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Abstract

The FHEW fully homomorphic encryption scheme (Ducas and Micciancio, Eurocrypt 2015)
offers very fast homomorphic NAND-gate computations (on encrypted data) and a relatively
fast refreshing procedure that allows to homomorphically evaluate arbitrary NAND boolean
circuits. Unfortunately, the refreshing procedure needs to be executed after every single NAND
computation, and each refreshing operates on a single encrypted bit, greatly decreasing the over-
all throughput of the scheme. We give a new refreshing procedure that simultaneously refreshes
n FHEW ciphertexts, at a cost comparable to a single-bit FHEW refreshing operation. As a
result, the cost of each refreshing is amortized over n encrypted bits, improving the throughput
for the homomorphic evaluation of boolean circuits roughly by a factor n.

1 Introduction

Since Gentry’s first construction of a Fully Homomorphic Encryption (FHE) scheme [Gen09], much
research has been done to improve both the security and efficiency of FHE. On the security front,
a line of works [GH11, BV14a, Bra12, BGV12, GSW13] has led to a FHE scheme of Brakerski
and Vaikuntanathan [BV14b] based on worst-case lattice problems for polynomial approximation
factors, and therefore essentially as secure as regular (non-homomorphic) lattice-based public-key
encryption [Reg05].

On the efficiency front, major progress has been achieved too, but we are still very far from
reaching the ideal goal of an FHE scheme as efficient as public key encryption. Brakerski, Gentry,
and Vaikuntanathan [BGV12] give a scheme for homomorphic evaluation of circuits of depth L
and security parameter λ requiring Õ(λ · L3) per-gate computation. Gentry, Halevi, and Smart
[GHS12c] used similar techniques to achieve homomorphic evaluation of width-Ω(λ) circuits with
only polylog(λ) per-gate computation. However, these schemes place restrictions on circuit depth
or size, and, more importantly, rely on a substantially stronger assumption than that used for
public-key encryption: namely, the worst-case hardness of lattice problems for quasi-polynomial
approximation factors.

∗Research supported in part by the Defense Advanced Research Project Agency (DARPA) and the U.S. Army
Research Office under the SafeWare program, and the National Science Foundation (NSF) under grant CNS-1528068.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect reflect the views, position or policy of the Government.
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Gentry’s bootstrapping technique [Gen09] is still the only known method to achieve fully homo-
morphic encryption, i.e., an encryption scheme capable of evaluating homomorphically arbitrary
circuits. We recall that Gentry’s bootstrapping technique involves the homomorphic computation
of the decryption function on an encryption of the decryption key, a rather complex operation, and
this operation needs to be performed on all wires, for every few layers of the circuit. Therefore, im-
proving the effectiveness of bootstrapping has been the main goal of many papers aimed at making
FHE faster.

Improvements to bootstrapping have been pursued following two different approaches. The
first approach, extensively studied in [BGH13, GHS12c, GHS12b, GHS12a, GHPS12, SV14, HS14,
HS15, CZ17], involves the construction of FHE schemes that can pack several messages into a
single ciphertext, and operate on them in parallel. While bootstrapping such a scheme may still
be very expensive, it can simultaneously refresh a large number of ciphertexts in a single boot-
strapping execution. This reduces the total number of times that the bootstrapping procedure
needs to be executed (during the homomorphic evaluation of a sufficiently wide circuit,) effectively
amortizing the bootstrapping cost over a large number of homomorphic operations. However, these
schemes typically incur quasi-polynomial noise growth, and, consequently, require worst-case lattice
assumptions for superpolynomial approximation factors. The only exception is the work of Chen
and Zhang [CZ17], which showed how to refresh encryption schemes with packed ciphertexts using
the bootstrapping approach of [AP14] (discussed below). This allows to use worst-case complexity
assumptions with polynomial approximation factors (namely, the hardness of GapSV PÕ(n6.5)), but

at the cost of executing a costly bootstrapping procedure after each (packed) multiplication.
Building on [GSW13], a newer approach explored in [AP13, AP14, DM15, CGGI16] tries to

reduce the cost of bootstrapping a single ciphertext as much as possible, even at the price of having
to perform a bootstrapping operation for every gate of the circuit. Alperin-Sheriff and Peikert
[AP14] introduced a bootstrapping technique requiring Õ(λ) homomorphic operations. Building
upon this technique, Ducas and Micciancio [DM15] brought the running time of a single bootstrap-
ping execution down to a fraction of a second, with further improvements from Chillotti, Gama,
Georgieva, and Izabachène [CGGI16]. However, these works come with the limitation that the
bootstrapping procedure needs to be executed for essentially every gate of the circuit, and do not
support packing several messages into a single ciphertext. So bootstrapping is much faster than,
say, in HElib [HS14, HS15], but the amortized cost per gate is still quite high.

The goal of this work is to combine the advantages of these two approaches, and show how to
simultaneously refresh O(n) messages, but at a cost comparable to that of [AP13, AP14, DM15,
CGGI16]. Our starting point is the FHEW bootstrapping method of [DM15]. We remark that
FHEW has been improved in some follow-up works: [BR15, BDF18] extended the FHEW scheme
to larger gates, and [CGGI16] further reduced the running time of bootstrapping, partly at the
cost of making a stronger security assumption on Ring-LWE with binary secrets.1 However, while
practically relevant, both improvements are asymptotically modest: the method of [BR15, BDF18]
is limited to gates with at most O(log n) input wires, and the speed-up achieved in [CGGI16] is
just polylogarithmic. In fact, in this paper, we will make bootstrapping even slower than [DM15],

1The original FHEW implementation [DM15] was very careful to use binary secrets for regular LWE encryption
(which admits some theoretical justification [MP13, BLP+13]), but used Ring-LWE encryption with secrets of size√
n, which is the smallest bound for which any theoretical result has ever been proved [ACPS09]. In [CGGI16], and

the version of our bootstrapping procedure that we present and analyze in this paper, Ring-LWE is used with binary
secrets, which may be justifiable based on the best known cryptanalysis methods, but would still benefit from more
theoretical investigations.
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by a factor O(nε). The advantage is that, while the bootstrapping cost gets slightly higher, we will
simultaneously refresh O(n) messages, reducing the amortized bootstrapping cost per message by
almost a factor of n to O(31/εnε) for ε < 1/2. This is the first FHE scheme based on the hardness
of worst-case ideal lattice problems with polynomial approximation factors that is bootstrappable
with sublinearly many homomorphic operations. A comparison to previous schemes with similar
security assumptions may be found in Table 1.

Bootstrapping Schemes with polynomial noise

Scheme Total cost # of ciphertexts Amortized cost Noise overhead

[AP14] Õ(n) 1 Õ(n) Õ(n2)

[DM15] Õ(n) 1 Õ(n) Õ(n1.5)

[GINX16] Õ(n) 1 Õ(n) Õ(n1.5)

[CGGI16] O(n) 2 1 O(n) Õ(n)

[CZ17] Õ(n3) O(n) Õ(n2) Õ(n3) 3

This work O(31/εn1+ε) O(n) O(31/εnε) Õ(n2+3/ε)

Table 1: Comparison of bootstrapping schemes based on hardness of lattice problems with poly-
nomial approximation factors. The columns total running time of bootstrapping, the number
of ciphertexts required to amortize the bootstrapping cost, the amortized bootstrapping running
time (per ciphertext), and the required polynomial inapproximability factor. All running times
hide polylogarithmic factors, and are expressed in terms of “basic” cryptographic operations on
RingLWE (or similar) ciphertexts.

In the remainder of the introduction, we provide a detailed description of the FHEW bootstrap-
ping problem, followed by a technical overview of the high level structure of our solution.

