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Abstract

The Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the
most widely used schemes in deployed cryptography. Through its applica-
tions in code and binary authentication, web security, and cryptocurrency,
it is likely one of the few cryptographic algorithms encountered on a daily
basis by the average person. However, its design is such that executing
multi-party or threshold signatures in a secure manner is challenging: un-
like other, less widespread signature schemes, secure multi-party ECDSA
requires custom protocols, which has heretofore implied reliance upon
additional cryptographic assumptions and primitives such as the Paillier
cryptosystem.

We propose new protocols for multi-party ECDSA key-generation and
signing with a threshold of two, which we prove secure against malicious
adversaries in the Random Oracle Model using only the Computational
Diffie-Hellman Assumption and the assumptions already relied upon by
ECDSA itself. Our scheme requires only two messages, and via imple-
mentation we find that it outperforms the best prior results in practice
by a factor of 56 for key generation and 11 for signing, coming to within
a factor of 18 of local signatures. Concretely, two parties can jointly sign
a message in just over three milliseconds.

This document is an updated version. A new preface includes errata
and notes relevant to the original work, and a brief description of a revised
protocol with a revised proof. The original paper appears in unedited form
at the end. The authors consider this work to be fully subsumed by the
more recent three-round protocol of Doerner et al. [DKLs23], and direct
new readers to that work.
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1 About this Document
The document you are currently reading is an updated revision of the paper
Secure Two-Party Threshold ECDSA from ECDSA Assumptions. It has been
five years since the publication of the original version, during which time it was
supplemented by a general t-of-n ECDSA signing protocol [DKLs19], and then
both protocols were fully subsumed by a far simpler three-round protocol under
weaker assumptions [DKLs23]. In addition, the attention of many eyes has
brought to light a few errors in the original paper, and in component protocols
the use of which we recommended, and we, the authors, have become more
rigorous and more cautious. Although we now consider the protocol to be
deprecated, it has already been implemented and deployed by a number of
organizations, and so we have produced this revision to correct the errors, and
to adjust the protocol such that it realizes the standard signing functionality
directly, rather than requiring a reduction in the generic group model.

In contrast to the typical approach, we have not altered the original text of
this paper. Instead, we present our errata and our revised protocol (along with
a revised proof of security) as a preface to the original, after which the original
paper appears in unaltered form.

1.1 Commentary on the Security of the Original Paper
1. In the original paper, we achieved two-message signing by altering the signing

functionality such that the adversary can covertly bias the nonce. However,
using a biased signing functionality instead of a standard (unbiased) func-
tionality is fundamentally making an assumption that ECDSA signatures are
secure in spite of adversarial nonce bias. We gave a proof in the generic group
model that the adversary has no advantage in the forgery game, relative to
the standard functionality, but this should be taken only as light evidence;
elliptic curves are not actually generic groups. This implicit assumption
has not otherwise received attention or analysis because it is unique to our
protocol. Other modified signing functionalities for ECDSA have yielded a
meaningful adversarial advantage in the forgery game upon scrutiny [GS22].
In this revised version, we update our original protocol to realize a standard
signing functionality. To do this, we add a single commitment, which re-
quires an additional round. This round does not fix the nonce, and it can be
pipelined to occur simultaneously with the final round of a prior signature,
such that the protocol requires two rounds overall. This change slightly re-
duces the amount of computation each signer must perform, while slightly
increasing the amount of state that must be kept between signing sessions.

2. Several years after the initial publication of this work, Roy [Roy22] discovered
a gap in the proof of the KOS OT extension protocol, along with an attack
upon certain parameterizations.1 Although such parameterizations are not
1In particular, Roy’s attack works when the security parameter is divisible by 20.
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common in practice, we think this is a cause for concern and recommend
against the use of the KOS OT extension protocol.
Fortunately, improvements have been made to both OT extension and ba-
sic OT. Since our protocol is modular, we recommend that implementers
consider these improvements. In particular, Roy’s Softspoken OT extension
protocol [Roy22] claims a factor of five or more performance improvement
over KOS. Since a large fraction of the cost of our signing protocol is due to
OT extension, we expect this performance improvement to carry through no-
ticeably. Likewise, several efficient base OT protocols have been developed,
including those of Masny and Rindal [MR19], McQuoid et al. [MRR21], and
Zhou et al. [ZZZR23]. These can serve as drop-in replacements for our Veri-
fied Simplest OT protocol.

3. Our reproduction of the KOS OT extension protocol (protocol 9 in the orig-
inal paper) contains multiple transcription errors. The values ψ and ζ that
are defined in steps 3 and 5 ought to be elements of Fℓ′

2κ , whereas we wrote
that they were in Zℓ′

q . In steps 4 and 5, where we write logical AND (∧),
the correct operation is field multiplication over F2κ (originally notated ∗ by
Keller et al. [KOS15]). These changes relative to the original KOS protocol
were inadvertent and incorrect, and may compromise any security that the
unmodified protocol is eventually determined to achieve. We strongly advise
readers to ignore our reproduction and instead refer to the paper of Keller
et al. [KOS15] as the definitive source of information on the KOS protocol.

4. In the original paper, we left the details of abort behavior in both the proto-
cols and the functionalies largely implicit. One particular non-obvious pitfall
has emerged via conversations with implementers, which is abort behavior
in contexts where a single functionality or protocol instance might have mul-
tiple concurrent subsessions. This occurs in the OT extension functionality
FCOTe, in the multiplication functionality FMul, in the main threshold ECDSA
functionality FSampledECDSA, and in the protocols that realize all of these.
In the context of OT extension and Multiplication, which are two party pro-
tocols realizing functionalities that interact with only two parties, an abort in
any subsession implies an immediate abort in all other concurrent subsessions
within the same session. This is essential in order to prevent an adversary
from performing multiple selective failure attacks concurrently. This behav-
ior propagates to the ECDSA signing protocol in the following way: an abort
in an instance of FMul shared by some pair of parties causes all in-progress
signing subsessions involving that pair of parties to fail, and prevents them
from signing together again. However, it does not prevent any other pair of
parties from signing within the same session, and thus neither the protocol
nor the functionality that it realizes aborts in the typical sense.

5. The proof of our signing protocol in the original paper contains a benign
mistake. Specifically, it includes a reduction to the discrete logarithm as-
sumption in the argument associated with Hybrid H4 in Appendix F. This
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reduction cannot work, because it embeds the discrete logarithm challenge in
pk, under which conditions it cannot produce signatures under pk, which are
required in order simulate successful instances of the signing protocol to the
adversary. The reduction should instead target the signature forgery game
for ECDSA, in which case it can retrieve signatures under pk from the chal-
lenger as necessary, an upon computing the discrete logarithm of pk (that is,
upon computing sk), it can sign any message at will. We present a revised
proof in section 4 that makes this change, among others.

6. In section VI of the original paper, we presented an optimized “coalesced
triple-multiplication” technique (protocol 6) in which Bob’s inputs were en-
coded together. This optimization was presented without proof. We do not
know of an attack against it, but the security of this optimization should
be considered a conjecture at best until a proof is given. Since no proof is
currently known and the optimization yields only a miniscule performance
improvement (as the paper reports), we strongly recommend that it not be
used in production. Indeed, this was the reason we omitted it from follow-up
works. In our most recent work, which subsumes all of our prior efforts, this
technique is unnecessary an irrelevant, since the OT receiver (Bob) never
inputs more than a single value in its interaction with the OT sender (Alice).

2 Preliminaries
2.1 Notation
Here we introduce the notation used by the preface of this document. The
notation introduced here is not necessarily shared by the original paper.

We use = for equality, ..= for right-to-left assignment, =.. for left-to-right
assignment, and ← for right-to-left sampling from a distribution. In general,
single-letter variables are set in italic font, function names are set in sans-serif
font, and string literals are set in slab-serif font. We use X for an unspecified
domain, G for a group, Z for the integers, and N for the natural numbers. We
use λc and λs to denote the computational and statistical security parameters,
respectively, and κ is the number of bits required to represent an element of the
order field of an elliptic curve.2

Vectors and arrays are given in bold and indexed by subscripts; thus ai is
the ith element of the vector a, which is distinct from the scalar variable a.
When we wish to select a row or column from a multi-dimensional array, we
place a ∗ in the dimension along which we are not selecting. Thus b∗,j is the
jth column of matrix b, bj,∗ is the jth row, and b∗,∗ = b refers to the entire
matrix. We use bracket notation to generate inclusive ranges, so [n] denotes the
integers from 1 to n and [5, 7] = {5, 6, 7}. We use |x| to denote the bit-length
of x, and |y| to denote the number of elements in the vector y. By convention,

2In the context of non-pairing-friendly curves, κ = 2 · λc, and all three security parameters
are asymptotically equivalent.
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elliptic curve operations are expressed additively, and elliptic curve points are
typically given capitalized variables.

We use Pi to indicate a party with index i; in a typical context, there will be
a fixed set of n parties denoted P1, . . . ,Pn. In contexts where only two parties
are present, they are given indices A and B and referred to as Alice and Bob.
When a functionality or protocol requires a threshold of parties, it is denoted t.

2.2 Security and Communication Model
We consider a malicious PPT adversary who can statically corrupt a dishonest
majority of parties. All of our proofs are expressed in the Universal Composition
framework of Canetti [Can01]. We note that our techniques do not rely on any
specific properties of the framework. We assume that all of the parties in any
protocol are fully connected via authenticated channels.

2.3 The ECDSA Signature Scheme
We begin by describing the ECDSA signature scheme. All algorithms in the
scheme are parameterized by G = (G, G, q), which is the description of an elliptic
curve group G of order q that is generated by G. Note that κ = |q|. Formally, we
require a curve-sampling algorithm G ← GrpGen(1λc), and if ECDSA is a secure
signature scheme, then, at a minimum, the discrete logarithm assumption must
hold with respect to the distribution of curves sampled by GrpGen.3 In practice,
the group description is fixed and standardized.
Algorithm 2.1. ECDSAGen(G)

1. Uniformly choose a secret key sk← Zq.

2. Calculate the public key as pk ..= sk ·G.

3. Output (pk, sk).

Algorithm 2.2. ECDSASign(G, sk ∈ Zq, m ∈ {0, 1}∗)
1. Uniformly choose an instance key r ← Zq.

2. Calculate R ..= r ·G and let rx be the x-coordinate of R, modulo q.

3. Calculate
s ..= SHA2(m) + sk · rx

r

4. Output σ ..= (s, rx).

3This is necessary, but it is not known to be sufficient, and as of writing the security of
ECDSA cannot be proven under any standard assumption.
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Algorithm 2.3. ECDSAVerify(G, pk ∈ G, m ∈ {0, 1}∗, σ ∈ Z2
q)

1. Parse σ as (s, rx).

2. Calculate
R′ ..= SHA2(m) ·G + rx · pk

s

and let rx′ be the x-coordinate of R′, modulo q.

3. Output 1 if and only if rx′ = rx.

3 Two-Party Threshold ECDSA
This section contains a description of our revised two-party threshold ECDSA
protocol. We begin with the functionality FECDSA-2P that our protocol realizes-
make, which is almost the same as the functionality FECDSA presented in the
original paper. Following this, we introduce several functionalities that we will
use to construct our protocol in section 3.1, then give the protocol in section 3.2,
and discuss how it differs from the original protocol in section 3.3.
Functionality 3.1. FECDSA-2P(G, n): Two-party ECDSA

This functionality is parameterized by the party count n, and the elliptic
curve G = (G, G, q). The setup phase runs once with n parties, and the
signing phase may be run many times between (varying) pairs of parties. If
any party is corrupt, then the adversary S may instruct the functionality to
abort during the setup phase. S may also instruct the functionality to fail
during the signing phase if PA is corrupt, but in this case the functionality
does not halt, and further signatures may be attempted.

Setup: On receiving (init, sid) from some party Pi such that sid =..

P1∥ . . . ∥Pn∥sid′ and i ∈ [n] and sid is fresh, send (init-req, sid, i) to S.
On receiving (init, sid) from all parties,

1. Sample the joint secret and public keys, (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Send (public-key, sid, pk) directly to S.

4. On receiving (release, sid, i) for i ∈ [n] from S, send
(public-key, sid, pk) to Pi and store (pk-delievered, sid, i) in
memory.

5



Signing: On receiving (pre-sign, sid, sigid) from PA, parse sigid =..

A′∥B∥sigid′, and ignore PA’s message if A′ ̸= A or B ̸∈ [n] or sigid is not
fresh or (pk-delievered, sid, A) does not exist in memory; otherwise, send
(ready, sid, sigid) to PB. When PB subsequently sends (sign, sid, sigid, m),
if (pk-delievered, sid, B) exists in memory, then

5. Sample σ ← ECDSASign(G, sk, m) and parse (s, rx) ..= σ.

6. If PA is corrupt, then send (leakage, sid, sigid, rx) directly to S.

7. Send (sig-req, sid, sigid) to PA.

8. If PA responds to the signature request with (proceed, sid, sigid, m) such
that the value of m is the same as the one previously supplied by PB,
then send (signature, sid, sigid, σ) to PB and ignore all future messages
with the signature ID sigid.

9. If PA responds to the signature request with (fail, sid, sigid), then send
(failure, sid, sigid) to PB and ignore all future messages with the sig-
nature ID sigid.

3.1 Building Blocks
In this section, we define a number of simple functionalities from which our
protocol will be constructed. All are relatively standard, and they can be real-
ized via standard techniques. In each case we give some notes on purpose and
realization strategies and performance.

We begin with a functionality that samples Shamir sharings of keys for
discrete-log cryptosystems (e.g. ECDSA, the Schnorr signature scheme, the
ElGamal encryption scheme, the BBS+ signature scheme, etc). This function-
ality essentially abstracts the key generation portion of the threshold ECDSA
protocol of Doerner et al. [DKLs19] (see also the original paper), and is nearly
identical to the abstraction used by the threshold BBS+ protocol of Doerner et
al. [DKL+23]. We refer the reader to the latter paper for the description of a
protocol that perfectly UC-realizes the functionality in three rounds assuming
ideal one-to-many committed zero-knowledge (i.e. in the FRDL

CP -hybrid model).

Functionality 3.2. FDLKeyGen(G, n, t): Discrete Log Keygen [DKL+23]
This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The adversary S may corrupt up to
t− 1 parties that are indexed by P∗, and if |P∗| ≥ 1, then the adversary S
may instruct the functionality to abort.
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Key Generation: On receiving (keygen, sid) from some party Pi

such that sid =.. P1∥ . . . ∥Pn∥sid′ and i ∈ [n] and sid is fresh, send
(keygen-req, sid, i) to S. On receiving (keygen, sid) from all parties,

1. Sample (pk, sk)← ECDSAGen(G).

2. Store (secret-key, sid, sk) in memory.

3. Receive (poly-points, sid, {p(i)}i∈P∗) from S.

4. Sample a random polynomial p of degree t− 1 over Zq, consistent with
the values p(i) for i ∈ P∗ that were sent by S, and subject to p(0) = sk.

5. For i ∈ [n], compute P (i) ..= p(i) ·G.

6. Send (public-key, sid, pk, {P (1), . . . , P (n)}) directly to S.

7. On receiving (release, sid, i) for i ∈ [n] directly from S, send
(key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) to Pi.

We use the standard committed zero-knowledge functionality, with the stan-
dard discrete logarithm relation

RDL = {((X, B), x) : X = x ·B}

FRDL
CP can be realized by applying the Fischlin [Fis05] or Kondi-shelat [Ks22]

transforms to the Schnorr protocol [Sch89] and committing and decommitting
the resulting single message via the ideal commitment functionality FCom.
Functionality 3.3. FR

CP. Committed ZK [CLOS02]
This functionality is parameterized by the party count n and it has oracle
access to a decider for the relation R. In each instance one specific party
PS commits and proves, and PR receive the commitment and verify the
proof.

Commitment: On receiving (commit, sid, x, w) from party PS, parse sid =..

PS′∥PR∥sid′. If sid is a fresh value and S′ = S, and if no record of the form
(committed, sid, ∗, ∗) exists in memory, then send (committed, sid) to PR
and store (committed, sid, x, w) in memory.

Proof: On receiving (prove, sid) from party PS, if there exists a record
(committed, sid, x, w) in memory, then send (accepted, sid, X) to PR if and
only if R(x, w) ̸= 0; otherwise, send (rejected, sid).

We use a two-party multiplication functionality. For simplicity and clarity,
we give the minimal formulation of such a functionality that meets our syntacti-
cal requirements. We intend that this functionality be realized via the two-round
OT-based multiplication protocol described in the original paper (see protocol
5 in section VI); although that multiplier was proven to realize a far more com-
plex functionality (which included an initialization phase that we have omitted,
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among other differences), it is straightforward to adapt the original multiplier
proof to our simpler functionality, or to adapt our new ECDSA signing protocol
to the more complex original multiplication functionality.
Functionality 3.4. FMul(q): Two-party Multiplication

This functionality interacts with two parties, who we refer to as Alice and
Bob. It is parameterized by a prime q that determines the order of the field
over which multiplications are performed.

Input: On receiving (input, sid, b) from Bob such that sid =.. PB∥PA∥sid′

and sid is fresh, and such that b ∈ Zq and no record of the form
(instance, sid, ∗, ∗) exists in memory, sample c ← Zq uniformly, store
(instance, sid, b, c) in memory, and send (ready, sid, c) to PA.

Multiplication: On receiving (multiply, sid, a) from Alice, if a ∈ Zq and
there exists a message of the form (instance, sid, b, c) in memory, and if
(complete, sid) does not exist in memory, then compute d ..= a ·b−c mod q,
send (product, sid, d) to Bob, and store (complete, sid) in memory.

3.2 The Protocol
Protocol 3.5. πECDSA-2P(G, n): Two-Party ECDSA

This protocol is parameterized by the party count n and the elliptic curve
G = (G, G, q). The setup phase runs once with parties P1, . . . ,Pn, and the
signing phase may be run many times between (varying) pairs of parties.
In the context of signing, the parties are labeled PA (Alice) and PB (Bob),
where {A, B} ⊆ [n]. The parties in in this protocol interact with the ideal
functionalities FRDL

CP , FMul(q), and FDLKeyGen(G, n, t).

Setup:

1. On receiving (init, sid) from the environment Z, each party Pi checks
whether there exists a record of the form (key-pair, sid, pk, p(i)) in
memory. If not, then Pi sends (keygen, sid) to FDLKeyGen(G, n, 2).

2. On receiving (key-pair, sid, pk, p(i), {P (1), . . . , P (n)}) from
FDLKeyGen(G, n, 2), each party Pi outputs (public-key, sid, pk) to
the environment and stores (key-pair, sid, pk, p(i)) in memory. If
FDLKeyGen(G, n, 2) aborts, then Pi aborts to the environment.

3. Acting in pairs, the parties perform any initialization procedure associ-
ated with FMul(q).a

Pipelineable Commitment: This phase of the protocol comprises a sin-
gle round; to achieve a signing protocol with only two rounds overall, steps 4
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through 6 can be pipelined to occur simultaneously with step 10 of a pre-
vious signature.

4. On receiving (pre-sign, sid, sigid) from the environment Z, Alice parses
A′∥B∥sigid′ ..= sigid, and ignores the environment’s message if A′ ̸= A or
B ̸∈ [n] or sigid is not fresh or (key-pair, sid, pk, p(A)) does not exist in
her memory. Otherwise, she continues to the next step.

5. Alice samples her secret instance key rA ← Zq, computes DA ..= rA ·G,
and sends (commit,PA∥PB∥sid∥sigid, (DA, G), rA) to FRDL

CP , and Bob is
notified of her commitment.

6. Alice stores (alice-pipelined, sid, sigid, rA) in memory. Bob parses
A∥B′∥sigid′ ..= sigid, and if A ∈ [n] and B′ = B and A′ = A and sigid is
fresh then he stores (bob-pipelined, sid, sigid)in his memory.

Signing:

7. On receiving (sign, sid, sigid, m) from the environment Z, Bob checks
whether there exists two records of the forms (key-pair, sid, pk, p(B))
and (bob-pipelined, sid, sigid) in his memory, and checks that no record
of the form (pipeline-expended, sid, sigid) exists. If either of the
former records does not exist, or the latter record does exist, then
he ignores this message from the environment. Otherwise, he stores
(pipeline-expended, sid, sigid) in memory and continues to step 8.

8. Bob calculates the correct Lagrange coefficient lagrange({A, B}, B, 0)
for Shamir-reconstruction with Alice, and uses his point p(B) on the
polynomial p to calculate an additive share of the secret key skB ..=
p(B) · lagrange({A, B}, B, 0). He also samples his secret instance key
rB ← Zq and computes DB ..= rB ·G and µ ..= RO(sid, m).

9. Bob sends:

• (input,PB∥PA∥sid∥sigid∥1, 1/rB) to FMul(q)
• (input,PB∥PA∥sid∥sigid∥2, 1/rB) to FMul(q)
• (input,PB∥PA∥sid∥sigid∥3, skB/rB) to FMul(q)
• (dhke, sid, sigid, µ, DB) to Alice

and as a result Alice receives (ready,PB∥PA∥sid∥sigid∥i, ci) for i ∈ [3]
from FMul(q) and the dhke message from Bob. This completes the first
round.

