from any underlying VDF scheme. The construction can amplify the VDF scheme to a
“tight” VDF scheme in which the prover outputs the proof concurrently with the output. The
amplification has a logarithmic overhead in proof size, verifier time, and prover parallelism. This
is described in more detail in concurrent work by Döttling, Garg, Malavolta and Vasudevan[33].

VDFVC construction As in the VDFIVC we use a family of sequential iterated functions

{fλ} such that each fλ : Z × Xλ → Xλ is defined as fλ(k, x) = g
(k)
λ (x) for an (s, ) sequential

function gλ. We are also given a SNARK systems (SNKGen,SNKProve,SNKVerify) for the family
of relations Rfλ,k := {


(x, y),⊥


: fλ(k, x) = y}. The SNARK only needs to satisfy the soundness

definition and not the knowledge extraction so a SNARG suffices. We slightly modify the system
compared to Definition 8 by letting SNKGenfλ,k be the setup for a SNARG corresponding to
Rfλ,k. We also let α ∈ R+ denote how much slower the SNARG prover runs compared to the
evaluation of fλ. That is, if fλ(k, x) can be evaluated in time t then SNKProve runs in time
at most α · t on the same machine. Note that we implicitly require that SNKProve is a linear
algorithm but the construction can easily modified for quasilinear algorithms. VDFVC works by
running the computation of fλ until t ·( 1

α+1) time has passed. That is, compute k
α+1 iterations of

gλ on the input. Then the prover continues the computation and in parallel computes a SNARG
for that first 1

α+1 fraction of the computation. The same process is repeated using geometrically

decreasing parts of the computation. Namely, the prover produce a SNARG for the next 1
α+1

fraction of the remaining computation and in parallel continue the computation of fλ as well as

all other executing SNARG computations. After ℓ steps a


α
α+1

ℓ
fraction of the computation

remains and ℓ SNARGs are being computed in parallel. Thus after n = log α
α+1

(k) steps only

1 invocation of g remains. The verifier can check this invocation directly. For simplicity we
assume that k is a power of α

α+1 . Note that all SNARG computations will finish at the same
time, precisely when the computation of fλ is completed.

• Setup(λ, t) : Let gλ be a (s, ) sequential function. Let k = t
s . For i = 1 to n = log α

α+1
(k) the
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setup generates (vki, eki) ← SNKGenfλ,ki(λ), where ki is defined as

ki =


(

α

α+ 1
)i−1 − (

α

α+ 1
)i

· t
s
.

Output pp =


(eki, ki), vki


i=1,...,n
.

• Eval(pp, x) : Let x0 = x. For i = 1 to n compute xi = g(ki)(xi−1) and in parallel start the com-
putation of πi = SNKProve(eki, (xi−1, xi),⊥). Finally let y = g(xn). Output {y, (x1,π1 . . . , xn,πn)}

• Verify({vk1, . . . , vkn}, x, (y, (x1,π1 . . . , xn,πn))): Verify the proofs by running SNKVerify(vki, (xi−1, xi),πi).
If any verification fails, reject. Else output ’yes’ if g(xn) = y and reject otherwise.

Lemma 2 (soundness). Given a sound SNARG system as defined by Definition 8, VDFVC

satisfies soundness (Definition 3)

Proof. Assume that an poly(t,λ) algorithm A outputs (with non-negligible probability in λ)
a tuple (x, y,π) on input λ, t, and pp such that Verify(pp, x, y,π) = Yes but fλ(k, x) ∕= y.
We can then construct an adversary A′ that violates the SNARG soundness. Note that the
proof contains the intermediate computation steps x0, . . . , xn with x0 = x. The verification
guarantees that g(xn) = y. However, if f(x) ∕= y then there must be an i ∈ [0, n − 1] such

that g(ki)(xi) ∕= xi+1 for ki =
αi−1

(α+1)i
· t
s . Note that this directly contradicts the soundness of

the underlying SNARG. A′ therefore simply runs A using honestly generated (vki, eki) for all n
SNARG proof systems. A′ is able to break at the soundness of at least one of the proof systems
simply using the output of A, i.e. πi and xi, xi+1. Since by assumption A′ can only succeed
with negligible probability A′ also only succeeds with negligible probability. This shows that
VDFVC is sound.

Theorem 2 (VDFVC is a VDF). Given a (s, ) sequential function fλ and a SNARG proof
system with perfect completeness, VDFVC is a VDF scheme with σ(t) = (1− )t sequentiality.

Proof. The algorithms of VDFVC satisfy the definition of the VDF algorithms. Treating α
and s as constants, the verifier checks only a logarithmic (in t) number of succinct proofs and
one evaluation of gλ. The prover requires log(t) parallelism for the computation of the proofs.
Correctness is immediate from the construction and the completeness of the SNARG. Soundness
was proved in Lemma 2. It remains to prove sequentiality. The Eval algorithm runs exactly
in the time that it takes to compute fλ(

t
s , x) as all the proof computation runs in parallel and

by assumption completes the same moment the computation of fλ completes. Any adversary
that can output the VDF value in time less than (1− )t will therefore directly break the (t, )
sequentiality of fλ.

