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Abstract

Trapdoor functions (TDFs) are a fundamental primitive in cryptography. Yet, the current
set of assumptions known to imply TDFs is surprisingly limited, when compared to public-key
encryption. We present a new general approach for constructing TDF's. Specifically, we give a
generic construction of TDF's from any Hash Encryption (Déttling and Garg [CRYPTO ’17))
satisfying a novel property which we call recyclability. By showing how to adapt current Com-
putational Diffie-Hellman (CDH) based constructions of hash encryption to yield recyclability,
we obtain the first construction of TDFs with security proved under the CDH assumption.
While TDFs from the Decisional Diffie-Hellman (DDH) assumption were previously known, the
possibility of basing them on CDH had remained open for more than 30 years.

1 Introduction

Trapdoor functions (TDFs) are a fundamental primitive in cryptography, historically pre-dating the
complexity-based development of public key encryption (PKE) [DH76, RSA78]. Informally, TDFs
are a family of functions, where each function in the family is easy to compute given the function’s
index key, and also easy to invert given an associated trapdoor key. The security requirement is
that a randomly chosen function from the family should be hard to invert without knowledge of a
trapdoor key.

A salient difference between TDF's and PKE lies in their inversion (decryption) algorithms: while
the inversion algorithm of a TDF recovers the entire pre-image in full, the decryption algorithm
of a PKE only recovers the corresponding plaintext, and not necessarily the randomness. This
full-input recovery feature of TDFs is useful in may applications. For example, suppose we have
two image points y; := F(iky,z1) and ys := F(ike, z2) of a trapdoor function F, and we want to
convince Alice — who is given both y; and yo but only a trapdoor key tk; for ik; — that 1 = xs.
This will be easy for Alice to do herself: retrieve x1 from y; using the trapdoor key tk; and check
whether y; = F(ikq, z1) and yo = F(ikg, z1).} This is a very useful property, especially in the context
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'"Here we also need to assume that certifying whether a given point is in the domain of a trapdoor function can
be done efficiently.



of chosen-ciphertext (CCA2) security, and is in fact the main reason behind the success of building
CCA2-secure PKE in a black-box way from various forms of TDFs [PWO08, RS09, KMO10]. In
contrast, enabling this technique based on PKE [NY90] requires the use of expensive non-interactive
zero knowledge proofs [BFM90, FL.S90], which in turn require strong assumptions and lead to non-
black-box constructions.

The deterministic structure of TDFs, however, comes with a price, making the construction
of TDFs more challenging than that of PKE. This belief is justified by an impossibility result of
Gertner, Malkin and Reingold [GMRO1] showing that TDFs cannot be built from PKE in a black-
box way. As another evidence, while it was known from the 80’s how to build semantically-secure
PKE from the Decisional Diffie-Hellman (DDH) assumption [Yao82, GMS82, EIG84], it took two
decades to realize TDFs based on DDH [PWO08].

Despite the fundamental nature of TDFs and extensive research on them [BHSV98, BBOO07,
PWO08, BFOR08, RS09, KMO10, FGK*10, Weel2] a long-standing question has remained open:

Can trapdoor functions be based on the Computational Diffie-Hellman (CDH) Assumption?

The main difficulty of the above question is that all known DDH-based constructions of TDF's,
e.g., [PW08, FGK™10], exploit properties of DDH, such as pseudorandomness of low rank matrices
of group elements, which do not hold in the CDH setting (see Section 1.1).

Apart from being a natural question, it has the following theoretical motivation: since we know
that TDFs are not necessary in a black-box sense for PKE [GMRO1], there may be computational
assumptions that imply PKE but not TDF's. Thus, it is important to understand whether TDF's can
be obtained from all existing computational assumptions that imply PKE. This provides insights
into the hardness nature of TDFs as well as our computational assumptions.

1.1 Lack of CDH-Based Techniques for TDF

Diffie-Hellman related assumptions (even DDH) do not naturally lend themselves to a TDF con-
struction. The main reason why it is more difficult to build TDFs from such assumptions, compared
to, say, factoring related assumptions, is that we do not know of any generic trapdoors for the dis-
crete log problem. Indeed, a long standing open problem in cryptography is whether PKE can be
based on the sole hardness of the discrete log problem. To see how this makes things more difficult,
consider ElGamal encryption: to encrypt a group element g, under a public key (g, g1), we return
(9", 9% - gm), where r is a random exponent. The decryption algorithm can recover g,, but not r
because computing r is as hard as solving the discrete log problem.

Known DDH-based TDF constructions [PW08, FGK*10] get around the above obstacle by
designing their TDFs in such a way that during inversion, one will only need to solve the discrete
log problem over a small space, e.g., recovering a bit b from g°. The main idea is as follows: the
index key ik of their TDF is gM, where ¢ is a generator of the group G of order p and M € Ly~
is a random n x n invertible matrix and ¢M denotes entry-wise exponentiation. Let tk := M~! be
the trapdoor key. Using ik, the evaluation algorithm on input x € {0,1}" may use the algebraic
property of the group to compute y := ¢M* € G”. Now using tk and y one can compute g* € G”,
hence retrieving x.

To argue about one-wayness, one uses the following property implied by DDH: the matrix gM is
computationally indistinguishable from a matrix ¢M!, where M; is a random matrix of rank one. If



the index key is now set to g™ and if we have 2" > p, then even an unbounded adversary cannot
retrieve the original x from y. This argument is used to establish one-wayness for the TDF.

Unfortunately, the above rank indistinguishability property used to prove one-wayness is not
known (and not believed) to be implied by CDH. Thus, designing TDFs based on CDH requires
new techniques.

Finally, we mention that even from the Computational Bilinear Assumption [BB04] (i.e., pairing-
based CDH) no TDF constructions are known. The closest is a result of Wee [Weel0], showing
that trapdoor relations, which are much weaker than TDFs, can be built from CDH. Roughly,
trapdoor relations are a relaxed version of TDFs, in that the function might not be efficiently
computable on individual points but one may sample efficiently a random input element together
with its corresponding image.

1.2 Our Results and Techniques

We give the first construction of TDFs under the CDH assumption. Our construction is black-
box and is obtained through a general construction of TDF's from a primitive we call a recyclable
one-way function with encryption (OWFE), which we show can be realized under CDH.

OWFE notion. An OWFE is described by a one-way function f,,: {0,1}" — {0,1}”, where pp
is a public parameter, together with encapsulation/decapsulation algorithms (E,D). Specifically,
E takes as input pp, an image y € {0,1}” of fyp, an index i € [n] and a selector bit b € {0,1},
and produces an encapsulated ciphertext ct and a corresponding key bit e € {0,1}. The algorithm
D allows anyone to retrieve e from ct using any pre-image x of y whose ith bit is b. For security,
letting y := f,p(x), we require that if (ct,e) & E(pp,y, (,b)) and x; # b, then even knowing x
one cannot recover e from ct with a probability better than % + negl()), where \ is the security
parameter. That is, for any x € {0,1}", i € [n], we have (x,ct,e) = (x,ct,€e'), where € & {0,1},
(ct,e) & E(pp, f(pp,x), (i,1 — x;)) and = denotes computational indistinguishability. Our OWFE
notion is a weakening of the chameleon-encryption notion [DG17b] in that we do not require f to
be collision resistant. Additionally, our notion requires only selective security in the sense that the
security holds for a random x (which should be chosen before seeing the public parameter), while
chameleon encryption requires security even for adversarially chosen x. The following is a variant
of the CDH-based construction of [DG17b]. This modification to [DG17b] has been made so as to
enhance it with the recyclability property described later.

CDH-based instantiation of OWFE [DG17b]. Let G be a group of prime order p. The public
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and e := HC(y”), where HC is a hardcore bit function. The function D is now derived easily.
This construction differs from [DG17b] a bit. However, the proof of security is very similar and is
provided in Appendix A for completeness.

Recyclability. Our recyclability notion asserts that the ciphertext part output, ct, of the key
encapsulation algorithm E is independent of the corresponding image input part y. That is, letting
E; and Es refer to the first and second output of E, for any values of y; and y», we always have
Ei(pp,y1, (,0); p) = E1(pp,y2, (i,b);p). It is easy to verify that the above CDH-based OWFE
satisfies this property. Thus, we may drop y as an input to E; and obtain the following:

Property 1. Letting x € {0,1}", x; = b, ct := E1(pp, (4,0); p) and y := f(pp,x) we have
D(pp, x, ct) = Ea(pp, Y, (i, b); p).