10. On receiving her messages from the preceeding step, Alice checks
whether the record (alice-pipelined, sid, sigid, rA) exists in her mem-
ory, and that no record (pipeline-expended, sid, sigid) also exists, and
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that DB ̸= 0G. If any of these checks fail, then she ignores Bob’s mes-
sage. If they succeed, then she stores (pipeline-expended, sid, sigid)
in her memory and sends (sig-req, sid, sigid) to the environment Z.
If the environment responds with (proceed, sid, sigid, m′) such that
RO(sid, m′) = µ, Alice computes

θ ← Zq

skA ..= p(A) · lagrange({A, B}, A, 0)
R ..= rA ·DB

Γ1 ..= G + θ · rA ·G− c1 ·R
Γ2 ..= c1 · pk− (c2 + c2) ·G
η1 ..= RO(Γ1) + θ

η2 ..= RO(Γ2) + SHA2(m′) · c1 + rx · (c2 + c3)

where rx is the x-coordinate of R, modulo q, and then she sends:

• (prove,PA∥PB∥sid∥sigid) to FRDL
CP

• (fragment, sid, sigid, η1, η2) to Bob
• (input,PB∥PA∥sid∥sigid∥1,PB, θ + 1/rA) to FMul(q)
• (input,PB∥PA∥sid∥sigid∥2,PB, skA/rA) to FMul(q)
• (input,PB∥PA∥sid∥sigid∥3,PB, 1/rA) to FMul(q)

If the environment responds with (fail, sid, sigid) instead of proceed,
Alice sends (fragment, sid, sigid, 0, 0) to Bob, but otherwise sends the
same messages as above. This completes the second round.
Note that if both parties are honest, then it holds that

c1 + d1 = θ

rB
+ 1

rA · rB
and c2 + d2 + c3 + d3 = skA + skB

rA · rB

11. If Bob receives (rejected,PA∥PB∥sid∥sigid) from FRDL
CP , then he outputs

(failure, sid, sigid) to Z. On receiving all of the following messages:

• (accepted,PA∥PB∥sid∥sigid, (DA, G)) from FRDL
CP

• (fragment, sid, sigid, η1, η2) from Alice
• (product,PB∥PA∥sid∥sigid∥i, di) for i ∈ [3] from FMul(q)

10



Bob computes

Γ1 ..= d1 ·R
θ ..= η1 − RO(Γ1)

Γ2 ..= (d2 + d3) ·G + (θ/rB − d1) · pk
s ..= SHA2(m) · (d1 − θ/rB) + rx · (d2 + d3) + η2 − RO(Γ2)
σ ..= (s, rx)

12. Bob uses the public key pk to verify that σ is a valid signature on
message m. If the verification fails or if DA = 0G, Bob outputs
(failure, sid, sigid) to the envoronment. If it succeeds, he outputs
(signature, sid, sigid, σ). Either way, he ignores all future signature re-
quests with the same value of sigid.
aThe functionality has no such initialization per se, but its realization might, and

this is the appropriate time to do it.

3.3 Differences from the 2018 Protocol
The main distinction between the protocol presented here and the protocol
presented in the original paper is the addition of a third message containing a
commitment to Alice’s share of R (see steps 4 through 6 of πECDSA-2P). This
new message occurs at the beginning of the signing protocol and is pipelineable,
meaning that it can be run simultaneously with the last round of a prior signing
protocol instance, before the message is fixed for the instance with which it is
associated. Note that the commitments in this round are pairwise, which means
that each party must store up to n− 1 commitments. In practice, however, the
parties must already store much more pairwise state for the protocol that realizes
FMul, and so the extra burden that this induces is minimal.

The reason for the introduction of the commitment round, and its main
impact, is to eliminate the random-offset mechanism used to determine R in
the original paper. In this mechanism, Alice passes her multiplicative share
DA of the R into the random oracle to generate a random additive offset that
must also be multiplied by Bob’s share. This mechanism prevented a corrupt
Alice from choosing R freely, and instead limited her to a polynomial number
of samples in the random oracle model. The original paper proved that in
the generic group model, the bias this allows the adversary to induce gives the
adversary no additional power in the signature forgery game. Since the generic
group model is unrealistically strong, and this proof should be considered only
weak evidence. In other words, it is effectively an unwritten assumption of
the original paper that the same theorem holds in the random oracle model.
By requiring Alice to commit to DA before the learns DB, we eliminate the
need for the random-offset mechanism and the compromises it implies. As a
side effect, the number of elliptic curve multiplications is also reduced, and the
functionality that the protocol realizes is a varation of the standard threshold
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ECDSA functionality, which uses the ECDSA algorithms as black boxes.
Beyond the aforementioned changes, the proof is reorganized, clarified, and

a number of corrections have been made. Most notably, a reduction to discrete
logarithm was replaced by a reduction to forging ECDSA signatures, for reasons
discussed in errata 5 in section 1. Finally, the key generation process has been
abstracted via a new ideal functionality.

4 Proof of Security for Two-Party ECDSA
In this section, we prove the security of the protocol introduced in section 3.
Although our proof is very similar to the proof of the original protocol, we
nevertheless present it in full and without reference to the original paper. Proofs
of supporting lemmas are given in section 5.

4.1 Definitions
Our proof uses reductions to the forgery game and to the computational Diffie-
Hellman problem. We specify these games formally in this section.
Definition 4.1. Computational Diffie-Hellman Assumption [DH76]

Given a PPT algorithm G ← GrpGen(1κ) which takes a security parameter
κ and produces the description G = (G, G, q) of a cyclic group G of order q
generated by a single group element G, such that |q| = κ, the computational
Diffie-Hellman assumption asserts that for all PPT algorithms A,

Pr

[
A(G, x ·G, y ·G) = y · x ·G :

G ← GrpGen(1κ), (x, y)← Z2
q

]
∈ negl(κ)

In other words, given x ·G and y ·G (and knowledge of the group in which
these elements lie), y · x ·G cannot be efficiently calculated.

Definition 4.2. Signature Scheme [DH76, GMR88, KL15]

A signature scheme is a tuple of PPT algorithms, (Gen, Sign, Verify) such
that:

1. Given a security parameter λc, the Gen algorithm outputs a public
key/secret key pair: (pk, sk)← Gen(1λc)

2. Given a secret key sk and a message m, the Sign algorithm outputs a
signature: σ ← Sign(sk, m)

3. Given a message m, signature σ, and public key pk, the Verify algorithm
deterministically outputs a bit b indicating whether the signature is valid
or invalid: b ..= Verify(pk, m, σ)
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A signature scheme scheme is required to conform to two properties:

1. Correctness: With overwhelmingly high probability, all valid signatures
must verify. Formally, we require that for every message m

Pr

[
Verify(pk, m, Sign(sk, m)) = 1 :

(pk, sk)← Gen(1λc)

]
∈ 1− negl(λc)

2. Existential Unforgeability under Chosen Message Attacks (EU-CMA):
No adversary can forge a signature for any message with greater than
negligible probability, even if that adversary has seen signatures for poly-
nomially many messages of its choice. Formally, for all PPT adversaries
A with access to the signing oracle Sign(sk, ·), where Q is the set of
queries A asks the oracle,

Pr

[
Verify (pk, m, σ) = 1 ∧m /∈ Q :

(pk, sk)← Gen(1λc), (m, σ)← ASign(sk,·) (pk)

]
∈ negl(λc)

4.2 The Proof
Theorem 4.3 (Two-Party Security Theorem). If GrpGen generates a sequence
of elliptic curves relative to which the computational Diffie-Hellman assumption
holds and ECDSA is an EU-CMA secure signature scheme, and if RO is a non-
programmable global random oracle, then for every bounded malicious adversary
A that statically corrupts only one party, there exists a simulator SA

ECDSA-2P that
uses A as a black box, such that for every bounded environment Z it holds that{

RealπECDSA-2P(G,n),A,Z (κ, z) : G ← GrpGen(1κ)
}

κ∈N,n∈N:n>1,
z∈{0,1}∗

≈c

{
IdealFECDSA-2P(G,n),SA

ECDSA-2P(G,n),Z (κ, z) : G ← GrpGen(1κ)
}

κ∈N,n∈N:n>1,
z∈{0,1}∗

Proof. We begin by specifying the simulator SA
ECDSA-2P(G, n), after which we will

give a sequence of hybrid experiments to establish that it produces a view for
the environment that is indistinguishable from the real world.
Simulator 4.4. SA

ECDSA-2P(G, n): Two-party ECDSA
This simulator is parameterized by the party count n and the elliptic curve
G = (G, G, q). The simulator has oracle access to the adversary A, and
emulates for it an instance of the protocol πECDSA-2P(G, n) involving the
parties P1, . . . ,Pn. The simulator forwards all messages from its own en-
vironment Z to A, and vice versa. When the emulated protocol instance
begins, A announces the identity of one corrupt parties. Let the indices of
this party be given by C. SA

ECDSA-2P(G, n) interacts with the ideal function-
ality FECDSA-2P(G, n) on behalf of the corrupt party, and in the exeriment
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that it emulates for A, it interacts with A and the corrupt party on behalf
of every honest party and on behalf of the ideal oracles FRDL

CP , FMul(q), and
FDLKeyGen(G, n, 2).

Setup, against one corrupt party PC:

1. On receiving (keygen, sid) from PC on behalf of FDLKeyGen(G, n, 2), send

• (init, sid) to FECDSA(G, n, 2) on behalf of PC

• (keygen-req, sid, C) directly to A on behalf of FDLKeyGen(G, n, 2)

2. On receiving (init-req, sid, j) for some j ∈ [n] : j ̸= C directly from
FECDSA(G, n, 2), send (keygen-req, sid, j) directly to A on behalf of
FDLKeyGen(G, n, 2).

3. On receiving (public-key, sid, pk) directly from FECDSA-2P(G, n), for-
ward this message to A on behalf of FDLKeyGen(G, n, 2).

4. On receiving (release, sid, i) from A on behalf of FDLKeyGen(G, n, 2),
forward this message directly to FECDSA-2P(G, n).

5. On receiving (public-key, sid, pk) from FECDSA-2P(G, n) on behalf of
PC and receiving (poly-points, sid, {p(C)}) from A directly, store
(key-pair, sid, pk, p(C)) in memory, compute

P (k) ..= pk− lagrange({k, C}, C, 0) · P (C)
lagrange({k, C}, k, 0)

for every k ∈ [n] \ {C}, and on behalf of FDLKeyGen(G, n, 2)
send (public-key, sid, pk, {P (1), . . . , P (n)}) to A and
(key-pair, sid, pk, p(C), {P (1), . . . , P (n)}) to PC.

Pipelineable Commitment, against Alice:

6. Upon forwarding (pre-sign, sid, sigid) from Z to Alice and then receiv-
ing (commit,PA∥PB∥sid∥sigid, (DA, G), rA) from Alice on behalf of FRDL

CP ,
parse A′∥B∥sigid′ ..= sigid, and ignore these messages if A′ ̸= A or B ̸∈ [n]
or sigid is not fresh or (key-pair, sid, pk, p(A)) does not exist in mem-
ory. Otherwise, store (alice-pipelined, sid, sigid, DA, rA) in memory
and send (pre-sign, sid, sigid) to FECDSA-2P(G, n) on Alice’s behalf.

Signing, against Alice:

7. Upon receiving (sig-req, sid, sigid, m) from FECDSA-2P(G, n) on be-
half of Alice, and (leakage, sid, sigid, rx) from FECDSA-2P(G, n) di-
rectly, reconstruct R from rx, retrieve (key-pair, sid, pk, p(A)) and
(alice-pipelined, sid, sigid, DA, rA) from memory, sample ci ← Zq for
i ∈ [3], compute DB ..= R/rA, and send to Alice:
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• (dhke, sid, sigid, RO(sid, m), DB) on behalf of Bob
• (ready,PB∥PA∥sid∥sigid∥i, ci) for i ∈ [3] on behalf of FMul(q)

8. On receiving all of the following messages from Alice:

• (prove,PA∥PB∥sid∥sigid) on behalf of FRDL
CP

• (fragments, sid, sigid, η1, η2) on behalf of Bob
• (multiply,PB∥PA∥sid∥sigid∥i, ai) for i ∈ [3] on behalf of FMul(q)

compute

skA ..= p(A) · lagrange({A, B}, A, 0)
θ ..= a1 − 1/rA

Γ1 ..= G + θ · rA ·G− c1 ·R
Γ2 ..= c1 · pk− c2 + c3 ·G

and then check whether and

SHA2(m) · c1 +rx · (c2 + c3) = η2−RO(Γ2) and θ = η1−RO(Γ1)

and a2 = skA
rA

and a3 = 1
rA

and rA ·G = DA ̸= 0G

and if all of these equations hold, then send (proceed, sid, sigid, m) to
FECDSA-2P(G, n) on Alice’s behalf. Otherwise, send (fail, sid, sigid) to
FECDSA-2P(G, n). Regardless, do not halt.

Pipelineable Commitment, against Bob:

9. On receiving (ready, sid, sigid) from FECDSA-2P(G, n) on behalf of
Bob, send Bob a notification on behalf of FRDL

CP that Alice has
made a commitment with session ID PA∥PB∥sid∥sigid and store
(bob-pipelined, sid, sigid) in memory.

Signing, against Bob:

10. Upon receiving the following messages from Bob:

• (dhke, sid, sigid, sigid, µ, DB) on behalf of Alice
• (input,PB∥PA∥sid∥sigid∥i, bi) for i ∈ [3] on behalf of FMul(q)

retrieve (bob-pipelined, sid, sigid) from memory. If such a mes-
sage does not exist, or if (pipeline-expended, sid, sigid) also ex-
ists or DB = 0G, then ignore Bob’s messages. Otherwise,
find m in the table of observed random oracle queries such that
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µ = RO(sid, m), store (pipeline-expended, sid, sigid) in memory, re-
trieve (key-pair, sid, pk, p(B)) from memory, compute skB ..= p(B) ·
lagrange({A, B}, B, 0), and then check whether it holds that

G = b1 ·DB and b1 = b2

and b1 · skB = b3

and if m exists in the table of queries and these equations hold, then
send (sign, sid, sigid, m) to FECDSA-2P(G, n) on behalf of Bob and go to
step 11; otherwise, fail by skipping to step 12.

11. On receiving (signature, sid, sigid, σ) from FECDSA-2P(G, n), parse
(s, rx) = σ, reconstruct R from rx, compute

θ ← Zq

di ← Zq for i ∈ [3]
DA ..= b1 ·R
Γ1 ..= d1 ·R
Γ2 ..= (d2 + d3) ·G + (θ · b1 − d1) · pk
η1 ..= θ + RO(Γ1)
η2 ..= s− SHA2(m) · (d1 − θ · b1)− rx · (d2 + d3) + RO(Γ2)

and finally send to Bob:

• (accepted,PA∥PB∥sid∥sigid, (DA, G)) on behalf of FRDL
CP

• (fragments, sid, sigid, η1, η2) on behalf of Alice
• (product,PB∥PA∥sid∥sigid∥i, di) for i ∈ [3] on behalf of FMul(q)

Do not continue to step 12, and do not halt.

12. This step simulates an failed signature. Compute

rA ← Zq

η2, di ← Zq for i ∈ [3]
DA ..= rA ·G

and if G ̸= b1 ·DB, then sample η1 ← Zq. If G = b1 ·DB, then instead
compute

θ ← Zq

R ..= rA ·DB

Γ1 ..= d1 ·R
η1 ..= θ + RO(Γ1)
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Regardless, send to Bob:

• (fragments, sid, sigid, η1, η2) on behalf of Alice
• (accepted,PA∥PB∥sid∥sigid, (DA, G)) on behalf of FRDL

CP

• (product,PB∥PA∥sid∥sigid∥i, di) for i ∈ [3] on behalf of FMul(q)

and also send (fail, sid, sigid) to FECDSA-2P(G, n) on behalf of Bob, and
do not halt. Note that this step is only reached when Bob has cheated.

Our sequence of hybrid experiments begins with the real world

H0 =
{

RealπECDSA-2P(G,n),A,Z (κ, z) : G ← GrpGen(1κ)
}

κ∈N,n∈N:n>1,z∈{0,1}∗

and proceeds by gradually replacing the code of the real parties with elements
of the simulator. We begin by replacing the parts of the protocol dealing with
key generation, then we replace those parts in which the corrupt party plays the
role of Bob, then we replace those parts in which the corrupt party plays the
role of Alice, after which point SA

ECDSA-2P(G, n) will be fully implemented and the
experiment will be the ideal one. For clarity, the subsequences of hybrids dealing
with Alice and Bob’s views appear in subsections 4.3 and 4.4, respectively.

Hybrid H1. This hybrid experiment replaces all of the individual honest parties
and ideal functionalities in H0 with a single simulator machine S that runs
their code and interacts with the adversary, environment, and corrupt parties
on their behalf. Since S interacts with the adversarial entities on behalf of the
ideal functionalities, it learns any values they receive or that are defined by
their internal state (for example, the secret key sk). This is a purely syntactical
change, and so it must be the case that H1 = H0.

Hybrid H2. This hybrid behaves identically to H1, except that if the environ-
ment triggers a single signing instance with ID sigid between two honest parties,
but sends (sign, sid, sigid, m) to Bob and (proceed, sid, sigid, m′) to Alice such
that m ̸= m′, then S ignores the envoronment’s message to Alice. In H1, the
environment’s message to Alice is ignored only if RO(m′) ̸= RO(m); thus the
two can be distinguished if and only if the environment can find a collision in
the non-programmable global random oracle. Since the environment runs in
polynomial time and can make only polynomially many queries to the oracle,
this happens with negligible probability, and so H2 ≈c H1. For the remainder
of this proof, we will assume the honest behavior of any party playing Alice is
to use the same message m as Bob does.

Hybrid H3. This hybrid behaves identically to H2, except that if the environ-
ment triggers a single signing instance with ID sigid between two honest parties,
the protocol code no longer runs. Instead, upon receiving (sign, sid, sigid, m)
on behalf of Bob and (proceed, sid, sigid, m) on behalf of Alice, S locally eval-
uates σ ← ECDSASign(G, sk, m) and outputs (signature, sid, sigid, σ) to Bob.
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If Z sends (fail, sid, sigid) to Alice instead of proceed, then S simply outputs
(failure, sid, sigid) to Bob without evaluating ECDSASign.

If πECDSA-2P(G, n) correctly computes a signature when both signing parties
are honest, then it follows that H3 = H2. Observe that in H2, a pair of honest
parties compute

pk = (skA + skB) ·G
R = rA · rB ·G

c1 + d1 = θ/rB + 1/(rA · rB)
c2 + d2 = skA/(rA · rB)
c3 + d3 = skB/(rA · rB)

Γ1 = G + θ · rA ·G− c1 ·R = d1 ·R = Γ′
1

η1 = RO(Γ1) + θ

θ′ = η1 − RO(Γ′
1) = θ

Γ2 = c1 · pk− (c2 + c2) ·G = (d2 + d3) ·G + (θ′/rB − d1) · pk = Γ′
2

η2 = RO(Γ2) + SHA2(m) · c1 + rx · (c2 + c3)
s = SHA2(m) · (d1 − θ′/rB) + rx · (d2 + d3) + η2 − RO(Γ′

2)
= SHA2(m)/(rA · rB) + rx · (skA + skB)/(rA · rB)

By substition and simplification we can see that Γ′
1 = Γ1 which implies that

θ′ = θ and Γ′
2 = Γ2. Finally, substituting the equation that defines η2 into the

equation that defines s and simplifying yields exactly the signing equation given
by ECDSASign. Thus H3 and H2 are identically distributed.

4.3 The View of a Corrupt Bob
The hybrids in this subsection gradually replace the code of honest Alice with
a simulation. Given the values that S learns when it plays the roles of the
ideal functionalities in H3, it is possible to define a set of error terms that
characterize any deviations from the honest protocol that could be perpetrated
by a corrupt party that plays the role of Bob. We henceforth define his share of
the instance key rB to be the modular multiplicative inverse of his input to the
first multiplication in step 9 of πECDSA-2P. If we denote by bi for i ∈ [3] Bob’s
inputs to the three instances of FMul in step 9, then we can define the following
four error terms, which are simply the differences between the values S expects
Bob to send if he is honest and the ones he actually sends:

E1 ..= DB − rB ·G
e2 ..= b2 − 1/rB

e3 ..= b3 − skB/rB

(1)
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The forgoing definitions in turn imply that

R = rA · rB ·G + rA · E1

c1 + d1 = θ

rB
+ 1

rA · rB

c2 + d2 = skA ·
e2 + 1/rB

rA

c3 + d3 = e3 + skB/rB
rA

(2)

Hybrid H4. This hybrid differs from H3 in the following way: When a corrupt
party participates in a signature as Bob, S no longer uses Alice’s code and the
code of FMul(q) to simulate πECDSA-2P to her. Instead,

1. In step 5, S does not define rA or DA, but instead simply informs Bob
that Alice is committed on behalf of FRDL

CP .

2. In step 10 of πECDSA-2P, if the environment sends (proceed, sid, sigid, m) to
S such that RO(m) = µ, then S samples θ ← Zq and computes (s, rx)←
ECDSASign(G, sk, m), and by examining the internals of the ECDSASign

algorithm as it runs, S can determine the r corresponding to rx. It can
then reconstruct R from rx and compute rA ..= r/rB and DA ..= R/rB.
Observe that since ECDSASign samples r uniformly, the distributions of
rA and DA have not changed.
S does not use Alice’s code to compute some of the values that it must
send on her behalf; instead we substitute the ECDSASign signing equation
and the equations from equation-groups 1 and 2 into Alice’s definitions of
her variables to arrive at new derivations that S uses:

Γ1 ..= d1 · rA · rB ·G−
1 + θ · rA

rB
· E1 (3)

Γ2 ..=
(

θ

rB
− d1

)
· pk−

(
skA · e2 + e3

rA
− d2 − d3

)
·G (4)

η2 ..= s + RO(Γ2) + SHA2(m) ·
(

θ

rB
− d1

)
(5)

+ rx ·
(

skA · e2 + e3

rA
− d2 − d3

)
Furthermore, S does not define Alice’s inputs to the multipliers, but only noti-
fiess Bob that she is ready to multiply. Of course, since we have constructed S
in H4 by simple substitution, H4 = H3.

