
Improved Parallel Mask Refreshing Algorithms
Generic Solutions with Parametrized Non-Interference &

Automated Optimizations

Gilles Barthe1, Sonia Beläıd2, François Dupressoir3, Pierre-Alain Fouque4,
Benjamin Grégoire5, François-Xavier Standaert6, and Pierre-Yves Strub7

1 IMDEA Software Institute, Spain
2 CryptoExperts, France

3 University of Surrey, United Kingdom
4 Université de Rennes 1, France

5 Inria Sophia-Antipolis – Méditerranée, France
6 Université catholique de Louvain, ICTEAM Institute, Belgium

7 Ecole Polytechnique, France.

Abstract. Refreshing algorithms are a critical ingredient for secure mask-
ing. They are instrumental in enabling sound composability properties
for complex circuits, and their randomness requirements dominate the
performance overheads in (very) high-order masking. In this paper, we
improve a proposal of mask refreshing algorithms from EUROCRYPT
2017, that has excellent implementation properties in software and hard-
ware, in two main directions. First, we provide a generic proof that this
algorithm is secure at arbitrary orders – a problem that was left open
so far. We introduce Parametrized Non-Interference as a new technical
ingredient for this purpose, that may be of independent interest. Second,
we use automated tools to further explore the design space of such al-
gorithms and provide the best known parallel mask refreshing gadgets
for concretely relevant security orders. Incidentally, we also prove the
security of a recent proposal of mask refreshing with improved resistance
against horizontal attacks from CHES 2017.

Keywords: Side-channel attacks, masking countermeasure, refreshing algo-
rithms, composability.

1 Introduction

State-of-the-art. Side-channel attacks are an important threat to the security of
cryptographic hardware [22]. While originally mostly applied to small embedded
devices, they recently targeted an increasingly large spectrum of implementa-
tions, such as general-purpose computers or smartphones [26,19,1,16]. So the
understanding of these attacks and solutions to prevent them is an important
challenge for modern security applications. In this context, masking is now es-
tablished as a widely used countermeasure allowing cryptographic designers to
mitigate side-channel attacks. Its main idea consists in splitting any sensitive

value into several shares so that the adversary needs to collect and combine
information about all the shares to extract secrets from the leakages. One key
reason for the success of masking is the good theoretical understanding it allows.
In particular, the security of masking is now shown in various security models,
ranging from the abstract probing model of Ishai et al. [20], the noisy leakage
model of Prouff and Rivain [23], and the bounded moment model of Barthe
et al. [5]. Additionally, fundamental steps have been made in the connection
of these models. In particular, the work of Duc et al. showed that security in
the most abstract (but easiest to manipulate) probing model implies security
in the most practically relevant (but more involved) noisy leakage model [12].
One important consequence of this work is that it is now possible to verify the
security of masked implementations based on their abstract description, and to
translate these abstract guarantees into concrete security [13], by checking two
additional conditions: the independence of the shares’ leakages (which is typically
assessed in the bounded moment model) and a sufficient noise level (which is
naturally assessed in the noisy leakage model). The latter results suggest that
obtaining masking schemes that are secure in the (abstract) probing model is
anyway a good preliminary (if not a strict requirement) for the design of secure
masked implementations.

Yet, and despite its appealing conceptual simplicity, reasoning about security
in the probing model is challenging, because the number of possible observation
sets in a masked implementation incurs an exponential growth when the number
of shares increases. This difficulty is typically illustrated by subtle bugs in early
works and hand-made proofs on masking [25,24], corrected in [10,11]. As a result,
the state-of-the-art proofs of masked implementations now generally combine
two types of approaches.

The first one is to rely exclusively on composable gadgets, as formalized by
Barthe et al. [4]. The latter made a significant step towards sound compositional
reasoning, by introducing Strong Non-Interference (SNI). Informally, SNI refines
previous notions of probing security, by separating between external and internal
observations and by requiring that the number of shares needed to simulate
an observation set is upper bounded by the number of internal observations.
It provably allows connecting masked gadgets without risks of compositional
flaws (at the cost of performance overheads and randomness requirements), and
therefore simplifies the analysis of full implementations.

The second one is to carry out more global compositional proofs. It generally
allows improving the performances and reducing the randomness of masked
implementations, this time at the cost of a more challenging analysis. In this
case, the implementations typically mix SNI gadgets with (less demanding)
NI gadgets (i.e., a relaxation of SNI where the the number of shares needed to
simulate an observation set is upper bounded by the total number of observations).
Evaluations can then take advantage of formal methods to better deal with the
large number of cases to be covered by the proofs [3].

One essential ingredient for both approaches are so-called refreshing algo-
rithms which are instrumental in compositional reasoning [7], and generally allow

“splitting” a masked implementation in small (enough) parts that can then be
analyzed globally. Recent implementations of (very) high-order masking schemes
have shown that the (randomness) cost of these refreshing algorithms now ac-
counts for a significant part of the global performance overheads [17,21]. In this
paper, we therefore tackle the generic improvement and automated optimization
of such refreshing algorithms.