1.3 Sketch of our OWFE-Based Construction and Techniques

Let (K, f,E,D) be a recyclable OWFE scheme.? Our TDF construction is based on a new technique
that we call bits planting. Briefly, the input X to our TDF consists of a domain element x € {0,1}"
of f(pp, ) and a blinding string b € {0,1}"*", for some r that we will specify later. The output Y is
comprised of y := f(pp, x), as well as a matrix of bits in which we copy all the bits of b in the clear
but in hidden spots determined by x; we fill up the rest of the matrix with key bits that somehow
correspond to bit-by-bit encryption of x under y. To an adversary, the matrix is “unrevealing,”
with no indicative signs of what spots corresponding to the blinding part — which contain b in the
clear. However, using our designed trapdoor, an inverter can pull out both x and b from Y with all
but negligible probability.

Warm-up construction. We first give a warm up construction in which our inversion algorithm
only recovers half of the input bits (on average). Our TDF input is of the form (x,b) € {0,1}" x
{0,1}"™. This warm-up construction contains most of the ideas behind the full-blown construction.

e Key generation: The trapdoor key is tk := (ghfjjjjjgz:?) a matrix of randomness values, and

the index key is ik := pp, (22?::2;2?), formed as:
o (Ctl,O := E1(pp, (1,0); p1,0), - - -, Ctn0 == E1(pp, (n,o);Pn,o)>
’ ’ Ctl,l = El(ppa (17 1)? pl,l)a e 7Ctn,1 = El(ppa (n7 1)7 p'fb,l) ‘

cty,1,...,Ctn,1

by---b, € {0,1}"). Set y := f(pp,x). For i € [n] set M; as follows:

M, = <D(pp,|;<', Cti,O)) * <E2(pp,y, ZaO)SPi,O)> T

= (o) *
“ " \D(pp,x,ct;1) E2(pp, Y,

2K is the public-parameter generation algorithm. See Definition 3.1.

e Evaluation F(ik, X): Parse ik := pp, <Ct1’0""’Ct"’O) and parse the input X as (x € {0,1}", b :=
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The matrix M; is computed using the deterministic algorithm D and the equalities specified
as = follow by Property (1).

Return Y := (y, My||...||M,).

e Inversion F1(tk,Y): Parse Y := (y,My]|...[|M,) and tk := (51077 0m0). Set
Ea2(pp, Y, (1,0);p1,0); - - - E2(pPP, Y5 (7, 0); pn0)
M/ M/ ::<2 y Yo\ Yy MLU /> 9 ) ] ; . 2
( 1|| H n) E2(PP>Y»(171)SP1,1)7---7E2(Pp>y7 (na 1)7pn,1) ( )

Output (x,b := by ...by,), where we retrieve x; and b; as follows. If M;’l = M;; and M;72 # M; 2
(where M; ; is the first element of of M;), then set x; := 0 and b; := M; 5. If I\/Ig,1 # M; 1 and
M;,z = M; 2, then set x; := 1 and b; := M; ;. Else, set x; := L and b; := L.

One-wayness (sketch). We show (ik,Y) =

Vo (Ez(pp,y7(1,0);p
T \Ea(ppsy, (L 1)

(ik, Ygim), where (ik,Y) is as above and

1,0)7 ey EQ(ppa Y, (na 0)7 pn,O)) )
1,1)s--->Ea(pp,y, (1,1); pn,1)

Noting that we may produce (ik, Ygin,) using only pp and y, the one-wayness of f(pp, -) implies it is
hard to recover x from (ik, Ygim), and so also from (ik,Y).

Why (ik,Y) = (ik, Ysim)? Consider Ygim,1, whose first column is the same as Y, and whose

subsequent columns are the same as Y. We prove (x, ik, Y) = (X, 1K, Ysim,1); the rest will follow using
a hybrid argument.
Letting My be formed as in Equations 1, to prove (x, ik, Y) = (x, ik, Ysim 1) it suffices to show

E1(pp,y, (1,0); p1,0) Ei(pp, (1,0); p1,0)\ (E2(pp,y, (1,0); p1,0)
% ( E1(pp, (1,1);p1,1) > M =x, <E1(PP7 (1, 1)%01,1)) ’ <E2(PP,)’; (1, 1)%P1,1)> ' ®)

We prove Equation 3 using the security property of OWFE, which says

(%, E1(pp, (1,1 —x1); p),b") = (x,Ex1(pp, (1,1 — x1); p), E2(pp,y, (1,1 = x1); p)) » (4)

llle

e

where b/ & {0,1} and p is random. We give an algorithm that converts a sample from either
side of Equation 4 into a sample from the same side of Equation 3. On input (x,cti, bi), sample

$
(Ct27 b2) — E(ppv Y, (17 Xl)) and
e if x; =0, then return x, (&2 ), (Ef );

e clse if x; = 1, then return x, (Eg ), <E;)
The claimed property of the converter follows by inspection. Finally, we mention that the argument
used to prove Equation 3 is similar to a previous technique used by Brakerski et al. [BLSV18] to
build circularly-secure PKE.

Correctness. F~1 recovers on average half of the input bits: F~! fails for an index i € [n]
if b; = Ea(pp,y, (4,1 — Xi); pi,1—x,)- This happens with probability % because b; is a completely
random bit.



Boosting correctness. To boost correctness, we provide r blinding bits for each index 7 of
x € {0,1}"™. That is, the input to the TDF is (x,b) € {0,1}" x {0,1}"™. We will also expand ik by
providing r encapsulated ciphertexts for each position (i,b) € [n] x {0,1}. This extra information
will bring the inversion error down to 27". We will show that one-wayness is still preserved.

Hardcore bits. Having a TDF, we may use standard techniques to derive hardcore functions [GL89].
In Section D we show more direct ways of doing so.

On the role of blinding. One may wonder why we need to put a blinding string b in the TDF
input. Why do not we simply let the TDF input be x and derive multiple key bits for every index
1 of x by applying D to the corresponding ciphertexts provided for that position ¢ in the index key
ik; the inverter can still find the matching bit for every index. The reason behind our design choice
is that by avoiding blinders, it seems very difficult (if not impossible) to give a reduction to the
security of the OWFE scheme.

1.4 CCA2 Security

Rosen and Segev [RS09] show that an extended form of one-wayness for TDFs, which they term
k-repetition security, leads to a black-box construction of CCA2-secure PKE. Informally, a TDF
is k-repetition secure if it is hard to recover a random input X from F(iky, X),. .., F(ikg, X), where
ik1, ..., ikg are sampled independently. They show that k-repetition security, for k € ©()), suffices
for CCA2 security.

We give a CCA2 secure PKE by largely following [RS09], but we need to overcome two problems.
The first problem is that our TDF is not k-repetition secure, due to the blinding part of the input.
We overcome this by observing that a weaker notion of k-repetition suffices for us: one in which
we should keep x the same across all k evaluations but may sample b freshly each time. A similar
weakening was also used in [Pei09].

The second problem is that our inversion may fail with negligible probability for every choice
of (ik,tk) and a bit care is needed here. In particular, the simulation strategy of [RS09] will fail if
the adversary can create an image Y, which is a true image of a domain point X, but which the
inversion algorithm fails to invert. To overcome this problem, we extend the notion of security
required by OWFE, calling it adaptive OWFE, and show that if our TDF is instantiated using this
primitive, it satisfies all the properties needed to build CCA2 secure PKE. However, we leave open
the problem of realizing adaptive OWFE from CDH.

1.5 Discussion

Black-box power of chameleon encryption and related primitives. Our work is a contri-
bution toward understanding the black-box power of the notion of chameleon encryption. Recent
works [DG17b, DG17a, BLSV18] show that chameleon encryption (and its variants) may be used
in a non-black-box way to build strong primitives such as identity-based encryption (IBE). The
work of Brakerski et al. [BLSV18] shows also black-box applications of (a variant of) this notion,
obtaining in turn circularly-secure and leakage-resilient PKE from CDH. Our work furthers the
progress in this area, by giving a black-box construction of TDFs.



Related work. Hajiabadi and Kapron [HK15] show how to build TDFs from any reproducible
circularly secure single-bit PKE. Informally, a PKE is reproducible if given a public key pk/, a
public/secret key (pk,sk) and a ciphertext ¢ := PKE.E(pk’,b’;7), one can recycle the randomness
of ¢ to obtain PKE.E(pk, b;r) for any bit b € {0,1}. Brakerski et al. [BLSV18] recently built a
circularly secure single-bit PKE using CDH. Their construction is not reproducible, however. (The
following assumes familiarity with [BLSV18].) In their PKE, a secret key x of their PKE is an input
to their hash function and the public key vy is its corresponding image. To encrypt a bit b they (a)
additively secret-share b into (by,...,by), where n = |x| and (b) form 2n ciphertext ct;;, where
ct; p encrypts b; using y relative to (i,b). Their scheme is not reproducible because the randomness
used for step (a) cannot be recycled and also half of the randomness used to create hash encryption
ciphertexts in step (b) cannot be recycled. (This half corresponds to the bits of the target secret
key w.r.t. which we want to recycle randomness.) It is not clear whether their scheme can be
modified to yield reproducibility.