For the next hybrid, we rely on the circular security of encryption in the
Random Oracle Model, as formalized in Lemma 4.5.

Lemma 4.5. Let G = (G, G, q) be the description of a group. If RO : {0, 1}∗ →
Zq is a random oracle and x ← Zq is a private value sampled uniformly at
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random, then for any public constants C1, C2 ∈ G such that C2 ̸= 0G, a PPT
algorithm running in time poly(κ) with access to RO has an advantage no greater
than poly(κ)/q in distinguishing the distribution of RO(C1 + x · C2) + x from
the uniform distribution over Zq.

Hybrid H5. This hybrid experiment differs from H4 by augmenting the failure
conditions when Bob is corrupt and Alice is honest. When a corrupt party par-
ticipates in a signature as Bob and completes step 9 of πECDSA-2P, S computes
E1 and if E1 ̸= 0G, then S does not call ECDSASign internally, but samples
DA ← G and η1, η2 ← Zq instead of computing them according to the equa-
tions given in H4. This information-theoretically deprives Bob of the ability to
output a signature that verifies under pk. In order to prove that H5 and H4
are indistinguishable, we must show that he also has a negligible probability of
outputting a well-formed signature in H4 when E1 ̸= 0G.

In both H5 and H4, S computes Γ1 per equation 3. In H4, S then computes
η1 ..= RO(Γ1) + θ. Observe that if E1 ̸= 0 in H4, then by lemma 4.5 and the
fact that θ is drawn uniformly, Bob cannot distinguish η1 from a uniform value
(and thereby recover θ) with probability better than poly(κ)/q. Because Bob
requires θ in order to compute Γ2, his probability of computing the latter value
is also bounded by poly(κ)/q, and without knowledge of Γ2, η2 (which depends
upon RO(Γ2)) appears uniform from his perspective. It follows from this that
H5 ≈c H4.

Hybrid H6. This hybrid experiment augments S by adding another failure
condition when Bob is corrupt and Alice is honest. When a corrupt party
participates in a signature as Bob and completes step 9 of πECDSA-2P, S computes
E1, e2, and e3 and then checks whether

E1 ̸= 0G ∨ ((e2 ̸= 0 ∨ e3 ̸= 0) ∧ (e3 − skB · e2) ·G + e2 · pk = 0G) (6)

and if this condition holds, then S does not call ECDSASign internally, but
samples DA ← G and η2 ← Zq. If E1 ̸= 0G, then S also samples η1 ← Zq instead
of computing η1 via equation 3. Regardless, Bob is information-theoretically
deprived of the ability to output a signature that verifies under pk. In order
to prove that H6 and H5 are indistinguishable, we must show that he also
has a negligible probability distinguishing η2 from uniform or (equivalently)
outputting a well-formed signature in H5 when

E1 = 0G ∧ ((e2 ̸= 0 ∨ e3 ̸= 0) ∧ (e3 − skB · e2) ·G + e2 · pk = 0G) (7)

We will in fact prove a stronger statement: that he has a negligible chance to
cause equation 7 to hold at all; for convenience, we refer to any instance off the
protocol in which equation 7 holds as a distinguishing instance.

In distinguishing instances (e3 − skB · e2) · G + e2 · pk = 0G, which implies
sk = skB − e3/e2, and we can compute the discrete logarithm of an element
of G by embedding the it in pk. However, we cannot write a redution from
the Discrete Logarithm Problem to distinguishing H6 from H5, because such a
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reduction would begin without knowledge of sk, and therefore it would be unable
to simulate signatures when the environment Z causes two honest parties to
sign. Instead, we will reduce the problem of forging signatures under pk to the
problem of distinguishing H6 and H5.

Let the public key for the forgery game be pk, and let OECDSASign(G,pk,·)
be an oracle that produces signatures on arbitrary messages under pk. The
task of the reduction R is to produce a valid signature on some message m∗,
without querying the oracle on m∗. Suppose there exists some pair (A,Z) that
distinguish H6 from H5 with nonnegligible advantage. R constructs an instance
of H6 for (A,Z) in which R itself plays the role of S, but rather than sampling
sk and computing pk on behalf of FDLKeyGen(G, n, t), R uses the public key that
was provided by the challenger in the forgery game.

Whenever Z instructs two parties to sign some message m, and Bob is
honest, then R queries OECDSASign(G,pk,·) to obtain a signature on m, rather than
calculating one locally using ECDSASign. If Alice is corrupt, then R simulates
πECDSA-2P to her using the method described in H8. Note that nothing in H8
depends upon any of the intervening hybrids, and so the changes it contains can
safely be implemented now. The distribution of signatures produced in these
cases is perfectly identical to the distribution produced in H6.

Whenever Z instructs a corrupt Bob and an honest Alice to produce a
signature on some message m, the reduction uses the code of S to simulate
πECDSA-2P to Alice, with a few changes.

In step 10 of πECDSA-2P, rather than using the ECDSASign algorithm inter-
nally, R again queries OECDSASign(G,pk,·) to obtain a signature on m. E1, e2 and
e3 are all computable by R, and R behaves exactly like S if it determines that
any of the conditions in equation 7 hold.
S computes Γ1 ..= d1 ·R on Alice’s behalf; this derivation is equivalent to the

one given in equation 3 under the condition that E1 = 0G, which must be true
if Bob avoids a failure. Similarly, since (e3 − skB · e2) ·G + e2 · pk = 0G implies
that e3 + skA · e2 = 0, we can rewrite equations 4 and 5 by substitution to yield

Γ2 ..=
(

θ

rB
− d1

)
· pk + (d2 + d3) ·G

η2 ..= s + RO(Γ2) + SHA2(m) ·
(

θ

rB
− d1

)
− rx · (d2 + d3)

which are computable by R. These values are all R needs to perfectly simulate
the behavior of an honest Alice in H6.

Each time a corrupt party participates in a signature with ID sigid as Bob and
completes step 9 of πECDSA-2P, the reduction checks whether it was distinguishing
instance of the signing protocol, and if so then the reduction computes sk =
skB − e3/e2, after which point it can forge a signature on any message m∗

simply by using the signing algorithm ECDSASign, and win the forgery game.
The reduction succeeds with no loss in probability relative to the advantage of
(A,Z) in distinguishing H6 from H5. Thus if the ECDSA signature scheme has
existential unforgeability, then the probability of Bob causing a distinguishing
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instance to occur must be negligible, and H6 ≈c H5.

For the next hybrid, we need a lemma to show that computing modular
inverses is hard in Diffie-Hellman groups.

Lemma 4.6. Let G = (G, G, q) be the description of a group. If there exists a
PPT algorithm A such that

Pr[A(1κ, x ·G) = G/x : x← Zq] = ε

then there exists an algorithm that solves the Computational Diffie-Hellman
Problem in G with probability ε6.

Hybrid H7. This hybrid experiment augments S by generalizing the failure
conditions when Bob is corrupt and Alice is honest. When a corrupt party
participates in a signature as Bob and completes step 9 of πECDSA-2P, S computes
E1, e2, and e3 and then checks whether

E1 ̸= 0G ∨ e2 ̸= 0 ∨ e3 ̸= 0 (8)

and if this condition holds, then S does not call ECDSASign internally, but
samples DA ← G and η2 ← Zq. If E1 ̸= 0G, then S also samples η1 ← Zq instead
of computing η1 via equation 3. Regardless, Bob is information-theoretically
deprived of the ability to output a signature that verifies under pk. Note that the
conditions under which Bob is deprived now exactly match the conditions given
in step 10 of SECDSA-2P. In order to prove that H7 and H6 are indistinguishable,
we must show that he also has a negligible probability distinguishing η2 from
uniform or (equivalently) outputting a well-formed signature in H6 when

E1 = 0G ∧ ((e2 ̸= 0 ∨ e3 ̸= 0) ∧ (e3 − skB · e2) ·G + e2 · pk ̸= 0G) (9)

For convenience, we refer to any instance of the protocol in which equation 9
holds and yet the environment Z obtains a valid signature as a distinguishing
instance.

Recall that S computes Γ2 via equation 4, which by rearrangement implies

G

rA
= (d2 + d3) ·G + (θ/rB − d1) · pk− Γ2

skA · e2 + e3

and this is a well-defined equation in distinguishing instances, because the
premise states that (e3 − skB · e2)·G+e2 ·pk ̸= 0G, which implies skA ·e2+e3 ̸= 0.
This relation reduces the problem of computing inverses in G to the problem of
distinguishing H7 from H6, if the inversion challenge is embedded in in DA.

Let the inversion challenge be X = x ·G and the task of the reduction R be
to compute Z = G/x. Suppose there exists some pair (A,Z) that distinguish
H7 from H6 with nonnegligible advantage. R constructs an variant of H7 for
(A,Z) in which R itself plays the role of S, and follows the code of S exactly
until Z successfully distinguishes. Each time a corrupt party participates in
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a signature as Bob and completes step 9 of πECDSA-2P, R checks whether this
instance is a distinguishing instance of the signing protocol, and if so, then R
samples y ← Zq, computes Y ..= y ·X, and uses Y in place of DA in step 10 of
πECDSA-2P. Since DA was information-theoretically hidden from Bob up to this
point, and Y and DA are identically distributed, Z cannot detect this swap.

In order to compute Z, the reduction must compute Γ2, but the reduction
cannot compute Γ2 in the same way S does in H7, because doing so requires
knowledge of x (i.e. rA). However, recall that s depends on RO(Γ2). There is
only a single value for s that satisfies ECDSAVerify once rx and pk and m are
fixed, and according to the premise that Z has distinguished, Bob has obtained
this value. Bob has a negligible chance to do so unless Z has queried RO(Γ2).
Because Z runs in polynomial time, it can only have made a polynomial number
of queries, and so R can guess a query and the chance that it does so correctly
is nonnegligible. Having guessed a queriy and assigned Γ2 based on the queried
value, R computes

Z ..= y · (d2 + d3) ·G + (θ/rB − d1) · pk− Γ2

skA · e2 + e3
(10)

and outputs Z.
Since (A,Z) successfully distinguishes H7 from H6 with nonnegligible prob-

ability, there must exist in the experiment at least one particular distinguishing
instance of the signing protocol with nonnegligible probability. That is, there
exists a particular signing instance such that before Bob receives Alice’s mes-
sage in step 10, there is a nonnegligible probability p that equation 9 is satisfied
and the environment obtains a valid signature in this instance, but not in any
other instance that completes sooner. Note that p may be lower than the overall
probability with which Z distinguishes.

Since DA and Y are identically distributed, the probability that equation 19
is satisfied and Z obtains a valid signature in the same signing instance (but not
in any instance that completes sooner) is also p after the reduction replaces DA
with Y , and in this case R can compute the inverse of X via equation 10. Thus,
if there exists a pair (A,Z) that successfully distinguishes H7 from H6 with
nonnegligible probability, then there exists an algorithm to compute inverses
in G with nonnegligible probability. By lemma 4.6 it follows that no such
pair (A,Z) can exist under the Computational Diffie-Hellman Assumption with
respect to GrpGen, and H7 ≈c H6.

Up to syntactical differences, the behavior of S now matches SECDSA-2P dur-
ing key-generation and when Bob is corrupt, except that it generates signatures
via local invocations of ECDSAGen and ECDSASign instead of communicating
with FECDSA-2P(G, n).

4.4 The View of a Corrupt Alice
The hybrids in this subsection gradually replace the code of honest Bob with a
simulation. Given the values that S learns when it plays the roles of the ideal
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functionalities in H7, it is possible to define a set of error terms that characterize
any deviations from the honest protocol that could be perpetrated by a corrupt
party that plays the role of Alice. We henceforth define her share of the instance
key rA to be the value she submits along with DAto FRDL

CP in step 5 of πECDSA-2P.
If we denote by ai for i ∈ [3] Alice’s inputs to the three instances of FMul in
step 10 and we denote by Γ1 and Γ2 the values an honest Bob would compute in
step 11, then we can define θ to be the value implied by rA and a1, and we can
define the following four error terms, which are simply the differences between
the values S expects Alice to send if she is honest and the ones she actually
sends:

e2 ..= a2 − skA/rA

e3 ..= a3 − 1/rA

eη1
..= η1 − θ − RO(Γ1)

eη2
..= η2 − SHA2(m) · c1 − rx · (c2 + c3)− RO(Γ2)

(11)

The forgoing definitions in turn imply that

c1 + d1 = θ

rB
+ 1

rA · rB

c2 + d2 = e2 + skA/rA
rB

c3 + d3 = skB · (e3 + 1/rA)
rB

(12)

Hybrid H8. This hybrid differs from H7 in the following way: When a corrupt
party participates in a signature as Alice, S no longer uses Bob’s code and the
code of FMul(q) to simulate πECDSA-2P to her. Instead,

1. In step 8 of πECDSA-2P, S does not sample rB. Instead, upon learning
m, S computes (s′, rx) ← ECDSASign(G, sk, m) and by examining the
internals of the ECDSASign algorithm as it runs, S can determine the
r corresponding to rx. It can then reconstruct R from rx and compute
rB ..= r/rA and DB ..= R/rA. Observe that since ECDSASign samples r
uniformly, the distributions of rB and DB have not changed.

2. In step 10 of πECDSA-2P, S records Alice’s inputs to FMul(q), but does not
define any output for Bob.

3. In step 11 of πECDSA-2P, S cannot use Bob’s code, since his outputs from
FMul(q) are not defined. Instead, we substitute the ECDSASign signing
equation and the equations from equation-groups 11 and 12 into Bob’s
definitions of his variables to arrive at new derivations that S can compute:

Γ1 ..= (1 + θ · rA) ·G− c1 ·R (13)

Γ2 ..=
(

e2 + skB · e3

rB
− c2 − c3

)
·G +

(
eη1

rB
+ c1

)
· pk (14)

s ..= s′ + rx · (e2 + skB · e3)− SHA2(m) · eη1

rB
+ eη2 (15)
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Of course, since we have constructed S in H8 by simple substitution, H8 = H7.

Note that equation 13 depends upon nothing in Bob’s view, while equa-
tions 14 and 15 may require knowledge of rB and/or skB if certain error terms
are nonzero. The next few hybrids aim to show that S can simply output a
failure message to the environment on Bob’s behalf if any of the error terms is
nonzero, which would imply that if no failure happens, then S can compute s
without knowledge of rB or skB, and that it can use ECDSASign as a black box
when simulating against a corrupt Alice.

Hybrid H9. This hybrid experiment differs from H8 by augmenting the failure
conditions when Alice is corrupt and Bob is honest. When a corrupt party par-
ticipates in a signature as Alice and completes step 10 of πECDSA-2P, S computes
eη2 and outputs (failure, sid, sigid) to the environment on behalf of Bob if

eη2 ̸= 0 ∨ ECDSAVerify(G, pk, m, σ) ̸= 1 ∨ FRDL
CP rejects (16)

instead of outputting the signature. The additional failure condition is taken
from step 8 of SECDSA-2P.

On the other hand, in H8, S outputs the signature whenever it verifies under
pk and FRDL

CP accepts. It follows that a corrupt Alice can distinguish H9 and H8
by ensuring that eη2 ̸= 0, which causes S to output a failure on Bob’s behalf
in H9, while neverthehless satisfying the verification equation, which causes S
to output the signature in H8. We refer to any instance of the signing protocol
that meets these conditions as a distinguishing instance.

In the distinguishing instance, the verification equation implies that

s ·R = s · r ·G = SHA2(m) ·G + rx · pk = (SHA2(m) + rx · sk) ·G

which together with equation 15 implies(
s′ + rx · (e2 + skB · e3)− SHA2(m) · eη1

rB
+ eη2

)
· r = SHA2(m) + rx · sk

and then by substituting the equation (ECDSASign) that produced s′ and rear-
ranging we have

rB = SHA2(m) · eη1 − rx · (e2 + skB · e3)
eη2

which is a well-defined equation because eη2 ̸= 0, according to our premise.
Thus we can give a reduction R from the Discrete Logarithm Problem in G to
the problem of distinguishing H9 from H8. This reduction works by embedding
the discrete logarithm challenge in DB.

Let the discrete logarithm challenge be X ∈ G and the task of the reduction
be to recover x ∈ Zq such that x · G = X. Suppose there exists some pair
(A,Z) of an adversary and environment that distinguish H9 from H8 with
nonnegligible advantage. R constructs a variant of H9 for (A,Z) in which R
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itself plays the role of S, and follows the code of S exactly until Z successfully
distinguishes. Each time a corrupt party participates in a signature with ID
sigid as Alice and completes step 10 of πECDSA-2P, R checks whether it was
distinguishing instance of the signing protocol, and if so then R rewinds the
experiment to step 9 of the signing instance with ID sigid. Then, R samples
y ← Zq, computes Y ..= y ·G+X, and sends (dhke, sid, sigid, sigid, µ, Y ) to Alice
in place of (dhke, sid, sigid, sigid, µ, DB). Finally, R runs the experiment forward
again until Alice and completes step 10 of πECDSA-2P.

In order to compute x, the reduction must compute eη1 and eη2 , which
depend upon Γ1 and Γ2, respectively, but R cannot compute the latter two
values in the same way S does in H9, because doing so requires knowledge
of x (i.e. rB). Recall, however, that per equation 15, the s component of the
signature depends on RO(Γ2) and, via eη1 , on RO(Γ1). According to the premise
that Z has distinguished, the signature verifies, but Alice had a negligible chance
to send the single value of η2 that causes it to verify unless Z made these two
oracle queries at some point. Because Z runs in polynomial time, it can only
have made polynomially-many queries, and R can find the appropriate queries
by brute force. For each pair of queries that Z has made, R computes tentative
values of eη1 and eη2 and

x ..= SHA2(m) · eη1 − rx · (e2 + skB · e3)
eη2

− y (17)

and if x · G = X, then the reduction outputs x; otherwise it continues to the
next pair of queries. If it exhausts the list of query-pairs without success, then
it outputs ⊥.

Since (A,Z) successfully distinguishes H9 from H8 with nonnegligible prob-
ability, there must exist in the experiment at least one particular distinguishing
instance of the signing protocol with nonnegligible probability. That is, there
exists a particular signing instance with such that before Alice receives Bob’s
message in step 9, there is a nonnegligible probability p that eη2 ̸= 0 but sig-
nature verification passes in this instance, and not in any other instance that
completes sooner. Note that p may be lower than the overall probability with
which she distinguishes.

Observe that DB and Y are identically distributed. Applying the generalized
forking lemma of Bellare and Neven [BN06], we find that the probability that
eη2 ̸= 0 but verification (hypothetically) passes in the same signing instance (and
not in any instance that completes sooner) after rewinding is p2− p/q, which is
nonnegligible if p is nonnegligible. When this occurs, the reduction can extract x
via equation 17. Thus, if there exists a pair (A,Z) that successfully distinguishes
H9 from H8 with nonnegligible probability, then there exists an algorithm that
breaks the Discrete Logarithm Problem in G with nonnegligible probability, and
under the Discrete Logarithm Assumption with respect to GrpGen it follows that
H9 ≈c H8.

Hybrid H10. This hybrid experiment augments S by adding another abort
condition when Alice is corrupt and Bob is honest. When a corrupt party par-
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ticipates in a signature as Alice and completes step 10 of πECDSA-2P, S computes
e2, e3, and eη1 and outputs (failure, sid, sigid) to the environment on behalf of
Bob if

e2 + skB · e3 + eη1 · sk ̸= 0 ∨ eη2 ̸= 0
∨ ECDSAVerify(G, pk, m, σ) ̸= 1 ∨ FRDL

CP rejects
(18)

instead of outputting the signature. In comparison, S fails on behalf of Bob
in H9 if and only if the conditions in equation 16 hold; thus the adversary can
distinguish H10 from H9 by participating in a signature as Alice and ensuring
that

e2 + skB · e3 + eη1 · sk ̸= 0 ∧ eη2 = 0
∧ ECDSAVerify(G, pk, m, σ) = 1 ∧ FRDL

CP accepts
(19)

We will refer to instances of the signing protocol in which equation 19 holds as
distinguishing instances.

Recall that S computes Γ2 via equation 14, which by rearrangement implies

G

rB
= Γ2 + (c2 + c3 − c1 · sk) ·G

(e2 + skB · e3 + eη1 · sk)
(20)

and this is a well-defined equation in distinguishing instances, because
(e2 + skB · e3 + eη1 · sk) ̸= 0 according to the premise. We can use this relation
to reduce the problem of computing inverses in G to the problem of distinguish-
ing H10 from H9, by embedding the inversion challenge in DB.

Let the inversion challenge be X = x·G and the task of the reductionR be to
compute Z = G/x. Suppose there exists some pair (A,Z) that distinguish H10
fromH9 with nonnegligible advantage. R constructs an variant ofH10 for (A,Z)
in which R itself plays the role of S, and follows the code of S exactly until Z
successfully distinguishes. Each time a corrupt party participates in a signature
with ID sigid as Alice and completes step 10 of πECDSA-2P, R checks whether this
instance was a distinguishing instance of the signing protocol, and if so, then R
rewinds the experiment to step 9 of the signing instance with ID sigid. R then
samples y ← Zq, computes Y ..= y ·X, and sends (dhke, sid, sigid, sigid, µ, Y ) to
Alice in place of (dhke, sid, sigid, sigid, µ, DB). Finally, R runs the experiment
forward again until Alice and completes step 10 of πECDSA-2P.