Contribution. Our starting point is a parallel mask refreshing algorithm which
was conjectured to be SNI in [5] and has good implementation features for software
(and hardware [18]) implementations. In particular, it can easily be implemented
with simple operations such as rotations and XORs that are available on most
devices. Our contributions in this respect are threefold.

First, we observe that existing notions of NI and SNI may lack in granularity
to analyze the security of this refreshing. We therefore introduce a novel notion of
Parametrized Non-Interference (f -NI). Informally, f -NI maintains the distinction
from SNI between external and internal observations, but requires that the number
of shares needed to simulate an observation set is bounded by a function f of
the number of internal observations. The definition of f -NI subsumes SNI (by
setting f to be the identity function on naturals smaller than the masking order)
and NI (by setting f to be the function that maps all naturals smaller than the
masking order to the masking order).

Second, we leverage this new notion of f -NI in order to answer in the positive
the conjecture from [5], and show that their (iteration of) parallel mask refreshing
gadget(s) is indeed SNI.

Third, we amplify our results on efficient mask refreshing gadgets using
synthesis-based techniques to explore the design space of parallel mask refresh-
ing gadgets. The synthesis approach exploits recent works on automatically
proving security of masked implementations in the probing model [3,4]. It uses
a combination of ideas from program synthesis: intuition-guided templates to
selectively reduce the space of gadgets to explore, a scoring system to prioritize
the search, a partial order reduction to analyze only once gadgets that differ in
inessential details, and efficient data structures to improve the verification of
individual gadgets. The overall approach delivers gadgets that outperform the
state-of-the-art for (concretely useful) security orders between 5 and 10 (and for
larger orders if plugged in the recursive construction of Battistello et al. [6]).

2 Parametrized Non-Interference

Previous work introduced the notion of t-SNI, which supports reasoning com-
positionally about probing security. It refines t-NI security with a measured
independence between observations on inputs and outputs which appears to
be just enough to safely compose. Nevertheless, intermediate security notions
could be used to provide more flexible and precise compositional reasoning with
better performance. For this purpose, we introduce the notion of parameterised
non-interference (or (t, f t)-NI), a generalization of both t-SNI and t-NI.

2.1 Definition and Discussion

In the following, we adopt the “non-interference” style of definitions for probing
security introduced by Barthe et al. [4], but also further clarify their relationship
with more standard definitions of probing security, such as those of Faust et
al. [14], which are also composable, or those of Prouff and Rivain [23] and Ishai,
Sahai and Wagner [20], which are not.

We first recall some basic definitions on gadgets.

Given a set K equipped with at least a group structure, we call m-encodings
in K vectors of m elements in K. In practice, such encodings are related to a
particular encoding scheme, which we often assume to be additive (that is, an

encoding a is an encoding of some value a ∈ K iff a =
∑m−1
i=0 ai, where

∑
is the

iterated addition in K and ai is the ith element in vector a). However, many
of the techniques and arguments can be generalised to other encoding schemes.
We often work in the scenario where m = t + 1 and prefer t-based notation
throughout, except where we deviate from this scenario.

A gadget G is a probabilistic algorithm that takes as input n m-encodings
(where n is the arity of the gadget) and returns a single m-encoding, its output.
(All our definitions and results can be generalised, at some formal cost, to multi-
output gadgets.) We define the semantics of an n-ary gadget G as the function
JGK that, on input n m-encodings a1, . . . ,an, returns the joint distribution of all
intermediate variables (including those used to form the output encoding). In the
following, we assume that all intermediate variables are given a distinct index
in the gadget (for example, the line at which they are defined), and use that
index to refer to wires. We call output positions those indices that correspond
to variables that are used as outputs, and internal positions those indices that
correspond to wires that do not serve as outputs.

Given an indexed set of values or joint distribution Ω and a set of indices
I, we finally denote with Ω|I the projection or marginal distribution of those
elements of Ω selected by I. For example, the set {a, b, c} indexed by (0-indexed)
position, could be restricted as follows {a, b, c}|{1,2} = {b, c}.

Based on these definitions, we formalize f -NI as follows:

Definition 1 (Parameterised Non-Interference) A gadget G is (t, f t)-NI,

with f t : N2 → N, whenever, for any set of probes Ω = Ô ∪ O with Ô a set of
variables internal to G, and O a set of output variables of G such that |Ω| ≤ t,
there exists a set of input indices I such that:
1. ‖I‖ ≤ f t(|Ô|, |O|), and
2. for any two sets of inputs (ai)0≤i<n, (bi)0≤i<n to G, we have

(ai)|I = (bi)|I =⇒ (JGK(ai))|Ω = (JGK(bi))|Ω .

Informally, a gadget G is (t, f t)-NI if, for any observation set d, there exists a
subset of input shares S (whose size is appropriately bounded) that is such that
any two inputs that agree on shares in S will produce the same joint distribution

on variables in d through G. When clear from context, we will often omit the t
parameter, simply writing (t, f)-NI, or even f -NI.

We note in particular that this property must be established without prior
knowledge or assumptions on the distribution of input shares. This makes it
distinct (and indeed strictly stronger, as demonstrated in the long version of
Barthe et al. [2]) from more local notions such as the tth-order security by Rivain
and Prouff [24]. The latter simply requires that any t-tuple of intermediate
variables in an implementation is independent of any sensitive variable. For
simplicity, we next denote this basic security requirement t-probing security.