1.1 The FHEW bootstrapping problem

The starting point of this work is the “FHEW” fully homomorphic encryption scheme of [DM15]. In

this overview, we assume some basic familiarity with LWE encryption, and use notation LWE
t/q
n [m, δ]

for the LWE encryption of a message m ∈ Zt, with secret key in Znq and noise level δ. Similarly,

we write RingLWE
t/q
d [m, δ] for Ring LWE ciphertexts over the dth cyclotomic ring encrypting a

polynomial m(X) of degree ϕ(d).4 The reader is referred to Section 2.4 for background information
on LWE, and for a formal definition of the notation. In its most basic form, FHEW uses a function

HomNAND : LWE4/q
n [δ]× LWE4/q

n [δ]→ LWE2/q
n [∆] (1)

mapping the encryption of two bits b0, b1 ∈ {0, 1} ⊂ Z4 (encoded as integers modulo 4), to the
encryption of their logical “NAND”, b0 ∧̄ b1 = ¬(b0∧b1), but with somewhat larger noise ∆ and en-
coded as an integer modulo 2. (For completeness, a formal definition and analysis of the HomNAND
function is given in Appendix A.) This operation is extremely efficient, involving just a modest
number of arithmetic operations modulo q, but it is not composable due to the different input and
output encodings. In order to evaluate arbitrary circuits on encrypted data, [DM15] also provides

4We will be using primarily only two cyclotomic rings Rd = Z[X]/(Xd/2 + 1) ≡ Zϕ(d) for d = 2k and ϕ(d) = d/2,
and Rd = Z[X]/(X2d/3 + Xd/3 + 1) ≡ Zϕ(d) for d = 3k and ϕ(d) = 2d/3.
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a refreshing procedure

Refresh : LWE2/q
n [∆]→ LWE4/q

n [δ] (2)

that maps noisy ciphertexts modulo 2, back to ciphertexts modulo 4 with low noise δ. This refresh-
ing involves the homomorphic computation of the decryption function, and it is rather costly: on
a first approximation, it involves Õ(n) homomorphic modular multiplications on data encrypted
under a ring/symmetric-key variant of the GSW cryptosystem [GSW13], which we recall in Sec-
tion 2.5.

Our goal is to show that one can simultaneously refresh a large number of ciphertexts (say,
O(n)) at a cost comparable to a single FHEW refreshing: Õ(31/εn1+ε) homomorphic modular mul-
tiplications on GSW ciphertexts. This reduces the amortized cost of refreshing to just O(31εnε)
homomorphic (GSW) multiplications per ciphertext, rather than O(n) as in the original FHEW
cryptosystem. For any constant ε > 0, this results in small polynomial amorized cost Õ(nε) and
polynomial approximation factors. It is also possible to set ε = 1/O(

√
log n), achieving subpoly-

nomial amortized cost exp(O
√

log b)), but at the cost of a slightly superpolynomial approximation
factor nO(

√
logn).

Theorem 1 For every 0 < ε < 1/2, there exists an algorithm Refresh which on input O(n)

LWE
2/q
n [∆] ciphertexts, refreshes them to LWE

4/q
n [δ] ciphertexts of larger message space and smaller

error, using Õ(31/εn1+ε) homomorphic operations, for 0 < ε < 1/2.

1.2 High level outline

Our scheme involves a number of different parameters. As in the FHEW cryptosystem, we will
use a “small” modulus q and dimension n = 2l−1 as parameters for the input ciphertexts. (We
write n = 2l−1 as we will frequently need to refer to l = log n + 1). A larger modulus Q is used
by intermediate ciphertexts. We will give a procedure to simultaneously refresh ϕ(d) = 2 · 3k−1

FHEW ciphertexts, where Q > q > n > d. Details follow.

We start with ϕ(d) (high noise) ciphertexts in LWE
2/q
n [∆], as produced by the FHEW HomNAND

operation, working on LWE encryption in dimension n. The key idea required to simultaneously
refresh all of them is to first combine them into a single RingLWE ciphertext, in a polynomial ring
of degree ϕ(d). Specifically, as a first step, we use a variant of the key switching technique from
[BV14a] to evaluate a function5

PackLWE :
[
LWE2/q

n [mi,∆]
]
i<ϕ(d)

→ RingLWE
2/q
d [m(X),∆′] (3)

which maps ϕ(d) arbitrary LWE ciphertexts (encrypting scalar messages m0, . . . ,mϕ(d)−1) to a
single ciphertext encrypting the polynomial m(X) =

∑
i<ϕ(d)mi ·Xi. The details of this packing

step are given in Section 3.
Before proceeding with homomorphic decryption of the packed ciphertext, we must switch its

ring elements to a different, smaller, modulus. The final step of the homomorphic decryption pro-
cedure produces LWE ciphertexts of dimension equal to half the modulus of the packed ciphertexts,

5The function is also implicitly parameterized by a “packing key”. But for simplicity, we do not show this
parameter explicitly. Other functions in this section also receive similar implicit parameters, which, together, form
the FHE public evaluation key.
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and therefore to simplify the composition of HomNAND and Refresh operations, we choose the
new modulus of the packed ciphertext to be 2n. We use a ring version of the modulus switching
technique of [BV14a] to compute a function

R-ModSwitch : RingLWE
2/q
d [m(x),∆′]→ RingLWE

2/2n
d [m(x),∆′′] (4)

mapping ciphertexts modulo q under key z ∈ Rd/q to ciphertexts modulo 2n. Details of the
modulus switching operation are provided in Section 2.6.

We can now move on to homomorphically decrypt this Ring LWE ciphertext. Following the
general bootstrapping framework of [Gen09], refreshing is performed by evaluating the decryption
function homomorphically, on an encryption of the secret key. The homomorphic registers encrypt-
ing the entries of the secret key are implemented using a symmetric-key/ring variant of the GSW
cryptosystem, similar to the FHEW accumulators [DM15]. These registers are denoted abstractly

by REG2n/Q[·]. Note that the message modulus 2n matches the ciphertext modulus of RingLWE
2/2n
d ,

which is required for entrywise encryption of the RingLWE decryption key.
Using this notation, we can describe the refreshing procedure as the combination of two steps.

The first is the primary technical contribution of this work, the homomorphic decryption function

RingDecrypt : RingLWE
2/2n
d [m(x),∆′′]→

[
REG2n/Q[m̃i, δ

′]
]
i<ϕ(d)

(5)

which takes (as an implicit parameter) also the encryption REG2n/Q[encode(z)] of (a suitably en-

coded version of) the RingLWE2/2n secret key z ∈ Zϕ(d)
2n . The RingDecrypt function is homomorphic

in z, and it is computed simply by evaluating (the linear component) of the RingLWE decryption
function homomorphically on REG2n/Q[encode(z)].

At this point, two important remarks should be made about the RingDecrypt function, which is
the core of our bootstrapping procedure:

• First, notice that, as long as ∆′′ is within the decryption bounds of RingLWE
2/2n
d , this will

produce a valid decryption, with an amount of noise δ′ that depends only on the evaluation
key REG2n/Q[encode(z)]. So, this step is where the actual refreshing happens, producing
output ciphertexts with much smaller noise δ′ < ∆′′ than the input.

• Second, since REG[·] has 2n as a message modulus, the result of the computation must also
be (the coordinate-wise encryption of) a polynomial m̃(X) with coefficients m̃i ∈ Z2n (rather
than mi ∈ Z2 as the original message m(X)). The output of RingDecrypt will encrypt a noisy,
scaled version of m(X), satisfying m̃(X) ≈ n ·m(X).

Since REG[·] encrypts each coefficient of m̃(X) individually, the values REG2n/Q[m̃i, δ
′] are

already (refreshed, low-noise) ciphertexts of the original messages m0, . . . ,md−1, but using a (noisy)
input encoding m̃i, a different cryptosystem and a large modulus Q. Each one of them is very similar
to the intermediate output of the original FHEW refreshing procedure (2), as if we had computed

it on each LWE
2/q
2n [mi,∆] ciphertext individualy. So, they can be mapped to LWE

4/q
2n ciphertexts as

in the original FHEW scheme by calling a “most-significant-bit” extraction function

msbExtract : REG2n/Q[m̃i, δ
′]→ LWE4/Q

n [mi, δ
′′] (6)
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and the standard modulus switching procedure

ModSwitch : LWE4/Q
n [δ′′]→ LWE4/q

n [δ′′′] (7)

for a LWE ciphertext under key s ∈ Z2n
Q , which increases the noise δ′′′ ≈ q

Qδ
′′ +

√
2π(1 + ‖s‖2) by

a small additive term. Parameters will be set in such a way that δ′′′ ≤ δ is small enough to apply
the HomNAND function (1) and keep computing on encrypted data. This completes the high level
description of our bootstrapping method.

Since RingDecrypt is where the actual refreshing (i.e., noise reduction) takes place, and it is
highly nontrivial, in the next section we give a detailed description of the challenges faced by an
efficient evaluation of RingDecrypt, and the techniques we use to address them.

1.3 The challenge of homomorphic ring decryption

In the description above, we have claimed that RingLWE decryption can be performed using Õ(d)
arithmetic operations. This is indeed true, and can be achieved via standard FFT-based polynomial
multiplication algorithms. However, in our application, this operation needs to be performed
homomorphically on an encryption of the decryption key, which is a much more challenging task.
The problem is that when encryption is performed in the exponent, as in the Ring-GSW-based
FHEW accumulators, one is extremely limited in the type of linear operations that can be computed.