Open problems. Our work leads to several open problems. Can our TDF be improved to yield
perfect correctness? Our current techniques leave us with a negligible inversion error. Can we
build lossy trapdoor functions (LTDF) [PWO08] from recyclable-OWFE/CDH? Given the utility of
LTDFs, a construction based on CDH will be interesting. Can we build deterministic encryption
based on CDH matching the parameters of those based on DDH [BFOO08]?

2 Preliminaries

Notation. We use A for the security parameter. We use = to denote computational indistin-

guishability between two distributions and use = to denote two distributions are identical. For a
distribution D we use z < D to mean x is sampled according to D and use y € D to mean y is in

the support of D. For a set S we overload the notation to use x &S to indicate that = is chosen
uniformly at random from S.

Definition 2.1 (Trapdoor functions (TDFs)). Let w = w(A) be a polynomial. A family of trapdoor
functions TDF with domain {0,1}" consists of three PPT algorithms TDF.K, TDF.F and TDF.F~!
with the following syntax and security properties.

° TDF.K(l/\): Takes the security parameter 1* and outputs a pair (ik, tk) of index/trapdoor keys.

e TDF.F(ik, X): Takes an index key ik and a domain element X € {0,1}" and outputs an image
element Y.

e TDF.FL(tk,Y): Takes a trapdoor key tk and an image element Y and outputs a value X €
{0,1}* U{L}.

We require the following properties.
e Correctness: For any (ik,tk) € TDF.K(1*)

Pr[TDF.F~(tk, TDF.F(ik, X)) # X] = negl()\), (5)

where the probability is taken over X il {0,1}v.



e One-wayness: For any PPT adversary A, we have Pr[A(ik,Y) = X] = negl()\), where
(ik, tk) < TDF.K(1), X & {0,1}* and Y = TDF.F(ik, X).

A note about the correctness condition. Our correctness notion relaxes that of perfect
correctness by allowing the inversion algorithm to fail (with respect to any trapdoor key) for
a negligible fraction of evaluated elements. This relaxation nonetheless suffices for all existing
applications of perfectly-correct TDFs. Our correctness notion, however, implies a weaker notion
under which the correctness probability is also taken over the choice of the index/trapdoor keys.
This makes our result for constructing TDFs stronger.

Definition 2.2 (Computational Diffie-Hellman (CDH) assumption). Let G be a group-generator
scheme, which on input 1* outputs (G, p, g), where G is the description of a group, p is the order of
the group which is always a prime number and g is a generator of the group. We say that G is CDH-
hard if for any PPT adversary A: Pr[A(G,p, g, g™, g*?) = g*1%?] = negl(\), where (G, p, g) & G(1%)

$
and a1, as < Zp.

3 Recyclable One-Way Function with Encryption

We will start by defining the notion of a one-way function with encryption. This notion is similar
to the chameleon encryption notion of Déttling and Garg [DG17b]. However, it is weaker in the
sense that it does not imply collision-resistant hash functions.

Next, we will define a novel ciphertext-randomness recyclability property for one-way function
with encryption schemes. We will show that a variant of the chameleon encryption construction of
Doéttling and Garg [DG17b] satisfies this ciphertext-randomness recyclability property.

3.1 Recyclable One-Way Function with Encryption

We provide the definition of a one-way function with encryption. We define the notion as a key-
encapsulation mechanism with single bit keys.

Definition 3.1 (One-way function with encryption (OWFE)). An OWFE scheme consists of four
PPT algorithms K, f, E and D with the following syntax.

o K(1*): Takes the security parameter 1* and outputs a public parameter pp for a function f
from n bits to v bits.

o f(pp,x): Takes a public parameter pp and a preimage x € {0,1}", and outputsy € {0,1}".

e E(pp,y, (i,b); p): Takes a public parameter pp, a value 'y, an index i € [n], a bit b € {0,1} and
randomness p, and outputs a ciphertext ct and a bit e.?

e D(pp,x,ct): Takes a public parameter pp, a value x and a ciphertezt ct, and deterministically
outputs € € {0,1} U{L}.

We require the following properties.

3ct is assumed to contain (i,b).



e Correctness: For any pp € K(1*), any i € [n], any x € {0,1}" and any randomness value
p, the following holds: letting y := f(pp,x), b := x; and (ct,e) := E(pp,y, (i,b); p), we have
e = D(pp, x, ct).

e One-wayness: For any PPT adversary A:
Prif(pp, A(pp,y)) = y] = negl(}),

where pp & K(1%), x & {0,1}" and y := f(pp, x).

e Security for encryption: For any i € [n] and x € {0,1}":

C

(x, pp, ct,e) = (x, pp, ct, €)

where pp & K(1%), (ct,e) & E(pp, f(pp,x), (1,1 —x;)) and € & {0,1}.

Definition 3.2 (Recyclability). We say that an OWFE scheme (f, K, E, D) is recyclable if the follow-
ing holds. Letting E; and Eg refer to the first and second output of E, the value of E1(pp,y, (4, b); p)
is always independent of y. That is, for any pp € K(1Y), y1,y2 € {0,1}, i € [n], b € {0,1} and
randomness p: E1(pp,y1, (i,); p) = E1(pp, y2, (4,0); p).

We now conclude the above definitions with two remarks.

Remark 3.3 (Simplified recyclability). Since under the recyclability notion the ciphertext output
ct of E is independent of the input value y, when referring to E1, we may omit the inclusion of y
as an input and write ct = Eq(pp, (i,b); p).

Remark 3.4. If the function f(pp,-) is length decreasing (e.g., f(pp,-): {0,1}" — {0,1}"° 1),
then the one-wayness condition of Definition 3.1 is implied by the combination of the security-for-
encryption and correctness conditions. In our definition, however, we do not place any restriction
on the structure of the function f, and it could be, say, a one-to-one function. As such, under
our general definition, the one-wayness condition is not necessarily implied by those two other
conditions.

3.2 Construction from CDH

We give a CDH-based construction of a recyclable OWFE based on a group scheme G (Defini-
tion 2.2), which is a close variant of constructions given in [CDG*17, DG17b].

e K(1*): Sample (G, p,9) & G(1%). For each j € [n] and b € {0, 1}, choose g; e} Output

91,0,92,0,---,9n,0
= Gv ' Y ’ ’ ’ . 6
PP P9 <gl,17 92,1, -- 7gn,1> ( )

e f(pp,x): Parse pp as in Equation 6, and output y := H 9jx;-
Jjeln]

e E(pp,y, (i,b)): Parse pp as in Equation 6. Sample p & Zy, and proceed as follows:



[a—y

. For every j € [n]\{i}, set cjo := g}, and ¢j1 = g} ;.

[\

. Set ¢;p = gfb and ¢; 1—p := L.
. Set e := HC(y").4

w

W

€1.05C2,0y---5C
. Output (ct,e) where ct := ( 10 52,0, - - - "’0>.

C1,1,€2,15,---,Cn,1

€1,0,€2,05 - -+ Cn,0
e D(pp,x,ct): Parse ct := ’ ' ™). Output HC Cix:)-
(PP, x, ct) (6171’62’1’“.’%1) P (je| [n|} jix;)

We prove the following lemma in Appendix A.

Lemma 3.5. Assuming that G is CDH-hard and n € w(logp), the construction described above is
a one-way function with encryption scheme satisfying the recyclability property.

4 TDF Construction

In this section we describe our TDF construction. We first give the following notation.

Extending the notation for D. For a given pp, a sequence ct := (cty,...,ct,) of encapsulated
ciphertexts and a value x, we define D(pp, x, ct) to be the concatenation of D(pp,x,ct;) for ¢ € [r].

Algorithm Perm. For two lists uy and uz and a bit b we define Perm(uy, ug, b) to output (uy, uz)
if b =0, and (ug,u1) otherwise.
Construction 4.1 (TDF construction). We now describe our TDF construction.

Base primitive. A recyclable OWFE scheme £ = (K,f,E,D). Let Rand be the randomness space
of the encapsulation algorithm E.

Construction. The construction is parameterized over two parameters n = n(\) and r = r(\),
where n is the input length to the function f, and r will be instantiated in the correctness proof.
The input space of each TDF is {0,1}"t"". We will make use of the fact explained in Note 3.3.

e TDF.K(1Y):
1. Sample pp <+ K(1?%).
2. For each i € [n] and selector bit b € {0,1}:
SN ,
Pip = (pl(’lb), e ,pl(’b)) < Rand
ctiy = (Ea(pp, (i,0): oLy, - Ex(pp, (3,0); p7))).