We note also that Ishai, Sahai and Wagner, in their proofs, make use of an
intermediate notion, that Carlet et al. [8] also call perfect t-probing security, and
which they define based on one’s ability to simulate observations based on a
subset of an algorithm’s input shares. More precisely, they prove on gadgets
and algorithms that “any set of d < t probes can be simulated with at most
t shares of each input”. The meaning of simulation, if taken in the traditional
cryptographic sense of an interactive algorithm that should be indistinguishable
from the real one, requires specifying which information is made available to the
distinguisher. Compositional reasoning requires that the distinguisher can access
both the (simulated) probes and input shares. We use a simpler interpretation
of the word to denote a (mathematical) function that takes at most t inputs
and calculates a joint distribution that is perfectly equal to that produced on its
probes by the gadget or algorithm under study, for any set of input encodings
that coincide on those shares given to the simulator.

Simulation and Non-Interference. When interpreted in this sense, perfect t-
probing security is in fact equivalent to (t, f t0)-NI, with f t0(t1, t2) = max(t1 + t2, t).
Going further, and using the non-interference-based notions, Beläıd et al. [7]
prove that (t, f t0)-NI (and thus perfect t-probing security) is in fact equivalent to
Barthe et al.’s baseline non-interference notion, t-NI [4]. We note here that f -NI
is a strict generalisation of t-NI and t-SNI.

Remark 1 A gadget is t-NI iff it is (t, f tNI)-NI with

f tNI : (t1, t2) 7→

{
t1 + t2 if t1 + t2 ≤ t
∞ otherwise.

Remark 2 A gadget is t-SNI iff it is (t, f tSNI)-NI with

f tSNI : (t1, t2) 7→

{
t1 if t1 + t2 ≤ t
∞ otherwise.

2.2 First Compositional Results

We now illustrate how one can reason about the security of compositions of f -NI
gadgets by stating a simple composition result.

Proposition 1 Let F1, F2 be two single input/single output gadgets. If Fi is
(t, fi)-NI, then the sequential composition F1;F2 is such that, for any observation
set Ω = I1] I2]O, where Ii contains observations internal to Fi and O contains
output observations and such that |Ω| ≤ t, the joint distribution of Ω can be
predicted using at most f1(|I1|, f2(|I2|, |O|)) shares of the circuit’s input.

Proof. Observations in I2 ∪O can be simulated using at most f2(|I2|, |O|) shares
of F2’s input. We now need to simulate observations in I1, jointly with the
f2(|I2|, |O|) shares of F1’s output we need in order to simulate F2. Since F1 is
f1-NI, this can be done using at most f1(|I1|, f2(|I2|, |O|)) shares of the circuit’s
inputs. We conclude that observations in F1;F2 can be simulated using at most
f1(|I1|, f2(|I2|, |O|)) shares of its input. ut

Proposition 1 is central to some of the compositional proofs given in the rest
of this paper. However, it does not clearly show that the composition of two f -NI
gadgets is also f -NI for some well chosen f . The following Corollary clarifies this,
and justifies our claim that (t, f)-NI is composable. It is a direct consequence of
Proposition 1.

Corollary 1 Let F1, F2 be two single input/single output gadgets. If Fi is fi-NI,
then the sequential composition F1;F2 is (t, f1;2)-NI, where

f1;2(t1, t2) = max {f1(u1, f2(u2, t2)) | u1 + u2 = t1}.

We note that the mere existence of this compositional result does not make
f -NI an immediate replacement for NI or SNI: indeed, the composition result
shown here exhibits a combinatoric growth in the number of cases to consider
when performing a compositional analysis on a circuit (growing with the number
of composed gadgets). When composing gadgets that are only NI or SNI, analysis
is more efficient but slightly coarser.

2.3 A Closure Property

In addition to composition, (t, f)-NI also enjoys an interesting closure property,
similar to that enjoyed by Barthe et al.’s more general notion of (I,O)-NI [4].

Proposition 2 If a gadget G is both f1-NI and f2-NI, then it is also (f1 ∩ f2)-NI
with

(f1 ∩ f2)(t1, t2) = min(f1(t1, t2), f2(t1, t2)).

Proof. The result is a direct consequence of the definition for (t, f)-NI. ut

Although this property is not used in this paper, we present it here as a
general property of (t, f)-NI that may be useful in other applications of the
notion.

3 Generic Parallel Mask Refreshing

In this section, we formally analyze, for all t the iteration of regular (parallel)
refreshing gadgets proposed and verified at low orders by Barthe et al. [5]. In
particular, we prove that the refreshing gadget that successively adds dt/3e
independent encodings of 0 to its encoded input is in fact t-SNI for all t.

Our security proof leverages the notion of f -NI and its compositional properties.
Specifically, we first prove that the core additive mask refreshing is f -NI for some
appropriate f , and then apply the composition result to conclude that the gadget
itself is t-SNI. Beyond its intrinsic interest, this example illustrates the value of
the f -NI notion as a generalization of both NI and SNI, but also as a fine-grained
property that can be used to compositionally analyse the probing security of
gadgets.