5.1 Discussion

We note that both the proof size, the verifier time, and the required parallelism of VDFVC are
highly dependent on α. If α > 1 the number of iterations, i.e. the number of proofs and required
parallelism is close to log(t/s) · α, i.e. linear in α. If α ≈ 100, 000, as is the case for modern
SNARGs on arbitrary computations, then this may become prohibitively large. In Section 6
and Section 7 we show how we can boost the construction to significantly reduce the prover
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overhead. In particular we construct specific instantiations of g and f that a) are more efficient
to verify than to evaluate, allowing a SNARG proof to assert a simpler statement and b) that
are specifically optimized for modern SNARG systems. With these optimizations and certain
parameter selection it is feasible to bring α closer to 1 or possibly even below 1.

We also note that the same technique of computing several proofs in parallel can be used
to boost subsequent VDF constructions such as the RSA based constructions by Pietrzak [64]
and Wesolowski [73]. These VDFs, in particular Wesolowski’s construction, have a significant
prover overhead. This leads to a suboptimal σ(t)-sequentiality. Using the same technique of
computing proofs in parallel we can create “tight” VDFs with only a logarithmic overhead in
terms of required parallelism, proof size, and verifier overhead.

6 A weak VDF based on injective rational maps

In this section we explore a framework for constructing a weak VDF satisfying (t2, o(t))-sequentiality
based on the existence of degree t injective rational maps that cannot be inverted faster than
computing polynomial greatest common denominators (GCDs) of degree t polynomials, which
we conjecture cannot be solved in parallel time less than t− o(t) on fewer than t2 parallel pro-
cessors. Our candidate map will be a permutation polynomial over a finite field of degree t. The
construction built from it is a weak VDF because the Eval will require O(t) parallelism to run
in parallel time t.

6.1 Injective rational maps

Rational maps on algebraic sets. An algebraic rational function on finite vector spaces is a
function F : Fn

q → Fm
q such that F = (f1, . . . , fm) where each fi : Fn

q → Fq is a rational function
in Fq(X1, . . . , Xn), for i = 1, . . . ,m. An algebraic set Y ⊆ Fn

q is the complete set of points on
which some set S of polynomials simultaneously vanish, i.e. Y = {x ∈ Fn

q |f(x) = 0 for all f ∈ S}
for some S ⊂ Fq[X1, . . . , Xn]. An injective rational map of algebraic sets Y ⊆ Fn

q to X ⊆ Fm
q is

an algebraic rational function F that is injective on Y, i.e. if X := F (Y), then for every x̄ ∈ X
there exists a unique ȳ ∈ Y such that F (ȳ) = x̄.

Inverting rational maps. Consider the problem of inverting an injective rational map F =
(f1, ...., fm) on algebraic sets Y ⊆ Fn

q to X ⊆ Fm
q . Here Y ⊆ Fn

q is the set of vanishing points
of some set of polynomials S. For x ∈ Fm

q , a solution to F (ȳ) = x̄ is a point ȳ ∈ Fn
q such

that all polynomials in S vanish at ȳ and fi(ȳ) = xi for i = 1, ...,m. Furthermore, each
fi(ȳ) = g(ȳ)/h(ȳ) = xi for some polynomials g, h, and hence yields a polynomial constraint
zi(ȳ) := g(ȳ)−xih(ȳ) = 0. In total we are looking for solutions to |S|+m polynomial constraints
on ȳ.

We illustrate two special cases of injective rational maps that can be inverted by a univariate
polynomial GCD computation. In general, inverting injective rational maps on Fd

q for constant
d can be reduced to a univariate polynomial GCD computation using resultants.

• Rational functions on finite fields. Consider any injective rational function F (X) = g(X)/h(X),
for univariate polynomials h, g, on a finite field Fq. A finite field is actually a special case of
an algebraic set over itself; it is the set of roots of the polynomial Xq −X. Inverting F on a
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point c ∈ Fq can be done by calculating GCD(Xq −X, g(X)− c ·h(X)), which outputs X − s
for the unique s such that F (s) = c.

• Rational maps on elliptic curves. An elliptic curve E(Fq) over Fq is a 2-dimensional algebraic
set of vanishing points in F2

q of a bivariate polynomial E(y, x) = y2 − x3 − ax − b. Inverting
an injective rational function F on a point in the image of F (E(Fq)) involves computing the
GCD of three bivariate polynomials: E, z1, z2, where z1 and z2 come from the two rational
function components of F . The resultant R = Resy(z1, z2) is a univariate polynomial in x of
degree deg(z1) · deg(z2) such that R(x) = 0 iff there exists y such that (x, y) is a root of both
z1 and z2. Finally, taking the resultant again R′ = Resy(R,E) yields a univariate polynomial
such that any root x of R′ has a corresponding coordinate y such that (x, y) is a point on E
and satisfies constraints z1 and z2. Solving for the unique root of R′ reduces to a Euclidean
GCD computation as above. Then given x, there are two possible points (x, y) ∈ E, so we
can try them both and output the unique point that satisfies all the constraints.