We recall that FHEW accumulators (and the cryptographic registers used in this paper) encode
a message v ∈ ZN using a ring variant of the GSW cryptosystem with, as a message space,
the set of polynomials in a formal variable X of degree bounded by ϕ(N). These polynomials
are used to encode scalar values, mapping each v ∈ ZN to the monomial Xv. Encoding v in
the exponent limits the operations available to a candidate refreshing algorithm. Addition may be
performed, using the multiplicatively homomorphic property of the GSW cryptosystem to compute
Xv ·Xw = Xv+w, but other operations are not so straightforward. Multiplication by (known) scalars
(mapping Xv 7→ Xvc) requires homomorphic exponentiation, and even a simple subtraction or
negation (mapping Xv 7→ X−v) would require homomorphic inversion, all operations unsupported
by the GSW or any other known cryptosystem.

Standard FFT algorithms, on the other hand, require both the evaluation of addition and
subtractions (in each “butterfly” of the FFT), as well as scalar multiplication by “twiddle” factors,
i.e., powers of the root of unity used to compute the FFT. In order to support subtraction, we
represent each register in a redundant way, holding both an encryption of Xv and an encryption
of X−v. To reduce the number of scalar multiplications required by our refreshing procedure, we
resort to a variant of Nussbaumer negacyclic convolution algorithm [Nus80].

In its original formulation, the Nussbaumer algorithm operates on polynomials in X (where

X2k = 1) by writing them as bivariate polynomials in X,Y , with both X and Y of degree at most√
n =

√
2k. Alternatively, one can look at these bivariate polynomials as univariate polynomials

in X with coefficients in Z[Y ]. By taking Y = X
√
n, the coefficients belong to the ring R =

Z[Y ]/(Y
√
n + 1), which admits Y as a 2

√
nth root of unity which can be used to compute the FFT

of polynomials in R[X]. Multiplication by roots of unity can now be expressed simply by additions,
subtractions and rotations of values in Z[Y ]/(Y

√
n + 1). Furthermore, because the FFT outputs

elements of R, the algorithm can be recursively applied to each of the pointwise multiplications
following the FFT.

Our refreshing procedure will require some modifications to the Nussbaumer algorithm as de-
scribed above, which are detailed in Section 4.4. Most critically, if the algorithm is to be used
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recursively, we must be careful in bounding its recursive depth. The noise of the refreshing algo-
rithm depends exponentially on the depth of the circuit computing it, and we must restrict our-
selves to constant depth to achieve polynomial noise overhead. So rather than setting Y = X

√
ni

for ni = 2i
√
n at the ith level of recursion, we fix Y = Xnε for all steps. Therefore, for all ε, the

algorithm has recursive depth bounded by 1/ε. This is the main intuition behind our bootstrap-
ping procedure: the Nussbaumer algorithm reduces polynomial multiplication to multiplications of
many lower-degree polynomials, without introducing multiplications by constants or excessive noise
overhead. A naive multiplication algorithm can then be used to compute the smaller polynomial
products, and the transform inverted to give the encrypted product required for homomorphic ring
decryption.

2 Preliminaries

2.1 Basic notation

We write column vectors over a ring R with bold font a ∈ Rn. Matrices are similarly written
in capitalized bold font as A ∈ Rn×m. The L2 norm of a vector a = (a1, . . . , an) ∈ Rn is
‖a‖ =

√∑
i |ai|2. The concatenation of elements a, b, . . . into a row vector is written as [a, b, . . .].

We write (a, b, . . .) for concatenation as a column vector.

2.2 Distributions

A random variable X has subgaussian distribution over R of parameter α if its tails are dominated
by a Gaussian of parameter α, so that Pr{|X| ≥ t} ≤ 2e−πt

2/α2
for all t ≥ 0. A subgaussian variable

X with parameter α > 0 satisfies E[e2πtX ] ≤ eπα2t2 , for all t ∈ R. We note that a centered random
variable X, where |X| ≤ β always holds, is subgaussian, specifically with parameter β

√
2π. For

example the randomized rounding function d(x)c$ (which takes value bxc with probability dxe− x,
and equals dxe otherwise) is

√
2π-subgaussian. A random vector x of dimension n is subgaussian of

parameter α if for all unit vectors u ∈ Rn, its one-dimensional marginals 〈u,x〉 are also subgaussian
of parameter α. This extends to random matrices, where Xm×n is subgaussian of parameter α if for
all unit vectors u ∈ Rm,v ∈ Rn, utXv is subgaussian of parameter α. It follows immediately from
these definitions that the concatenation of independent subgaussian vectors, all with parameter α,
interpreted as either a vector or matrix, is also subgaussian with parameter α.

2.3 Cyclotomic Rings

For any positive integer N , let ΦN (X) =
∏
j∈Z∗

N
(X−ωjN ) be the Nth cyclotomic polynomial, where

ωN = e2πi/N ∈ C is the complex Nth principal root of unity, and ZN is the group of invertible
integers modulo N . We recall that ΦN (X) ∈ Z[X] is a monic polynomial of degree ϕ(N) = |Z∗N |
with integer coefficients. The corresponding ringRN = Z[X]/ΦN (X) of integer polynomials modulo
ΦN is called the Nth cyclotomic ring. This ring can be identified with RN ≡ Zϕ(N) (as additive
groups) representing each element a ∈ RN by a polynomial of degree less than ϕ(N), and mapping
this polynomial a(X) =

∑
j<ϕ(N) aj ·Xj to its coefficient vector ((a)) = (a0, . . . , aϕ(N)−1) ∈ Zϕ(N).

For any ring element a ∈ RN , ‖a‖ is taken to mean the L2 norm of the corresponding vector
((a)) ∈ Zϕ(N). Ring elements a, b ∈ RN also admit a matrix representation Ma ∈ Zϕ(N)×ϕ(N) =
[((a ·X0)), ((a ·X1)), . . . , ((a ·Xϕ(N)−1))] (used in Section 4.5,) such that Ma · ((b)) = ((a · b)). For any
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positive integer q, we write RN/q for the quotient RN/(qRN ), i.e., the ring of polynomials RN
with coefficients reduced modulo q. Notice that RN/q ≡ Zϕ(N)

q as additive groups.
For concreteness, in this paper we only use cyclotomic rings RN for two special types of the

index N :

• N = n = 2l, giving the polynomial ring Rn = Z[X]/(Xn/2 + 1) of degree ϕ(n) = n/2, and

• N = d = 3k, giving the polynomial ring Rd = Z[X]/(X2d/3 +Xd/3 +1) of degree ϕ(d) = 2d/3.

In particular, Rd/q ≡ Z2d/3
q (for d = 3k) and Rn/q ≡ Zn/2q (for n = 2l).

Fact 1 (Recall from [DM14], Fact 6) If D is a subgaussian distribution of parameter α over
RN , and R ← Dw×k has independent coefficients drawn from D, then, with overwhelming proba-
bility, we have s1(R) ≤ α

√
N ·O(

√
w +
√
k + ω(

√
logN)).

2.4 (Ring) LWE Symmetric Encryption

In this subsection we introduce definitions and notation for the basic LWE encryption scheme that
our bootstrapping procedure operates on. Following [DM15], we formulate the LWE encryption
procedure using a randomized rounding function χ : Rn → Zn mapping each x ∈ Rn to a distribu-
tion over Zn such that χ(x + v) = χ(x) + v for all integer vectors v ∈ Zn. For any x ∈ Rn, the
random variable χ(x)− x is called the rounding error of χ(x). As a special case, when the domain
of χ is restricted to Zn, we have χ(x) = x + χ(0), i.e., the randomized rounding function simply
adds a fixed “noise” distribution χ(0) to the input x ∈ Zn.

We consider a ring version of LWE symmetric encryption, parametrized by a (cyclotomic)
ring RN , a dimension n, message-modulus t ≥ 2, ciphertext modulus q and randomized rounding

function χ. The message space of the scheme is RN/t ≡ Zϕ(N)
t . (Typically, R = Z, the rounding

function has error distribution |χ(x)− x| < q/2t, and t = 2 is used to encrypt message bits.) The
(secret) key of the encryption scheme is a vector s ∈ RnN , which may be chosen uniformly at random
(modulo q), or as a random short vector. The R-LWE encryption of a message m ∈ RN/t under
key s ∈ RnN is

R-LWE
t/q
s (m) = (a, χ(a · s +mq/t) mod q) ∈ (RnN/q)× (RN/q) ≡ Rn+1

N /q (8)

where a← RnN/q is chosen uniformly at random. Notice that when t divides q, the encryption of m
equals (a,a · s+ e+mq/t mod q), where the error e is chosen according to a fixed noise distribution
χ(0). The error of a ciphertext (a, b) is the random variable err(a, b) = (b − a · s −mq/t) mod q
describing the rounding error, reduced modulo q to the centered interval [−q/2, q/2]. Notice that
the error err(a, b) depends not just on (a, b), but also on s, q, t and m. Also, in the absence of any
restriction on the error, a ciphertext (a, b) can be the encryption of any message m with respect
to any key s. So, we always consider ciphertexts with bounded errors ‖χ(x) − x‖ ≤ β, as defined
below.