3.1 The RefreshBlock Gadget.

Our starting point is the RefreshBlock algorithm shown in Algorithm 1, where
indexing is modulo t+ 1, and which corresponds to the building block proposed
by Barthe et al. [5] (i.e., Algorithm 1 in this reference). Our description of this
algorithm uses slightly different notations, and reorders some of the computation,
but we note that our algorithm and Barthe et al.’s [5] compute exactly the
same intermediate values and output expressions, and therefore have equivalent
probing security (including f -NI and SNI) and functionality. For clarity, we also
describe this functionality by giving the expressions for each of the output shares
cı in terms of the input shares aı and fresh random masks rı:

c0 = a0 ⊕ r0 ⊕ rt,
c1 = a1 ⊕ r1 ⊕ r0,
c2 = a2 ⊕ r2 ⊕ r1,

...
ct = at ⊕ rt ⊕ rt−1.

Alg. 1 Refresh block algorithm [5].

function RefreshBlock(a)
for i = 0 to t do

ri
$← K

for i = 0 to t do
ai ← ai ⊕ ri

ai ← ai ⊕ ri−1

return a

In addition to its obvious t-NI qualities, we prove that this gadget enjoys a
slightly stronger security property, which intuitively constrains an adversary to
always place at least two internal probes in order to preserve any information it
may have obtained about the gadget’s output shares. However, and importantly,
even when this condition on the adversary’s choice of probes is fulfilled, the
adversary will always lose information corresponding to one probe through this
gadget.

Proposition 3 Gadget RefreshBlock is fRB-NI where:

fRB : (t1, t2) 7−→

{
t1 if t1 ∈ {0, 1} or t2 = 0,

t1 + t2 − 1 otherwise.

Proof. Gadget RefreshBlock has four kinds of intermediate variables: {ri}i≤t,
{ai}i≤t, {ai ⊕ ri}i≤t (denoted by bi), and {ai ⊕ ri ⊕ ri−1}i≤t (denoted by ci).
The first three categories gather internal intermediates variables while the last
one refer to output variables.8

If t2 = 0 then the observations are only internal variables that contain each
at most one input share. Therefore, we can perfectly simulate them using the
corresponding input share. We thus need at most t1 input shares to simulate t1
internal observations.

Assume now that t1 ≤ 1. We denote by non-input observation any observation
that is not an input share. We start by assigning, to any possible non-input
observation m, a set of indices m:

rk , {k}, bk , {k}, ck , {k, k − 1}.

We extend this notion canonically to sets of observations as follows: O ,
⋃

m∈O m
for any set of non-input observations O. We now prove that if O is a set of
non-input observations that contains at most an internal observation, then O
can be simulated using no input shares and using randoms in {ri | i ∈ O}. If
O = ∅, we are done. Otherwise, assume first that there exists m ∈ O and an
index k ∈ m s.t. k /∈ Om, where Om = O \ {m}. By induction hypothesis, Om can
be simulated using no input shares and using randoms in R , {ri | i ∈ Om}. By
a direct case analysis on m, it is clear that m can be simulated using the random
rk /∈ R. Hence, we obtain that O can be simulated using no input shares and
using randoms in {ri | i ∈ O}. We now prove that there always exists such an
observation m. If O is a singleton set, then we take the unique element of O for
m. Otherwise, O contains at least two observations and at least one of them must
be an external observation. This, coupled with |O| ≤ t, implies the existence
of an external observation ck ∈ O s.t. ck+1 /∈ O. If k /∈ Ock , we take ck for m.
Otherwise, for k to occur in Ock , since ck+1 /∈ O, it must be that O contains
one (and exactly one by assumption on O) internal observation of the form bk

or rk. Consider the maximal chain ck−i, . . . , ck of external observations of O.

8 In our notations, xi always has to be interpreted modulo t+ 1, i.e. xi , xi mod t+1.

Since O is of maximum size t, the length i+ 1 of this chain is at most t. Hence,
k − i − 1 6= k and k − i − 1 cannot be in bk or rk. Hence, for k − i − 1 to be
in Ock−i , ck−i−1 must be in O, which is impossible by maximality of the chain.
If follows that k − i− 1 /∈ Ock−i , and we can use ck−i for m. We now conclude
the case t1 ≤ 1. If t1 = 0 or t1 = 1 with the internal observation not being an
observation of an input share, we conclude by directly applying the fact we just
proved. If t1 and we observe an input share ak, we first simulate the input share
using ak and no randoms, and then, applying again the previously proven fact,
simulate the outputs using only randoms.

Now, assume that 2 ≤ t1 and 1 ≤ t2. To any observation m, we attach an
optional input share dependency m̂ s.t. m can be perfectly simulated from m̂ by
simply using the arithmetical expression of m:

r̂k , ⊥, âk , b̂k , ĉk , ak.