4We assume that the HC() is a hardcore bit function. If a deterministic hard-core bit for the specific function is
not known then we can use the Goldreich-Levin [GL89] construction. We skip the details of that with the goal of
keeping exposition simple.
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3. Form the index key ik and the trapdoor key tk as follows:

ik := (pp, ct1 9, €ty 1,...,Cty0,Cly 1) (7)
th := (PP, P1,0s P11s+ -+ P0s Prt) - (8)

o TDF.F(ik,X):

1. Parse ik as in Equation 7 and parse

X:=(xe{0,1}",b; € {0,1}",...,b, € {0,1}").

2. Sety:=f(pp,x).
3. For alli € [n] set
€e; :— D(ppaxa Cti,xi)'
4. Return
Y = (ya Perm(el, bla Xl)a ceey Perm(en, b”’ Xn))
o TDF.F71(tk,Y):

1. Parse tk as in FEquation 8 and Y := (Y,EI,/O,BI;, e an,o, b,1).

2. Reconstruct x := xq---xp bit-by-bit and b := (by,..., by,) vector-by-vector as follows.
For i € [n]:
1 r 1 r
(a) Parse p; o = <pz(,0)’ . 7101(',0)) and p; 1 = (pz(’l)7 . ,pgl))

(b) If

bio = (Ez(pp,y, (1,0);95). - - -, E2(pp, , (i,O);pffo))) and
b1 # (Eg(pp,y, (i,1);p).. .. Ealpp,y, (i,l);pi(,?)> , (9)
then set x;, = 0 and b; = BI
(c) Else, if
bio # (E L,0):088), . E ,0):0(0)) and
1.0 7 (E2(pp, Y, (4,0); pi¢)s - - - - E2(PP, Y, (1, 0)5 p79) ) an
bii = (Ea(pp.y (i 1); oY) Ealppoy, (1. )i ) . (10)

then set x; =1 and b; = E;
(d) Else, halt and return L.

3. Ify # f(pp,x), then return L. Otherwise, return (x,b).

We will now give the correctness and one-wayness statements about our TDF, and will prove
them in subsequent subsections.
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Lemma 4.2 (TDF correctness). The inversion error of our constructed TDF is at most 5. That
is, for any (ik,tk) € TDF.K(1}) we have

== Pr[TDF.F Xtk (TDF.F(ik, X)) £ X] < . (11)

where the probability is taken over X := (x,by,...,by) & {0,1}"+"" . By choosing r € w(log \) we
will have a negligible inversion error.

For one-wayness we will prove something stronger: parsing X := (x, ... ), then recovering any x’
satisfying f(pp, x) = f(pp, x) from (ik, TDF.F(ik, X)) is infeasible.

Lemma 4.3 (TDF one-wayness). The TDF (TDF.K, TDF.F, TDF.F~1) given in Construction 4.1
is one-way. That is, for any PPT adversary A

Pr[A(ik,Y) = X' and f(pp,x') = y] = negl(}\), (12)

where (ik == (pp, . .. ), tk) <& TDF.K(1*), X := (x,...) <& {0, 1} and Y := (y,...) := TDF.F(ik, X).
By combining Lemmas 3.5, 4.2 and 4.3 we will obtain our main result below.

Theorem 4.4 (CDH implies TDFs). There is a black-box construction of TDFs from CDH-hard
groups.

4.1 Proof of Correctness: Lemma 4.2

Proof of Lemma 4.2. Let X := (x,by,...,by) & {0,1}"*"" be as in the lemma and

Y := TDF.F(ik,X) := (y,b1.0,b1.1,...,bno,bp1). (13)
By design, for all i € [n]: l;l\i/xz = b;. Parse

tk = (pLOv pl,la s 7pn707 pn71) )
Pip = (pgb), . .,pgjﬂ)), for i € [n] and b € {0,1}.
Consider the execution of TDF.F~1(tk,Y). By the correctness of our recyclable OWFE scheme &
we have the following: the probability that TDF.F~1(tk,Y) # X is the probability that for some
i€ n:
, 1 ,
b; = (Ez(pp,y, (4,1 — xi>;p§,3_xi>, -, E2(ppyys (4,1 = x3); p,(,?_xg) : (14)

Now since b;, for all 7, is chosen uniformly at random and independently of x, the probability of
the event in Equation 14 is 2% A union bound over i € [n] gives us the claimed error bound. [

4.2 Proof of One-wayness: Lemma 4.3

We prove Lemma 4.3 via a couple of hybrids, corresponding to the real and a simulated view. We
first give the following definition which will help us describe the two hybrids in a compact way.
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Definition 4.5. Fiz pp, x € {0,1}" and y := f(pp,x). We define two PPT algorithms Real and
Sim, where Real takes as input (pp,x) and Sim takes as input (pp,y). We stress that Sim does not

take x as input.
The algorithm Real(pp,x) outputs (CT,E) and the algorithm Sim(pp,y) outputs (CT, Egnm), sam-
pled in the following way.

o Sample <p1’°"””’”’°> & Rand?*m,
P1,15---5Pnl

o Set
CT .= <ct1,o,---,ctn,o> o (El(pp,(l,O);m,o),---,El(pp, (n, 0);pn,o))
= = Y ' .

ct11,...,Ctnh1
L bl,Oa"'abn,O
E.— ,
b11,--.,bn1

— if x; =0, then bz‘70 = D(pp,X, Cti70) and bi,l (i {0, 1}.

o Set

where, for all i € [n]:

— ifx; =1, then bi70 ﬁ {0, 1} and bi,l = D(pp,X,CtiJ).

o Set

~—

E. . (Ez(pp,y,(l,o);m,o),---,Ez(pp,y, (n,0); pn0 )
s EQ(ppa Y, (1) 1)7 P1,1)7 ey EQ(ppa Y, (na ]-)7 Pn,l)

We now prove the following lemma which will help us to prove the indistinguishability of the two
hybrids in our main proof.

Lemma 4.6. Fiz polynomial r := r(\) and let x € {0,1}". We have

(pp7 X, CT17 Elu DRI CT'I‘7 ET‘) é (pp7 X, CT17 Esim,la ey CT’I‘? Esim,’r”)7 (15)

where pp & K(1%), and for alli € [r], (CT;, E;) & Real(pp,x) and (CT;, Egim ) & Sim(pp, f(pp, x)).

Proof. Fix x € {0,1}" and let y := f(pp,x). For the purpose of doing a hybrid argument we define
two algorithms SReal and SSim below.

e SReal(i, pp, x): sample pg, p1 & Rand and return (ct,e), where

= () = (B ) w0

and e is defined as follows:

— if x; =0, then e := <D(pp,bx, Cto)), where b & {0,1};

b

— if x;, = 1, then e := <D(pp,x,ct1)

), where b < {0,1}.
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e SSim(i, pp,y): Return (ct, egm), where ct is sampled as in Equation 16 and

- <E2(Pp,y, (i,O);po)> _
" \Ea(pp,y, (4, 1); 1)

We will show that for all i € [n] and x € {0,1}"

£

(pp7X7 Ctae) (pp7X7 Ct7 esim)7 (17)

where
pp < K(1Y), (ct,e) < SReal(4, pp,x) and (ct, esm) < SSim(i, pp, f(pp, x)).

From Equation 17 using a simple hybrid argument the indistinguishability claimed in the lemma
(Equation 15) is obtained. Note that for the hybrid argument we need to make use of the fact that
that x is provided in both sides of Equation 17, because we need to know x to be able to build the
intermediate hybrids between those of Equation 15. Thus, in what follows we will focus on proving
Equation 17.

To prove Equation 17, first note that by the correctness of the OWFE scheme £, we have

(pp,x,ct,e) = (pp, x, ct,€),

where ct and e are sampled according to SReal(7, pp, x) as above (using randomness values py and
p1), and €' is sampled as:

e if x;, =0, then € := <E2(pp,y,b(z,0);po)>’ where b & {0,1};

b

o if x;, =1, then € := .
<E2(ppay7 (Z’ 1)7P1)

>, where b & {0,1}.