Definition 1 ((Ring) LWE ciphertexts) The set of all (Ring) LWE ciphertexts over (cyclo-
tomic) ring RN , encrypting message m ∈ RN/t, under key s ∈ RnN , modulo q and with error
bound β, is

RN -LWE
t/q
s [m,β] = {(a, b) | a ∈ RnN/q, ‖a · s−mq/t‖ ≤ β}.
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When the value of the key s ∈ RnN is clear from the context or unimportant, we simply write

RN -LWE
t/q
n [m,β], where the subscript n refers to the dimension of the secret s ∈ RnN .

We use some abbreviated notation in the following important special cases:

• When N = 1, we omit RN = Z, and write LWE
t/q
s [m,β] (or LWE

t/q
n [m,β]) for the set of

standard (Z-) LWE ciphertexts with n-dimensional secret s ∈ Zn.

• When n = 1, and s = s ∈ RN is a single ring element, we write RingLWE
t/q
N as an abbreviation

for RN -LWE
t/q
1 .

The (Ring) LWE decryption procedure plays a central role in our FHE bootstrapping process.
Specifically, the definition of the FHEW bootstrapping problem directly involves the decryption of
standard (Z-) LWE ciphertexts, and our efficient bootstrapping procedure makes internal use of
Ring LWE decryption. So, we formalize it in the following definition for an arbitrary (cyclotomic)
ring RN .

Definition 2 ((Ring) LWE decryption) The decryption of an RN -LWE
t/q
s ciphertext (a, b) ∈

(RnN ,RN )/q is

Dec(s, (a, b)) = bt(b− a · s)/qe mod t ∈ RN/t ≡ Zϕ(N)
t . (9)

It is easy to check that for all (a, b) ∈ LWE
t/q
s [m, q/2t], the decryption procedure correctly

recovers the encrypted message:

Dec(s, (a, b)) =

⌊
t

q
·
(q
t
m+ e

)⌉
=

⌊
m+

t

q
e

⌉
= m mod t

because t
q |e| < 1/2.

2.5 Ring-GSW encryption

The cryptographic accumulators of [DM15] (and the extended cryptographic registers defined in
our work) make use of a ring variant of the GSW encryption scheme [GSW13], which we now
briefly describe. Let RN/Q be the Nth cyclotomic ring, modulo some suitably large integer Q. The
Ring-GSW cryptosystem, encrypts a message m ∈ ZN under key z ∈ RN/Q as

GSWN/Q
z (m) = [a,a · z + e] +m · g ⊗ I2 (10)

where g = (B0, B1, B2, . . . , Q/B) for some base B. Similarly as for LWE, we write GSW
N/Q
z [m,β]

for the set of ciphertexts encrypting m under z with error at most ‖e‖ ≤ β. Decryption follows
from the observation that the last row of a ciphertext is a Ring-LWE encryption of m under z.

The Ring-GSW cryptosystem supports homomorphic addition and multiplication, and we will

primarily use the latter. GSW
N/Q
z (m0·m1) = C0×C1 is computed by first expressing C0 =

∑
iB

iC0,i

as a sum of matrices with B-bounded (polynomial) entries, and then computing the matrix product
[C0,0, . . . , C0,logQ] ·C1. Letting e0 (resp. e1) denote the error vector of C0 (resp. C1), the result can
be written [a,a · z + e] +m0m1 · g ⊗ I2, where e =

∑
iC0,ie1,i +m1e0 depends asymmetrically on

the error of the inputs. To minimize the error growth resulting from a sequence of multiplications
of GSW ciphertexts (with similar initial error), then, the multiplications should be evaluated in a
right-associative sequence.
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2.6 Modulus Switching

In this subsection we describe the modulus switching procedures ModSwitch required by our boot-
strapping algorithm. The methods described here are a minor variant of the modulus switching
technique of [BV14a], making use of randomized rounding, and adapted to our notation.

Lemma 1 For any positive integers Q, q ∈ Z, dimension n, and secret vector s ∈ Zn, the mod-

ulus switching procedure of Algorithm 1 maps ciphertexts (a, b) ∈ LWE
t/Q
s [m,β] to ciphertexts

ModSwitchq(a, b) ∈ LWE
t/q
s [m,β′], where β′ = q

Qβ +
√

2π(1 + ‖s‖2) = q
Qβ + O(‖s‖) with high

probability over the randomized rounding procedure.

Proof. The noise of the rounded ciphertext ModSwitchq(a, b) = (a′, b′) is

err(a′, b) =
∣∣b′ − a′ · s− (q/t)m

∣∣
≤ |d(q/Q)bc$ − d(q/Q)ac$ · s− (q/t)m|
≤ |(q/Q)b− (q/Q)a · s− (q/t)m|+ |e · (1,−s)|

≤ q

Q
|b− a · s− (Q/t)m|+ |e · (1,−s)|

≤ q

Q
β + |e · (1,−s)|

where e is the rounding vector. Since e is subgaussian of parameter
√

2π, the error is at most
q
Qβ +

√
2π(1 + ‖s‖2). �

Lemma 2 For any integers n, q, cyclotomic ring Rd, and secret key z ∈ Rd, the modulus switching

procedure of Algorithm 2 maps ciphertexts (a, b) ∈ RingLWE
t/q
z [m,β] to ciphertexts ModSwitchR,n(a, b) ∈

RingLWE
t/n
z [m,β′], where β′ = n

q β + ω(
√
d log d) · ‖z‖ with high probability over the randomized

rounding.

Proof. The error terms of the rounded ciphertext are then bounded by

‖b′ − a′ · z − (n/t)m‖ ≤ ‖d(n/q)bc$ − d(n/q)ac$z − (n/t)m‖
≤ ‖(n/q)b− (n/q)a · z − (n/t)m‖+ ‖e0‖+ ‖e1 · z‖

≤ n

q
‖b− a · z − (q/t)m‖+ ‖e0‖+ ‖e1 · z‖

≤ n

q
β + ‖e0‖+ ‖e1 · z‖

where e0, e1 ∈ Rd are subgaussian rounding vectors of parameter
√

2π. It follows that s1(e0), s1(e1) ≤
ω(
√
d log d) with high probability. �

3 Ciphertext Packing

We describe a variant of the LWE key-switching technique that can be used to convert a set of
ϕ(d) LWE ciphertexts {(ai, bi)}, each encrypting a message mi, to a single “packed” Ring-LWE
ciphertext encrypting the message m(X) =

∑
imiX

i−1.
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Algorithm 1 ModSwitchq(a, b)

Input: (a, b) ∈ LWE
t/Q
s [m]

Output: (a′, b′) ∈ LWE
t/q
s [m]

(a′, b′)← (d(q/Q)ac$, d(q/Q)bc$)
return (a′, b′)

Algorithm 2 ModSwitchR,n(a, b)

Input: (a, b) ∈ RingLWE
t/q
z [m]

Output: (a′, b′) ∈ RingLWE
t/n
z [m]

(a′, b′)← (d(n/q)ac$, d(n/q)bc$)
return (a′, b′)

Lemma 3 Algorithm 3 is a quasi-linear time algorithm that on input ϕ(d) ciphertexts ci ∈ LWE
t/q
s (mi,∆)

(for i = 0, . . . , ϕ(d)−1, all under the same secret key s ∈ Znq ) and a packing key consisting of Ring-

LWE encryptions Kj,l ∈ RingLWE
q/q
z̃ [sl2

j , βP ] (for l = 0, . . . , n − 1, j = 0 . . . , dlog qe − 1 and key

z̃ ∈ Rd/q), outputs a Ring-LWE encryption c ∈ RingLWE
t/q
z̃ [m(X), β] of m(X) =

∑
imiX

i under
z̃ with error at most β ∈ O(

√
d∆ +

√
dn log qβP ).

Proof. Let ci = (ai, bi) be the input ciphertexts (with ai ∈ Znq and bi ∈ Zq) and ei = bi−〈ai, s〉−
(q/t)mi the corresponding error terms. Define the ring elements ẽ =

∑
i eiX

i, b̃ =
∑

i biX
i ∈ Rd/q

and vectors ãj ∈ (
∑

i{0, 1} ·Xi)n, for j = 0, . . . , log q, such that∑
j<log q

ãj2
j =

∑
i

ai ·Xi−1 ∈ (Rd/q)n.