Euclidean algorithm for univariate polynomial GCD. Univariate polynomials over a
finite field form a Euclidean domain, and therefore the GCD of two polynomials can be found
using the Euclidean algorithm. For two polynomials f and g such that deg(f) > deg(g) = d,
one first reduces f mod g and then computes GCD(f, g) = GCD(f mod g, g). In the example
f = Xq − X, the first step of reducing Xq mod g requires O(log(q)) multiplications of degree
O(deg(g)) polynomials. Starting with X, we run the sequence of repeated squaring operations
to get Xq, reducing the intermediate results mod g after each squaring operation. Then running
the Euclidean algorithm to find GCD(f mod g, g) involves O(d) sequential steps where in each
step we subtract two O(d) degree polynomials. On a sequential machine this computation takes
O(d2) time, but on O(d) parallel processors this can be computed in parallel time O(d).

NC algorithm for univariate polynomial GCD. There is an algorithm for computing the
GCD of two univariate polynomials of degree d in O(log2(d)) parallel time, but requires O(d3.8)
parallel processors. This algorithm runs d parallel determinant calculations on submatrices of the
Sylvester matrix associated with the two polynomials, each of size O(d2). Each determinant can
be computed in parallel time O(log2(d)) onM(d) ∈ O(d2.85) parallel processors [25]. The parallel
advantage of this method over the euclidean GCD method kicks in after O(d2.85) processors.
For any c ≤ d/ log2(d), it is possible to compute the GCD in O(d/c) steps on c log2(d)M(d)
processors.

Sequentiality of univariate polynomial GCD. The GCD can be calculated in parallel
time d using d parallel processors via the Euclidean algorithm. The NC algorithm only beats
this bound on strictly greater than d2.85 processors, but a hybrid of the two methods can gain an
o(d) speedup on only d2 processors. Specifically, we can run the Euclidean method for d− d2/3

steps until we are left with two polynomials of degree d2/3, then we can run the NC algorithm
using log3(d)M(d2/3) < (d2/3)3 = d2 processors to compute the GCD of these polynomials in
O(d2/3/ log(d)) steps, for a total of d− d2/3 steps. This improvement can be tightened further,
but generally results in d− o(d) steps as long as M(d) ∈ ω(d2).

We pose the following assumption on the parallel complexity of calculating polynomials
GCDs on fewer that O(d2) processors. This assumption would be broken if there is an NC
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algorithm for computing the determinant of a n× n matrix on o(n2) processors, but this would
require a significant advance in mathematics on a problem that has been studied for a long time.

Assumption 2. There is no general algorithm for computing the GCD of two univariate poly-
nomials of degree d over a finite field Fq (where q > d3) in less than parallel time d − o(d) on
O(d2) parallel processors.

On the other hand, evaluating a polynomial of degree d can be logarithmic in its degree,
provided the polynomial can be expressed as a small arithmetic circuit, e.g. (ax + b)d can be
computed with O(log(d)) field operations.

Abstract weak VDF from an injective rational map. Let F : Fn
q → Fm

q be a rational
function that is an injective map from Y to X := F (Y). We further require that X is efficiently
sampleable and that F can be evaluated efficiently for all ȳ ∈ Y. When using F in a VDF we
will require that |X | > λt3 to prevent brute force attacks, where t and λ are given as input to
the Setup algorithm.

We will need a family F := {(q, F,X ,Y)}λ,t parameterized by λ and t. Given such a family
we can construct a weak VDF as follows:

• Setup(λ, t): choose a (q, F,X ,Y) ∈ F specified by λ and t, and output pp := ((q, F ), (q, F )).

• Eval((q, F ), x̄): for an output x̄ ∈ X ⊆ Fm
q compute ȳ ∈ Y such that F (ȳ) = x̄; The proof π

is empty.

• Verify((q, F ), x̄, ȳ,π) outputs Yes if F (ȳ) = x̄.

The reason we require that F be injective on Y is so that the solution ȳ be unique.
The construction is a weak (p(t),σ(t))-VDF for p(t) = t2 and σ(t) = t−o(t) assuming that there
is no algorithm that can invert of F ∈ F on a random value in less than parallel time d− o(d)
on O(d2) processors. Note that this is a stronger assumption than 2 as the inversion reduces to
a specific GCD computation rather than a general one.

Candidate rational maps. The question, of course, is how to instantiate the function family
F so that the resulting weak VDF system is secure. There are many examples of rational maps
on low dimensional algebraic sets among which we can search for candidates. Here we will focus
on the special case of efficiently computable permutation polynomials over Fq, and one particular
family of permutation polynomials that may be suitable.

6.2 Univariate permutation polynomials

The simplest instantiation of the VDF system above is when n = m = 1 and Y = Fq. In this
case, the function F is a univariate polynomial f : Fq → Fq. If f implements an injective map on
Fq, then it must be a permutation of Fq, which brings us to the study of univariate permutation
polynomials as VDFs.