Again, we extend this notion canonically to sets of observations as follows:
Ô , {m̂ | m ∈ O, m̂ 6= ⊥} for any set of observations O. It is clear that if m1

and m2 are two observations that we simulate in isolation using their respective
arithmetical expressions and the input-shares m̂1 and m̂2, then {m1,m2}, as a set
of observations, can be simulated using their respective arithmetical expressions
and the input-shares m̂1 and m̂2. Hence, if our set of observations is s.t. |Ô| <
t1 + t2, we can simulate O using at most t1 + t2 − 1 input shares. Otherwise,
since |O| ≤ t1 + t2, it must be that we have exactly t1 + t2 observations, that we
do not observe any random, and that for any two distinct observations m1

k1 and
m2

k2 of O, we have k1 6= k2 — we say that O is injective. Assume that we know
an observation m that does not depend on any observed input shares and s.t.
there exists k ∈ m \Om. Then, we can simulate O by first simulating m using the
random rk and then, like in the previous case, by simulating all the observations
Om using their respective arithmetical expressions — this last simulation step
only depends on randoms different from rk and, as we have just seen, uses at
most t1 + t2−1 input shares. We conclude the proof by showing that there always
exists such an observation m. Let mk be any non-input share s.t. no non-input
observation of form the nk+1 belongs to O — such an observation always exists
by cardinality contraint on O. We have that k ∈mk and mk may at most depend
on the input share ak. For k to occur in Omk , it must be that a non-input share
of the form nk occurs in Omk or that ck+1 ∈ O. However, both condition are
unsatisfied: the first one by injectivity of O, the second one by definition of mk.
Last, again by injectivity of O, we have that ak /∈ O, hence mk do not depend
on any input share of O. ut

Remark 3 The bound t1+t2−1 is reached with the following kind of observations,
and is therefore tight: {bt, c0, . . . , ck, rk}.

3.2 t-SNI Mask Refreshing by Iterating RefreshBlock.

We now aim to show that strong refresh gadgets can be obtained by iterating
RefreshBlock gadgets. We prove that for all t, repeating RefreshBlock dt/3e times

constructs a t-SNI mask refreshing gadget. This coincides with the intuition
obtained from the low-order observations made in previous work [5]. We note
that Coron [9] had also proposed to iterate a similar additive mask refreshing
gadget t times in order to support secure composition. This result is a strict
refinement of his.

Proposition 4 For x ≥ 1 Gadget RefreshBlockx is fxRB-NI where fxRB : [0, . . . , t] −→
[0, . . . , t]:

(t1, t2) 7−→

{
t1 if t1 ≤ 2x− 1 or t2 = 0,

t1 + t2 − x otherwise.

Proof (Proposition 4). We first note that fRB is such that fRB(t1, t2) ≤ t1 + t2.
The proof is by induction on x. For x = 1, we note that fxRB(t1, t2) = fRB(t1, t2)
for all t1, t2 and conclude by Prop. 3. Assume now that the property holds for x.
We prove that it also holds for x+ 1. We consider the composition:

RefreshBlockx+1 = RefreshBlockx;RefreshBlock.

We consider a set Ω of observations in RefreshBlockx+1 such that |Ω| ≤ t, and
partition it into sets of tx observations internal to RefreshBlockx, t1 observations
in RefreshBlock, and t2 output observations. We therefore need to show that any
such Ω can be simulated using at most fx+1

RB (tx + t1, t2) shares of its input. By
Propositions 1 and 3, it is sufficient to prove fxRB(tx, fRB(t1, t2)) ≤ fx+1

RB (tx+t1, t2).
Let us first consider the case t2 = 0. In this case, we have:

fxRB(tx, fRB(t1, t2)) = fxRB(tx, t1)

≤ tx + t1 = fx+1
RB (tx + t1, t2)

We now have t2 ≥ 1.
If t1 ≤ 1, we have fxRB(tx, f(t1, t2)) = fxRB(tx, t1).

– If tx ≤ 2x − 1, then fxRB(tx, t1) = tx and tx + t1 ≤ 2x + 1 since t1 ≤ 1. So
fx+1
RB (tx + t1, t2) = tx + t1 and we can conclude;

– Else 2x ≤ tx. Therefore, we have fxRB(tx, t1) = tx+ t1−x and fx+1
RB (tx+ t1, t2)

is either tx + t1 or tx + t1 + t2 − (x+ 1) (depending on the value of tx + t1).
The conclusion is trivial in the first case, and follows from t2 ≥ 1 in the
second case.
We now have t2 ≥ 1 and t1 ≥ 2. So fxRB(tx, fRB(t1, t2)) = fxRB(tx, t1 + t2 − 1).

– If tx + t1 ≤ 2x+ 1, and since t1 ≥ 2, we have fx+1
RB (tx + t1, t2) = tx + t1 and

tx ≤ 2x− 1. So

fxRB(tx, t1 + t2 − 1) = tx ≤ fx+1
RB (tx + t1, t2)

– Else, we have tx + t1 > 2x + 1 and tx > 2x − 1 since t1 ≥ 2. Therefore we
have

fxRB(tx, t1 + t2 − 1) = tx + t1 + t2 − 1− x = fx+1
RB (tx + t1, t2),

which concludes the proof. ut

Corollary 2 RefreshBlockdt/3e is t-SNI.