In order to compute Z, the reduction must compute Γ2 and eη1 , which
depends upon Γ1, but the reduction cannot compute Γ1 or Γ2 in the same way
S does in H10, because doing so requires knowledge of x (i.e. rB). However,
recall that eη2 depends on RO(Γ2) and, via eη1 , on RO(Γ1). According to the
premise that Z has distinguished, eη2 = 0, but Alice had a negligible chance to
send the single value of η2 that ensures this equality will hold unless Z made
these two queries to the random oracle. Because Z runs in polynomial time,
it can only have made a polynomial number of queries, and so R can guess a
pair of queries and the chance that it does so correctly is nonnegligible. Having
guessed a pair of queries and assigned Γ1 and Γ2 based on the queried values,
R computes

Z ..= G

rB
= y · Γ2 + (c2 + c3 − c1 · sk) ·G

(e2 + skB · e3 + eη1 · sk)
(21)
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and outputs Z.
Since (A,Z) successfully distinguishes H10 from H9 with nonnegligible prob-

ability, there must exist in the experiment at least one particular distinguishing
instance of the signing protocol with nonnegligible probability. That is, there
exists a particular signing instance such that before Alice receives Bob’s message
in step 9, there is a nonnegligible probability p that equation 19 is satisfied in
this instance, but not in any other instance that completes sooner. Note that p
may be lower than the overall probability with which Z distinguishes.

Observe that DB and Y are identically distributed. This implies that after
the reduction replaces DB with Y , the probability that equation 19 is satisfied
in the same signing instance (but not in any instance that completes sooner) is
also p, and in this case R can compute the inverse of X via equation 21. Thus,
if there exists a pair (A,Z) that successfully distinguishes H10 from H9 with
nonnegligible probability, then there exists an algorithm to compute inverses
in G with nonnegligible probability. By lemma 4.6 it follows that no such
pair (A,Z) can exist under the Computational Diffie-Hellman Assumption with
respect to GrpGen, and H10 ≈c H9.

Hybrid H11. This hybrid experiment augments S by once again expanding
the failure conditions when Alice is corrupt and Bob is honest. When a corrupt
party participates in a signature as Alice and completes step 10 of πECDSA-2P, S
outputs (failure, sid, sigid) to the environment on behalf of Bob if

e2 ̸= 0 ∨ e3 ̸= 0 ∨ eη1 ̸= 0 ∨ eη2 ̸= 0
∨ ECDSAVerify(G, pk, m, σ) ̸= 1 ∨ FRDL

CP rejects
(22)

instead of outputting the signature. In H11, S completely implements all of the
failure conditions from step 8 of SECDSA-2P. In comparison, S fails on behalf of
Bob in H10 if and only if the conditions in equation 18 hold; thus the adver-
sary can distinguish H11 from H10 by participating in a signature as Alice and
ensuring that

e2 + skB · e3 + eη1 · sk = 0 ∧ (e2 ̸= 0 ∨ e3 ̸= 0 ∨ eη1 ̸= 0) ∧ eη2 = 0
∧ ECDSAVerify(G, pk, m, σ) = 1 ∧ FRDL

CP accepts
(23)

and we will refer to instances of the signing protocol in which equation 23 holds
as distinguishing instances.

Since e2 + skB · e3 + eη1 · sk = 0 in distinguishing instances, we have

sk = skA −
e2 + eη1 · skA

e3 + eη1

(24)

and we can compute the discrete logarithm of an element of G by embedding
the it in pk. However, we cannot write a redution from the Discrete Logarithm
Problem to distinguishing H11 from H10, because such a reduction would begin
without knowledge of sk, and therefore it would be unable to simulate signatures
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when the environment Z causes two honest parties to sign. Instead, we will re-
duce the problem of forging signatures under pk to the problem of distinguishing
H11 and H10.

Let the public key for the forgery game be pk, and let OECDSASign(G,pk,·)
be an oracle that produces signatures on arbitrary messages under pk. The
task of the reduction R is to produce a valid signature on some message m∗,
without querying the oracle on m∗. Suppose there exists some pair (A,Z)
that distinguish H11 from H10 with nonnegligible advantage. R constructs an
instance of H11 for (A,Z) in which R itself plays the role of S, but rather than
sampling sk and computing pk on behalf of FDLKeyGen(G, n, t), R uses the public
key that was provided by the challenger in the forgery game.

In H11, whenever Z instructs two parties to sign some message m, and Alice
is honest, S computes the signature internally using the ordinary ECDSASign
algorithm, and if Bob is corrupt then it simulates πECDSA-2P to him as previously
described. It can do this because it knows sk. The reduction uses the same code
as S in these cases, but since it does not know sk, it queries OECDSASign(G,pk,·)
to obtain a signature on m, rather than computing a signature itself. The
distribution of signatures produced in these cases is perfectly identical to the
distribution produced in H11.

Whenever Z instructs a corrupt Alice and an honest Bob to produce a
signature on some message m, the reduction uses the code of S to simulate
πECDSA-2P to Alice, with a few changes. In step 8 of πECDSA-2P, rather than using
the ECDSASign algorithm internally, R again queries OECDSASign(G,pk,·) to obtain
a signature on m. eη1 , e2, and e3 are all computable by R, and R must output
a failure on Bob’s behalf in step 11 of πECDSA-2P if e2 + skB · e3 + eη1 · sk ̸= 0.
Because it does not know sk, R cannot check this equation directly; instead it
outputs a failure on Bob’s behalf if e2 · G + e3 · (pk − skA · G) + eη1 · pk ̸= 0G,
which is equivalent.
S computes Γ2 on Bob’s behalf via equation 14. This equation depends upon

both skB and rB, which are unknown to the reduction. However, if the reduction
does not output a failure, then it must hold that e2 + skB · e3 + eη1 · sk = 0,
and thus in any non-failing instance of the signing protocol equation 14 can be
rewritten as

Γ2 = c1 · pk− (c2 − c3) ·G

which depends only upon values known to the reduction.
Given this derivation of Γ2, the reduction can compute eη2 in the same

way S would upon receiving Alice’s messages in step 10 of πECDSA-2P. It
outputs a failure if eη2 ̸= 0. Finally, R must determine whether the out-
put signature would verify in H11, given the error terms induced by Al-
ice. Again, it cannot necessarily compute s via equation 15 as S would, be-
cause this equation depends upon rB and/or sk if some of the error terms
are nonzero. However, the signature will only verify if s = s′, and since
DB ̸= 0G =⇒ rB ̸= 0 and eη2 ̸= 0, equation 15 implies that s = s′ if and
only if rx · (e2 + skB · e3)−SHA2(m) · eη1 = 0. The reduction can therefore check
whether (rx · e2 − SHA2(m) · eη1 − skA · rx · e3) · G + rx · e3 · pk = 0G, which is
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equivalent. If this condition holds, then the reduction outputs s ..= s′ on Bob’s
behalf; otherwise it outputs a failure on Bob’s behalf.

Each time a corrupt party participates in a signature with ID sigid as Alice
and completes step 10 of πECDSA-2P, the reduction checks whether it was dis-
tinguishing instance of the signing protocol, and if so then the reduction uses
equation 24 to recover sk, after which point it can forge a signature on any
message m∗ simply by using the signing algorithm ECDSASign, and win the
forgery game. The reduction succeeds with no loss in probability relative to
the advantage of (A,Z) in distinguishing H11 from H10. Thus if the ECDSA
signature scheme has existential unforgeability, then H11 ≈c H10.

Hybrid H12. This hybrid experiment alters S by removing a failure condition
when Alice is corrupt and Bob is honest. When a corrupt party participates
in a signature as Alice, S does not use the verification equation to check the
validity of the output signature in H12; it fails only if

e2 ̸= 0 ∨ e3 ̸= 0 ∨ eη1 ̸= 0 ∨ eη2 ̸= 0 ∨ FRDL
CP rejects

or, in other words, in H12, S exactly matches the failure conditions from step 8
of SECDSA-2P. Up to syntactical differences, the behavior of S now matches
SECDSA-2P at all points during an invocation of the protocol, except that it
generates signatures via local invocations of ECDSAGen and ECDSASign instead
of communicating with FECDSA-2P(G, n). We have finally reached the point that
S uses the ECDSAGen and ECDSASign algorithms as black boxes.

The adversary can distinguish H12 from H11 by participating in a signature
as Alice and ensuring that

e2 = 0 ∧ e3 = 0 ∧ eη1 = 0 ∧ eη2 = 0
∧ ECDSAVerify(G, pk, m, σ) = 0 ∧ FRDL

CP accepts

but we can see by inspection that this cannot happen. Recall that per equa-
tion 15, S computes

s ..= s′ + rx · (e2 + skB · e3)− SHA2(m) · eη1

rB
+ eη2

in H12, and since s′ was produced by the ECDSA signing algorithm, it must
be the case that ECDSAVerify(G, pk, m, σ) = 1 if ECDSA is a correct signature
scheme and all four error terms are zero. It follows that H12 = H11.

Hybrid H13. This final hybrid differs from H12 in the following way: S
no longer acts on behalf of any honest parties, nor does it use ECDSAGen
or ECDSASign as a black box. Instead, SA

ECDSA-2P(G, n) is fully implemented
in H13 (that is, S = SA

ECDSA-2P(G, n)), and the experiment now incorporates
FECDSA-2P(G, n). The honest parties run dummy-party code as is standard
for ideal-world experiements in the UC model, and SA

ECDSA-2P(G, n) speaks to
FECDSA-2P on behalf of corrupt parties.
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The differences between H13 and H12 are purely syntactical, which is to say
thatH12 = H13. FECDSA-2P(G, n) evaluates ECDSAGen and ECDSASign precisely
when S did in H12, and delivers enough information to SA

ECDSA-2P(G, n) that it
can simulate πECDSA-2P(G, n) to the corrupt parties in precisely the same way as
S did. For the sake of clarity, observe that when simulating against a corrupt
Alice, S only used rx when computing messages to be sent to Alice, and required
s only to compute honest Bob’s output; in H13, Bob’s output is supplied by
FECDSA-2P(G, n), and so s is not required to simulate in the presence of a corrupt
Alice (and FECDSA-2P(G, n) does not divulge it to SA

ECDSA-2P(G, n)). Similarly,
notice that sk was never used by S in H12 except as an input to ECDSASign,
and so when the evaluation of ECDSASign is outsourced to FECDSA-2P(G, n) in
H13, the simulator does not require knowledge of sk, nor does FECDSA-2P(G, n)
ever leak sk to any other entity.

Since we now have

H13 =
{

IdealFECDSA-2P(G,n),SA
ECDSA-2P(G,n),Z (κ, z) : G ← GrpGen(1κ)

}
κ∈N,n∈N:n>1,
z∈{0,1}∗

and by transitivity we also have

H13 ≈c H0 =
{

RealπECDSA-2P(G,n),A,Z (κ, z) : G ← GrpGen(1κ)
}

κ∈N,n∈N:n>1,
z∈{0,1}∗

we can conclude that Theorem 4.3 holds.

5 Proofs of Supporting Lemmas
Lemma 4.5. Let G = (G, G, q) be the description of a group. If RO : {0, 1}∗ →
Zq is a random oracle and x ← Zq is a private value sampled uniformly at
random, then for any public constants C1, C2 ∈ G such that C2 ̸= 0G, a PPT
algorithm running in time poly(κ) with access to RO has an advantage no greater
than poly(κ)/q in distinguishing the distribution of RO(C1 + x · C2) + x from
the uniform distribution over Zq.

Proof. The algorithm can distinguish a sample drawn from RO(C1 + x ·C2) + x
from uniform only by guessing the correct value of x, querying H, and test-
ing whether the result matches. Given that the algorithm can make at most
poly(κ) queries to RO and that C1 + x ·C2 is distributed uniformly over Zq, the
probability that this point is queried to RO is poly(κ)/2κ.

Lemma 5.1. Let G = (G, G, q) be the description of a group. If there exists a
PPT algorithm A such that

Pr[A(1κ, x ·G) = x/G : x← Zq] = ε

then there exists an algorithm A′ such that

Pr[A′(1κ, x ·G) = x · x ·G : x← Zq] = ε3
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Proof. The algorithm A′ that receives a challenge X = x · G and uses A to
compute x · x ·G is as follows:

1. Sample z ← Zq uniformly and compute Y ..= z · G − X. Let y be the
(unknown) discrete logarithm of Y .

2. Compute X ′ ← A(X) and Y ′ ← A(Y ). If A was successful in both compu-
tations, then X ′ = G/x and Y ′ = G/y.

3. Sample r ← Zq uniformly and compute W ..= r · A(r/z · (X ′ + Y ′)). Note
that

X ′ + Y ′ = G/x + G/y = x + y

x · y
·G = z

x · y
·G

and if A was successful in this step, then

W = r · z

r
· x · y

z
·G = x · y ·G = x · z ·G− x · x ·G

4. Output z ·X −W = x · x ·G.

A′ The algorithm A′ is successful if and only if A is successful in all three
invocations in order. This happens with probability ε3.

Lemma 5.2 ([CO15, BCP04]). Let G = (G, G, q) be the description of a group.
If there exists a PPT algorithm A such that

Pr[A(1κ, x ·G) = x · x ·G : x← Zq] = ε

then there exists an algorithm A′ which solves breaks the computational Diffie-
Hellman assumption in G with advantage ε2.

Lemma 4.6. Let G = (G, G, q) be the description of a group. If there exists a
PPT algorithm A such that

Pr[A(1κ, x ·G) = G/x : x← Zq] = ε

then there exists an algorithm that solves the Computational Diffie-Hellman
Problem in G with probability ε6.

Proof. Follows directly from Lemma 5.1 and Lemma 5.2.
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Abstract—The Elliptic Curve Digital Signature Algorithm
(ECDSA) is one of the most widely used schemes in deployed
cryptography. Through its applications in code and binary
authentication, web security, and cryptocurrency, it is likely one
of the few cryptographic algorithms encountered on a daily
basis by the average person. However, its design is such that
executing multi-party or threshold signatures in a secure manner
is challenging: unlike other, less widespread signature schemes,
secure multi-party ECDSA requires custom protocols, which
has heretofore implied reliance upon additional cryptographic
assumptions and primitives such as the Paillier cryptosystem.

We propose new protocols for multi-party ECDSA key-
generation and signing with a threshold of two, which we prove
secure against malicious adversaries in the Random Oracle Model
using only the Computational Diffie-Hellman Assumption and the
assumptions already relied upon by ECDSA itself. Our scheme
requires only two messages, and via implementation we find that
it outperforms the best prior results in practice by a factor of 56
for key generation and 11 for signing, coming to within a factor
of 18 of local signatures. Concretely, two parties can jointly sign
a message in just over three milliseconds.

I. INTRODUCTION

Threshold Digital Signature Schemes, a classic notion in
the field of Cryptography [2], allow a group of individuals
to delegate their joint authority to sign a message to any
subcommittee among themselves that is larger than a certain
size. Though extensively studied, threshold signing is seldom
used in practice, in part because threshold techniques for
standard signatures tend to be highly inefficient, reliant upon
unacceptable assumptions, or otherwise undesirable, while
bespoke threshold schemes are incompatible with familiar and
widely-accepted standards.

Consider the specific case of the Elliptic Curve Digital
Signature Algorithm (ECDSA), perhaps the most widespread
of signatures schemes: all existing threshold techniques for
generating ECDSA signatures require the invocation of heavy
cryptographic primitives such as Paillier encryption [3]–[5].
This leads both to poor performance and to reliance upon as-
sumptions that are foreign to the mathematics on which ECDSA
is based. This is troublesome, because performance concerns
and avoidance of certain assumptions often motivate the use

This document revises and expands a paper that appeared in the 2018 IEEE
S&P Conference under the same title (doi:10.1109/SP.2018.00036, [1]). This
version differs in that the protocol has been modified and reorganized in order
to simplify our security analysis at the cost of a slight performance penalty,
and the appendix now contains a complete proof of security.

of ECDSA in the first place. We address this shortcoming by
devising the first threshold signing algorithm for ECDSA that is
based solely upon Elliptic Curves and the assumptions that the
ECDSA signature scheme itself already makes. Furthermore,
we improve upon the performance of previous works by a
factor of eleven or more.

ECDSA is a standardized [6]–[8] derivative of the earlier Dig-
ital Signature Algorithm (DSA), devised by David Kravitz [9].
Where DSA is based upon arithmetic modulo a prime, ECDSA
uses elliptic curve operations over finite fields. Compared to
its predecessor, it has the advantage of being more efficient
and requiring much shorter key lengths for the same level of
security. In addition to the typical use cases of authenticated
messaging, code and binary signing, remote login, &c., ECDSA
has been eagerly adopted where high efficiency is important.
For example, it is used by TLS [10], DNSSec [11], and many
cryptocurrencies, including Bitcoin [12] and Ethereum [13].

A t-of-n threshold signature scheme is a set of protocols
which allow n parties to jointly generate a single public key,
along with n private shares of a joint secret key, and then
privately sign messages if and only if t (some predetermined
number) of those parties participate in the signing operation.
In addition to satisfying the standard properties of signature
schemes, it is necessary that threshold signature schemes be
secure in a similar sense to other protocols for multi-party
computation. That is, it is necessary that no malicious party
can subvert the protocols to extract another party’s share of
the secret key, and that no subset of fewer than t parties can
collude to generate signatures.

The concept of threshold signatures originates with the
work of Yvo Desmedt [2], who proposed that multi-party and
threshold cryptographic protocols could be designed to mirror
societal structures, and thus cryptography could take on a new
role, replacing organizational policy and social convention with
mathematical assurance. Although this laid the motivational
groundwork, it was the subsequent work of Desmedt and
Frankel [14] that introduced the first true threshold encryption
and signature schemes. These are based upon a combination of
the well-known ElGamal [15] and Shamir Secret-Sharing [16]
primitives, and carry the disadvantage that they require a trusted
party to distribute private keys. Pedersen [17] later removed
the need for a trusted third party.

The earliest threshold signature schemes were formulated as
was convenient for achieving threshold properties; Desmedt and
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Frankel [14] recognized the difficulties inherent in designing
threshold systems for standard signature schemes. Nevertheless,
they later returned to the problem [18], proposing a non-
interactive threshold system for RSA signatures [19]. This
was subsequently improved and proven secure in a series of
works [20]–[23]. Threshold schemes were also developed for
Schnorr [24], [25] and DSA [26]–[28] signatures. Many of
these schemes were too inefficient to be practical, however.

The efficiency and widespread acceptance of ECDSA make
it a natural target for similar work, and indeed threshold
ECDSA signatures are such a useful primitive that many
cryptocurrencies are already implementing a similar concept
in an ad-hoc manner [29]. Unfortunately, the design of the
ECDSA algorithm poses a unique problem: the fact that it
uses its nonce in a multiplicative fashion frustrates attempts
to use typical linear secret sharing systems as primitives. The
recent works of Gennaro et al. [4] and Lindell [3] solve this
problem by using multiplicative sharing in combination with
homomorphic Paillier encryption [30]; the former focuses on
the general t-of-n threshold case, with an emphasis on the
honest-majority setting, while the latter focuses on the difficult
2-of-2 case specifically. The resulting schemes (and the latter
in particular) are very efficient in comparison to previous
threshold schemes for plain DSA signatures: Lindell reports
that his scheme requires only 37ms (including communication)
per signature over the standard P-256 [8] curve.

Unfortunately, both Lindell and Gennaro et al.’s schemes
depend upon the Paillier cryptosystem, and thus their security
relies upon the Decisional Composite Residuosity Assumption.
In some applications (cryptocurrencies, for example), the choice
of ECDSA is made carefully in consideration of the required
assumptions, and thus the use of a threshold scheme that
requires new assumptions may not be acceptable. Additionally,
if it is to be proven secure via simulation, Lindell’s scheme
requires a new (though reasonable) assumption about the
Paillier cryptosystem to be made. Furthermore, the Paillier
cryptosystem is so computationally expensive that even a single
Paillier operation represents a significant cost relative to typical
Elliptic Curve operations. Thus in this work we ask whether
an efficient, secure, multi-party ECDSA signing scheme can
be constructed using only elliptic curve primitives and elliptic
curve assumptions, and find the answer in the affirmative.

A. Our Technique

Lindell observes that the problem of securely computing an
ECDSA signature among two parties under a public key pk
can be reduced to that of securely computing just two secure
multiplications over the integers modulo the ECDSA curve
order q. Lindell uses multiplicative shares of the secret key
and nonce (hereafter called the instance key), and computes the
signature using the Paillier additive homomorphic encryption
scheme. We propose a new method to share the products which
eliminates the need for homomorphic encryption.

Recall the signing equation for ECDSA,

sig ..=
H(m) + sk · rx

k

where m is the message, H is a hash function, sk is the
secret key, k is the instance key, and rx is the x-coordinate
of the elliptic curve point R = k ·G (G being the generator
for the curve). Suppose that k = kA · kB such that kA and
kB are randomly chosen by Alice and Bob respectively, and
R = (kA · kB) ·G, and suppose that sk = skA · skB. Alice and
Bob can learn R (and thus rx) securely via Diffie-Hellman [31]
exchange, and they receive m as input. Rearranging, we have

sig = H(m) ·
(

1

kA
· 1

kB

)
+ rx ·

(
skA
kA
· skB
kB

)
which identifies the two multiplications on private inputs
that are necessary. In our scheme, the results of of these
multiplications are returned as additive secret shares to Alice
and Bob. Since the rest of the equation is distributive over these
shares, Alice and Bob can assemble shares of the signature
without further interaction. Alice sends her share to Bob, who
reconstructs sig and checks that it verifies.