The simplest permutation polynomials are the monomials xe for e ≥ 1, where gcd(e, q−1) =
1. These polynomials however, can be easily inverted and do not give a secure VDF. Dickson
polynomials [50]Dn,α ∈ Fp[x] are another well known family of polynomials over Fp that permute
Fp. Dickson polynomials are defined by a recurrence relation and can be evaluated efficiently.
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Dickson polynomials satisfy Dt,αn(Dn,α(x)) = x for all n, t,α where n · t = 1 mod p− 1, hence
they are easy to invert over Fp and again do not give a secure VDF.

A number of other classes of permutation polynomials have been discovered over the last
several decades [40]. We need a class of permutation polynomials over a suitably large field that
have a tunable degree, are fast to evaluate (i.e. have polylog(d) circuit complexity), and cannot
be inverted faster than running the parallelized Euclidean algorithm on O(d) processors.

Candidate permutation polynomial. We consider the following polynomial of Guralnick
and Muller [39] over Fpm :

(xs − ax− a) · (xs − ax+ a)s + ((xs − ax+ a)2 + 4a2x)(s+1)/2

2xs
(6.1)

where s = pr for odd prime p and a is not a (s− 1)st power in Fpm . This polynomial is a degree
s3 permutation on the field Fpm for all s,m chosen independently.

Below we discuss why instantiating a VDF with nearly all other examples of permutation
polynomials would not be secure and why attacks on these other polynomials do not work against
this candidate.

Attacks on other families of permutation polynomials. We list here several other fam-
ilies of permutation polynomials that can be evaluated in O(polylog(d)) time, yet would not
yield a secure VDF. We explain why each of these attacks do not work against the candidate
polynomial.

1. Sparse permutation polynomials. Sparse polynomials have a constant number of terms
and therefore can be evaluated in time O(log(d)). There exist families of non-monomial
sparse permutation polynomials, e.g. X2t+1+1 +X3 +X ∈ F22t+1 [X] [40, Thm 4.12]. The
problem is that the degree of this polynomial is larger than the square root of the field size,
which allows for brute force parallel attacks. Unfortunately, all known sparse permutation
polynomials have this problem. In our candidate the field size can be made arbitrarily
large relative to the degree of the polynomial.

2. Linear algebraic attacks. A classic example of a sparse permutation polynomial of tunable
degree over an arbitrarily large field, due to Mathieu [34], is the family xp

i − ax over Fpm

where a is not a p − 1st power. Unfortunately, this polynomial is easy to invert because
x → xp

i
is a linear operator in characteristic p so the polynomial can be written as a

linear equation over an m-dimensional vector space. To prevent linear algebraic attacks
the degree of at least one non-linear term in the polynomial cannot be divisible by the field
characteristic p. In our candidate there are many such non-linear terms, e.g. of degree
s+ 1 where s = pr.

3. Exceptional polynomials co-prime to characteristic. An exceptional polynomial is a poly-
nomial f ∈ Fq[X] which is a permutation on Fqm for infinitely many m, which allows us
to choose sufficiently large m to avoid brute force attacks. Any permutation polynomial
of degree at most q1/4 over Fq is exceptional [74]. Since we want q to be exponential in
the security parameter and the degree to be sub-exponential we can restrict the search for
candidate polynomials to exceptional polynomials. However, all exceptional polynomials
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over Fq. of degree co-prime to q can be written as the composition of Dickson polynomials
and linear polynomials, which are easy to invert [59]. In our candidate, the degree s3 of
the polynomial and field size are both powers of p, and are therefore not co-prime.

Additional application: a new family of one-way permutations. We note that a sparse
permutation polynomial of sufficiently high degree over a sufficiently large finite field may be a
good candidate for a one-way permutation. This may give a secure one-way permutation over a
domain of smaller size than what is possible by other methods.

6.3 Comparison to square roots mod p

A classic approach to designing a sequentially slow verifiable function, dating back to Dwork
and Naor [31], is computing modular square roots. Given a challenge x ∈ Z∗

p, computing

y = x
p+1
4 (mod p) can be efficiently verified by checking that y2 = x (mod p) (for p ≡ 3

(mod 4)). There is no known way to compute this exponentiation in faster than log(p) sequential
field multiplications.

This is a special case of inverting a rational function over a finite field, namely the polynomial
f(y) = y2, although this function is not injective and therefore cannot be calculated with GCDs.
An injective rational function with nearly the same characteristics is the permutation f(y) = y3.
Since the inverse of 3 mod p−1 will be O(log p) bits, this requires O(log p) squaring operations to
invert. Viewed another way, this degree 3 polynomial can be inverted on a point c by computing
the GCD(yp − y, y2 − c), where the first step requires reducing yp − y mod y3 − c, involving
O(log p)) repeated squarings and reductions mod y3 − c.