Proof (Corollary 2). We prove that RefreshBlockx is t-SNI if x ≥ dt/3e. By
Remark 2 and Proposition 4 it is sufficient to prove fxRB(t1, t2) ≤ t1. If t2 = 0,
then fxRB(t1, t2) = t1 be definition of fxRB and we can conclude. If t1 ≤ 2x − 1
then fxRB(t1, t2) = t1 by definition of fxRB and we can conclude. Else, we have
fxRB(t1, t2) = t1 + t2 − x, and it is thus sufficient to prove t2 ≤ x. In this case,
we have t1 + t2 ≤ t (by global constraint), t1 ≥ 2x (since we are not in the case
where t1 ≤ 2x− 1) and x ≥ dt/3e (by hypothesis), and we conclude that:

t2 ≤ t− t1 ≤ t− 2x ≤ x.

Table 1 summarizes the concrete results Corollary 2 yields for some low orders.
To the best of our knowledge, these are currently the best known parallel SNI
mask refreshing algorithms. We further improve them next.

Order t 2 3 4 5 6 7 8 9 10 11 12

RefreshBlock 1 1 2 2 2 3 3 3 4 4 4
randoms 3 4 10 12 14 24 27 30 44 48 52

Table 1: Number of required instances of RefreshBlock and random values for
several small orders

4 Optimized Parallel Mask Refreshing

The previous proof followed the identification by Barthe et al. [5] of a pattern lead-
ing to low-order secure mask refreshing gadgets. A more systematic exploration
of the design space may therefore further reduce the randomness complexity
of such gadgets. In this section, we highlight two particular observations that
may be of independent interest in other search efforts, and yield particularly
interesting performance gains.

4.1 Avoiding Repeated Pairs

A first interesting pattern we identified is that the most efficient mask refreshing
gadgets at low orders rarely involve repeated pairs of random variables (i.e., they
rarely include both the pattern ai ⊕ rj ⊕ rk and aj ⊕ rj ⊕ rk for i 6= j). However,

looking at the definition of our RefreshBlockdt/3e mask refreshing algorithm in
Section 3.2, we observe that the same pairs of shares are involved in the same
way in all iterations of RefreshBlock.

We thus consider a slight variant RefreshBlockj of RefreshBlock, shown as
Algorithm 2, that rotates its vector of randomness by j instead of 1 only. By

composing RefreshBlock with RefreshBlockj for some well-chosen j, we therefore
avoid the repetition of patterns in the use of shares and randomness during
successive iterations of the algorithm.

Alg. 2 Rotation-Parameterized RefreshBlockj .

function RefreshBlockj(a)
for i = 0 to t do

ri
$← K

for i = 0 to t do
ai ← ai ⊕ ri

ai ← ai ⊕ ri−j

return a

In this exploration experiment, we look for sequences of rotation offsets that
allow us to reduce the randomness and time complexity of the mask refreshing
gadget whilst still achieving t-SNI security.

Table 2 summarizes the results of our exploration for 8, 9, 10, 11 and 12 shares.
For all, we find solutions that require only two iterations of RefreshBlockj (with
different values of j). This improves on the general result obtained by applying
Corollary 2, but preserves the parallel nature of the mask refreshing algorithm.

Our exploration in this setting further fails to find any SNI algorithms with
only 2 iterations of RefreshBlockj for 12 shares, although it notably finds an
algorithm for 12 shares with 3 iterations of RefreshBlockj , i.e.,

RefreshBlock1;RefreshBlock2;RefreshBlock3

with a cost of 36 random field elements.
We note some interesting symmetries in the results due to the fact that a

rotation of i positions in one direction is equivalent to a rotation of t + 1 − i
positions in the other. Interestingly, it also appears that, at order t, the gadget
RefreshBlock1;RefreshBlock(t+1)/2 is never t-SNI when t+ 1 is even.

4.2 Breaking Chains

Out of the results of the first wave of parallel synthesis, we make a second
observation: attacks found by the verification tool in the failure cases rely on
the construction of “chains” of observations to break SNI. More specifically, an
adversary that makes a particular observation, in order to propagate it back to
input shares, needs to carefully select intermediate observations that “lock” the
random variables used as masks on that share, and further expend an internal
observation to “cap off” the chain, blocking the final random variable in it. For
example, considering RefreshBlock1;RefreshBlock2 for t = 10, the observations
marked below (in brackets [·]) are a counter-example to SNI: they include 4
output observation and 6 internal observations whose distribution depends on 7
input shares.

Algorithm # rand. SNI?

t = 7

RefreshBlock1;RefreshBlock1 16 7

RefreshBlock1;RefreshBlock2 16 X
RefreshBlock1;RefreshBlock3 16 X
RefreshBlock1;RefreshBlock4 16 7

RefreshBlock1;RefreshBlock5 16 X
RefreshBlock1;RefreshBlock6 16 X
RefreshBlock1;RefreshBlock7 16 7

t = 8

RefreshBlock1;RefreshBlock1 18 7

RefreshBlock1;RefreshBlock2 18 X
RefreshBlock1;RefreshBlock3 18 X
RefreshBlock1;RefreshBlock4 18 X
RefreshBlock1;RefreshBlock5 18 X
RefreshBlock1;RefreshBlock6 18 X
RefreshBlock1;RefreshBlock7 18 X
RefreshBlock1;RefreshBlock8 18 7

t = 9

RefreshBlock1;RefreshBlock1 20 7

RefreshBlock1;RefreshBlock2 20 X
RefreshBlock1;RefreshBlock3 20 X
RefreshBlock1;RefreshBlock4 20 X
RefreshBlock1;RefreshBlock5 20 7

t = 10

RefreshBlock1;RefreshBlock1 22 7

RefreshBlock1;RefreshBlock2 22 7

RefreshBlock1;RefreshBlock3 22 X
RefreshBlock1;RefreshBlock4 22 X

Table 2: Some parallel mask refreshing gadgets.