Thus, we will prove

C

= (ppaxa Ctvesim)- (18)

We derive Equation 18 from the security-for-encryption requirement of the scheme (K, f, E, D).
Recall that the security for encryption requirement asserts that no PPT adversary can distin-

(pp, x, ct, e’)

guish between (x, cty,e;) and (x, cty, e2), where pp & K(1%), (cty,e;) & E(pp, f(pp, %), (7,1 —x;)) and

e & {0,1}. Let us call (x,cty,e;1) the simulated challenge and (x, cty, e2) the random challenge.
To give the reduction we present a procedure Turn which generically turns a simulated challenge
into a sample of SSim(7, pp,x) and turns a random challenge into a sample of SReal(i, pp, y).
The algorithm Turn(x, ct, e) returns (cty, e;), formed as follows:

e Sample p ﬁ Rand. Then

— if x;, = 0, then return

ot — <E1(pP7 (z’,O);p)> e — (EQ(pp,y, (i,o);p))

ct (S
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— if x; = 1, then return

= (El(ppac(z"O);p)) oo <E2(pp’y’e(i’0);p)>

It should be clear by inspection that the output of Turn(x,ct,e) is identically distributed to
SReal(7, pp, x) if (x,ct,e) is a random challenge (defined above), and identically distributed to
SSim(i, pp, x) if (x,ct,e) is a simulated challenge. The proof is now complete. O

Proof of Lemma 4.3. To prove Lemma 4.3 we define two hybrids and will use the notation view; to
refer to the view sampled in Hybrid <.

Hybrid 0. The view (ik,Y) is produced honestly as in the real executions of the scheme TDF.
That is,

e Sample pp & K(1Y), x & {0,1}™ and let y := f(pp, x).
e For all j € [r] sample (CTY) ED) & Real(pp, x). Parse
CT(j) — Ct%{%,...,ctg’% E(j) — bg{%,,bg}] .

ct%,...,ctm1 b, ..., b

e Forall i € [n] and d € {0,1} set

e Form the view (ik,Y) as follows:

((pp,ctip,cty1,...,cty0,Cty 1), (y,b10,b11,...,bpo,by1)) (19)
ik M

Hybrid 1. The view (ik,Y) is produced the same as Hybrid 0 except that for all j € [r] we
sample (CTYW EY)) now as (CTV), EV)) & Sim(pp,y).

We prove that the two views above are indistinguishable and then we will show that inverting
the image under view; is computationally infeasible.

Indistinguishability of the views: By Lemma 4.6 we have viewg = view;. The reason is that

the view in either hybrid is produced entirely based on (CT(I), ED, ...,cT™, E(’")) and that this
tuple is sampled from the distribution Real(pp,x) in one hybrid and from Sim(pp,y) in the other.

One-wayness in Hybrid 1: We claim that for any PPT adversary A
Pr[A(view;) = x" and f(pp,x') = y| = negl(\). (20)

Recall that view; := (ik,Y) is the view in Hybrid 1 and that the variables pp and y are part of
ik :== (pp,...) and Y := (y,...). The proof of Equation 20 follows from the one-wayness of f, taking
into account the fact that view; in its entirety is produced solely based on pp and y := f(pp, x) (and
especially without knowing x). This is because all the underlying variables (CT(j ) EU )) — for all

j — are produced as (CT(j), E(j)) & Sim(pp,y), which can be formed without knowledge of x.
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Completing the Proof of Lemma 4.3. Let viewy := (ik,Y) and parse ik := (pp,...) and
Y := (y,...). For any PPT adversary A we need to show that the probability that A on input
view outputs x' € {0,1}" such that f(pp,x’) =y is negligible. We know that B fails to compute
such a string X’ with non-negligible probability if the view ((pp,...),(y,...)) is sampled according

. . . C . .
to viewp. Since viewg = viewq, the claim follows. ]

4.3 Extended One-Wayness

For our CCA2 application we need to prove a stronger property than the standard one-wayness
for our constructed TDF. This extension requires that if we evaluate m correlated inputs under m
independent functions from the TDF family, the result still cannot be inverted.

Lemma 4.7 (m-Extended one-wayness). Let TDF = (TDF.K, TDF.F, TDF.F~1) be the TDF built
in Construction 4.1 based on an arbitrary parameter r = r(X). Let m = m(\). For any PPT
adversary A

Pr{A(view := (ikq, ..., ikm, Y1,..., Yn)) = x] = negl(\),

where x & {0,1}" and fori € [m], (ik;, tki) <& TDF.K(1Y), b; < {0,1}" and Y; := TDF.F(ik, x||b;).
Thus, there exists a hardcore function HC such that HC(x) is pseudorandom in the presence of view.

Proof. For any PPT adversary A we need to show that the probability that A(view) outputs x is
negligible. It is easy to verify by inspection that the distribution of view can be perfectly formed
based on the view (ik*,Y*) of an inverter against the standard one-wayness of the trapdoor function
(TDF.K, TDF.F, TDF.F~1) of Construction 4.1 but under the new parameter 7’ = m x r. Invoking
Lemma 4.3 our claimed one-wayness extension follows. O

5 CCA2-Secure Public-Key Encryption

In this section we show that an adaptive version of the notion of recyclable OWFE gives rise to a
black-box construction of CCA2-secure PKE. We will first define this adaptive version in Section 5.1
and will then give the construction. We should also point out that it is not clear whether the CDH-
based construction given in Section 3.2 can be proved adaptively secure. We leave this as an
open problem. The goal of this section is purely theoretical, showing the versatility of an adaptive
strengthening of the OWFE notion.

5.1 Adaptive One-Way Function with Encryption

For our CCA construction we need to work with an adaptive version of the notion of OWFE.
Recall by Note 3.3 that a ciphertext ct does not depend on the corresponding y. The security
for encryption notion (Definition 3.1) says if (ct,e) is formed using an image y := f(pp,x) and
parameters (7,b), and if x; # b, then even knowing x does not help an adversary in distinguishing
e from a random bit. The adaptive version of this notion allows the adversary to choose x after
seeing ct. This notion makes sense because ct does not depend on the image y, and so ct may be
chosen first.

Definition 5.1 (Adaptive OWFE). We say that £ = (K,f,E,D) is an adaptive one-way function
with encryption scheme if £ is correct in the sense of Definition 3.1, f is one-way in the sense of
Definition 3.1 and that £ is adaptively secure in the following sense.
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e Adaptive Security: For any PPT adversary A the probability that AdapOWFE[t = 1](&, A)
outputs 1 is % + negl(X), where the experiment AdapOWFE(t] is defined in Fig. 1.

Experiment AdapOWFE[t](E, A := (A1, A2, A3)):

[u—y

(i* € [n],b* € {0,1},5t1) & A1 (1Y)

Sample pp & K(1*) and py, ..., pt & {0,1}*

Set cty == E1(pp, (i*,0"); p1), ..., cte := Ex(pp, (i*,0%); pr)

(x, st2) & Aa(sty, pp, cti, ..., Cty).

If x;» = b*, HALT.

For j € [t]: e; := Ea(pp,y, (i*,0%); p;), where y = f(pp, x).

ch & {0,1}. If ch =0, set € := (ey,...,e); else, € & {0, 1}%.

out & As(stg, ).

© 0 N e WD

Output 1 if out = ch and 0 otherwise.

Figure 1: The AdapOWFE[t](&, . A) Experiment

We remind the reader that in Step 3 of Fig. 1 the algorithm E; does not take any y as input
because of Note 3.3. The following lemma is obtained using a straightforward hybrid argument, so
we omit the proof.

Lemma 5.2. Let £ = (K,f,E,D) be an adaptive OWFE scheme. For any polynomial t :== t(\) and
any PPT adversary A, we have Pr[AdapOWFE[t](€, A) = 1] < 3 + negl()).

5.2 CCA2 PKE from Recyclable Adaptive OWFE

Notation. Let TDF := (TDF.K, TDF.F, TDF.F!) be as in Section 4. We will interpret the input
X to the TDF as (x,s), where x € {0,1}" corresponds to f’s pre-image part and s € {0,1}™
corresponds to the blinding part. In particular, if r is the underlying parameter of the constructed
TDF as in Construction 4.1, then ny =n x r.

Ingredients of our CCA2-secure PKE. Apart from a TDF with the above syntax, our CCA2
secure construction also makes use of a one-time signature scheme SIG = (SIG.K, SIG.Sign, SIG.Ver)
with prefect correctness, which in turn can be obtained from any one-way function. See Appendix C
for the description of this notion.