Let (ã′j,l, b̃
′
j,l) = Kj,l. Then taking

ã′′ = −
∑
j,l

ãj,lã
′
j,l

b̃′′ = b̃−
∑
j,l

ãj,l · b̃′j,l

ẽ′′ = ẽ−
∑
j,l

ãj,lẽ
′
j,l

we have

b̃′′ − ã′′ · z̃ − ẽ′′ = b̃−
∑
j,l

(ãj,l · b̃′j,l − ãj,lã′j,l · z̃ − ãj,lẽ′j,l)− ẽ

= b̃−
∑
j,l

ãj,l(b̃
′
j,l − ã′j,l · z̃ − ẽj,l)− ẽ

= b̃−
∑
j,l

(ãj,l2
jsl)− ẽ

= b̃−
∑
i

∑
l

(ai,lslX
i)− ẽ

=
∑
i

(bi − ai · s− ei)Xi =
∑
i

(q/t)miX
i as desired .

Since |ei| ≤ ∆ for i = 0, . . . , ϕ(d) − 1, we have ‖ẽ‖ ≤
√
ϕ(d)∆. The ring elements ãj,l are

independent subgaussians of parameter
√

2π. It follows from Fact 1 that with high probability the
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row vector A = [ãj,l] has spectral norm s1(A) = O(
√
dn log q). Using ‖ẽ′j,l‖ ≤ βP , we get that the

error of the output is at most β = O(
√
d∆ +

√
dn log qβP ).

The ring packing procedure given in Algorithm 3 performs O(n log q) operations in the ring
Rd/q. Each arithmetic operation in this ring can be performed in quasilinear time Õ(d). So, the
total running time Õ(dn) is quasilinear in the input size O(dn log q). �

Algorithm 3 PackLWE([(ai, bi)]i<ϕ(d),KP )

Input: [(ai, bi)]i<ϕ(d) I (ai, bi) ∈ LWE
t/q
n [mi]

KP = KP
j,l I (ã′j,l, b̃

′
j,l) = Kj,l ∈ RingLWE

q/q
z̃ [sl2

j ]

Output: (ã′′, b̃′′) I (ã′′, b̃′′) ∈ RingLWE
t/q
z̃ [m(X))]

for l ∈ {0, ..., n− 1} do
āl ←

∑
i ai,lX

i

for j ∈ {0, ..., log q} do
ãj,l ← lth entry of the binary decomposition of āl such that

∑
l<log q ãj,l2n = ãl

ã′′ ← −
∑

j,l ãj,l · ã′j,l
b̃′′ ← b̃−

∑
j,l ãj,l · b̃′j,l

return (ã′′, b̃′′)

The homomorphic decryption procedure produces LWE ciphertexts of dimension n = q/2 equal
to the modulus of the packed ciphertext. This is problematic because on subsequent refreshing
operations, the resulting error bound will become larger than q log q, and the ciphertexts will no
longer be decryptable. Before proceeding, we switch to a smaller modulus which we take to be 2n
for simple composability. The details of the modulus switching procedure and its associated error
bounds are given in Section 2.6.

4 Homomorphic Decryption

The homomorphic decryption procedure takes as input a single Ring-LWE ciphertext (a, b) ∈
RingLWE

t/2n
z̃ [m,β] ⊆ (Rd/2n)2 and the encryption of some function of the secret key z̃ ∈ Rd/2n.

The decryption procedure needs to compute the ring element b− a · z̃ ∈ Rd/2n, and then “round”
the result to ϕ(d) LWE ciphertexts. All this should be done homomorphically, given the encryption
of (some function of) z̃. We can represent the computation of this ring element as an arithmetic
circuit C with inputs in Z2n, but to begin designing such a circuit, we must first consider the
cryptographic registers on which we will be computing. We begin this section with a description
of the registers used in our ciphertext refreshing procedure, to be followed by a description and
analysis of the components of our homomorphic decryption procedure.

4.1 Homomorphic Registers

We use a symmetric/ring variant of the GSW cryptosystem to implement the cryptographic registers
used by the homomorphic decryption procedure, similar to the accumulators of FHEW. Registers

supporting arithmetic modulo 2n are implemented using the GSW
2n/Q
N cryptosystem based on the

Nth cyclotomic ring, for N a power of 2 with 2n|N .

12



We recall that in FHEW, a value v ∈ Z2n is represented by GSW
2n/Q
N (Y v), where Y = Xi is a

primitive 2nth root of unity. In this scheme we take N = 2n, and therefore X is our root of unity.
To reduce redundancy given this choice of parameters, we omit the subscript N when referring
to GSW ciphertexts, writing GSW2n/Q. This choice of parameters is more thoroughly justified
in Section 4.6, but as the homomorphic decryption procedure will produce LWE ciphertexts of
dimension n = N/2, taking N/2 to be the original dimension of the LWE ciphertexts allows us to
omit an additional step of key switching to change dimensions.

These GSW registers support the following operations:

• Initialization (v ← w): uXwG, with u ∈ ZQ, u ≈ Q/2t, and invertible mod Q.

• Increment (v ← v + c): C 7→ C ·Xc

• Addition: GSW2n/Q(uXv)× GSW2n/Q(uXw) = GSW
2n/Q
z (uXv+w).

• Extraction: map the accumulator to an LWE ciphertext.

To support subtraction, we represent a value v ∈ Z2n as a pair (GSW(uXv),GSW(uX−v)).
Addition is computed componentwise: (C0, C

′
0) + (C1, C

′
1) = (C0 × C1, C

′
0 × C ′1). We implement

negation simply by swapping the elements of a pair, and subtraction by combining the two oper-
ations. This gives us cryptographic registers supporting all operations required by our refreshing
algorithm. To avoid explicitly writing these pairs, we define

REG2n/Q
z (v, β) = (GSW2n/Q(uXv),GSW2n/Q(uX−v))

and we will further simplify notation in the following section, for the purposes of detailing our
algorithm.

4.2 Slow Multiplication

The use of the REG scheme restricts our arithmetic circuits to use only the operations described
above. Given the asymmetric error growth of the underlying GSW operations, we must also be
careful in how we design our circuit, as we don’t want both inputs to any addition or subtraction gate
to have already accumulated significant error. For the rest of this section, however, we omit explicit
references to the REG scheme wherever possible, to simplify the presentation of the homomorphic
decryption algorithm. We instead use the notation JcK to denote a register or registers encrypting
value(s) c.

Our goal, then, is to specify an efficient circuit which is parameterized by the input ciphertext
(a, b), meets our restrictions, and outputs an encryption of the desired ring element Jb− a · z̃K that
will then allow each coefficient to be homomorphically rounded to an LWE ciphertext. We discuss
the rounding procedure in Section 4.5. In the next few sections, we specify an arithmetic circuit
computing Jb − a · z̃K, where this circuit takes as input a function of the secret key, Jf(z̃)K, and
outputs Ca,b(Jf(z̃)K) = Jb−a· z̃K. We will start with a comparatively straightforward, but inefficient,
such construction in which we compute a · z̃ homomorphically with a slow multiplication algorithm.

Let l = log n+ 1 and f(z̃) ∈ Zl×ϕ(d)
2n be defined by f(z̃)j,k = z̃k2

j Let ai,j be the jth bit of the

binary decomposition of ai so that ai =
∑l−1

j=0 ai,j2
j . We may express multiplication of z̃k by ai by

13



computing z̃k · ai =
∑l−1

j=0 ai,j z̃k2
j . Then we define

Cai(Jf(z̃)K, k) =
l−1∑
j=0

ai,jJf(z̃)j,kK

to be a circuit computing this multiplication homomorphically using only additions, as the ai,j
values are binary. We may then define a circuit Ca, computing a slow multiplication algorithm
(mod Φd) using these Cai subcircuits, addition, and subtraction gates.

Lemma 4 Let B be the base of the geometric progression defining g in GSW encryption, and let
db = dlogB Qe. There is an algorithm

SlowMult : Rd/2n× REGl×ϕ(d)
z → REGϕ(d)

z

(a, (REGz(f(z̃)j,k, βR))j,k) 7→ (REGz((a · z̃)i, β′))i

where β′ ∈ Õ(βRB
√
ndBd) with overwhelming probability, and requiring Õ(d2) homomorphic addi-

tions and subtractions.

Proof. Multiplication by a constant as described above requires at most l homomorphic addi-
tions. We may compute each of the ϕ(d) coefficients of a · z̃ using at most d constant multiplications
for any coefficient, and therefore SlowMult requires O(d2 · l) homomorphic operations.