While this approach appears to offer a delay parameter of t = log(p), as t grows asymptot-
ically the evaluator can use O(t) parallel processors to gain a factor t parallel speedup in field
multiplications, thus completing the challenge in parallel time equivalent to one squaring oper-
ation on a sequential machine. Therefore, there is asymptotically no difference in the parallel
time complexity of the evaluation and the total time complexity of the verification, which is why
this does not even meet our definition of a weak VDF. Our approach of using higher degree
injective rational maps gives a strict (asymptotic) improvement on the modular square/cubes
approach, and to the best of our knowledge is the first concrete algebraic candidate to achieve
an exponential gap between parallel evaluation complexity and total verification complexity.

7 Practical improvements on VDFs from IVC

In this section we propose a practical boost to constructing VDFs from IVC (Section 4). In an
IVC construction the prover constructs a SNARK which verifies a SNARK. Ben-Sasson et al.
[11] showed an efficient construction for IVC using “cycles of Elliptic curves”. This construction
builds on the pairing-based SNARK [62]. This SNARK system operates on arithmetic circuits
defined over a finite field Fp. The proof output consists of elements of an elliptic curve group
E/Fq of prime order p (defined over a field Fq). The SNARK verification circuit, which computes
a pairing, is therefore an arithmetic circuit over Fq. Since q ∕= p, the prover cannot construct
a new SNARK that directly operates on the verification circuit, as the SNARK operates on
circuits defined over Fp. Ben-Sasson et. al. propose using two SNARK systems where the curve
order of one is equal to the base field of the other, and vice versa. This requires finding a pair
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of pairing-friendly elliptic curves E1, E2 (defined over two different base fields F1 and F2) with
the property that the order of each curve is equal to the size of the base field of the other.

The main practical consideration in VDFIVC is that the evaluator needs to be able to update
the incremental SNARK proofs at the same rate as computing the underlying sequential function,
and without requiring a ridiculous amount of parallelism to do so. Our proposed improvements
are based on two ideas:

1. In current SNARK/IVC constructions (including [62], [11]) the prover complexity is pro-
portional to the multiplicative arithmetic complexity of the underlying statement over
the field Fp used in the SNARK (p ≈ 2128). Therefore, as an optimization, we can use a
“SNARK friendly” hash function (or permutation) as the iterated sequential function such
that the verification of each iteration has a lower multiplicative arithmetic complexity over
Fp.

2. We can use the Eval of a weak VDF as the iterated sequential function, and compute
a SNARK over the Verify circuit applied to each incremental output instead of the Eval
circuit. This should increase the number of sequential steps required to evaluate the
iterated sequential function relative to the number of multiplication gates over which the
SNARK is computed.

An improvement of type (1) alone could be achieved by simply using a cipher or hash function
that has better multiplicative complexity over the SNARK field Fq than AES or SHA256 (e.g.,
see MiMC [5], which has 1.6% complexity of AES). We will explain how using square roots in Fq

or a suitable permutation polynomial over Fq (from Section 6) as the iterated function achieve
improvements of both types (1) and (2).

7.1 Iterated square roots in Fq

Sloth A recent construction called Sloth [48] proposed a secure way to chain a series of square
root computations in Zp interleaved with a simple permutation 4 such that the chain must be
evaluated sequentially, i.e. is an iterated sequential function (Definition 7). More specifically,
Sloth defines two permutations on Fp: a permutation ρ such that ρ(x)2 = ±x, and a permutation
σ such that σ(x) = x ± 1 depending on the parity of x. The parity of x is defined as the
integer parity of the unique x̂ ∈ {0, ..., p − 1} such that x̂ = x mod p. Then Sloth iterates the
permutation τ = ρ ◦ σ.

The verification of each step in the chain requires a single multiplication over Zp compared
to the O(log(p)) multiplications required for evaluation. Increasing the size of p amplifies this
gap, however it also introduces an opportunity for parallelizing multiplication in Zp for up to
O(log(p)) speedup.

Using Sloth inside VDFIVC would only achieve a practical benefit if p = q for the SNARK
field Fq, as otherwise implementing multiplication in Zp in an arithmetic circuit over Fq would
have O(log2(p)) complexity. On modern architectures, multiplication of integers modulo a 256-
bit prime is near optimal on a single core, whereas multi-core parallelized algorithms only offer
speed-ups for larger primes [8]. Computing a single modular square root for a 256-bit prime

4If square roots are iterated on a value x without an interleaved permutation then there is a shortcut to the
iterated computation that first computes v = ( p+1

4
)ℓ mod p and then the single exponentiation xv.
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takes approximately 45,000 cycles5 on an Intel Core i7 [48], while computing SHA256 for 256-bit
outputs takes approximately 864 cycles6.

The best known arithmetic circuit implementation of SHA256 has 27,904 multiplication
gates[9]. In stark contrast, the arithmetic circuit over Fp for verifying a modular square root is
a single multiplication gate. Verifying the permutation σ is more complex as it requires a parity
check, but this requires at most O(log(p)) complexity.