To compute these multiplications, one could apply generic
multi-party computation over arithmetic circuits, but generic
MPC techniques incur large practical costs in order to achieve
malicious security. Instead, we construct a new two-party
multiplication protocol, based upon the semi-honest Oblivious-
Transfer (OT) multiplication technique of Gilboa [32], which
we harden to tolerate malicious adversaries. Note that even if
the original Gilboa multiplication protocol is instantiated with
a malicious-secure OT protocol, it is vulnerable to a simple
selective failure attack whereby the OT sender (Alice) can
learn one or more bits of the secret input of the OT receiver
(Bob). We mitigate this attack by encoding the Bob’s input
randomly, such that Alice must learn more than a statistical
security parameter number of bits in order to determine his
unencoded input.

Unfortunately Bob may also cheat and learn something
about Alice’s secrets by using inconsistent inputs in the two
different multiplication protocols, or by using inconsistent
inputs between the multiplications and the Diffie-Hellman
exchange. In order to mitigate this issue, we introduce a simple
consistency check which ensures that Bob’s inputs correspond
to his shares of the established secret key and instance key. In
essence, Alice and Bob combine their shares with the secret
key and instance key in the exponent, such that if the shares are
consistent then they evaluate to a constant value. This check is
a novel and critical element of our protocol, and we conjecture
that it can be applied to other domains.

Our signing protocol can easily be adapted for threshold
signing among n parties with a threshold of two. This requires
the addition of a special n-party setup protocol, and the
modification of the signing protocol to allow the parties to
provide additive shares of their joint secret key rather than
multiplicative shares. Surprisingly, this incurs an overhead
equivalent to less than half of an ordinary multiplication.

B. Our Contributions

1) We present an efficient n-party ECDSA key generation
protocol and prove it secure in the Random Oracle Model
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under the Computational Diffie-Hellman assumption.
2) We present an efficient two-party, two-round ECDSA

signing protocol that is secure under the Computational
Diffie-Hellman assumption and the assumption that the
resulting signature is itself secure. Since CDH is implied
by the Generic Group Model, under which ECDSA is
proven secure, we require no additional assumptions
relative to ECDSA itself.

3) We formulate a new ideal functionality for multi-party
ECDSA signing that permits our signing protocol to
achieve much better practical efficiency than it could if it
were required to adhere to the standard functionality. We
reduce the security of our functionality to the security of
the classic signature game in the Generic Group Model.

4) In service of our main protocol, we devise a variant
of Gilboa’s multiplication by oblivious transfer tech-
nique [32] that may be of independent interest. It uses
randomized input-encoding along with a new consistency
check to maintain security against malicious adversaries.

5) At the core of our multiplication protocol is an oblivious
transfer scheme based upon the Simplest OT [33] and
KOS [34] OT-extension protocols. We introduce a new
check system to avoid the issues that have recently cast
doubt on the UC-security of Simplest OT [35].

6) We provide an implementation of our protocol in Rust,
and demonstrate its efficiency under real-world conditions.
We find our implementation can produce roughly 320
signatures per second per core on commodity hardware.

C. Organization

The remainder of this document is organized as follows.
In Section II we review essential concepts and definitions,
and in Section III we discuss the ideal functionality that our
protocols will realize. In Section IV we specify a basic two-
party protocol, which we extend to support 2-of-n threshold
signing in Section V. In Section VI we describe the multi-
plication primitive that we use. In Section VII we present a
comparative analysis of our protocols. In Section VIII, we
describe our implementation and present benchmark results. In
the appendices we describe our OT primitive, further discuss
the functionalities we use, and prove our protocols secure.

II. PRELIMINARIES AND DEFINITIONS

A. Notation and Conventions

We denote curve points with capitalized variables and scalars
with lower case. Vectors are given in bold and indexed by
subscripts, while matrices are denoted by bold capitals, with
subscripts and superscripts representing row indices and column
indices respectively. Thus xi is the ith element of the vector
x, which is distinct from the variable x. We use = to denote
equality, ..= for assignment,← for sampling an instance from a
distribution, and

c≡ to indicate computational indistinguishabil-
ity for two distributions. The ith party participating in a protocol
is denoted with Pi, and when only two parties participate, they
are called Alice and Bob for convenience. Throughout this
document, we use κ to represent the security parameter of the

elliptic curve over which our equations are evaluated, and we
use s for a statistical security parameter.

In functionalities, we assume standard and implicit bookkeep-
ing. In particular, we assume that along with the other messages
we specify, session IDs and party IDs are transmitted so that
the functionality knows to which instance a message belongs
and who is participating in that instance, and we assume that
the functionality aborts if a party tries to reuse a session ID,
send messages out of order, &c. We use slab-serif to denote
message tokens, which communicate the function of a message
to its recipients. For simplicity we omit from a functionality’s
specifier all parameters that we do not actively use. So, for
example, many of our functionalities are parameterized by a
group G of order q, but we leave implicit the fact that in any
given instantiation all functionalities use the same group.

Finally, we use H throughout this document to denote a hash
function, which is modeled as a random oracle. It takes the
form Hn : {0, 1}∗ 7→ Znq . That is, the range of the function
is n elements from Zq, where n is given as a superscript,
and assumed to be 1 if absent. If a subscript is present in a
call to H , then the function returns only the element from
its output that is indexed by the subscript. Thus, for example,
H2(x) = (H2

1 (x), H
2
2 (x)).

B. Digital Signatures

Definition 1 (Digital Signature Scheme [36]).
A Digital Signature Scheme is a tuple of probabilistic polyno-
mial time (PPT) algorithms, (Gen,Sign,Verify) such that:

1) Given a security parameter κ, the Gen algorithm outputs
a public key/secret key pair: (pk, sk)← Gen(1κ)

2) Given a secret key sk and a message m, the Sign algorithm
outputs a signature σ: σ ← Signsk(m)

3) Given a message m, signature σ, and public key pk, the
Verify algorithm outputs a bit b indicating whether the
signature is valid or invalid: b ..= Verifypk(m,σ)

A Digital Signature Scheme satisfies two properties:
1) (Correctness) With overwhelmingly high probability, all

valid signatures must verify. Formally, we require that over
(pk, sk)← Gen(1κ) and all messages m in the message
space,

Pr
pk,sk,m

[
Verifypk(m,Signsk(m)) = 1

]
> 1− negl(κ)

2) (Existential Unforgeability) No adversary can forge a
signature for any message with greater than negligible
probability, even if that adversary has seen signatures for
polynomially many messages of its choice. Formally, for
all PPT adversaries A with access to the signing oracle
Signsk(·), where Q is the set of queries A asks the oracle,

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← ASignsk(·) (pk)

]
< negl(κ)

C. ECDSA

The ECDSA algorithm is parameterized by a group G of
order q generated by a point G on an elliptic curve over the
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finite field Zp of integers modulo a prime p. The algorithm
makes use of the hash function H . Curve coordinates and
scalars are represented in κ = |q| bits, which is also the security
parameter. A number of standard curves with various security
parameters have been promulgated [8]. Assuming a curve has
been fixed, the ECDSA algorithms are as follows [36]:

Algorithm 1. Gen(1κ):
1) Uniformly choose a secret key sk← Zq .
2) Calculate the public key as pk ..= sk ·G.
3) Output (pk, sk).

Algorithm 2. Sign(sk ∈ Zq,m ∈ {0, 1}∗):
1) Uniformly choose an instance key k ← Zq .
2) Calculate (rx, ry) = R ..= k ·G.
3) Calculate

sig ..=
H(m) + sk · rx

k

4) Output σ ..= (sig mod q, rx mod q).

Algorithm 3. Verify(pk ∈ G,m, σ ∈ (Zq,Zq)):
1) Parse σ as (sig, rx).
2) Calculate

(r′x, r
′
y) = R′ ..=

H(m) ·G+ rx · pk
sig

3) Output 1 if and only if (r′x mod q) = (rx mod q).

The initial publication of the ECDSA algorithm did not
include a rigorous proof of security; this proof was later
provided by Brown [37] in the Generic Group Model, based
upon the hardness of discrete logarithms and the assumption
that the hash function H is collision resistant and uniform.
Vaudenay [38] surveys this and other ECDSA security results,
and Koblitz and Menezes provide some analysis and critique
of the proof technique [39]. In this work, we simply assume
that ECDSA is secure as specified in Definition 1.

D. Oblivious Transfer

Our construction uses a 1-of-2 Oblivious Transfer (OT)
system, which is a cryptographic protocol evaluated by two
parties: a sender and a receiver. The sender submits as input
two private messages, m0 and m1; the receiver submits a single
bit b, indicating its choice between those two. At the end of the
protocol, the receiver learns the message mb, and the sender
learns nothing. In particular, the sender does not learn the value
of the bit b, and the receiver does not learn the value of the
message mb̄. 1-of-2 OT was introduced by Evan et al. [40],
and is distinct from the earlier Rabin-style OT [41], [42]. For
a complete formal definition, we refer the reader to Naor and
Pinkas [43]. Beaver [44] later introduced the notion of OT-
extension, by which a few instances of Oblivious Transfer can
be extended to transfer polynomially many messages using
only symmetric-key primitives. For reasons of efficiency, many
modern protocols use OT-extension rather than plain OT.

III. TWO FUNCTIONALITIES

As our scheme is a multi-party computation protocol in the
malicious security model, its security will be defined relative
to an ideal functionality. Prior works on threshold ECDSA [3],
[4] present a functionality FECDSA that applies the threshold
model directly to the original ECDSA algorithms. The ECDSA
Gen algorithm becomes the first phase of FECDSA, and the
ECDSA Sign algorithm becomes the second.

Functionality 1. FECDSA:
This functionality is parameterized by a group G of order
q (represented in κ bits) generated by G, as well as hash
function H . The setup phase runs once with a group of
parties {Pi}i∈[1,n], and the signing phase may be run many
times between any two specific parties from this group. For
convenience, we refer to these two parties as Alice and Bob.
Setup (2-of-n): On receiving (init) from all parties:

1) Sample and store the joint secret key, sk← Zq .
2) Compute and store the joint public key, pk ..= sk ·G.
3) Send (public-key, pk) to all parties.
4) Store (ready) in memory.

Signing: On receiving (sign, idsig,B,m) from Alice and
(sign, idsig,A,m) from Bob, if (ready) exists in memory
but (complete, idsig) does not exist in memory:

1) Sample k ← Zq and store it as the instance key.
2) Compute (rx, ry) = R ..= k ·G.
3) Compute

sig ..=
H(m) + sk · rx

k

4) Collect the signature, σ ..= (sig mod q, rx mod q).
5) Send (signature, idsig, σ) to Bob.
6) Store (complete, idsig) in memory.

Our scheme does not realize FECDSA, but instead a new
functionality FSampledECDSA, which we have formulated to allow
us to build a protocol that requires only two rounds. It is well
known that generic Multi-party Computation can compute any
function in two rounds [45], [46] (or even one round, with
a complex setup procedure), but the challenge is to do so
efficiently. It is natural to use a Diffie-Hellman exchange to
compute R, which would otherwise require expensive secure
point multiplication techniques, but this precludes either a
two-round protocol or use of the standard functionality for
an intuitive reason: in the (basic) Diffie-Hellman exchange,
Bob sends DB

..= kB · G to Alice, who replies to Bob with
DA

..= kA ·G. Both Alice and Bob can compute R ..= kA ·kB ·G.
While Alice cannot learn the discrete logarithm of R, she does
have the power to determine R itself due to the fact that she
chooses kA after having seen DB. This conflicts with FECDSA,
which requires that the functionality pick R. It is not obvious
how to solve this without adding rounds or using a much
more expensive primitive, though we conjecture that a more
elaborate one-time setup procedure may provide a resolution.

Instead, we have devised FSampledECDSA. Relative to FECDSA,
we divide the signing phase of the functionality into three parts,
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allowing the parties to abort between them. In the first two
parts, Alice and Bob initiate a new signature for a message m,
and a random instance key k is chosen by the functionality,
along with R = k · G, which is returned to Alice. Alice is
permitted to request a new sampling of R from the functionality
arbitrarily many times (with a negligible chance of receiving a
favorable value), and to choose from the sampled set one value
under which the signature will be performed. If neither party
aborts, then in the third part the functionality will return a
signature under the chosen R. This accounts for Alice’s ability
to manipulate the Diffie-Hellman exchange, and yet it ensures
that she does not know the discrete logarithm of the value that
is eventually chosen, and that the value is uniform over G.

In Appendix C we prove in the Generic Group Model [47]
that FSampledECDSA is no less secure than ECDSA itself. We
also believe that a four-round variant of our protocol can realize
the FECDSA functionality directly.

Functionality 2. FSampledECDSA:
This functionality is parametrized in a manner identical
to FECDSA. Note that Alice may engage in the Offset
Determination phase as many times as she wishes.
Setup (2-of-n): On receiving (init) from all parties:

1) Sample and store the joint secret key sk← Zq .
2) Compute and store the joint public key pk ..= sk ·G.
3) Send (public-key, pk) to all parties.
4) Store (ready) in memory.

Instance Key Agreement: On receiving (new, idsig,m,B)
from Alice and (new, idsig,m,A) from Bob, if (ready) exists
in memory, and if (message, idsig, ·, ·) does not exist in
memory, and if Alice and Bob both supply the same message
m and each indicate the other as their counterparty, then:

1) Sample kB ← Zq .
2) Store (message, idsig,m, kB) in memory.
3) Send (nonce-shard, idsig, DB

..= kB ·G) to Alice.
Offset Determination: On receiving (nonce, idsig, i, Ri)
from Alice, if (message, idsig,m, kB) exists in memory, but
(nonce, idsig, j, ·) for j = i does not exist in memory:

4) Sample k∆
i ← Zq .

5) Store (nonce, idsig, i, Ri, k∆
i ) in memory.

6) Compute k∆
i,A = k∆

i /kB and send (offset, idsig, k∆
i,A)

to Alice.
Signing: On receiving (sign, idsig, i, kA) from Alice and
(sign, idsig) from Bob, if (message, idsig,m, kB) exists in
memory and (nonce, idsig, j, Ri, k∆

i ) for j = i exists in
memory, but (complete, idsig) does not exist in memory:

7) Abort if kA · kB ·G 6= Ri.
8) Set k ..= kA · kB + k∆

i and store (rx, ry) = R ..= k ·G.
9) Compute

sig ..=
H(m) + sk · rx

k

10) Collect the signature, σ ..= (sig mod q, rx mod q).
11) Send (signature, idsig, R, k∆

i , σ) to Bob.
12) Store (complete, idsig) in memory.

IV. A BASIC 2-OF-2 SCHEME

We describe a simplified 2-of-2 version of our scheme
initially, abstracting away the multiplication protocols for the
sake of clarity. In Section V we extend our scheme to support
2-of-n threshold signing. The fundamental structure of our 2-
of-2 scheme is similar to that of Lindell [3] in that the signing
protocol ingests multiplicative shares of both the private key
and the instance key from each party.

A. Signing

Alice and Bob begin with m, the message to be signed, and
multiplicative shares of a secret key (skA and skB respectively),
as well as a public key pk that is consistent with those shares.
The protocol is divided into four logical steps:

1) Multiplication: The parties transform multiplicative
shares of the instance key into additive shares. A second
multiplication converts multiplicative shares of the secret
key divided by the instance key into additive shares. Due
to the presence of the consistency check and verification
steps (below), the multiplication protocols employed are
not required to enforce correctness or consistency of
inputs; thus we model multiplication via FMul (given in
Section VI), which allows for well-specified cheating. To
instantiate this functionality, we use the custom OT-based
multiplication protocol that we describe in Section VI-B.

2) Instance Key Exchange: The parties calculate R = k ·G
using a modified Diffie-Hellman exchange.

3) Consistency Check: The parties verify that the first
multiplication uses inputs consistent with the Instance
Key Exchange. This is achieved by adding a random pad
φ to Alice’s input, and then combining the pad with the
multiplication output and the known value R in such
a way that Bob can retrieve the pad only if he acted
honestly. A second check ensures that the multiplications
are consistent with each other and with the public key, by
combining the multiplication outputs with the public key
in the exponent.

4) Signature and Verification: The parties reconstruct the
signature, which is given to Bob. If the signature verifies
in the usual way, then Bob outputs it.

The Instance Key Exchange component implements the
second and third phases of the FSampledECDSA functionality,
and the Multiplication, Consistency Check, and Verification
components implement the fourth phase. Although we make
a logical distinction between these four components, in the
actual protocol they are intertwined. In particular, we reorder
the messages such that all messages from Bob to Alice come
first, followed by all messages from Alice to Bob, which results
in a two-message protocol. Additionally, rather than perform
the consistency check directly, we use its associated value as
a key to encrypt all subsequent communications, so that the
protocol can only be completed if the consistency check passes.

A proof of knowledge is necessary in order to ensure that
Alice’s inputs are extractable, and thus the protocol makes use
of a zero-knowledge proof-of-knowledge-of-discrete-logarithm
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functionality FRDL

ZK , which is specified in Appendix B. This can
be concretely instantiated by a Schnorr proof [24] and the Fiat-
Shamir [48] or Fischlin [49] transform. We give the signing
protocol below, and in Figure 1 we provide an illustration, along
with annotations indicating the logical component associated
with each step.

Protocol 1. Two-party Signing
(
πSign
2P-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q)
and the hash function H . It relies upon the FMul and FRDL

ZK

functionalities. Alice and Bob provide their multiplicative
secret key shares skA, skB as input, along with identical copies
of the message m, and Bob receives as output a signature σ.
Multiplication and Instance Key Exchange:

1) Bob chooses his secret instance key, kB ← Zq , and Alice
chooses her instance key seed, k′A ← Zq . Bob computes
DB

..= kB ·G and sends DB to Alice.
2) Alice computes

R′ ..= k′A ·DB

kA ..= H(R′) + k′A

R ..= kA ·DB

3) Alice chooses a pad φ← Zq, and then Alice and Bob
invoke the FMul functionality with inputs φ+ 1/kA and
1/kB respectively, and receive shares t1A and t1B of their
padded joint inverse instance key

t1A + t1B =
φ

kB
+

1

kA · kB
Alice and Bob also invoke FMul with inputs skA/kA and
skB/kB. They receive shares t2A and t2B of their joint
secret key over their joint instance key

t2A + t2B =
skA · skB
kA · kB

The protocol instances that instantiate FMul are inter-
leaved such that the messages from Bob to Alice are
transmitted first, followed by Alice’s replies.

4) Alice transmits R′ to Bob, who computes

R ..= H(R′) ·DB +R′

For both Alice and Bob let (rx, ry) = R.
5) Alice submits (prove, kA, DB) to FRDL

ZK , and Bob sub-
mits (prove, R,DB). Bob receives a bit indicating
whether the proof was sound. If it was not, he aborts.

Consistency Check, Signature, and Verification:
6) Alice and Bob both compute m′ = H(m).
7) Alice computes the first check value Γ 1, encrypts her

pad φ with Γ 1, and transmits the encryption ηφ to Bob.

Γ 1 ..= G+ φ · kA ·G− t1A ·R
ηφ ..= H(Γ 1) + φ

8) Alice computes her share of the signature sigA and the
second check value Γ 2. She encrypts sigA with Γ 2 and
then transmits the encryption ηsig to Bob

sigA
..= (m′ · t1A) + (rx · t2A)

Γ 2 ..= (t1A · pk)− (t2A ·G)
ηsig ..= H(Γ 2) + sigA

9) Bob computes the check values and reconstructs the
signature

Γ 1 ..= t1B ·R
φ ..= ηφ −H(Γ 1)

θ ..= t1B − φ/kB
sigB

..= (m′ · θ) + (rx · t2B)
Γ 2 ..= (t2B ·G)− (θ · pk)
sig ..= sigB + ηsig −H(Γ 2)

10) Bob uses the public key pk to verify that σ ..= (sig, rx)
is a valid signature on message m. If the verification
fails, Bob aborts. If it succeeds, he outputs σ.

On the Structure of the Consistency Check: Because the
consistency check mechanism is non-obvious, we present an
informal justification for it here. In Appendix F, we prove the
mechanism formally secure. Suppose that we reorganized our
protocol to omit Alice’s pad φ. Then we would have

t1A + t1B =
1

kA · kB
t2A + t2B =

skA · skB
kA · kB

(t1A + t1B) · pk = (t2A + t2B) ·G

If Bob behaves honestly, he should use 1/kB and skB/kB
as his inputs to the two multiplications. Suppose Bob cheats
by using different inputs; without loss of generality, we can
interpret his cheating as using inputs x+1/kB and skB/kB, in
essence offsetting his input for the first multiplication by some
value x relative to his input for the second multiplication:

t1A + t1B = 1/k + x/kA

(t1A + t1B) · pk = (t2A + t2B) ·G+ x · pk/kA

To pass the consistency check, Bob would need to calculate
pk/kA, which we show by means of a reduction is as hard as
breaking the Computational Diffie-Hellman problem.