To bound the error growth of the algorithm, we use an analysis similar to that of Lemma 11
in Ducas and Micciancio [DM15]. We refer to GSW ciphertexts for convenience in the analysis,
rather than REG, as the error growth will be identical for both components of the register. Let C(i)

denote the GSW ciphertext storing the result of the first i additions, and set D(i) = [D1, ..., DdB ],
the base B decomposition of Ci.

The final sum C after d · l additions can then be written C = [A,A · z̃ + e + uXvG] where

e =
[
D(0),D(1), ...,D(d·l−1)

]
·
(
X(v1)e(1), X(v2)e(2), ..., X(vd·l−1)e(d·l−1)

)
,

where e(i) is the error of a fresh GSW ciphertext (given as input) and vi is an integer. Fact 12 of
[DM15] gives us that

s1

([
D(0),D(1), ...,D(d·l−1)

])
∈ O(B

√
ndBd · l).

As the GSW ciphertexts to be summed are fresh encryptions with noise bound βR, the final error
of any register output by SlowMult is bounded by

β′ = Õ(βRB
√
ndBd).

�
The original FHEW refreshing procedure requires only Õ(n) homomorphic additions per ci-

phertext, so we already see this algorithm offers no improvement over sequential refreshing of d
ciphertexts using FHEW. We will instead use variants of existing fast multiplication algorithms for
the homomorphic computation of a · z̃, using SlowMult as a subroutine.
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4.3 Homomorphic DFT

We briefly recall and introduce notation for the discrete Fourier transform. We denote the discrete
Fourier transform of a length m sequence of elements x ∈ Rm, where ring R has mth principal root
of unity ωm, by x̄i = DFT (x)i =

∑m−1
k=0 xkω

ik
m and its inverse xk = DFT−1(x̄)k =

∑m−1
i=0 x̄iω

−ik
m .

The polynomial product a · z̃ for a, z̃ ∈ Rd/2n may then be computed as

(a ∗ z̃ mod Xm − 1) mod Φd = DFT−1(
1

m
DFT (a) ·DFT (z̃)) mod Φd

provided an mth principal root of unity ωm exists in Rd/2n (and m > 4
3d ≥ deg(a · z̃)).

But to compute the DFT homomorphically, we need to be able to homomorphically compute
multiplication by ω−ikm . If we take ωm ∈ Z2n, each multiplication by ω−ikm requires l homomor-
phic operations per coefficient (as described in Section 4.2). Furthermore, reducing the quadratic
complexity of the DFT requires FFT techniques, recursing to depth logm. At each step of re-
cursion, then, we perform homomorphic operations on registers produced from the last step, with
some increase in error from the previous set of operations. We therefore cannot take advantage
of the asymmetric error growth of the GSW scheme underlying our registers and the error growth
of our algorithm will become quasi-polynomial in n, exceeding the desired polynomial bound on
error overhead. This brings us to the last component of the algorithm, which avoids these scalar
multiplications, and achieves efficient multiplication without sacrificing polynomial error growth.

4.4 Nussbaumer Transform

In order to efficiently compute the polynomial product a · z̃ ∈ Rd/2n, we define a variation of the
Nussbaumer polynomial transform for negacyclic convolution, suited for multiplication of polyno-
mials modulo a power of 3 cyclotomic. Informally, the transform first maps an element a ∈ Rd/2n
to a bivariate polynomial in such a way that it may be represented by a coefficient vector of length
less than ϕ(d), over Rd1−ε/2n. Taking the DFT of this coefficient vector allows us to reduce the
computation of a · z̃ to the pointwise multiplication of two vectors with entries in Rd1−ε/2n. The
resulting vector of smaller polynomial products is then recombined via the inverse DFT and inverse
map to yield a · z̃ ∈ Rd/2n. We now give a more detailed description of the algorithm.

Let d = 3k, m = dε with d ≥ 3m2, and r = ϕ(d)/m = ϕ(d1−ε). To multiply two polynomials,
the transform maps each polynomial to a bivariate polynomial by the isomorphism

ψ : Z2n[X]/(Φd)→ (Z2n[Y ]/(Φd/m(Y )))[X]/(Xm − Y )

a(X) =

ϕ(d)∑
i=0

aiX
i 7→

m−1∑
j=0

r−1∑
i=0

ami+jY
iXj where Y = Xm.

Because ψ(a) and ψ(z̃) have degree at most m − 1 in X, computing ψ(a) · ψ(b) modulo any
polynomial of degree greater than 2m − 2 in X prior to reducing by Xm − Y will not change the
result. We also note that Y is a principal d/mth root of unity in Z2n[Y ]/(Φd/m(Y )), and therefore

Y d/3m2
= Y 3k(1−2ε)−1

is a 3mth root which can also be shown to be principal.
This allows us to efficiently compute ψ(a)·ψ(z̃) first modulo X3m−1 by pointwise multiplication

of the respective DFTs, followed by a reduction modulo (Xm − Y ). Since the “points” of the
DFT pointwise multiplication step are elements of Z2n[Y ]/(Φd/m(Y )), these multiplications can be
performed by recursive application of the transform or SlowMult.
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Without recursion, this gives a key preprocessing function

f(z̃) = (1, 2, 4, ..., n)⊗ [
1

3m
DFT (ψ(z̃))i]i<3m ∈ (Rd/m/2n)l×3m (11)

where the DFT evaluates ψ(z̃) at root of unity ω3m = Y d/3m2
.

Let āi = DFT (ψ(a))i be the ith of the 3m degree r polynomials produced by the Nussbaumer
transform. Let Cāi denote a circuit computing SlowMult of known polynomial āi (of degree < r)
with an encrypted polynomial given as input (along with encryptions of all power of 2 multiples of
the polynomial’s coefficients, as in Section 4.2). Let CF ∗ be a circuit homomorphically computing
the inverse DFT for length 3m vectors of encrypted polynomials in Rd/m/2n. Then we may specify
a circuit computing Ja · z̃K

Ca(Jf(z̃)K = CF ∗([Cāi(Jf(z̃)(·),iK)]i) mod Xm − Y = Ja · z̃K.

Jb− a · z̃K is then computed by negating each of the registers REG((a · z̃)i) and incrementing each
one by the corresponding bi, computing Ca,b(Jf(z̃)K) = −Ca(Jf(z̃)K) + b.

The map ψ is purely representational, so requires no computation. The forward and inverse DFT
steps require evaluating polynomials at the roots of unity ωi3m = Y id/3m2

, which is implemented
by rotation of the coefficient vectors with negation, addition, and subtraction to implement the
reduction in Rd/m/2n. SlowMult was defined using only the operations of addition and subtraction,
and the final reduction modulo Xm − Y similarly only requires additions and subtractions. This
circuit then satisfies our criteria, allowing for the homomorphic computation of a · z̃ without use of
multiplication gates. Algorithm 4 gives a summary of the RingDecrypt procedure.

The Nussbaumer transform admits a recursive algorithm that gives tradeoffs between runtime
and error growth of the cryptographic registers. For an initial analysis, and to demonstrate the core
idea of our refreshing algorithm, we state Lemma 5 considering the simplest form of the RingDecrypt
procedure, using no recursion. We defer consideration of the recursive formulation to Section 4.7.

Lemma 5 Let KR be a refreshing key

KR = KR
i,j,k = REG2n/Q

z ([f(z̃)i,j,k]) = REG2n/Q
z

[
1

3m
DFT (ψ(z̃))i,k2

j , βR

]
(from Eq. 11)

where DFT (ψ(z̃))i,k indicates the kth coefficient of the ith polynomial output by the Nussbaumer
transform (giving i < 3m, j < l, k < r). For every 0 < ε < 1

2 , there is an algorithm RingDecrypt

that on input KR and RingLWE ciphertext (a, b) ∈ RingLWE
2/2n
z̃ [m,β] under z̃ ∈ Rd/2n, outputs

ϕ(d) ciphertexts
[
REG

2n/Q
z (m̃i, β

′)
]
i<ϕ(d)

with β′ ∈ Õ
(
βRB

4(ndB)3.5dε+.5
)
, and requiring Õ(d2−ε)

homomorphic operations.

Proof. Let RingDecrypt be as specified in Algorithm 4. We are given (a, b) in the clear, and so
we omit the contribution to the complexity of the algorithm from the Nussbaumer transform of a,
as this will be dominated by the inverse transform that must be computed homomorphically.