Sloth++ extension Replacing SHA256 with Sloth as the iterated function in VDFIVC al-
ready gives a significant improvement, as detailed above. Here we suggest yet a further opti-
mization, which we call Sloth++. The main arithmetic complexity of verifying a step of Sloth
comes from the fact that the permutation σ is not naturally arithmetic over Fp, which was
important for preventing attacks that factor τ ℓ(x) as a polynomial over Fp. Our idea here is to
compute square roots over a degree 2 extension field Fp2 interleaved with a permutation that is
arithmetic over Fp but not over Fp2 .

In any degree r extension field Fpr of Fp for a prime p = 3 mod 4 a square root of an element
x ∈ Fpr can be found by computing x(p

r+1)/4. This is computed in O(r log(p)) repeated squaring
operations in Fr

p. Verifying a square root requires a single multiplication over Fpr . Elements of
Fpr can be represented as length r vectors over Fp, and each multiplication reduces to O(r2)
arithmetic operations over Fp. For r = 2 the verification multiplicative complexity over Fp is
exactly 4 gates.

In Sloth++ we define the permutation ρ exactly as in Sloth, yet over Fp2 . Then we define
a simple non-arithmetic permutation σ on Fp2 that swaps the coordinates of elements in their
vector representation over Fp and adds a constant, i.e. maps the element (x, y) to (y+c1, x+c2).
The arithmetic circuit over Fp representing the swap is trivial: it simply swaps the values on
the input wires. The overall multiplicative complexity of verifying an iteration of Sloth++ is
only 4 gates over Fp. Multiplication can be parallelized for a factor 2 speedup, so 4 gates must
be verified roughly every 89,000 parallel-time evaluation cycles. Thus, even if an attacker could
manage to speedup the modular square root computation by a factor 100 using an ASIC designed
for 256-bit multiplication, for parameters that achieve the same wall-clock delay, the SNARK
verification complexity of Sloth++ is over a 7,000 fold improvement over that of a SHA256
chain.

Cube roots The underlying permutation in both Sloth and Sloth++ can be replaced by cube
roots over Fq when gcd(3, q − 1) = 1. In this case the slow function is computing ρ(x) = xv

where 3v = 1 mod q − 1. The output can be verified as ρ(x)3 = x.

7.2 Iterated permutation polynomials

Similar to Sloth+, we can use our candidate permutation polynomial (Equation 6.1) over Fq as
the iterated function in VDFIVC. Recall that Fq is an extension field chosen independently from
the degree of the polynomial. We would choose q ≈ 2256 and use the same Fq as the field used for
the SNARK system. For each O(d) sequential provers steps required to invert the polynomial
on a point, the SNARK only needs to verify the evaluation of the polynomial on the inverse,

5This is extrapolated from [48], which reported that 30 million iterations of a modular square root computation
for a 256-bit prime took 10 minutes on a single 2.3 GHz Intel Core i7.

6http://www.ouah.org/ogay/sha2/
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which has multiplicative complexity O(log(d)) over Fq. Concretely, for each 105 parallel-time
evaluation cycles a SNARK needs to verify approximately 16 gates. This is yet another factor
15 improvement over Sloth+. The catch is that the evaluator must use 105 parallelism7 to
optimize the polynomial GCD computation. We must also assume that an adversary cannot
feasibly amass more than 1014 parallel processors to implement the NC parallelized algorithm
for polynomial GCD.

From a theory standpoint, using permutation polynomials inside VDFIVC reduces it to a
weak VDF because the degree of the polynomial must be super-polynomial in λ to prevent an
adversary from implementing the NC algorithm on poly(λ) processors, and therefore the honest
evaluator is also required to use super-polynomial parallelism. However, the combination does
yield a better weak VDF, and from a practical standpoint appears quite promising for many
applications.

8 Towards VDFs from exponentiation in a finite group

The sequential nature of large exponentiation in a finite group may appear to be a good source
for secure VDF systems. This problem has been used extensively in the past for time-based
problems such as time-lock puzzles [68], benchmarking [21], timed commitments [16], and client
puzzles [31, 48]. Very recently, Pietrzak [65] showed how to use this problem to construct a
VDF that requires a trusted setup. The trusted setup can be eliminated by instead choosing a
sufficiently large random number N so that N has two large prime factors with high probability.
However, the large size of N provides the adversary with more opportunity for parallelizing the
arithmetic. It also increases the verifier’s running time. Alternatively, one can use the class
group of an imaginary quadratic order [20], which is an efficient group of unknown order with a
public setup [51].

8.1 Exponentiation-based VDFs with bounded pre-computation

Here we suggest a simple exponentiation-based approach to constructing VDFs whose security
would rely on the assumption that the adversary cannot run a long pre-computation between
the time that the public parameters pp are made public and the time when the VDF needs to
be evaluated. Therefore, in terms of security this construction is subsumed by the more recent
solution of Pietrzak [65], however it yields much shorter proofs. We use the following notation
to describe the VDF:
− let L = {ℓ1, ℓ2, . . . , ℓt} be the first t odd primes, namely ℓ1 = 3, ℓ2 = 5, etc. Here t is the

provided delay parameter.
− let P be the product of the primes in L, namely P := ℓ1 · ℓ2 · · · ℓt. This P is a large integer

with about t log t bits.