In our hypothetical scenario, it is tempting to take advantage
of the fact that (t1A+t

1
B)·R = G to design a similar mechanism

to verify that the first multiplication is consistent with the
instance key exchange, but a check based upon this principle
is insecure. Again, if we suppose that Bob cheats by offsetting
his input for the multiplication by some value x relative to his
input for the Diffie-Hellman exchange that produces R, then

t1A + t1B = 1/k + x/kA

(t1A + t1B) ·R = G+ x · kB ·G

Unfortunately, the offset produced is made up entirely of
elements known to Bob. We rectify this by introducing into the
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Fig. 1: Illustrated Two-party Signing Scheme. Operations are
color-coded according to the logical component with which
they are associated: Multiplication , Instance Key Exchange ,
Consistency Check , and Verification/Signing . We specify how to

instantiate the multiplication subprotocol (πMul) in Section VI-B.

equation a term that Bob cannot predict. Alice intentionally
offsets her input to the multiplication using a pad φ, giving us
the system presented in πSign

2P-ECDSA. If Bob is honest, then

t1A + t1B = 1/k + φ/kB

t1B ·R = G+ φ · kA ·G− t1A ·R

which implies that both Alice and Bob can compute t1B · R.
On the other hand, if Bob is dishonest, then

t1A + t1B = 1/k + φ/kB + x/kA + x · φ
t1B ·R = G+ φ · kA ·G+ x · kB ·G+ x · φ ·R− t1A ·R

Because x is unknown to Alice and φ is unknown to Bob,
neither party is capable of calculating the offset that has been
induced. Consequently, if Alice masks φ using the value of
t1B · R that she expects Bob to have, then he will be able to
remove the mask and retrieve φ if and only if he has behaved
honestly. Without knowledge of φ, he will not be able to pass
the second consistency check or reconstruct the signature. We
note that there is an assumption of circular security in this
construction, which we resolve via the Random Oracle Model.

B. Setup

We now present a simplified setup protocol for two parties.
This protocol does not implement the setup phase of the
FSampledECDSA functionality, as it does not support threshold
signing (we extend it to do so in Section V), but it does provide
a similar functionality to the setup protocol of Lindell [3]. In
short, it implements the ECDSA Gen algorithm, combining
multiplicative secret key shares via a simple Diffie-Hellman
key exchange. Proofs of knowledge are necessary in order
to ensure that if the protocol completes then the parties are
capable of signing; in addition to the FRDL

ZK functionality, this
protocol makes use of a commit-and-prove variant FRDL

Com-ZK,
which is specified in Appendix B. Finally, the parties notify
the FMul functionality that they are ready, which corresponds
to the initialization of OT-extensions.

Protocol 2. Two-party Setup
(
πSetup
2P-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q),
and relies upon the FMul, FRDL

ZK , and FRDL

Com-ZK functionalities.
It takes no input and yields the secret key shares skA and skB
to Alice and Bob respectively, along with the joint public key
pk to both parties.
Public Key Generation:

1) Alice and Bob sample skA ← Zq and skB ← Zq,
respectively, and then they compute pkA

..= skA · G
and pkB

..= skB ·G.
2) Alice submits (com-proof, skA, G) to FRDL

Com-ZK, and
Bob becomes aware of Alice’s commitment.

3) Bob sends pkB to Alice and submits (prove, skB, G) to
FRDL

ZK . Alice submits (prove, pkB, G), and receives a bit
indicating whether the proof was sound. If it was not,
she aborts.

4) Alice sends pkA to Bob and instructs FRDL

Com-ZK to release
the proof associated with her previous commitment. Bob
submits (prove, pkA, G), and receives a bit indicating
whether the proof was sound. If it was not, he aborts.

5) Alice and Bob compute pk ..= skA · pkB = skB · pkA.
Auxilliary Setup:

6) Alice and Bob both send the (init) messages to the
FMul Functionality to initialize OT-extensions.
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V. 2-OF-n THRESHOLD SIGNING

We now demonstrate a simple extension of our two-party
ECDSA protocol for performing threshold signatures among
n parties, with a threshold of two. With this extension,
our protocol realizes the FSampledECDSA functionality that we
gave in Section III. In πSetup

2P-ECDSA, Alice and Bob supplied
multiplicative shares skA and skB of their joint secret key. In
the threshold setting we will be working with a set of parties
P of size n, each party i with a secret key share ski, and
we demand that if the setup does not abort then any pair of
parties can sign. In order to achieve this, we specify that in the
threshold setting, the joint secret key sk is calculated as the
sum of the parties’ contributions, rather than as the product:

sk ..=
∑
i∈[1,n]

ski

In other words, the parties’ individual secret keys represent an n-
of-n sharing of sk. It is natural to use a threshold secret sharing
scheme to convert these into a 2-of-n sharing. Specifically, we
use Shamir Secret Sharing [16], and a simple consistency check
allows us to guarantee security against malicious adversaries.

From Shamir shares, any two parties can generate additive
shares of the joint secret key. However, our 2-of-2 signing
protocol (πSign

2P-ECDSA) required multiplicative shares as its input.
We will need to modify the signing protocol slightly to account
for the change. First, we present our 2-of-n setup procedure.

A. Setup

Protocol 3. 2-of-n Setup
(
π2P-Setup
nP-ECDSA

)
:

This protocol is parameterized by the Elliptic curve (G, G, q),
and relies FMul and FRDL

Com-ZK functionalities. It runs among a
group of parties P of size n, taking no input, and yielding
to each party Pi a point p(i) on the polynomial p, a secret
key share ski, and the joint public key pk.
Public Key Generation:

1) For all i ∈ [1, n], Party Pi samples ski ← Zq .
2) For all i ∈ [1, n], Party Pi calculates pki

..= ski ·G and
submits (com-proof, ski, G) to FRDL

Com-ZK, which notifies
the other parties that Pi is committed. When Pi becomes
aware of all other parties’ commitments, it sends pki
to the other parties and instructs FRDL

Com-ZK to release its
proof to them. All other parties submit (prove, pki, G)
and receive a bit indicating whether the proof was sound.
If any party’s proof fails to verify, then all parties abort.

3) All parties compute the shared public key

pk ..=
∑
i∈[1,n]

pki

4) For all i ∈ [1, n], Pi chooses a random line given by the
degree-1 polynomial pi(x), such that pi(0) = ski. For
all j ∈ [1, n], Pi sends pi(j) to Pj and receives pj(i).

5) For all i ∈ [1, n], Pi computes its point

p(i) ..=
∑
j∈[1,n]

pj(i)

It also computes a commitment to its share of the secret
key, Ti ..= p(i) ·G, and broadcasts Ti to all other parties.

6) All parties abort if there exists i ∈ [2, n] such that

λ(i−1),i · Ti−1 + λi,(i−1) · Ti 6= pk

where λ(i−1),i and λi,(i−1) are the appropriate Lagrange
coefficients for Shamir-reconstruction between Pi−1 and
Pi. If any party holds a point p(i) that is inconsistent
with the polynomial held by the other parties, then this
check will fail.

Auxilliary Setup:
7) Every pair of parties Pi and Pj such that i < j send

the (init) message to the FMul functionality.

A Note on General Thresholds: We note that a slight
generalization of the π2P-Setup

nP-ECDSA protocol allows it to perform
setup for any threshold t such that t ≤ n. The only required
changes are the use of polynomials of the appropriate degree
(as in Shamir Secret Sharing), and the evaluation of the
consistency check in Step 6 over contiguous threshold-sized
groups of parties. However, our signing protocol is not so easily
generalized; therefore we leave general threshold signing to
future work, and focus here on the 2-of-n case.

B. Signing

Once the setup is complete, suppose two parties from the set
P (we will resume referring to them as Alice and Bob) wish
to sign. They can use Lagrange interpolation [50] to construct
additive shares t0A and t0B of the secret key, but the signing
algorithm we have previously described requires multiplicative
shares. To account for this, we modify our signing algorithm
in the following intuitive way: originally, the second invocation
of FMul took skA/kA from Alice and skB/kB from Bob and
computed additive shares of the product

skA · skB
kA · kB

We replace this with two invocations of FMul that calculate

t0A
kA · kB

and
t0B

kA · kB
respectively. Alice and Bob can then locally sum their outputs
from these two multiplications to yield shares of

t0A + t0B
kA · kB

=
sk

k

What follows is our 2-of-n signing protocol, in its entirety.
We note that the Consistency Check, Signature, and Verification
phase of this protocol is identical to the corresponding phase
in the πSign

2P-ECDSA protocol that we gave in Section IV-A.
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Protocol 4. 2-of-n Signing
(
π2P-Sign
nP-ECDSA

)
:

This protocol is parameterized identically to πSign
2P-ECDSA, except

that Alice and Bob provide Shamir-shares p(A), p(B) of sk
as input, rather than multiplicative shares.
Key Share Reconstruction:

1) Alice locally calculates the correct Lagrange coefficient
λA,B for Shamir-reconstruction with Bob. Bob likewise
calculates λB,A. They then use their respective points
p(A), p(B) on the polynomial p to calculate additive
shares of the secret key

t0A
..= λA,B · p(A) t0B

..= λB,A · p(B)

Multiplication and Instance Key Exchange:
2) Bob chooses his instance key, kB ← Zq, and Alice

chooses her instance key seed, k′A ← Zq . Bob computes
DB

..= kB ·G and sends DB to Alice.
3) Alice computes

R′ ..= k′A ·DB

kA ..= H(R′) + k′A

R ..= kA ·DB

4) Alice chooses a pad φ← Zq, and then Alice and Bob
invoke the FMul functionality with inputs φ+ 1/kA and
1/kB respectively, and receive shares t1A and t1B of their
padded joint inverse instance key.

5) Alice and Bob invoke the FMul functionality with inputs
t0A/kA and 1/kB respectively. They receive shares t2a

A , t
2a
B

of Alice’s secret key share over their joint instance key

t2a
A + t2a

B =
t0A

kA · kB
6) Alice and Bob invoke the FMul functionality with inputs

1/kA and t0B/kB respectively. They receive shares t2b
A , t

2b
B

of Bob’s secret key share over their joint instance key

t2b
A + t2b

B =
t0B

kA · kB
7) Alice and Bob merge their respective shares

t2A
..= t2a

A + t2b
A t2B

..= t2a
B + t2b

B

8) Alice transmits R′ to Bob, who computes

R ..= H(R′) ·DB +R′

For both Alice and Bob let (rx, ry) = R.
9) Alice submits (prove, kA, DB) to FRDL

ZK and Bob submits
(prove, R,DB). Bob receives a bit indicating that the
proof was sound. If it was not, he aborts.

Consistency Check, Signature, and Verification:
10) Alice and Bob both compute m′ = H(m).
11) Alice computes the first check value Γ 1, encrypts her

pad φ with Γ 1, and transmits the encryption ηφ to Bob.

Γ 1 ..= G+ φ · kA ·G− t1A ·R

ηφ ..= H(Γ 1) + φ

12) Alice computes her share of the signature sigA and the
second check value Γ 2. She encrypts sigA with Γ 2 and
then transmits the encryption ηsig to Bob

sigA
..= (m′ · t1A) + (rx · t2A)

Γ 2 ..= (t1A · pk)− (t2A ·G)
ηsig ..= H(Γ 2) + sigA

13) Bob computes the check values and reconstructs the
signature

Γ 1 ..= t1B ·R
φ ..= ηφ −H(Γ 1)

θ ..= t1B − φ/kB
sigB

..= (m′ · θ) + (rx · t2B)
Γ 2 ..= (t2B ·G)− (θ · pk)
sig ..= sigB + ηsig −H(Γ 2)

14) Bob uses the public key pk to verify that σ ..= (sig, rx)
is a valid signature on message m. If the verification
fails, Bob aborts. If it succeeds, he outputs σ.

VI. MULTIPLICATION WITH OT EXTENSIONS

Both our 2-of-2 and 2-of-n signing protocols depend upon a
functionality that computes an additive sharing of the product
of two inputs. We wish the protocol that implements this
functionality to be secure against malicious adversaries and
practically efficient in the non-amortized setting. Furthermore,
if our signing protocols are to be only two messages overall,
then our multiplication protocol must comprise a single message
from Bob to Alice, followed by a reply, and no further
interaction. These requirements preclude generic approaches
such SPDZ [51] or MASCOT [52]. Instead, we devise a
new variant of the classic Gilboa oblivious multiplication
construction [32], which is based upon Oblivious Transfer.
Whereas Gilboa’s original formulation is only semi-honest
secure, our modified technique ensures security against active
adversaries, while allowing one party to induce (simulatable)
additive errors into the output, which can be detected via the
final signature verification in the broader context of our signing
scheme. Specifically, our multiplication protocol realizes the
following multiplication-with-errors functionality.

Functionality 3. FMul:
This functionality is parameterized by the group order q. It
runs with two parties, Alice and Bob, who may participate in
the Init phase once, and the Bob-input and Multiply phases
as many times as they wish.
Init: Wait for message (init) from Alice and Bob. Store
(init-complete) in memory and send (init-complete)
to Bob.
Bob-input: On receiving (input, idmul, β) from Bob, if
(bob-input, idmul, ·, ·) with the same idmul does not exist
in memory, and if (init-complete) does exist in memory,
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and if β ∈ Zq, then sample tA ← Zq uniformly at
random, store (bob-input, idmul, β, tA) in memory, and send
(bob-ready, idmul, tA) to Alice.
Multiply: On receiving (input, idmul, α, δ, c) from Alice, if
there exists a message of the form (bob-input, idmul, β, tA)
in memory with the same idmul, and if (complete, idmul)
does not exist in memory, and if α, δ ∈ Zq and c ∈ Z∗ such
that c ≥ 1 ⇐⇒ δ 6= 0, then:

1) Toss c coins, and if any of them output 1, then send
(cheat-detected) to Bob.

2) Otherwise, calculate tB ..= α · β + δ − tA and send
(output, idmul, tB) to Bob.

3) Store (complete, idmul) in memory.

A. Oblivious Transfer

In order to improve the practical efficiency of our algorithm,
we base our multiplier upon Correlated Oblivious Transfer
Extensions rather than traditional OT. Whereas in plain OT, the
sender provides two messages, in Correlated OT, the sender
provides one correlation (in our case, an additive correlation),
and the messages are generated randomly under this constraint.

What follows is a Correlated OT-extension functionality
that allows arbitrarily many Correlated OT instances to be
executed in batches of size `. For each batch, the receiver
inputs a vector of choice bits ω ∈ {0, 1}`, following which
the sender inputs a vector of correlations α ∈ G1 × G2 ×
. . .×G` (each element αi being in some agreed-upon group
Gi). The functionality samples ` random pads, each pad i
being from the corresponding group Gi, and sends them to the
sender. To the receiver it sends only the pads if the sender’s
corresponding choice bits were 0, or the sum of the pads and
their corresponding correlations if the sender’s corresponding
choice bits were 1. Note that this functionality is nearly identical
to the one presented by Keller et al. [34], but we add flexible
correlation lengths, an initialization phase, and the ability to
perform extensions (each batch of extensions indexed by a
fresh extension index idext) only after the initialization has
been performed.

Functionality 4. F`COTe:
This functionality is parameterized by the group order q and
the batch size `. It runs with two parties, a sender S and a
receiver R, who may participate in the Init phase once, and
the Choice and Transfer phases as many times as they wish.
Init: On receiving (init) from both parties, store (ready)
in memory and send (init-complete) to the receiver.
Choice: On receiving

(
choose, idext,ω

)
from the receiver,

if
(
choice, idext, ·

)
with the same idext does not exist in

memory, and if (ready) does exist in memory, and if ω is
of the correct form, then send (chosen) to the sender and
store

(
choice, idext,ω

)
in memory.

Transfer: On receiving
(
transfer, idext,α

)
from the

sender, if a message of the form
(
choice, idext,ω

)
exists in

memory with the same idext, and if
(
complete, idext

)
does

not exist in memory, and if α is of the correct form, then:

1) Sample a vector of random pads tS ← G1×G2×. . .×G`
2) Send (pads, tS) to the sender.
3) Compute {tRi}i∈[1,`]

..= {ωi ·αi − tSi}i∈[1,`].
4) Send (padded-correlation, tR) to the receiver.
5) Store (complete, idext) in memory.

We instantiate this functionality using the protocol of Keller
et al. [34]. As with all OT-extension protocols, a base-OT
protocol is required. Here we use the Simplest OT protocol
of Chou and Orlandi [33], which we modify by adding a
new check, to overcome a weakness in the proof of the
original formulation. The details of these protocols and of
our modifications are given in Appendix A.

B. Single Multiplication

The classic Gilboa OT-multiplication [32] takes an input from
Alice and an input from Bob, and returns to them additive
secret shares of the product of those two inputs. It works
essentially by performing binary multiplication with a single
oblivious transfer for each bit in Bob’s input. Unfortunately,
this protocol is vulnerable to selective failure attacks in the
malicious setting. Alice can corrupt one of the two messages
during any single transfer, and in doing so learn the value of
Bob’s input bit for that transfer according to whether or not
their outputs are correct. We address this by encoding Bob’s
input with enough redundancy that learning s (a statistical
security parameter) of Bob’s choice bits via selective failure
does not leak information about the original input value. A
bit-by-bit consistency check ensures that the parties abort with
high probability if an inconsistent message is selected by Bob,
and thus the probability that Alice succeeds in more than
s selective failures is exponentially small. A proposition of
Impagliazzo and Naor [53] gives us the following encoding
scheme: for an input β of length κ, sample κ+2s random bits
γ ← {0, 1}κ+2s and take the dot product with some public
random vector gR ∈ Zκ+2s

q . Use this dot product as a mask
for the original input. The encoding function is defined as

Algorithm 4. Encode(gR ∈ Zκ+2s
q , β ∈ Zq):

1) Sample γ ← {0, 1}κ+2s

2) Output Bits (β − 〈gR,γ〉) ‖γ

In Appendix E, we prove formally that this encoding scheme
produces codewords with the property that even if one knows
the message encoded, guessing any substring of a codeword is
almost as hard as guessing a uniformly sampled string of the
same length. We also prove that the following protocol realizes
FMul.

Protocol 5. Multiplication (πMul):
This protocol is parameterized by the statistical security
parameter s, the curve order q, and the symmetric security
parameter κ = |q|. It also makes use of a coefficient vector
g = gG‖gR, where gG ∈ Zκq is a gadget vector such
that gG

i = 2i−1, and gR ← Zκ+2s
q is a public random

vector. It requires access to the Correlated Oblivious Transfer
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functionality F`COTe. Alice supplies some input integer α ∈ Zq ,
and Bob supplies some input integer β ∈ Zq . Alice and Bob
receive tA and tB ∈ Zq as output, respectively, such that
tA + tB = α · β.
Encoding:

1) Bob encodes his input

ω ..= Encode(gR, β)

2) Alice samples α̂← Zq and sets

α ..= {α‖α̂}j∈[1,2κ+2s]

Multiplication:
3) Alice and Bob access the F`COTe functionality, with batch

size ` ..= 2κ+ 2s. Alice plays the sender, supplying α
as her input, and Bob, the receiver, supplies ω. They
receive as outputs, respectively, the arrays{

tAj

∥∥∥t̂Aj}
j∈[1,2κ+2s]

and
{

tBj

∥∥∥t̂Bj}
j∈[1,2κ+2s]

That is, tA is a vector wherein each element contains the
first half of the corresponding element in Alice’s output
from F`COTe, and t̂A is a vector wherein each element
contains the second half. tB and t̂B play identical roles
for Bob.

4) Alice and Bob generate two shared, random values
by calling the random oracle. As input they use the
shared components of the transcript of the protocol that
implements F`COTe, in order the ensure that these values
have a temporal dependency on the completion of the
previous step. In our proofs, we abstract this step as a
coin tossing protocol.

(χ, χ̂)← H2(transcript)

5) Alice computes

r ..=
{
χ · tAj + χ̂ · t̂Aj

}
j∈[1,2κ+2s]

u ..= χ · α+ χ̂ · α̂

and sends r and u to Bob
6) Bob aborts if∨

j∈[1,2κ+2s]

(
χ · tBj + χ̂ · t̂Bj 6= ωj · u− rj

)
7) Alice and Bob compute their output shares

tA ..=
∑

j∈[1,2κ+2s]

gj · tAj tB ..=
∑

j∈[1,2κ+2s]

gj · tBj

C. Coalesced Multiplication

The multiplication protocol described in the foregoing section
supports the multiplication of only a single integer α by a
single integer β, and in our two-party and 2-of-n signing
protocols (πSign

2P-ECDSA and π2P-Sign
nP-ECDSA respectively) we invoke

the multiplication protocol two or three times. An optimization
allows these multiple invocations to be combined at reduced
cost, albeit by breaking some of our previous abstractions.

Consider first the case of two-party signing, wherein two
multiplications must be performed. Each multiplication indi-
vidually encodes its input, enlarging it by κ + 2s bits, and
then individually calls upon the F`COTe Correlated OT-extension
functionality with batch size ` = 2κ+ 2s. The protocol that
realizes this functionality incurs some overhead, proportionate
to a security parameter κOT, and two multiplications performed
in the naïve way incur this cost twice. However, we observe
that two multiplication protocol instances can share a single
invocation of F`COTe simply by doubling the batch size, thereby
reducing the extension cost by an amount proportionate to κOT.
Furthermore, we observe that when the inputs are combined
into a single extension instance, we can also combine the
encodings of the inputs, reducing the overhead due to encoding
from 2κ+ 4s additional OT instances to 2κ+ 2s. In a future
version of this paper, we show that this coalesced encoding
maintains security.