The SlowMult subroutine is used to multiply the 3m pairs of (degree less than r) polynomials
produced by the Nussbaumer transform. From Lemma 4, each multiplication requires O(r2 · l)
homomorphic operations, so that SlowMult contributes O(3mr2 · l) homomorphic operations to the
algorithm and increases the error by a factor of O

(
B
√
ndBd · l

)
.
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Algorithm 4 RingDecrypt((a, b),KR)

Input: (a, b) I (a, b) ∈ RingLWE
2/2n
z̃ [m(X), β]

KR = KR
i,j,k I KR

i,j,k ∈ REG
2n/Q
z [ 1

3mDFT (ψ(z̃))i,k)2
j , βR]

Output: [JciK]i<ϕ(d) I JciK ∈ REG
2n/Q
z [(b− a · z̃)i, β′]

âi ← [ψ(a)]i I âi ∈ Rd/m/2n
āi ← DFT (ψ(a))i I āi ∈ Rd/m2n
for i ∈ {0, ..., 3m} do

C̄i ← SlowMult(āi,KRi ) I C̄i ∈
[
REG

2n/Q
z [DFT (ψ(a · z̃))i]j

]
j<r

[Ĉk]k<3m ← DFT−1([C̄i]i<3m) I Ĉk ∈
[
REG

2n/Q
z [ψ(a · z̃)k]j

]
j<r

for k ∈ {m, ..., 2m− 1} do {reduction modulo Xm − Y }
Ĉk ← ĈkY mod Φd/m

for k ∈ {2m, ..., 3m− 1} do
Ĉk ← ĈkY

2 mod Φd/m

for i ∈ {0, ...,m− 1} do
for j ∈ {0, ..., r − 1} do

[Cmj+i]← (Ci,j + Cm+i,j + C2m+i,j)

I Cmj+i ∈ REG
2n/Q
z [(a · z̃)mj+i]

Ci ← −Ci ·Xbi I Ci ∈ REG
2n/Q
z [m̃i, β

′ ∈ Õ
(
βRB

4(ndB)3.5d.5+ε
)
]

return [Ci]i<ϕ(d)

The inverse DFT step of the inverse Nussbaumer transform requires the evaluation of 3m
degree r polynomials at powers of the root of unity Y d/3m2

. These evaluations are taken modulo
Φd/m(Y ) = Y r + Y r/2 + 1, and therefore multiplications by Y i amount to rotations

aY v 7→ aY v+i mod d/m, for v + i < r and v + i > d/m

with negation and subtraction of the overflow terms

aY v 7→ −aY v+i mod r − aY v+i+ r
2

mod r when r ≤ v + i < d/m.

Then we see that for a polynomial p(Y ) ∈ Rd/m/2n, we will only need to compute pv − pv+ r
2

for

0 ≤ v < r/2 to produce all values required for the coefficients of p(Y ) · Y i for any i, and therefore
these evaluations require O(mr) homomorphic operations.

The noise growth for this step may be analyzed as in Lemma 4, but without the independence
assumption. Let

A = GSW2n/Q
z [a, β] = [A,A · z + e + uXaG]

and B = GSW2n/Q
z [b, β] = [B,B · z + e′ + uXbG]

be the relevant register entries. Then A+B = [C,C · z + e′′ + uXa+bG] will have error

e′′ = [A1, ...,AdB ] ·Xbe′, where s1 ([A1, ...,AdB ]) ∈ O(dBBn).
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Each of the 3m components of the inverse DFT are then computed as described in Section 4.3,
with 3m additions of polynomials with degree less than r. These summations require a total of
O((3m)2r) homomorphic operations and result in registers with error bounded by O(βRdBmBn).

The final reduction modulo Xm−Y as described in Algorithm 4 requires a number of additions
and subtractions linear in ϕ(d). Each register, however, will only be involved in constant number
of homomorphic operations. Following the analysis above, this gives an additional error growth
factor of O(dBBn).

The final complexity of the RingDecrypt algorithm then, in terms of homomorphic operations,
is

O((3m)2r + 3mr2l) = Õ(d1+ε + d2−ε)

and the algorithm outputs registers with error Õ
(
βRB

4(ndB)3.5dε+.5
)
. Recall that in order to have

the necessary 3mth root of unity, we need d ≥ 3m2 = 32kε+1. Therefore ε ≤ 1
2 −

1
2k , forcing the

multiplication step to dominate the DFT step with complexity Õ(d2−ε).
�

Once we have performed the RingDecrypt procedure, it remains to round the resulting vector of
ciphertexts to yield ϕ(d) refreshed LWE ciphertexts.

4.5 msbExtract

Once we have computed the sequence of registers [REG
2n/Q
z (bi − (a · z̃)i)]i<ϕ(d), we must homo-

morphically perform the rounding step of decryption and recover a sequence of reduced-error LWE
ciphertexts encrypting each mi. This can be accomplished as in FHEW, by applying the msbExtract
procedure described in Algorithm 5 to each of the ϕ(d) registers produced by RingDecrypt.

We note that our msbExtract procedure differs somewhat from that of FHEW, in that we omit
the step of key switching. In FHEW, the procedure takes as additional input a switching key. This
key enables the LWE encryptions under key ((z)) that are recovered at an intermediate stage of the
rounding algorithm to be converted to LWE encryptions under the initial key s. Choosing our REG
key z such that ((z)) = s obviates the need for key switching, as the intermediate LWE ciphertexts
will already be encrypted under the proper key. This choice of key requires assuming the security
of RingLWE with binary secrets, as assumed in [CGGI16], but this assumption may be removed at
the cost of the additional key switching step.

Lemma 6 Let m̃ = min+ ẽ = bi− (a · z̃)i be the ith coefficient of a noisy RingLWE message. There

is an algorithm msbExtract that, given a cryptographic register of the form REG
2n/Q
z (m̃, β) as input,

with ((z)) = s, outputs a LWE ciphertext LWE
4/Q
s (mi,

√
nβ).

Proof. Let C = GSW
2n/Q
z (m̃, β) be the positive component of the REG input. Then the second

row of C ·Xn/2 is a RingLWE
2n/Q
z encryption

[a1, b1] = [a1, a1 · z + e1 + uXm̃+n/2].

Noting that

[((a1)), ((b1))] = [((a1)),Ma1 · ((z)) + ((e1)) + u((Xm̃+n/2))]

18



and our target is a ciphertext of the form [a,a · s + e+ Q
t mi], we let t = [−1,−1, ...,−1] ∈ Z2n

Q and
compute

[at, b′] = t · [Mã, ((b1))] = t · [Mã,Mã · ((z)) + ((e1)) + u((X))m̃+n/2].

The term t · u((X))m̃+n/2 = −u for −n/2 < min+ e < n/2 and u otherwise, so

[a, b] = [0, u] + [a, b′] = [a,a · s + t · ((e1)) + 2umi]

when the encryption error |ẽ| < n
2 . We took u ≈ Q/2t, and so b = a · s + e′+ Q

t mi, for e′ ≤ β‖t‖ =
β
√
n, as desired. �

Algorithm 5 msbExtract(R)

Input: R I R ∈ REG
2n/Q
z [m̃]

Output: (a, b) I (a, b) ∈ LWE
4/Q
s [mi]

C← R0 I C ∈ GSW
2n/Q
z [m̃]

[a1, b1]← [0, 1, 0, ..., 0] ·CXn/2 I (a1, b1) ∈ RingLWE
2n/Q
z [uXm̃+n/2]

[at, b]← [0t, u] + [−1,−1, ...,−1] · [Mã, ((b1))]

I (a, b) ∈ LWE
4/Q
((z)) [mi,

√
nβ]

return (a, b)

4.6 Refreshing Algorithm

We now present the amortized bootstrapping algorithm from start to finish and give an analysis of
its runtime and error growth.

The algorithm takes as input ϕ(d) ciphertexts for d = 3k, under the same key s ∈ Znq and with
error at most ∆, to be simultaneously refreshed. It also requires key material for the PackLWE and
RingDecrypt procedures, described in their respective sections, but recalled here for reference. The
packing key KP = KP

j,l is required to pack the LWE ciphertexts into a single RingLWE ciphertext
under a new key z̃ ∈ Rd/q, and is given by

KP
j,l = RingLWE

q/q
z̃ (sl2

j , βP ).

The refreshing key KR = KR
i,j,k encrypts a function of the RingLWE secret f(z̃) under a REG key

z ∈ R2n/Q, and is required for the homomorphic decryption of the resulting RLWE ciphertext. Its

entries are given by KR
i,j,k = REG

2n/Q
z

(
1

3mDFT (ψ(z̃))i,k)2
j , βR

)
.

Theorem 2 For every 0 < ε < 1
2 , there exists an algorithm Refresh that, on the input described

above, produces ϕ(d) LWE ciphertexts with error Õ
(
‖s‖+ q

Q · βR(Bn)4d3.5
B dε+.5

)
, and requires

Õ(d2−ε) homomorphic operations.