c0 = [a0 ⊕ [r1
0] ⊕ r1

10 ⊕ [r2
0] ⊕ r2

9]
c1 = [a1 ⊕ r1

1 ⊕ r1
0 ⊕ [r2

1] ⊕ r2
10]

c2 = a2 ⊕ r1
2 ⊕ r1

1 ⊕ r2
2 ⊕ r2

0

c3 = a3 ⊕ r1
3 ⊕ r1

2 ⊕ r2
3 ⊕ r2

1

c4 = a4 ⊕ r1
4 ⊕ r1

3 ⊕ r2
4 ⊕ r2

2

c5 = a5 ⊕ r1
5 ⊕ r1

4 ⊕ r2
5 ⊕ r2

3

c6 = [a6 ⊕ r1
6] ⊕ r1

5 ⊕ r2
6 ⊕ r2

4

c7 = [a7 ⊕ r1
7 ⊕ r1

6 ⊕ r2
7] ⊕ r2

5

c8 = [a8 ⊕ r1
8 ⊕ r1

7 ⊕ r2
8] ⊕ r2

6

c9 = [a9 ⊕ r1
9 ⊕ r1

8 ⊕ r2
9 ⊕ r2

7]
c10 = [a10 ⊕ r1

10 ⊕ r1
9 ⊕ r2

10 ⊕ r2
8]

A key observation is that those intermediate observations that serve to construct
the chain (a8⊕ r1

8⊕ r1
7⊕ r2

8, a7⊕ r1
7⊕ r1

6⊕ r2
7 and a6⊕ r1

6) do not simply
lock random variables to make them unusable by the simulator: they also let
the adversary gain information about one additional input share, leading to the
attack. In short: those intermediate observations give more information to the
adversary by letting her observe an input-dependent distribution and remove
power from the simulator by locking random variables away.

With this observation in mind, it seems natural to consider a slight twist
on the construction: instead of immediately adding the sampled randomness
onto the input, we could construct an encoding of 0 using the same rotation-
based technique and only once enough randomness has been mixed in add it
onto the input encoding a. The consequence of this modification (which we
generalize below) on the attack above is that intermediate observations can
remove power from the simulator by locking random variables, but will never
give any information about input shares to the adversary.

We now define general algorithms embodying this approach to mask refreshing,
and state some results. Consider Algorithm 3a, which corresponds to the input-
free part of RefreshBlockj that computes an encoding of 0. We denote with
RefreshZerot`(a) (with ` a list of rotation offsets for use in ZeroBlock) the algorithm
that produces an initial encoding of 0 using ZeroBlock (with the appropriate
rotation offset) and remasks it using RefreshBlock (with the appropriate rotation
offset) before adding the final value onto the input shares.9

9 We note that another algorithm can be obtained by producing multiple encodings of
0 via ZeroBlock and adding them together after they are produced. This algorithm
has a marginally higher memory complexity, and we believe this makes no difference
to security – which we leave as a scope for further investigations.

Alg. 3 The ZeroBlockj algorithm and its usage.

function ZeroBlocktj(())
for i = 0 to t do

ri
$← K

for i = 0 to t do
ci ← ri

ci ← ci ⊕ ri−j

return c

(3a) ZeroBlockj .

function RefreshZero10[1;2]((a))

r← ZeroBlock101 ()
r← RefreshBlock102 (r)
c← r⊕ a

(3b) A modified parallel mask refreshing
algorithm based on ZeroBlocktj for t = 10.

For example, for t = 10, the modified algorithm described above is defined as
RefreshZero10[1;2], shown as Algorithm 3b. Using Barthe et al.’s maskVerif tool [4],
we obtain the results shown in Table 3, demonstrating the existence of a parallel
t-SNI mask refreshing algorithm that uses only 2(t+ 1) random elements in K for
masking orders up to t = 16. In particular, this range includes t = 7 and t = 15,
which are particularly useful for masking bitsliced implementations. Due to the
complexity of the verification problems, we do not know the minimal order for
which a third encoding of 0 is required. Still, it is worth noting that, although
our most effective improvements are limited to relatively low orders, they can
be used to yield significant improvements also at very high orders. Indeed, if
used in combination with Battistello et al’s recursive mask refreshing algorithm,
our optimized low-order gadgets improve the state-of-the-art in randomness
complexity for mask refreshing as shown in the last column of Table 4 (where
a † is used to signify that the RefreshZero algorithm is used as a base case in
the improved algorithm, and a − is used to denote the fact that Battistelo et
al’s algorithm remains the best known at this order). We note in particular
the significant reduction in randomness complexity for mask refreshing at order
t = 2n − 1.