Algorithm 5. Encode2(gR ∈ Zκ+2s
q , β1 ∈ Zq, β2 ∈ Zq):

1) Sample γ1 ← {0, 1}κ,γ2 ← {0, 1}κ,γ3 ← {0, 1}2s
2) Output

Bits(β1 − 〈gR,γ1‖γ3〉)‖γ1

‖ Bits(β2 − 〈gR,γ2‖γ3〉)‖γ2‖γ3

Further consider the case of 2-of-n signing, in which three
multiplications are used to compute the products

α1 · β1 α2a · β2 α2b · β1

Notice that in the first and third multiplications, Bob’s inputs are
identical, while in the second it differs. Consequently, we can
perform the third multiplication by extending the appropriate
part Alice’s input, while keeping Bob’s input the same.

Protocol 6. Coalesced Triple Multiplication (πMul3):
This protocol is parameterized identically to πMul, except that
Alice supplies three inputs, α1, α2a, α2b and receives three
outputs, t1A, t

2a
A , t

2b
A . Bob supplies only two inputs, β1, β2,

and likewise receives t1B, t
2a
B , t

2b
B .

Encoding:
1) Bob encodes his input

ω ..= Encode2(gR, β1, β2)

2) Alice samples α̂1, α̂2a, α̂2b ← Zq and sets

α ..=
{
α1
∥∥∥α̂1

∥∥∥α2a
∥∥∥α̂2a

}
j∈[1,2κ]

‖
{
α2b
∥∥∥α̂2b

}
j∈[1,2κ]

‖
{
α1
∥∥∥α̂1

∥∥∥α2a
∥∥∥α̂2a

∥∥∥α2b
∥∥∥α̂2b

}
j∈[1,2s]

Multiplication:
3) Alice and Bob access the F`COTe functionality, with batch

size ` ..= 4κ+ 2s. Alice plays the sender, supplying α
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as her input, and Bob, the receiver, supplies ω. Alice
receives as output the array{

t1
Aj

∥∥∥t̂1

Aj

∥∥∥t2a
Aj

∥∥∥t̂2a

Aj

}
j∈[1,2κ]

‖
{

t2b
Aj

∥∥∥t̂2b

Aj

}
j∈[1,2κ]

‖
{

t1
Aj

∥∥∥t̂1

Aj

∥∥∥t2a
Aj

∥∥∥t̂2a

Aj

∥∥∥t2b
Aj

∥∥∥t̂2b

Aj

}
j∈[2κ,2κ+2s]

and Bob receives a corresponding output array.
The remainder of the protocol is identical to πMul, except that
the linear check process is repeated for each of the tuples(
t1
A, t

1
B, t̂

1

A, t̂
1

B

) (
t2a
A , t

2a
B , t̂

2a

A , t̂
2a

B

) (
t2b
A , t

2b
B , t̂

2b

A , t̂
2b

B

)
To compute three products in the naïve way, κ · (3κOT +

24κ+ 24s+ 9) bits must be transferred, with a proportionate
amount of computation being performed. Using our optimized,
coalesced multiplication, only κ · (κOT + 22κ+ 20s+ 5) bits
must be transferred (again, with a proportionate amount of
computation). Concretely, if we use κ = 256, s = 80, and
κOT = 128 + s (this being the overhead induced by the OT-
extension protocol; our choice follows KOS [34]), then the
total communication is reduced from to 271.8 to 232.7 KiB.

VII. COST ANALYSIS

When all of the optimizations have been applied and all
functionalities and sub-protocols have been collapsed, we find
that our protocols have communication and computation costs
as reported in Table I. Though we account completely for com-
munications, we count only elliptic curve point multiplications
and calls to the hash function H toward computation cost. We
assume that both commitments and the PRG are implemented
via the random oracle H , and that proofs-of-knowledge-of-
discrete-logarithm are implemented via Schnorr protocols with
the Fiat-Shamir heuristic.

The 2-of-n setup protocol is somewhat more complex than
Table I indicates. Over its course, each of the n parties commits
to and then sends a single proof-of-knowledge-of-discrete-
logarithm to all other parties in broadcast and then verifies the
n−1 proofs that it receives. The parties then compute and send
Lagrange coefficients to one another, which requires O(n2)
(parallel) communication in total, and this pattern repeats for
verification. Finally, each party evaluates a single KOS Setup
instance with every other party, for (n2 − n)/2 instances in
total. The entire protocol requires four broadcast rounds, plus
the messages required by the KOS Setup instances.

For ease of comparison, concrete communication costs
for our signing protocol along with the signing protocols of
Gennaro et al. [4], Boneh et al. [5], and Lindell [3] are listed
in Table II. The former pair of schemes are related: Boneh
et al. reduce the number of messages in Gennaro et al.’s
signing protocol from six to four, with the goal of reducing the
communication cost. Apart from requiring only two messages,
our signing protocol requires roughly one seventh of the
communication incurred by either.

Lindell’s signing scheme requires four messages and excels
in terms of communication cost, only transferring a com-
mitment, two curve points, two zero-knowledge proofs, and
one Paillier ciphertext. However, the Paillier homomorphic
operations it requires are quite expensive. Lindell’s scheme
requires one encryption, one homomorphic scalar multiplica-
tion, and one homomorphic addition with a Paillier modulus
N > 2q4 + q3; concretely, a standard 2048-bit modulus is
sufficient for a 256-bit curve. Gennaro et al. and Boneh et al.’s
schemes both require one to three encryptions and three to five
homomorphic additions and scalar multiplications per party,
with N > q8, which likewise implies that for 256-bit curves, a
2048-bit modulus is sufficient. In addition, Lindell’s protocol
requires 12 Elliptic Curve multiplications, while the protocols
of the other two require roughly 100. These Paillier and curve
operations dominate the computation cost of the protocols.

VIII. IMPLEMENTATION

We created a proof-of-concept implementation of our 2-of-2
and 2-of-n setup and signing protocols in the Rust language.
As a prerequisite, we also created an elliptic curve library
in Rust. We use SHA-256 to instantiate the random oracle
H , per the ECDSA specification, and in addition we use it to
instantiate the PRG. As a result, our protocol makes no concrete
cryptographic assumptions other than those already required by
ECDSA itself. The SHA-256 implementation used in signing
is capable of parallelizing vectors of hash operations, and the
2-of-n setup protocol is capable of parallelizing OT-extension
initializations, but otherwise the code is strictly single-threaded.
This approach has likely resulted in reduced performance
relative to an optimized C implementation, but we believe
that the safety afforded by Rust makes the trade worthwhile.

We benchmarked our implementation on a pair of Amazon
C5.2xlarge instances from Amazon’s Virginia datacenter,
both running Ubuntu 16.04 with Linux kernel 4.4.0, and we
compiled our code using Rust 1.27 with the default level
of optimization. The bandwidth between our instances was
measured to be be 5GBits/Second, and the round-trip latency to
be 0.2 ms. Our signatures were calculated over the secp256k1
curve, as standardized by NIST [6]. Thus κ = 256, and we
chose s = 80 and κOT = 128 + s, following the analysis
of KOS [34]. We performed both strictly single-threaded
benchmarks, and benchmarks allowing parallel hashing with
three threads per party, collecting 10,000 samples for setup and
100,000 for signing. Note that signatures were not batched, and
thus each sample was impacted individually by the full latency
of the network. The average wall-clock times for both signing
protocols and the 2-of-2 setup protocol are reported in Table III,
along with results from previous works for comparison. These
results are taken directly from their respective sources, and were
not produced in our benchmarking environment. Nevertheless,
we believe them to be comparable, due to the fact that they
were collected using a similar type of hardware and in similar
network conditions.

We benchmarked our 2-of-n setup algorithm using set of 20
Amazon C5.2xlarge instances from the Virginia datacenter,
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Rounds Communication (Bits)
EC Multiplications Hash Function Invocations

Alice Bob Alice Bob

2-of-2 Setup 5 κ · (5κ+ 11) + 6 3κ+ 6 2κ+ 6 6κ+ 4 6κ+ 4

2-of-2 Signing 2 κ · (κOT + 16κ+ 14s+ 10) + 3 7 9 2κOT + 24κ+ 20s+ 9 3κOT + 20κ+ 14s+ 9

2-of-n Signing 2 κ · (κOT + 22κ+ 20s+ 11) + 3 7 9 2κOT + 32κ+ 28s+ 9 3κOT + 24κ+ 18s+ 9

Max Min Max Min

2-of-n Setup 5 (n2 − n) · (2.5κ2 + 8κ+ 4) nκ− κ+ 4 n+ 3 5nκ− 5κ+ 1 4nκ− 4κ+ 1

TABLE I: Communication and Computation Cost Equations For Our Protocol. We assume that the hash function H is used to implement
the PRG. Note that communication costs are totals for all parties over all rounds, whereas computation costs are given per party. In the
2-of-n protocol the computation cost depends upon the identity of the party; consequently we give the minimum and maximum.

κ = 256 κ = 384 κ = 521

Lindell [3] 769 B 897 B 1043 B
This Work (2-of-2) 169.8 KiB 350.7 KiB 615.3 KiB

Gennaro et al. [4] ∼1808 KiB ∼4054 KiB ∼7454 KiB
Boneh et al. [5] ∼1680 KiB ∼3768 KiB ∼6924 KiB
This Work (2-of-n) 232.8 KiB 481.3 KiB 844.7 KiB

TABLE II: Concrete Signing Communication Costs. Assuming 2-
of-n signing for Gennaro et al. and Boneh et al., and 2-of-2 signing
for the protocol of Lindell. For our protocols, we use s = 80 and
κOT = 128 + s.

This Work (3 threads) [3]

2-of-2 Setup 43.41 – 2435

2-of-2 Signing 3.26 3.12 36.8

This Work (3 threads) [4] [5]

2-of-n Signing 3.77 3.55 ∼650 ∼350

TABLE III: Wall-clock Times in Milliseconds over LAN, as
compared to the prior approaches of Lindell [3], Gennaro et al. [4],
and Boneh et al. [5]. Note that hardware and networking environments
are not necessarily equivalent, but all benchmarks were performed
with a single thread except where specified.

configured as before with one instance per party. For initializing
OT-extensions, each machine was allowed to use as many
threads as there were parties, but the code was otherwise
single-threaded. We collected 1000 samples for groups of
parties ranging in size from 3 to 20, and we report the results
in Figure 2.

Transoceanic Benchmarks: We repeated our 2-of-2 setup,
2-of-2 signing, and 2-of-n signing benchmarks with one of the
machines relocated to Amazon’s Paris datacenter, collecting
1,000 samples for setup and 10,000 for signing, and in the latter
case allowing three threads for hashing. In this configuration,
the bandwidth between our instances was measured to be 155
Mbps and the round-trip latency to be 78.2 ms. In addition, we
performed a 2-of-4 setup benchmark among four instances in
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Fig. 2: Wall Clock Times for 2-of-n Setup over LAN. Note that
all 20 parties reside on individual machines in the same datacenter,
and latency is on the order of a few tenths of a millisecond.

Setup Signing
2-of-2 2-of-4 (US) 2-of-10 (World) 2-of-2 2-of-n

354.36 376.86 1228.46 81.34 81.83

TABLE IV: Wall-clock Times in Milliseconds over WAN. All
benchmarks were performed between one party in the eastern US
and one in Paris, except the 2-of-4 setup benchmark, which was
performed among four parties in four different US states, and the
2-of-10 setup benchmark, which was performed among ten parties in
America, Europe, Asia, and Australia.

Amazon’s four US datacenters (Virginia, Ohio, California, and
Oregon), and we performed a 2-of-10 setup benchmark among
ten instances in ten geographically distributed datacenters
(Virginia, Ohio, California, Oregon, Mumbai, Sydney, Canada,
Ireland, London, and Paris). The round-trip latency between
the US datacenters was between 11.2 ms and 79.9 ms and the
bandwidth between 152 Mbps and 1.10 Gbps, while round-trip
latency between the most distant pair of datacenters, Mumbai
and Ireland, was 282 ms, and the bandwidth was 39 Mbps.
Results are reported in Table IV. We note that in contrast to our
single-datacenter benchmarks, our transoceanic benchmarks
are dominated by latency costs. We expect that our protocol’s
low round count constitutes a greater advantage in this setting
than does its computational efficiency.
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A. Comparison to Prior Work

We compare our implementation to those of Lindell [3],
Gennaro et al. [4], and Boneh et al. [5] (who also provide an
optimized version of Gennaro et al.’s scheme, against which
we make our comparison). Though Boneh et al. and Gennaro
et al. support thresholds larger than two, we consider only their
performance in the 2-of-n case. Neither Gennaro et al. nor
Boneh et al. include network costs in the timings they provide,
nor do they provide timings for the setup protocol that their
schemes share. However, Lindell observes that Gennaro et al.’s
scheme involves a distributed Paillier key generation protocol
that requires roughly 15 minutes to run in the semi-honest
setting. Unfortunately, this means we have no reliable point of
comparison for our 2-of-n setup protocol.

Lindell benchmarks his scheme using a single core on each
of two Microsoft Azure Standard_DS3_v2 instances in the
same datacenter, which can expect bandwidth of roughly 3
Gbps. Lindell’s performance figures do include network costs.
In spite of the fact that Lindell’s protocol requires vastly less
communication, as reported in Section VII, we nonetheless
find that, not accounting for differences in benchmarking
environment, our implementation outperforms his for signing
by a factor of roughly 11 (when only a single thread is allowed),
and for setup by a factor of roughly 56.

Given that each 2-of-2 signature requires 169.8 KiB of data
to be transferred under our scheme, but only 769 Bytes under
Lindell’s, there must be an environment in which his scheme
outperforms ours. Specifically Lindell has an advantage when
the protocol is bandwidth constrained but not computationally
constrained. Such a scenario is likely when a large number of
signatures must calculated in a batched fashion (mitigating the
effects of latency) by powerful machines with a comparatively
weak network connection.

Finally, we note that an implementation of the ordinary
(local) ECDSA signing algorithm in Rust using our own elliptic
curve library requires an average of 173 microseconds to
calculate a signature on our benchmark machines – a factor of
roughly 18 faster than our 2-of-2 signing protocol.
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APPENDIX A
OBLIVIOUS TRANSFER

We augment Simplest OT [33] with a verification procedure
and refer to the new primitive as Verified Simplest OT (VSOT).
VSOT is used as the basis for an instantiation of the KOS [34]
OT-extension protocol, which is used in turn to build the OT-
multiplication primitive required by our main signing protocol.

If we did not desire simulation-based malicious security, then
it may have been sufficient to use the Simplest OT scheme
without modification. In composing the protocol to build a
larger simulation-sound malicious protocol however, there is
a complication. The security proof relies upon the fact that
the protocol’s hash queries are modeled as calls to a random
oracle, and uses those queries to extract the receiver’s inputs.
However, the queries need not occur before the receiver has sent
its last message, and so there is no guarantee that a malicious
receiver will actually query the oracle. When Simplest OT is
composed, it may be the case that the receiver’s inputs are
required for simulation before they are required by the receiver
itself, in which case the protocol will be unsimulatable. This
flaw has recently been noticed by a number of authors, and
we refer the reader to other works [35], [55], [56] for more
detailed discussions. Barreto et al. [56] propose to solve the
problem by adding a public-key verification process in the
Random Oracle Model. Rather than using expensive public-key
operations, however, we specify that the receiver must prove
knowledge of its output using only symmetric-key operations,
ensuring that it does in fact hold that output, and therefore
that its input is extractable. As a consequence, our protocol is
able to realize only an OT functionality (FSF-OT) that allows
for selective failure by the sender, but we show that this is
sufficient for our purposes.

A. Verified Simplest OT

We begin by describing the VSOT protocol. Because Alice
and Bob participate in this protocol with their roles reversed,
relative to the usual arrangement, we refer to the participants
simply as the sender and receiver in this section. The protocol
comprises four phases. In the first, the sender generates a
private/public key pair, and sends the public key to the receiver.
In the second phase, the receiver encodes its choice bit and
the sender generates two random pads based upon the encoded
choice bit in such a way that the receiver can only recover
one. The third phase is a verification, which is necessary to
ensure that the protocol is simulatable. Finally, the pads are
used by the sender to mask its messages for transmission to the
receiver in the fourth phase. This protocol realizes the FSF-OT

functionality, which is given in Appendix B.

Protocol 7. Verified Simplest OT (πVSOT):
This protocol is parameterized by the Elliptic curve (G, G, q),
and symmetric security parameter κ = |q|. It relies upon the
FRDL

ZK functionality, and makes use of a hash function H . It
takes as input a choice bit ω ∈ {0, 1} from the receiver, and
two messages α0, α1 ∈ Zq from the sender. It outputs one
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message αω ∈ Zq to the receiver, and nothing to the sender.
Public Key:

1) The sender samples b← Zq, computes B ..= b ·G, and
transmits B to the receiver.

2) The sender submits (prove, b, G) to the FRDL

ZK function-
ality. The receiver submits (prove, B,G), and receives
a bit indicating whether the proof was sound. If it was
not, the receiver aborts.

Pad Transfer:
3) The receiver samples a ← Zq, and then computes its

encoded choice bit A and the pad ρω

A ..= a ·G+ ω ·B
ρω ..= H (a ·B)

and sends A to the sender.
4) The sender computes two pads

ρ0 ..= H (b ·A)
ρ1 ..= H (b · (A−B))

Verification:
5) The sender computes a challenge

ξ ..= H(H(ρ0))⊕H(H(ρ1))

and sends the challenge ξ to the receiver.
6) The receiver computes a response

ρ′ ..= H(H(ρω))⊕ (ω · ξ)

and sends ρ′ to the sender.
7) The sender aborts if ρ′ 6= H(H(ρ0)). Otherwise, it

opens its challenge by sending H(ρ0) and H(ρ1) to the
receiver.

8) The receiver aborts if the value of H(ρω) it received
from the sender does not match the one it calculated
itself, or if

ξ 6= H(H(ρ0))⊕H(H(ρ1))

Message Transfer:
9) The sender pads its two messages α0, α1, and transmits

the padded messages α̃0, α̃1 to the receiver

α̃0 ..= α0 + ρ0

α̃1 ..= α1 + ρ1

10) The receiver removes the pad from its chosen message

αω = α̃ω − ρω

For simplicity, we describe VSOT as requiring one complete
protocol evaluation per OT instance. However, if (public)
nonces are used in each of the hash invocations, then the
Public Key phase can be run once and the resulting (single)
public key B can be reused in as many Transfer and Verification
phases as required without sacrificing security. Further note
that if the messages transmitted by the sender are specified
to be uniform, then the sender can actually omit the Message

Transfer phase entirely and treat the pads ρ0, ρ1 as messages,
receiving them as output instead of supplying them as input.
Likewise, the receiver treats its one pad ρω as its output. This
effectively transforms VSOT into a Random OT protocol. We
make use of both of these optimizations in our implementation.

B. Correlated OT-extension with KOS

Our multiplication protocol requires the use of a large number
of OT instances where the correlation between messages is
specified, but the messages must otherwise be random. There-
fore, rather than using VSOT directly, we layer a Correlated
OT-extension (COTe) protocol atop it. This is essentially an
instantiation of the KOS protocol; thus we include a protocol
description here for completeness, but refer the reader to Keller
et al. [34] for a more thorough discussion. Being a Correlated
OT protocol, it allows the sender to define a correlation between
the two messages, but does not allow the sender to determine
the messages specifically. As with all OT-extension systems,
it is divided into a setup protocol, which uses some base OT
system to generate correlated secrets between the two parties,
and an extension protocol, which uses these correlated secrets
to efficiently perform additional OTs. These protocols realize
the Correlated Oblivious Transfer functionality F`COTe, which
is given in Section VI.

Protocol 8. KOS Setup
(
πSetup
KOS

)
:

This protocol is parameterized by the curve order q and the
symmetric security parameter κ = |q|. It depends upon the
OT Functionality FSF-OT, and takes no input from either party.
Alice receives as output a private OTe correlation ∇ ∈ {0, 1}κ
and a vectors of seeds s∇ ∈ Zκq , and Bob receives two vectors
of seeds s0 and s1 ∈ Zκq .
Setup:

1) Alice samples a correlation vector, ∇← {0, 1}κ.
2) For each bit ∇i of the correlation vector, Alice and Bob

access the FSF-OT functionality, with Alice acting as the
receiver and using ∇i for her choice bit and Bob acting
as the sender. Bob samples two random seed elements
s0
i ← Zq and s1

i ← Zq and Alice receives as output a
single seed element s∇ii .

3) Alice and Bob collate their individual seed elements
into vectors, s∇ and s0, s1 respectively, and take these
vectors as output.

Protocol 9. KOS Extension
(
πExtend
KOS

)
:

This protocol is parameterized by the OT batch size `, the OT
security parameter κOT, the curve order q, and the symmetric
security parameter κ = |q|. For notational convenience, let
`′ = `+ κOT. It makes use of the pseudo-random generator
PrgZ : Zκq 7→ Z2`′ , which expands its argument and then
outputs the chunk of `′ bits indexed by the value given as a
subscript, and it makes use use of the hash function H . The
protocol also uses a fresh, public OT-extension index, idext.
Alice supplies a vector of input integers, α ∈ G1 × G2 ×
. . .×G`, along with her private OTe correlation ∇ ∈ {0, 1}κ
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and seed s∇ ∈ Zκq , which she received during the KOS setup
protocol. Bob supplies a vector of choice bits ω ∈ {0, 1}`
along with his seeds s0 and s1 ∈ Zκq from the OT setup.
Alice and Bob receive tA and tB ∈ G1 ×G2 × . . .×G` as
output.
Extension:

1) Bob chooses γext ← {0, 1}κOT

and collates w ..= ω‖γext.
We use w to indicate w interpreted as a single value in
Z2`′ . That is, Bits(w) = w.