With this notation, the trusted setup procedure works as follows: construct an RSA modulus
N , say 4096 bits long, where the prime factors are strong primes. The trusted setup algorithm
knows the factorization of N , but no one else will. Let G := (Z/NZ)∗. We will also need a
random hash function H : Z → G.
Next, for a given preprocessing security parameter B, say B = 230, do:

7This is reasonable if the evaluator has an NVIDIA Titan V GPU, which can compute up to 1014 pipelined
arithmetic operations per second (https://www.nvidia.com/en-us/titan/titan-v/).
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− for i = 1, . . . , B: compute hi ← H(i) ∈ G and then compute gi := h
1/P
i ∈ G.

− output
ek := (G, H, g1, . . . , gB) and vk := (G, H).

Note that the verifier’s public parameters are short, but the evaluators parameters are not.

Solving a challenge x: Algorithm Eval(ppeval, x) takes as input the public parameters ppeval and
a challenge x ∈ X .
− using a random hash function, map the challenge x to a random subset Lx ⊆ L of size λ, and

a random subset Sx of λ values in {1, . . . , B}.
− Let Px be the product of all the primes in Lx, and let g be g :=


i∈Sx

gi ∈ G.

− the challenge solution y is simply y ← gP/Px ∈ G, which takes O(t log t) multiplications in G.

Verifying a solution y: Algorithm Verify(ppverify, x, y) works as follows:
− Compute Px and Sx as in algorithm Eval(ppeval, x).
− let h be h :=


i∈Sx

H(i) ∈ G.

− output yes if and only if yPx = h in G.
Note that exactly one y ∈ G will be accepted as a solution for a challenge x. Verification takes
only Õ(λ) group operations.

Security. The scheme does not satisfy the definition of a secure VDF, but may still be useful
for some of the applications described in Section 2. In particular, the system is not secure
against an adversary who can run a large pre-computation once the parameters pp are known.
There are several pre-computation attacks possible that require tB group operations in G. Here
we describe one such instructive attack. It uses space O(sB), for some s > 0, and gives a factor
of s speed up for evaluating the VDF.

Consider the following pre-computation, for a given parameter s, say s = 100. Let b = ⌊P 1/s⌋,
then the adversary computes and stores a table of size sB:

for all i = 1, . . . , B: gbi , g
(b2)
i , . . . , g

(bs)
i ∈ G. (8.1)

Computing these values is comparable to solving B challenges. Once computed, to evaluate the
VDF at input x, the adversary uses the precomputed table to quickly compute

gb, g(b
2), . . . , g(b

s) ∈ G.

Now, to compute gP/Px , it can write P/Px in base b as:
P/Px = α0 + α1b+ α2b

2 + . . .+ αsb
s so that

gP/Px = gα0 · (gb)α1 · (g(b2))α2 · · · (g(bs))αs .

This expression can be evaluated in parallel and gives a parallel adversary a factor of s speed-up
over a sequential solver, which violates the sequentiality property of the VDF.

To mount this attack, the adversary must compute the entire table (8.1) for all g1, . . . , gB,
otherwise it can only gain a factor of two speed-up with negligible probability in λ. Hence, the
scheme is secure for only B challenges, after which new public parameters need to be generated.
This may be sufficient for some applications of a VDF.
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9 Related work

Taking a broad perspective, VDFs can be viewed as an example ofmoderately hard cryptographic
functions. Moderately hard functions are those whose difficulty to compute is somewhere in
between ‘easy’ (designed to be as efficient as possible) and ‘hard’ (designed to be so difficult as
to be intractable). The use of moderately hard cryptographic functions dates back at least to the
use of a deliberately slow DES variant for password hashing in early UNIX systems [58]. Dwork
and Naor [31] coined the term moderately hard in a classic paper proposing client puzzles or
“pricing functions” for the purpose of preventing spam. Juels and Brainard proposed the related
notion of a client puzzle, in which a TCP server creates a puzzle which must be solved before a
client can open a connection [44]. Both concepts have been studied for a variety of applications,
including TLS handshake requests [7, 29], node creation in peer-to-peer networks [30], creation
of digital currency [67, 27, 60] or censorship resistance [18]. For interactive client puzzles, the
most common construction is as follows: the server chooses a random ℓ-bit value x and sends to
the client H(x) and x[ℓ − log2 t− 1]. The client must send back the complete value of x. That
is, the server sends the client H(x) plus all of the bits of x except the final log2 t+1 bits, which
the client must recover via brute force.

9.1 Inherently sequential puzzles

The simple interactive client puzzle described above is embarrassingly parallel and can be solved
in constant time given t processors. In contrast, the very first construction of a client puzzle
proposed by Dwork and Naor involved computing modular square roots and is believed to be
inherently sequential (although they did not discuss this as a potential advantage).