A note on horizontal attacks. We conclude by observing that the RefreshZero
algorithm was suggested (without proof) for another purpose in [21]. Indeed,
another advantage of this algorithm (which cannot be captured in the probing
model) is that it increases the resistance to horizontal attacks, whereby an
adversary may combine several time points from the leakage traces to learn more
information about a sensitive variable. Since the sensitive variable is used only
once in RefreshZero, it reduces the impact of such attacks at gadget level.

Acknowledgments. François-Xavier Standaert is a senior research associate of
the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been
funded in parts by the European Union through the ERC project SWORD
(724725).

Algorithm SNI Verif. OoM

RefreshZero2[1] X ε

RefreshZero3[1] X ε

RefreshZero4[1] X ε

RefreshZero5[1] 7 -

RefreshZero5[2] 7 -

RefreshZero5[1,2] X ε

RefreshZero6[1,2] X ε

RefreshZero7[1,1] X ε

RefreshZero7[1,2] X ε

RefreshZero8[1,1] X ε

RefreshZero8[1,2] X ε

RefreshZero9[1,1] 7 -

RefreshZero9[1,2] X 2s

RefreshZero9[1,1,1] X 3s

RefreshZero10[1,2] X 18s

RefreshZero11[1,2] X 49s

RefreshZero12[1,2] X 10min

RefreshZero13[1,2] 7 -

RefreshZero13[1,3] X 30min

RefreshZero14[1,3] X 1.5h

RefreshZero15[1,3] X 2h

RefreshZero16[1,3] X 2d

RefreshZero17[1,3] 7 2h

RefreshZero17[1,4] X 3d

RefreshZero18[1,4] X 1 month

Table 3: Order of Magnitude (OoM) of time taken for the verification of some
RefreshZero-based mask refreshing gadgets.

order t [6] RB RZ [6] + RZ

1 1 2 ([5]) 2 -

2 3 3 ([5]) 3 †
3 6 4 ([5]) 4 †
4 8 10 ([5]) 10 -

5 12 12 ([5]) 12 †
6 15 14 ([5]) 14 13

7 20 24 ([5]) 16 †
8 22 27 ([5]) 18 †
9 26 30 ([5]) 20 †
10 30 44 22 †
11 36 48 24 †
12 39 52 26 †
13 44 70 28 †
14 49 75 30 †
15 56 80 32 †
16 58 102 34 †
17 62 108 36 †
18 66 114 38 †
19 72 120 7 60
20 76 126 7 62

. . .
31 144 320 7 96

63 352 1344 7 256

Table 4: Best known mask refreshing for some orders.

References

1. Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing attack
on amazon’s s2n implementation of TLS. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 622–643.
Springer, Heidelberg, May 2016.

2. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and Benjamin
Grégoire. Compositional verification of higher-order masking: Application to a
verifying masking compiler. Cryptology ePrint Archive, Report 2015/506, 2015.
http://eprint.iacr.org/2015/506.

3. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 457–485. Springer, Heidelberg, April 2015.

4. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16,
pages 116–129. ACM Press, October 2016.

5. Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 535–566. Springer, Heidelberg, May 2017.

6. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 23–39. Springer, Heidelberg, August 2016.

7. Sonia Beläıd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for mul-
tiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 616–648. Springer, Heidelberg, May 2016.

8. Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Algebraic
decomposition for probing security. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 742–763. Springer,
Heidelberg, August 2015.

9. Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
441–458. Springer, Heidelberg, May 2014.

10. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel
cryptanalysis of a higher order masking scheme. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 28–44. Springer,
Heidelberg, September 2007.

11. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 410–424. Springer, Heidelberg, March 2014.

12. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage models:
From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423–440. Springer,
Heidelberg, May 2014.

http://eprint.iacr.org/2015/506

13. Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making masking
security proofs concrete - or how to evaluate the security of any leaking device. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 401–429. Springer, Heidelberg, April 2015.

14. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and noisy
cases. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
135–156. Springer, Heidelberg, May 2010.

15. Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science. Springer, 2017.

16. Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom.
ECDSA key extraction from mobile devices via nonintrusive physical side channels.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16, pages 1626–1638. ACM Press, October
2016.

17. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be
in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 567–597. Springer, Heidelberg,
May 2017.

18. Hannes Groß and Stefan Mangard. Reconciling d+1 masking in hardware and
software. In Fischer and Homma [15], pages 115–136.

19. Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks:
Automating attacks on inclusive last-level caches. In 24th USENIX Security Sym-
posium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015., pages
897–912, 2015.

20. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 463–481. Springer, Heidelberg, August 2003.

21. Anthony Journault and François-Xavier Standaert. Very high order masking:
Efficient implementation and security evaluation. In Fischer and Homma [15], pages
623–643.

22. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer, Heidelberg, August 1999.

23. Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, Heidelberg,
May 2013.

24. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES 2010,
volume 6225 of LNCS, pages 413–427. Springer, Heidelberg, August 2010.

25. Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225. Springer,
Heidelberg, February 2006.

26. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,
and countermeasures. Journal of Cryptology, 23(1):62–74, January 2010.

	Improved Parallel Mask Refreshing Algorithms Generic Solutions with Parametrized Non-Interference & Automated Optimizations