Our CCA2 primitive. We will build a CCA2 secure single-bit PKE, which by the result
of [Ms09] can be boosted into many-bit CCA2 secure PKE. Since we deal with single-bit CCA2
PKE, we may assume without loss of generality that the CCA adversary issues all her CCA oracles

after seeing the challenge ciphertext.
We will now describe our CCA2-secure PKE scheme.
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Construction 5.3 (IND-CCA2-secure PKE). The construction is parameterized over a parameter
m := m(\), which denotes the size of the verification key of the underlying signature scheme SIG.
Let HC be a bit-valued hardcore function whose existence was proved in Lemma 4.7.

e PKEK(1*): Fori € [m] and b € {0,1}, sample (ik%, tk?) & TDF.K(1Y). Form (pk,sk) the
public/secret key as follows:

pk = (ikY, ik}, ..., k% ikl), sk:= (tkV, tk,..., tk%  tkl ). (21)

e PKE.E(pk,b): Parse pk as in Equation 21. Sample (vk,sgk) & SIG.K(1%), x & {0,1}™ and
set
Xy = (6,51 2 {0,13™), ..., X = (x,5m < {0,1}™). (22)

Let b' = b @ HC(x) and for i € [m] let Y; = TDF.F(ik;’ki,Xi). Return
c:= (vk,Y1,..., Yy, b',SIG.Sign(sgk, Y1|| ... |[Ym[[b')) . (23)

e PKE.D(sk,c): Parse sk as in Equation 21 and parse
c:=(vk, Y1,..., Yy, b o). (24)

1. Set msg :=Y1||- - Yu||b'. If SIG.Ver(vk, msg, o) = L, then return L.

2. Otherwise, for i € [m| set X; := TDF.F_l(tk;’ki,Yi). Check that for all i € [n]: Y; =
TDF.F(ik™, X;). If not, return L.

3. If there exists x € {0,1}" and si,...,sm € {0,1}™ such that for alli € [m], X; = (x,s;),
then return b’ ® HC(x). Otherwise, return L.

Correctness. Assuming that the underlying signature scheme SIG = (SIG.K, SIG.Sign, SIG.Ver)
is correct and also that the underlying TDF (TDF.K, TDF.F, TDF.F~1) is correct in the sense of
Definition 2.1, the above constructed PKE is correct in a similar sense: for any (pk, sk) € PKE.K(1*)

and plaintext bit b € {0,1} we have Pr[PKE.D(sk, PKE.E(pk,b))] = negl(X). The proof of this is
straightforward.

5.3 Proof of CCA2 Security
We will prove the following theorem.

Theorem 5.4 (CCA2-secure PKE from recyclable adaptive OWFE). Let (TDF.K, TDF.F, TDF.F~1)
be the TDF that results from Construction 4.1 based on a recyclable OWFE (K,f,E,D). Assuming
(K,f,E,D) is adaptively secure, the PKE given in Construction 5.3 is CCAZ2 secure.

We need to show that the probability of success of any CCA2 adversary is the CCA2 game is
at most % + negl(A). Fix the adversary A in the remainder of this section. We give the following
event that describes exactly the success of A.

Event Success. Sample (pk,sk) & PKE.K(1%), bpain & {0,1} and ¢ & PKE.E(pk, bplain). Run
the CCA2 adversary A on input (pk,c) and reply to any query ¢’ # c of A with PKE.D(sk,c’). We
say that the event Success holds if A outputs bpjain-
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Roadmap. To prove Theorem 5.4, in Section 5.3.1 we define a simulated experiment Sim and
we show that the probability of success of any CCA2 adversary in this experiment is % + negl(\).
Next, in Section 5.3.2 we will show that the probabilities of success of any CCA2 adversary in the
real and simulated experiments are negligibly close, establishing Theorem 5.4.

5.3.1 Simulated CCA2 Experiment

We define a simulated way of doing the CCA2 experiment. Roughly, our simulator does not have
the full secret key (needed to reply to CCA2 queries of the adversary), but some part of it. Our
simulation is enabled by a syntactic property of our constructed TDF. We first state the property
and then prove that it is satisfied by our TDF. We require the existence of an efficient algorithm
Recover for our constructed TDF (TDF.K, TDF.F, TDF.F~1) that satisfies the following property.

Algorithm Recover: The input to the algorithm is an index key ik, a pre-fix input x € {0,1}"
and a possible image Y. The output of the algorithm is X € {0,1}"*"t U {L}. As for correctness
we requite the following. For any (ik,*) € TDF.K(1*), x € {0,1}" and Y both the following two
properties hold:

1. If there exists no s € {0,1}"! such that TDF.F(ik,x||s) =Y, then Recover(ik,x,Y) = L.
2. If for some s, TDF.F(ik,x||s) =Y, then Recover(ik,x,Y) returns (x,s).

Lemma 5.5 (Existence of Recover). There exists an efficient algorithm Recover with the above
properties for our constructed TDEF .

Proof. To build Recover, first parse the given inputs as follows: ik = (pp,...), x € {0,1}" and
Y :=(y,b1,0,b11,...,by0,b,1). Do the following steps:

—_~—

1. For all i € [n] set b; :=b; 1_;.
2. Let s=by||---||b,
3. Check if Y = TDF.F(ik,x||s). If the check holds, return (x,s). Otherwise, return L.
The correctness of the algorithm Recover follows by inspection. ]

We now define our simulation algorithm.
Sim(iky, ..., ikpy, Y1,..., Yy, b):  The simulated experiment differs from the real experiment in that
the challenger does not know the trapdoor keys of half of the index keys that are given to the CCA
adversary as part of the public key. The challenger, however, tries to produce accurate answers

based on her partial knowledge.
Formally, do the following steps.

1. Initializing the CCA adversary:
(a) Sample (vk,sgk) & SIG.K(11).

(b) For all i € [m] set ik!* := ik; and sample (ik; ¥, tk] k) & TDF.K(1%).
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(c) Sample a challenge bit bpjain & {0,1} and let by := bpjain @ b. Set
msg = YIH s HYmel

Sample o & SIG.Sign(sgk, msg) and set
pk = (ik0,iki, ..., k% ikl), c:= (vk,Y1,...,Ym, b1, 0).
Run the CCA2 adversary A on (pk, c).

2. Simulating the CCA responses:
Respond to a CCA2-oracle query ¢’ := (vk',Y],..., Y/ b/, 0’) as follows:

(a) Letting msg’ := Y/||---||YL,||b" if SIG.Ver(vk’, msg’, ') = L, then return L. Otherwise,
if vk’ = vk, then halt and return L.

(b) Otherwise, let Q consist all of all indices i € [m] for which we have vk # vk;. For i € Q
set X! := TDF.F~1(tk", Y!) and check if Y/ = TDF.F(ik!", X!); if this fails for any i € Q,
then return L. Now if there exists x' € {0, 1}" such that for all i € Q we have X, = (X, %)
then continue with the following steps and otherwise return L.

vk’
i. for all j € [m]\ Q, let X} := Recover(ik; ’,x’,Y}). Reply to the query ¢’ with HC(x')
if for all j we have X;. # |; otherwise, reply to the query with L.

3. Forming the output of the experiment: The experiment outputs 1 if A outputs bpjain;
otherwise, the experiments outputs 0.

Event Successym. The event that Sim(iki, ..., km, Y1, .., Ym,b) outputs 1 where x < {0,1}",
b := HC(x) and for i € [m], (iki, tki) < TDF.K(1Y), s; <& {0,1}" and V; := TDF.K(iks, x||s)).

We show that the probability of the event Successgip, is % + negl(A). We will then show in the
next section that the probability of the event Success is close to that of Successs;m, hence obtaining
our main result.

Lemma 5.6. 1
a := Pr[Successgim | < 3 + negl(\). (25)

Proof. This lemma follows by Lemma 4.7. Suppose the input to Sim is sampled exactly as done in

the event Successg,, except that we sample b bl {0,1} (instead of setting b := HC(x)). In this case
the output of the simulation is 1 with probability 1/2. Now Lemma 4.7 implies that o = %Jr negl(\)
(Equation 25), and the proof is complete. O

5.3.2 Relating the Simulated and Real Experiments

We will now show that the probabilities of the events Success and Successg, are negligibly close,
hence obtaining Theorem 5.4 from Lemma 5.6. To this end, we define below two events Forge and
Spoof, and show that the difference of the probabilities of Success and Successg, is at most the
sum of the probabilities of Forge and Spoof. We will then show that both these events happen with
negligible probability.
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Event Forge: In the experiment Sim(iky,...,ikpy, Y1,...,Ym,b) we let Forge be the event that 4

issues a CCA2 query
<= (KLY, LY o)
such that vk = vk’ and Ver(vk,Y}||---|[Y,,||b';0’) = T. Recall that vk is part of the challenge

ciphertext c := (vk,...) given to the adversary.

Informally, the event Spoof below describes a situation in which a decryption query during the
execution of Sim is answered with a non | string, but the same query may be replied to with |
under the real decryption oracle.

Event Spoof: Let ¢ := (vk,...) be the challenge ciphertext formed during the execution of
Sim(iky, ..., ikm, Y1,...,Ym,b). We let Spoof be the event that A issues a CCA2 query

/ / !/ !/ / /
c = (vk',Y,...,Y,,,b o)

for which the following holds. Let Q be the set of indices i € [m] for which we have vk; # vk}. For
some h € Q and for some w € [m]\ Q we have

1. TDF.F-L(tk/" Y1) = (X, %) # L; and
2. s := Recover(iki, X, Y/,) # L but TDF.F~2(tki, Y,,) = L.
We will now prove the following three lemmas.