The first interest in designing puzzles that require an inherently sequential solving algorithm
appears to come for the application of hardware benchmarking. Cai et al. [21, 22] proposed
the use of inherently sequential puzzles to verify claimed hardware performance as follows: a
customer creates an inherently-sequential puzzle and sends it to a hardware vendor, who then
solves it and returns the solution (which the customer can easily verify) as quickly as possible.
Note that this work predated the definition of client puzzles. Their original construction was
based on exponentiation modulo an RSA number N , for which the customer has created N and
therefore knows ϕ(N). They later proposed solutions based on a number of other computa-
tional problems not typically used in cryptography, including Gaussian elimination, fast Fourier
transforms, and matrix multiplication.

Time-lock puzzles Rivest, Shamir, and Wagner [68] constructed a time-lock encryption
scheme, also based on the hardness of RSA factoring and the conjectured sequentiality of
repeated exponentiation in a group of unknown order. The encryption key K is derived as
K = x2

t ∈ ZN for an RSA modulus N and a published starting value x. The encrypting party,
knowing ϕ(N), can reduce the exponent e = 2t mod ϕ(N) to quickly derive K = xe mod N .
The key K can be publicly recovered slowly by 2t iterated squarings. Boneh and Naor [16]
showed that the puzzle creator can publish additional information enabling an efficient and
sound proof that K is correct. In the only alternate construction we are aware of, Bitansky
et al. [15] show how to construct time-lock puzzles from randomized encodings assuming any
inherently-sequential functions exist.
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Time-lock puzzles are similar to VDFs in that they involve computing an inherently sequen-
tial function. However, time-lock puzzles are defined in a private-key setting where the verifier
uses its private key to prepare each puzzle (and possibly a verification proof for the eventual
answer). In contrast to VDFs, this trusted setup must be performed per-puzzle and each puzzle
takes no unpredictable input.

Proofs of sequential work Mahmoody et al.[52] proposed publicly verifiable proofs of se-
quential work (PoSW) which enable proving to any challenger that a given amount of sequential
work was performed on a specific challenge. As noted, time-lock puzzles are a type of PoSW,
but they are not publicly verifiable. VDFs can be seen as a special case of publicly verifiable
proofs of sequential work with the additional guarantee of a unique output (hence the use of the
term “function” versus “proof”).

Mahmoody et al.’s construction uses a sequential hash function H (modeled as a random
oracle) and depth robust directed-acyclic graph G. Their puzzle involves computing a labeling
of G using H salted by the challenge c. The label on each node is derived as a hash of all
the labels on its parent nodes. The labels are committed to in a Merkle tree and the proof
involves opening a randomly sampled fraction. Very briefly, the security of this construction
is related to graph pebbling games (where a pebble can be placed on a node only if all its
parents already have pebbles) and the fact that depth robust graphs remain sequentially hard
to pebble even if a constant fraction of the nodes are removed (in this case corresponding to
places where the adversary cheats). Mahmoody et. al. proved security unconditionally in the
random oracle model. Depth robust graphs and parallel pebbling hardness are use similarly
to construct memory hard functions [42] and proofs of space [32]. Cohen and Pietrzak [19]
constructed a similar PoSW using a simpler non-depth-robust graph based on a Merkle tree.

PoSWs based on graph labeling don’t naturally provide a VDF because removing any single
edge in the graph will change the output of the proof, yet is unlikely to be detected by random
challenges.

Sequentially hard functions The most popular solution for a slow function which can be
viewed as a proto-VDF, dating to Dwork and Naor [31], is computing modular square roots.

Given a challenge x ∈ Z∗
p, computing y = x

p+1
4 (mod p) can be efficiently verified by checking

that y2 = x (mod p) (for p ≡ 3 (mod 4)). There is no known algorithm for computing modular
exponentiation which is sublinear in the exponent. However, the difficulty of puzzles is fixed to
t = log p as the exponent can be reduced modulo p− 1 before computation, requiring the use of
a very large prime p to produce a difficult puzzle.

This puzzle has been considered before for similar applications as our VDFs, in particular
randomness beacons [41, 48]. Lenstra and Wesolowski [48] proposed creating a more difficult
puzzle for a small p by chaining a series of such puzzles together (interleaved with a simple
permutation) in a construction called Sloth. We proposed a simple improvement of this puzzle
in Section 7. Recall that this does not meet our asymptotic definition of a VDF because it does
not offer (asymptotically) efficient verification, however we used it as an important building block
to construct a more practical VDF based on IVC. Asymptotically, Sloth is comparable to a hash
chain of length t with t checkpoints provided as a proof, which also provides O(polylog(t))-time
verification (with t processors) and a solution of size Θ(t · λ).

28



10 Conclusions

Given their large number of interesting applications, we hope this work stimulates new practical
uses for VDFs and continued study of theoretical constructions. We still lack a theoretically
optimal VDF, consisting of a simple inherently sequential function requiring low parallelism to
compute but yet being very fast (e.g. logarithmic) to invert. These requirements motivate the
search for new problems which have not traditionally been used in cryptography. Ideally, we
want a VDF that is also post-quantum secure.
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