Proof. From Lemma 5, we already have that the homomorphic complexity of RingDecrypt is
Õ(d2−ε), and this dominates the complexity of RingDecrypt.
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The correctness of this refreshing scheme will rely on the error bounds at two stages of the
algorithm. For msbExtract to recover the correct mi’s from the output of RingDecrypt, the error of
each m̃i = 2n

t mi + e must not exceed n
t (for t = 2, the message space mi).

From the error bounds of Theorem 3 and Lemma 2, we have that the ciphertext output

by ModSwitchR will have error bounded by O
(

2n
q (
√
d∆ +

√
dn log qβP ) + ω(

√
d log d) · ‖z̃‖

)
. To

bound this by n/2, we restrict z̃ to ‖z̃‖ = O(
√
d) . Then so long as the LWE ciphertext error ∆ sat-

isfies ∆ < O( q√
d
), d
√

log d < O(n), and d2n < O( q2

log q ), the packed ciphertexts will be decryptable

with high probability.
We also need to guarantee that the ciphertexts output by Refresh will have error small enough

that this scheme is composable. From the bound above, this requires us to bound the error of the

ciphertexts output by Refresh by β′ = Õ
(
‖s‖+ q

Q · βR(nB)4d3.5
B dε+.5

)
< q√

d
. Letting s be a binary

secret, (which does not reduce hardness of the associated LWE instance, as shown in [BLP+13]),
this gives us that Q

(dB)3.5
> βRn

4
√

log nB4d1+ε, so taking B = Θ(1) and Q > Õ(βRn
4d1+ε(log d)3.5)

will guarantee correct decryption with high probability.
�

Algorithm 6 Refresh([(ai, bi)]i<ϕ(d))

Input: [(ai, bi)]i<ϕ(d) I (ai, bi) ∈ LWE
2/q
s [mi]

Output: [(ai, bi)]i<ϕ(d) I (ai, bi) ∈ LWE
4/q
s [mi]

(a(1), b(1))← PackLWE([(ai, bi)]i<ϕ(d)) I (a(1), b(1)) ∈ RingLWE
2/q
z̃ [m(X)]

(a(2), b(2))← R-ModSwitchR(a(1), b(1)) I (a(2), b(2)) ∈ RingLWE
2/2n
z̃ [m(X)]

[Ci]i<ϕ(d) ← RingDecrypt(a(2), b(2)) I Ci ∈ REG
2n/Q
z [m̃i]

[(a
(3)
i , b

(3)
i )]i<ϕ(d) ← [msbExtract(Ci)]i<ϕ(d) I (a

(3)
i , b

(3)
i ) ∈ LWE

4/Q
s [mi]

[(ai, bi)]i<ϕ(d) ← [ModSwitch(a
(3)
i , b

(3)
i )]i<ϕ(d) I (ai, bi) ∈ LWE

4/q
s [mi]

return [(ai, bi)]i<ϕ(d)

4.7 Recursive optimization

In this section we show that a recursive formulation of the Nussbaumer transform can improve the
complexity of the RingDecrypt algorithm, at the cost of an increase in the error.

The Nussbaumer transform as described in Section 4.4 can be thought of as a reduction from
a single multiplication of two polynomials in Z2n[X]/(Φd(X)) to 3m multiplications of pairs of
polynomials in Z2n[Y ]/(Φd/m(Y )). We may recursively apply this transformation ρ times, provided
we have a 3mth root of unity in the ring Z2n[Y ]/(Φd/mρ(Y )), which will be the case as long as

d/mρ ≥ 3m. ε is fixed and so this bounds the recursive depth of the algorithm by ρ < 1
ε − 1.

Theorem 3 The recursive RingDecryptρ algorithm, with constant parameter ε and recursive depth

ρ < 1
ε − 2, requires Õ(3ρd2−ρε + 3ρd1+ε) homomorphic operations and yields an error growth of

Õ(B3ρ+1(ndB)3ρ
√
ndBd1+ρε).

Proof. Because the transform reduces a single multiplication of degree (at most) ϕ(d) polyno-
mials to 3m multiplications of degree (at most) ϕ(d)/m polynomials, after ρ recursive calls we will
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still need to compute (3m)ρ multiplications of degree ϕ(d)/mρ. We do this with the SlowMult algo-
rithm as before. From Lemma 4, the complexity of one of these multiplications, in terms of register
operations, will be Õ(( d

mρ )2). Therefore the contribution from the multiplications to the complex-

ity of the recursive algorithm will be Õ((3m)ρ( d
mρ )2) = Õ(3ρd2−ρε). When we take ρ = 1

ε − 2, the

complexity will be Õ(31/εd1+2ε).
Each recursive application also requires a DFT of the polynomials produced by the map ψ.

Keeping ε constant at each step fixes the dimension of each DFT to 3m = 3dε. After ρ applications
of the transform we have reduced our polynomials to elements of Z2n[Y ]/(Φd/mρ(Y )). From the
analysis of Lemma 5, we then have that a DFT at depth ρ will require O((3dε)2d1−ρε) operations.
There will be (3dε)ρ−1 such DFTs at depth ρ, so the contribution of the DFTs to the complexity
will be

O

(
ρ∑
i=1

(3dε)i−1(3dε)2d1−iε

)
= O

(
d1+ε

ρ∑
i=1

3i

)
= O(d1+ε3ρ).

The total homomorphic operation complexity of the recursive formulation, for fixed ε and depth ρ
is then Õ

(
3ρd2−ρε + d1+ε3ρ

)
. Considering again the case where we recurse to the maximum depth,

fixing ρ = 1
ε − 2, we have a complexity of Õ(31/εd1+2ε + d1+ε31/ε) = Õ(31/εd1+2ε).

We now consider the effect of recursion on the error growth in the RingDecrypt algorithm.
From Lemma 4, we have that the error grows by a factor Õ(B

√
ndBd) for degree ϕ(d) polynomial

multiplication. As the degree of the polynomials requiring SlowMult multiplication is reduced to
ϕ(d1−ρε) in the recursive version of the algorithm, the error growth will similarly be reduced to
Õ(B

√
ndbd1−ρε).

Lemma 5 gave a bound on error following the DFT step of O(β(Bdbn)3dε), when the inputs are
registers of error β. The error growth compounds with each inverse DFT so that the total error
contribution from all DFTs can be bounded by O

(
βR((Bdbn)3dε)ρ

)
, increasing exponentially in

the recursive depth.
Combining the error bounds for the multiplication and DFT steps of RingDecryptρ gives a final

error bound of Õ
(
B3ρ+1(ndB)3ρ

√
ndBd1+ρε

)
.

�
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ume 9230 of LNCS, pages 119–135, Guadalajara, Mexico, August 23–26, 2015. Springer,
Heidelberg, Germany.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 868–886, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Heidelberg, Germany.

[BV14a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[BV14b] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Moni Naor, editor, ITCS 2014, pages 1–12, Princeton, NJ, USA, January 12–14, 2014.
ACM.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

22



[CZ17] Long Chen and Zhenfeng Zhang. Bootstrapping fully homomorphic encryption with ring
plaintexts within polynomial noise. In Tatsuaki Okamoto, Yong Yu, Man Ho Au, and
Yannan Li, editors, Provable Security, pages 285–304, Cham, 2017. Springer Interna-
tional Publishing.
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A FHEW NAND computation

The refreshing scheme of [DM15], as well as the algorithm Refresh of this work, are tailored to the
refreshing of ciphertexts output by the FHEW NAND computation, and we paraphrase the NAND
computation here for reference. FHEW gives an algorithm for the homomorphic computation of the
NAND of two messages m0,m1 ∈ Z2, encrypted in LWE ciphertexts. The procedure, HomNAND,

takes as input two ciphertexts (LWE
4/q
s (m0, q/16), LWE

4/q
s (m1, q/16)), and outputs a ciphertext

LWE
2/q
s (m0 ∧̄m1, q/4). Note that even though the messages m0 and m1 are bits, the message space

of the LWE ciphertext is 4 rather than 2.

Let LWE
4/q
s (m0, q/16) = (a0, b0) and LWE

4/q
s (m1, q/16) = (a1, b1) HomNAND computes

(a, b) = (−a0 − a1,
5q

8
− b0 − b1) = (−a0 − a1, s · (−a0 − a1)− q

4
(m0 +m1)− e0 − e1 +

5q

8
)
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so that

b− a · s =
q

4
(−m0 −m1)− e0 − e1 +

5q

8

=
q

4
(2− 2m0m1 +

1

2
− (m0 −m1)2)− e0 − e1

= ±q
8
− e0 − e1 +

q

2
(1−m0m1)

and therefore (a, b) is a LWE encryption of (1−m0m1) = m0 ∧̄m1 with error < q
4 .

25