Lemma 5.7. We have
| Pr[Success| — Pr[Successgim|| < Pr[Forge| 4+ Pr[Spoof].

Lemma 5.8.
Pr[Forge| < negl(\).

Lemma 5.9.
Pr[Spoof] < negl()).

Let us first derive the proof of Theorem 5.4 and then prove each of the lemmas.

Proof of Theorem 5.4. Follows from Lemmas 5.6 and 5.7, taking into account the fact that the
experiment Real(1%) is the real CCA2 experiment. O

We prove Lemmas 5.7 and 5.8 and will prove Lemma 5.9 in Section 5.3.3.

Proof of Lemma 5.7. First of all, note that the input (pk,c) given to the CCA2 adversary under
the simulated experiment is identically distributed to that under the real CCA2 experiment. Thus,
any possible difference between the simulated and real experiments must be due to the ways in
which decryption queries are answered. We will now show that if at any point a decryption query
is answered to differently under Sim and Real, then either Forge or Spoof must happen. First, in
order for a query c’ to be answered differently, either (1) the query ¢’ is replied to with L under Sim
and with some b’ € {0,1} under Real; or (2) ¢’ is replied to with some b’ € {0,1} under Sim and
with L under Real. In particular, we cannot have a situation in which ¢’ is replied to with some
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b’ € {0,1} under Sim and with 1 — b’ under Real. The reason for this is that if both experiments
reply to a query with something other than L, then the underlying recovered pre-image x' must be
the same, hence both will end up replying with the same bit.

Let ¢ := (vk,...) be the challenge ciphertext of the underlying CCA2 adversary and ¢’ :=
(vk’,msg’, 0’) be an issued query. We now consider all possible cases:

e If Sim replies to ¢’ := (vk’, msg’, ') with L, then one of the following must hold.

1. SIG.Ver(vk’,msg’,o’) = L: in this case Real also replies to with L;
2. SIG.Ver(vk’,msg’,0’) = T and vk = vk’: in this case the event Forge happens;

3. Sim returns L as a result of Step 2b of the execution of Sim: that is, TDF.Ffl(tkykg,Yg) =
1: in this case Real also replies with L.

4. Sim replies with L as a result of Step 2(b)i: in this case by correctness of Recover we
will know Real will also reply with L.

e If Real replies to ¢’ with L and Sim replies to ¢’ with some b’ € {0,1}, then we may easily
verify that the event Spoof must necessarily hold. We omit the details.

O]

Proof of Lemma 5.8. Suppose Pr[Forge] > negl()\). We show how to build an adversary B against
the one-time unforgeability property of SIG = (SIG.K, SIG.Sign, SIG.Ver). Build 3gnOraclelsgkl(-) (yk)
as follows. Sample the input (iki,...,ikm, Y1,...,Ym,b) to Sim and form the tuple msg as in
the execution of Sim on this input. Then request a signature o for the message msg by calling
SgnOracle[sgk](-) on msg. Form (pk,c) as in Sim and run the CCA2 adversary A on (pk,c). Let ¢

be the number queries that A asks. Choose i & [q] to be a guess for the index of the first query
for which the event Forge occurs and output the pair of message/signature contained in that query.
Note that B can perfectly reply to all the previous ¢ — 1 queries of A, because all of those can be
replied to without knowing sgk. If o := Pr[Forge], then B will win with probability at least %. O

5.3.3 Proof of Lemma 5.9

The proof of Lemma 5.9 is based on a property of our TDF that we now state and prove. Informally,
if the OWFE scheme used in our TDF construction is adaptively secure, then the constructed TDF
has the property that given a random index key ik, it is infeasible to produce an image element
which is in the range of the trapdoor function TDF.F(ik, -), but which “inverts” to L.

Lemma 5.10. Let TDF = (TDF.K, TDF.F, TDF.F~1) be the TDF built in Section 4, with the un-
derlying parameter r := r(X\) € w(log A), based on a recyclable OWFE scheme OWFE = (K, f,E, D).
Assuming OWFE is adaptive (Definition 5.1), for any PPT adversary A:

Pr[(X,Y) & A(ik) s.t. Y = TDF.F(ik, X), TDF.F1(tk,Y) = L] = negl()\), (26)

where (ik, tk) < TDF.K(1*).
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Proof. Let Surprise be the event of the lemma. Parse

ik := (ppa Ctl,Oa Ct1,17 v aCtn,Oy Ctn,l)u tk = (pl,Ov pl,lv ce 7pn,07 pn,l)a (27)

and for all i/ € [n] and o' € {0, 1} parse
Cti’,b/ = (Ctg};/’ C ,Ctg,?},) (28)
1 r
Py = (pg,}),, e ,pg,}j,).

Recall that for all i’ € [n], b' € {0,1} and j € [r] we have

cti)), = Ex(pp, (', 0): o)) (29)
Also, parse (X,Y), the output of A(ik), as

X = (x € {0,1}", by € {0,1}",...,b, € {0,1}") (30)
Y = (y, b170 € {O, 1}T, b171 S {0, 1}7", ceey bn,O S {0, 1}T, bn71 c {0, 1}T).

If the event Surprise happens, then by definition we have Y = TDF.F(ik, X) and TDF.F~!(tk,Y) =
L. Thus, by definition of TDF.F~!, for some i € [n] we must have

bi = (EQ(ppa Y, (Z7 1- XZ'); pz(yll)fxi% sy EQ(ppv Y, (Z7 1- Xi); pz(fl)fxl)> . (31)

We show how to use Equation 31 to break the adaptive security of OWFE.
We show how to build an adversary against the adaptive security of OWFE in the sense of

Lemma 5.2. Sample ¢ & [n] and b l {0,1} — The value of b will serve as a guess bit for
1 — x; (see Equation 31). Give the pair (i,b) to the challenger to receive (pp,cty,...,ct.). Set
ct;p ;= (cty,...,ct,) and sample all other ct; j, for (¢/,0’) # (i,b), as in Equation 28 and form the
index ik as in Equation 27. Call A(ik) to receive (X,Y) and parse them as in Equation 30. If x; = b
then return L. Otherwise, give x to the challenger to receive some € € {0,1}". If € = b;, then
return 0, and otherwise return 1.

If the probability of the event Surprise is non-negligible, then A wins with a probability non-
negligibly greater than % The reason is if € was generated uniformly at random from {0, 1}", then
the probability that ¢’ = b; is 2% = negl(\). On the other hand, if € was generated as a result of
true encapsulation encryptions (see the description of the game in Lemma 5.2), then the probability
that € = b; is the probability of the event in Equation 31, which is non-negligible. Thus, we break
the adaptive security of OWFE, a contradiction to Lemma 5.2. 0

Proof of Lemma 5.9. The proof of this lemma follows easily from Lemma 5.10, so we will give a
sketch of the proof. Let 8 := Pr[Spoof]. We show how to build an adversary B in the sense of

Lemma 5.10 that wins with probability ﬁ%)\).

Recall h and w from the event Spoof. The adversary B(ik) acts as follows.
1. Sample (vk, sgk) ul SIG.K(1%).

2. Guess w < [m]
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3. Set ik"» := ik. Also, sample (ik\™<w, tkL-vk) & TDF.K(1Y)
4. For all i € [m]\ {w} and b € {0, 1}, sample (ik?, tk’) & TDF.K(1%).
5. Sample x & {0,1}", b := HC(x) and for i € [m], Y; := TDF.K(ik/ i x||s;).

6. Sample bpjain il {0,1} and set by := bpjain @® b.

7. Set the challenge public key and ciphertext (pk,c) as in Sim and run the CCA2 adversary A
on (pk,c).
Now guess 7 to be the index of the first query of A that causes Spoof to happen and guess

h & [m] be the underlying index defined in the event Forge. Note that B can perfectly simulate
the response all the first 7 — 1 queries of A as in Sim. The reason is that B has the trapdoor key

for all ikzl_"ki7 and so it can perform as in Sim.
The nth query. Letting the nth query be
¢ = (K, Y1, Yo, bl o)

B acts as follows: it sets (X,sp) := TDF.F_l(thk%,Yg) and sets X, := Recover(ik,x’,Y! ). Finally,
B returns (X', Y1,).

It is now easy to verify if Spoof occurs and that all the guesses of the adversary B were correct
(i.e., the guessed values for h, w and vk!,) — which happens with probability Wl(/\) — the adversary
B wins in the sense of Lemma 5.10. O
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A  Proof of Lemma 3.5

Proof. We prove that all the required properties hold.

One-wayness. The fact that f,, for a random pp is one-way follows by the discrete-log hardness
(and hence CDH hardness) of G. Let ¢g* be a random group element for which we want to find
r* such that ¢g" = g*. Sample i; & [n] and by & {0,1} and set g;, », := g*. For all i € [n] and
91,05 - - - ,gn,o>
g1, 9n1)
Sample X" at random from {0, 1}" subject to the condition that xj, = 1 —b;. Set y := Hje[n] 9jx,-
Call the inverter adversary on (pp,y) to receive x € {0,1}". Now if n € w(logp), then by the
leftover hash lemma with probability negligibly close to % we have x;, = by, allowing us to find r*
from 7;’s.

b € {0,1} where (i,b) # (i1,b1), sample 7;4, & Zp and set g;p := g"ib. Set pp := (

Recyclability. We need to show that the ciphertext output ct of E is independent of the input
value y. This follows immediately by inspection.

Security for encryption. Assuming G is CDH-hard, we show that the scheme provides security-
for-encryption in the sense of Definition 3.1. For the sake of contradiction, suppose that for some
x € {0,1}"™ and * € [n] there exists an adversary Ay which can distinguish between (x, pp, ct, €)
and (x, pp, ct,e’), where pp & K(1%), (ct,e) & E(pp, f(pp,x), (i*,1 — x;+)) and ¢’ & {0,1}.

In the sequel, fix ¢* and x and let b* := x;x. We build an adversary A.qn that can distin-
guish between the hardcore bit of the CDH challenge and a random bit, hence breaking the CDH
assumption.

Description of the CDH adversary Acqu(g,91,92,b). Assuming go = ¢g" for some unknown
random r, then b is either a random bit or b = HC(g]). Let i* and b* be as above.
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1. Set

- 91,0; 92,0 ‘e 7gn70
PP <91,1a92,17-~79n,1> ’

where we form g for j € [n] and b € {0,1} as follows:
(a) For all i € [n]\ {¢*} and b € {0,1}, let g; := g%, where a;, < Z,.
(b) Let gj= 1—p= := g%*1=v* where a;= 1_p= < Zp.
(c) Set

g o g1
i*,b* L i*—1 n .
Hj:l 9jx; Hj:i*+1 9j.x;

/ / /

91,0:95,09

2. Set ct := ( LOR0TIn0 ), where we form ¢/, as follows:
91,1:92,1>-9n,1 Js

(a) Foralli € [n]\ {i"} and b € {0,1}, let g, := 997"

i%,1—b*

(b) Let g« 1-p+ == g; and set g« p« := L.

3. Return the output of Agwte (X, pp, ct, b).

Now noting that we have f(pp,x) = ([]; gix,) = g1, the claimed security follows.

B Description of Our CDH-Based TDF

In this section we describe our resulting CDH-based TDF, obtained by instantiating our general
TDF construction using the CDH-based recyclable OWFE given in Section 3.2. We first start with
some notation.

Notation. Letting x € {0,1}" and M := <91,0,92,0 o ,gn,o> we define x © M = H Gjx;- For
91,1, 92,15+ - - s In,1 icin

i € [n] and b € {0,1}, we define the matrix M’ := M|(4,b) to be the same as M except that instead
of g;, we put L in M. If M is matrix of group elements, then M" denotes entry-wise exponentiation
to the power of r.

CDH-based TDF. We will only describe the key generation and evaluation algorithms. The
inversion algorithm follows easily from the other two algorithms.

e TDF.K(1Y):
— Sample pp := (Vg w%) & g2,
— For each i € [n] and b € {0,1}

T $ r

iy =0y, o) & (32)
: (4)

For j € [r] : M{, := <pppivjb\(i,b)> €G> (33)



— Form the index key ik and the trapdoor key tk as follows:
ik := (pp, ctio,cty, ..., ctypo, Ctn71) (35)
tk = (p1,07 pl,lv ce 7pn,0’ pn,l) : (36)
e TDF.F(ik,X): Parse ik as in Equation 35 and ct;; as in Equation 34.

— Parse
X:=(xe€{0,1}",b; € {0,1}",...,b, € {0,1}").

— Set y :=x©® pp. Note that y € & .
For all i € [n] set

e;:= (HC(x®@M],),...,HC(x ® M} )) € {0,1}".

— Return
Y = (y, Perm(e1,b1,x1),...,Perm(e,, bl,xn)) € G x {0,1}*",

C Standard Primitives

One-time signature schemes. A one-time signature scheme SIG with message space {0,1}"
is given by three PPT algorithms SIG.K, SIG.Sign and SIG.Ver satisfying the following syntax.
The algorithm SIG.K on input a security parameter 1 outputs a pair (vk,sgk) consisting of a
verification key vk and a signing key sgk. The signing algorithm SIG.Sign on input a signing
key sgk and a message m € {0,1}" outputs a signature o. For correctness, we require that for
any (vk,sgk) € SIG.K(1"), any message m € {0,1}7 and any signature o € SIG.Sign(sgk, m):
SIG.Ver(vk,m,0) = T. The one-time unforgeability property requires that the success probability
of any PPT adversary A in the following game be at most negligible. Sample (vk, sgk) & SIG.K(1%)
and give vk to A. Now, A(vk) may call a signing oracle SgnOracle[sgk](-) only once, where the

oracle SgnOracle[sgk](-) on input m returns o & SIG.Sign(sgk, m). Finally, A(vk) should return a
pair (m’, ¢’) of message/signature and will win if (m, o) # (m’, ¢’) and that SIG.Ver(vk,m’,¢’) = T.

D Extracting Hardcore Bits From Our TDF

Since our constructed TDF is one-way, we may use standard techniques, e.g., [GL89], to obtain
hardcore bits. In this section we show that any hardcore function h for f is also a hardcore
function for our constructed TDF. We will then use this fact to show that if f is length decreasing
(as in [DG17b]), then one may use standard randomness extraction techniques to obtain many
hardcore bits.

Definition D.1 (Hardcore functions). Let (K,f,E,D) be a OWFE scheme. We say that a function
h(-,-) with u = u(X) bit-long outputs is a hardcore function for f if (pp,y,h(pp,x)) = (pp,y,w),
where pp & K(1%), x & {0,1}", y := f(pp,x) and w & {0,1}%.

Similarly, we say that a function h(-,-) with u = u(\) bit-long outputs is a hardcore function
for a TDF (TDF.K,TDF.F,TDF.F_l) if

£

(ik, TDF.F(ik, X), h(ik, X)) = (ik, TDF.F(ik, X), w), (37)
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where (ik, tk) < TDF.K(1}), X < {0,1}* and w & {0, 1}*.
We will now show that any hardcore function h for f gives rise to a similar hardcore func-

tion for our constructed TDF (TDF.K, TDF.F, TDF.F~1) built based on (K,f,E,D) according to

Construction 4.1.
Lemma D.2. Suppose (K,f,E,D) is a recyclable OWFE scheme and h is a u-bit-output hardcore
On input ik :=

function for f. Let TDF = (TDF.K, TDF.F, TDF.F1) be the TDF built according to Construc-

Define a hardcore function TDF.h for the trapdoor function TDF as follows.

tion 4.1.
TDF.h(ik,X) £ h(pp, x).
(38)

(pp, *) and X := (x,*), define
Then, TDF.h is a hardcore function for (TDF.K, TDF.F, TDF.F~1), namely
(ik, TDF.F(ik, X), w),

C

(ik, TDF.F(ik, X), TDF.h(ik, X))
where (ik, tk) < TDF.K(1), X := (x, ¥) & {0, 1} and w & {0,1}*
Proof. Let viewy and view; be as in the proof of Lemma 4.3. To prove Equation 38 we need to
(view, TDF.h(ik, X)) = (viewg, u),
(viewy,x). Therefore, we have (viewg, TDF.h(ik, X)) =

show that
where ik, X := (x,%*) and u are sampled as above. To prove this, first recall that in the proof
This is because we have TDF.h(ik, X) = h(pp,x), which can be constructed

of Lemma 4.3 we showed that (viewg,x)

with knowledge of pp and x.
< (viewg, u),
O

(viewq, TDF.h(ik, X)).
Now using the fact that view; can be perfectly formed using pp and y := f(pp, x), and since h
is a hardcore function for f, we obtain (viewy, TDF.h(ik, X)) = (viewy, u). Moreover, we know that

(views,u) = (viewg, u). Thus, we have
(viewo, TDF.h(ik, X)) = (view;, TDF.h(ik, X)) = (views, u)

If the function f is sufficiently length shrinking, it admits hard-

as desired.
Length shrinking functions f.
core functions with many hardcore bits via random extraction methods, e.g., pairwise independent

hash functions, see, e.g., [DRS04].
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