2) Bob computes two vectors of PRG expansions of his
OT-extension seeds

v0 ..=
{
Prgidext(s

0
i )
}
i∈[1,κ]

v1 ..=
{
Prgidext(s

1
i )
}
i∈[1,κ]

and Alice computes a vector of expansions of her
correlated seed

v∇ ..=
{
Prgidext(s

∇i
i )
}
i∈[1,κ]

3) Bob collates the vector ψ ∈ Z`′q , which is the transpose
of v0. That is, the first element of ψ is the concatenation
of the first bits of all of the elements of v0, and so on.
More formally if we define a matrix

V ∈ {0, 1}κ×`
′

then the relationship is given by

Vi = Bits(v0
i ) ∀i ∈ [1, κ]

Vj = Bits(ψj) ∀j ∈ [1, `′]

4) Bob computes the matrix

u ..=
{

v0
i ⊕ v1

i ⊕ w
}
i∈[1,κ]

and then he computes a matrix of pseudo-random
elements from Zq

χ ..= {H (j‖u)}j∈[1,`′]

which he uses to create a linear sampling of w and ψ

w′ ..=
⊕

j∈[1,`′]

wj · χj

v′ ..=
⊕

j∈[1,`′]

ψj ∧ χj

Finally, he sends w′, v′, and u to Alice.
5) Alice computes the vector

z ..=
{

v∇ii ⊕ (∇i · ui)
}
i∈[1,κ]

and collates the vector ζ, which is the transpose of z
in exactly the way that ψ is the transpose v0. She also
calculates χ in the same manner as Bob

χ ..= {H (j‖u)}j∈[1,`′]

Finally, she computes

z′ ..=
⊕

j∈[1,`′]

ζj ∧ χj

and if z′ 6= v′ ⊕
(
∇∧ w′

)
, where ∇ is ∇ reinterpreted

as an element in Z2κ , then Alice aborts.
Transfer:

6) Alice computes

tA ..=
{
H |αj |/κ(j‖ζj)

}
j∈[1,`]

τ ..=
{
H |αj |/κ(j‖(ζj ⊕∇))− tAj +αj

}
j∈[1,`]

and sends τ to Bob
7) Bob computes

tB ..=


{
−H |τ j |/κ(j‖ψj) if wj = 0

τ j −H |τ j |/κ(j‖ψj) if wj = 1


j∈[1,`]

APPENDIX B
ADDITIONAL FUNCTIONALITIES

In this section, we present the additional functionalities on
which our protocols rely. As before, we omit notation for
bookkeeping elements that we do not explicitly use such as
session IDs and party specifiers, which work in the ordinary
way; we also assume that if messages are received out of order
for a particular session, the functionality aborts. We begin
with a Selective-failure OT functionality, which differs from
the traditional OT functionality in that it allows the sender to
guess the receiver’s choice bit. If the sender’s guess is incorrect,
the functionality alerts both parties, and if the sender’s guess
is correct, then the sender is notified while the receiver is not.

Functionality 5. FSF-OT:
This functionality is parameterized by the group order q and
runs with two parties, a sender and a receiver.
Choose: On receiving (choose, ω) from the receiver, store
(choice, ω) if no such message exists in memory and send
(chosen) to the sender.
Guess: On receiving (guess, ω̂) from the sender, if ω̂ ∈
{0, 1,⊥} and if (choice, ω) exists in memory, and if
(guess, ·) does not exist in memory, then store (guess, ω̂)
in memory and do the following:

1) If ω̂ = ⊥, send (no-cheat) to the receiver.
2) If ω̂ = ω, send (cheat-undetected) to the sender and

(no-cheat) to the receiver.
3) Otherwise, send (cheat-detected) to both the sender

and receiver.
Transfer: On receiving

(
transfer, α0, α1

)
from the sender,

if α0 ∈ Zq and α1 ∈ Zq, and if (complete) does not
exist in memory, and if there exist in memory messages
(choice, ω) and (guess, ω̂) such that ω̂ = ⊥ or ω̂ = ω, then
send (message, αω) to the receiver and store (complete) in
memory.
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Finally, we give functionalities for zero-knowledge proofs-
of-knowledge-of-discrete-logarithm. The first corresponds to
an ordinary proof, whereas the second allows the prover to
commit to a proof that will later be revealed. Note that these are
standard constructions, except that they operate with groups of
parties, and all parties aside from the prover receive verification.

Functionality 6. FRDL

ZK :
The functionality is parameterized by the group G of order
q generated by G, and runs with a group of parties P such
that |P| = n.
Proof: On receiving (prove, x,Bi) from Pi where x ∈ Zq
and Bi ∈ G, store this message and the index i. On receiving(
prove, X,Bj

)
from Pj where X,Bj ∈ G, if X = x ·Bi =

x·Bj , then send (accept, i) to Pj . Otherwise, send (fail, i)
to Pj . Note that multiple parties Pj may participate.

Functionality 7. FRDL

Com-ZK:
The functionality is parameterized by the group G of order
q generated by G, and runs with a group of parties P such
that |P| = n.
Commit Proof: On receiving (com-proof, x,Bi) from Pi,
where x ∈ Zq and Bi ∈ G, store (com-proof, x,Bi) and
send (committed, i) to all parties.
Decommit Proof: On receiving (decom-proof) from Pi,
store this message in memory. On receiving

(
prove, X,Bj

)
from Pj where X,Bj ∈ G, if (com-proof, x,Bi) and
(decom-proof) exist in memory, then:

1) If X = x ·Bi = x ·Bj , send (accept, i) to Pj .
2) Otherwise send (fail, i) to Pj .

Note that multiple parties Pj may participate.

APPENDIX C
EQUIVALENCE OF FUNCTIONALITIES

We argue that FSampledECDSA does not grant any additional
power to Alice by showing that an adversary who is able to
forge a signature by accessing FSampledECDSA can be used
to forge an ECDSA signature in the standard Existential
Unforgeability experiment that defines security for signature
schemes (see Katz and Lindell [36] for a complete description
of the experiment). We are only concerned with arguing that
an ideal adversary interacting with FSampledECDSA as Alice is
unable to forge a signature because Bob’s view in his ideal
interaction with FSampledECDSA is identical to his view when
interacting with FECDSA.

Our reduction is in the Generic Group Model, which
was introduced by Shoup [47]. While there are well-known
criticisms of this model [57]–[59], it has also shown itself to
be useful in proving the security of well-known constructions
such as Short Signatures [60] and Short Group Signatures [61].
Furthermore, this is the model in which ECDSA itself is proven
secure [37].

In this model an adversary can perform group operations only
by querying a Group Oracle G(·). More specifically, queries
of the following types are answered by the Oracle:

1) (Group Elements) When the Oracle receives an integer
x ∈ Zq , it replies with an encoding of the group element
corresponding to this integer. Returned encodings are
random, but the Oracle is required to be consistent when
the same integer is queried repeatedly. This corresponds
to the scalar multiplication operation with the generator
in an ECDSA group: Y ..= x ·G.

2) (Group Law) When the Oracle receives a tuple of the form
(r, s,G(x),G(y)), it replies with a random encoding of the
group element given by G(r ·x+s ·y). As before, outputs
must be consistent. This corresponds to a fused multiply-
add operation in an ECDSA group: Z ..= (r ·X + s · Y ),
where X = x ·G and Y = y ·G.

As usual in this model, the reduction itself will control the
Group Oracle, and in particular it has the ability to program
the Oracle to respond to specific queries with specific outputs.
FSampledECDSA

A is used to denote an Oracle version of
the FSampledECDSA functionality accessible only as Alice. In
addition to the previously defined FSampledECDSA behavior, this
Oracle returns the signature σidsig to Alice upon receiving
(sign, idsig, ·, ·). This models the realistic scenario wherein
Alice obtains the output signatures, which we wish to capture
in our reduction, even though the functionality does not output
the signature to her on its own.

Claim C.1. If there exists a probabilistic polynomial time
algorithm A in the Generic Group Model with access to the
FSampledECDSA

A oracle, such that

Pr

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← AFSampledECDSA
A

(pk)

]
≥ p(κ)

where Q is the set of messages for which A sends queries
of the form (new, ·,m, ·) to the FSampledECDSA

A Oracle, and
where the probability is taken over the randomness of the
FSampledECDSA functionality, then there exists an adversary A
such that

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← ASignsk(·) (pk)

]
≥ p(κ)− poly(κ)

2−κ

where Q is the set of messages for which A queries the signing
oracle Signsk(·).

Proof sketch. Our reduction is structured in an intuitive way.
For readability we refer to A as Alice in its interactions with
FSampledECDSA

A, and we note that A can only interact with
Alice on behalf of the FSampledECDSA

A Oracle. First, A forces
Alice to accept the same public key that it received externally
in the forgery game, and then, for each query Alice makes
to her FSampledECDSA

A oracle, A can request a corresponding
signature from the Signsk oracle under the same secret key.
The nonce Rsig in the signature received from Signsk will not
match the nonce R that Alice instructs the FSampledECDSA

A

oracle to use. However, A can take advantage of the fact that
FSampledECDSA

A is allowed to offset the nonce R by a random
value k∆ of its choosing. A sets k∆ so that k∆ ·G is exactly
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the difference between R and Rsig. Computing k∆ directly
would require A to know the discrete log of the Rsig value
it was given by the Signsk oracle; instead, A uses its ability
to program the Group Oracle to ensure that G(k∆) is the
difference between R and the corresponding Rsig. We describe
ASignsk(·) formally below.

Algorithm 6. ASignsk(·) (pk):
1) Answer any query G(x) as x · G, and any query
G(r, s,G(x),G(y)) as r ·G(x)+s ·G(y) unless otherwise
explicitly programmed at those points.

2) Send (public-key, pk) to Alice.
3) When a message of the form (new, idsig,m,B) is

received from Alice, sample kid
sig

B ← Zq, calculate
DB

..= kid
sig

B ·G, store (sig-message, idsig,m, kid
sig

B ) in
memory, and reply to Alice with

(nonce-shard, idsig, DB)

4) When a message of the form (nonce, idsig, i, Ri,idsig) is
received from Alice, if (sig-message, idsig,m, kid

sig

B )
exists in memory:

a) Query the Signing Oracle with the message m to
obtain a signature(

sigidsig,i, R
sig
idsig,i

)
= σidsig,i ← Signsk (m)

Note that the oracle will only return the x-coordinate
of Rsig

idsig,i
, but recovering the point itself is easy. Store

(sig-signature, idsig, σidsig,i) in memory.
b) Sample k∆

idsig,i
← Zq , then compute

K∆
idsig,i

..= Rsig
i,idsig

−Ri,idsig

and program the Group Oracle such that

G
(
k∆
idsig

)
= K∆

idsig,i

c) Compute

k∆
idsig,i,A = (1/kid

sig

B ) · k∆
idsig

and program the Group Oracle such that

G(k∆
idsig,i,A) = (1/kid

sig

B ) ·K∆
idsig,i

d) Send (offset, idsig, k∆
idsig,i,A

) to Alice.

5) When a message of the form (sign, idsig, i, kA) is
received from Alice, if (sig-signature, idsig, σidsig,i)
and (sig-message, idsig,m, kid

sig

B ) exist in memory, and
kA · kid

sig

B · G = Rsig
iidsig

, but (sig-complete, idsig) does
not exist in memory, respond with σidsig,i and store
(sig-complete, idsig) in memory.

6) Once Alice outputs a forged signature sig∗, output this
signature.

Notice that this reduction fails if Alice queries G on an
index k∆

idsig,i,A
for any idsig and any i before A programs it,

or if she queries it on an index kid
sig

B for any idsig at any time.

By a standard argument, this event occurs with probability
poly(κ)/2κ. If these queries are not made, the reduction is
perfect and the claim follows.

APPENDIX D
PROOF OF SECURITY FOR OBLIVIOUS TRANSFER

In this section, we argue for the UC-security of the πVSOT

protocol discussed in Appendix A, and later discuss the
security of the KOS OT-extension protocol when considered in
combination with the FSF-OT functionality that πVSOT realizes.

Theorem D.1. Assuming that the Computational Diffie-
Hellman problem is hard in G, the protocol πVSOT UC-realizes
the FSF-OT functionality in the FRDL

ZK -hybrid model in the
presence of a statically corrupted malicious party, where H is
modeled as a non-programmable random oracle.

Proof sketch. We now provide simulators for πVSOT, along
with an argument for their indistinguishably from the protocol.
First, we will consider the case of security against malicious
sender; later, we argue security against a malicious receiver.

Simulator 1. VSOT against Sender
(
SSVSOT

)
:

This simulator interposes between a malicious sender and the
corresponding ideal functionality FSF-OT. It is parameterized
by the symmetric security parameter κ. It outputs the sender’s
messages α0 and α1. It makes use of the random oracle H ,
and plays the role of FRDL

ZK in its interactions with the sender.
Public Key:

1) Receive (prove, b, B) from the sender on behalf of FRDL

ZK

and forward it to FRDL

ZK . On receiving (accept, i, B), for-
ward it to the sender. If FRDL

ZK responds with (fail, i, B),
then abort.

Pad Transfer:
2) Upon receiving (chosen) from FSF-OT, sample A← G.

Send A to the sender and calculate ρ0 and ρ1

ρ0 ..= H(b ·A)
ρ1 ..= H(b · (A−B))

Verification:
3) Compute sender’s expected challenge

ξexp ..= H(H(ρ0))⊕H(H(ρ1))

Upon receiving the sender’s actual challenge ξ, if
ξ = ξexp, then set ω̂ ..= ⊥ and send (guess, ω̂) to
FSF-OT and ρ′ ..= H(H(ρ0)) to the sender. Otherwise,
let Q denote the set of all queries that the sender has
made to the random oracle thus far. If there exists a
query Qi ∈ Q such that H(Qi) = ξ ⊕H(H(ρ1)), then
set ω̂ ..= 1. Otherwise, set ω̂ ..= 0. Send (guess, ω̂)
to FSF-OT and receive either (cheat-detected) or
(cheat-undetected), indicating whether the sender
succeeded in guessing the receiver’s input. If the sender
has succeeded and (cheat-undetected) is received,
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send ρ′ ..= H(H(ρω̂)) to the sender. Otherwise, send
ρ′ ..= H(H(ρ

¯̂ω)) to the sender and halt.
Transfer:

4) Upon receiving α̃0 and α̃1, compute the sender’s inputs

α0 ..= α̃0 − ρ0

α1 ..= α̃1 − ρ1

Finally, send
(
transfer, α0, α1

)
to FSF-OT.

The first message received by the sender comprises A =
a ·G+ω ·G in the real world, and A = a ·G in the simulation.
Because a is picked uniformly in both views, the two are
distributed identically. Given A and B, an honest sender
computes ρ0 and ρ1 as ρ0 ..= b · A and ρ1 ..= b · A · B−1.
Having received b on behalf of FRDL

ZK , the simulator can also
compute these values, and thus can check whether the value
of ξ that it receives is correct. We now consider the sender’s
view when ξ is not correct.

During the verification phase, the sender is required to open
the two values (H(ρ0) and H(ρ1)) that produce ξ. Only one
of these values, H(ρω), will be known to the receiver. Note
that this is the the sender’s opportunity to induce a selective
failure: the sender can guess which value the receiver has, and
substitute a random value for the opposite one when calculating
(and later opening) ξ. If the receiver does not abort, the sender’s
guess was correct. However, a corrupt sender can guess a well-
formed triple of values H(ρ0), H(ρ1), and ξ without calling
H(H(ρ0)) and H(H(ρ1)) with a probability of 2−κ, and if
the triple is not well-formed, then the receiver will always
abort in the real world. This forces the sender to query the
random oracle, and its queries can be used by the simulator
to determine the sender’s guess ω̂. This is forwarded to the
functionality, which informs the simulator whether the guess
is correct. From this point, the simulator replies with exactly
the same values and aborts under exactly the same conditions
as the protocol in the real world. Therefore, the view of a
malicious sender when executing πVSOT in the real world is
distinguishable from the view of a malicious sender when
interacting with SSVSOT with probability no greater than 2−κ.

Now we consider security against a malicious receiver. For
this section of the proof sketch, we need an additional lemma

Lemma D.2 ( [33], [62] ). Let q be the order of a group G
generated by G, whose elements are represented in κ = |q|
bits. If there exists a PPT algorithm A such that:

Pr[A(1κ, x ·G) = x · x ·G : x← Zq] = ε

where the probability is taken over the choice of x, then there
exists an algorithm A′ which solves the Computational Diffie-
Hellman problem in G with advantage ε2.

Simulator 2. VSOT against Receiver
(
SRVSOT

)
:

This simulator interposes between a malicious receiver
and the corresponding ideal functionality FSF-OT, and is

parameterized by the symmetric security parameter κ. It
outputs the receiver’s choice bit ω and the corresponding
chosen message αω. It makes use of the random oracle H
and the functionality FRDL

ZK .
Public Key:

1) Sample b ← Zq and compute B ..= b · G. Send
(accept, i, B) to the receiver on behalf of FRDL

ZK .
Pad Transfer:

2) Receive A from the receiver and compute ρ0, ρ1 as an
honest sender would.

3) Observe receiver’s random oracle queries. If receiver
ever queries b · A, then set ω ..= 0. If receiver ever
queries b · (A−B), then set ω ..= 1. Once ω is set, send
(choose, ω) to FSF-OT and receive (no-cheat).

Verification:
4) Run the verification phase as an honest sender would.

Transfer:
5) Upon receiving (message, αω), compute the two padded

messages α̃ω , α̃ω̄ , and send them to the receiver.

α̃ω ..= αω + ρω

α̃ω̄ ← Zq

Fixing B = b · G (which is chosen by the simulator on
behalf of the sender) and A (which is chosen and transmitted
by the receiver) also fixes the two pads, ρ0 = H(b · A) and
ρ1 = H(b · (A−B)). The receiver cannot derive ρω without
querying the random oracle, except with probability 2−κ. The
simulator observes the receiver’s queries and checks for equality
with either b·A or b·(A−B) in order to determine the receiver’s
choice bit. If the receiver manages to query both values, then
the simulator cannot determine its choice bit. We argue that
if the receiver can do so with non-negligible probability, then
it can be used to compute x · x · G given X = x · G with
non-negligible probability in the following way.

Given a uniformly drawn challenge X = x · G, we can
generate the receiver’s view with B = X (which has the correct
distribution). We have assumed that the receiver manages to
query both b · A = x · A and b · (A − B) = x · (A − X) =
x · A − x · X , and we have assumed that the receiver can
make at most polynomially-many queries to the random oracle.
Thus, we can choose any two of the receiver’s random oracle
queries, and with probability 1/poly(κ) their difference will
be equal to x · x ·G. By Lemma D.2, successfully computing
x·x·G given X = x·G with non-negligible probability implies
breaking the Computational Diffie-Hellman assumption.

The rest of the simulator behaves exactly as the protocol
does, and the values it produces are identically distributed to
their real-world counterparts. Thus, the view produced by the
simulator is computationally indistinguishable from the view
of the receiver in a real-world protocol if the CDH problem is
hard in G.

Remark. It is easy to extend the above protocol to implement a
Selective-Failure OT functionality that supports the sending of
arbitrary sender-chosen messages (instead of the functionality
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choosing the messages) via the standard reduction from
Random OT to OT; that is, by using the sender’s output from
the Random OT to encrypt the messages that it wants to send.
Interestingly, this comes at the cost of no additional rounds. We
observe that the resulting Selective Failure OT protocol can be
proven secure in the Global Random Oracle Model of Canetti
et al. [63], in spite of the fact that if the functionality FRDL

ZK is
instantiated with the Fischlin Transform [49], as is required to
achieve non-interactivity and UC-security simultaneously, then
it typically requires the random oracle to be programmed when
simulating against a corrupt verifier. In our case, the value B
(for which the prover is required to prove knowledge of discrete
logarithm in Step 2 of πVSOT) is chosen by the simulator itself
when simulating against the verifier. Consequently, SRVSOT can
simply run the honest prover’s code to generate a proof, without
programming the random oracle at any point. In the context
of the security reduction to the Computational Diffie-Hellman
Assumption for the receiver that we have given above, it is
necessary to simulate FRDL

ZK in the traditional way, and therefore
to program the random oracle. This is not a problem, as it is
legal to program the (global) random oracle in a reduction.

Finally, we note that our implementation of πVSOT reuses the
first message of the sender across multiple parallel instances,
which, as discussed by Chou and Orlandi [33] realizes the
same functionality adjusted for multiple messages.

Lemma D.3. The OT Extension protocol of Keller et al. [34]
(πSetup

KOS and πExtend
KOS ) UC-realizes the F`COTe functionality in

the FSF-OT-hybrid model where H is modeled as a non-
programmable random oracle.

Proof sketch. As these protocols are nearly exactly the same
as in Keller et al. [34], their analysis applies unmodified. We
observe that weakening the OT functionality used by Keller et
al. to our Selective Failure OT functionality does not allow the
malicious receiver in their protocol any additional advantage.
For each (guess, ω̂) message that a malicious receiver sends
to FSF-OT in our protocol, a malicious receiver in the protocol
of Keller et al. would send (m0,m1) with mω̂ = ⊥. We recall
that the receiver is allowed to learn c bits of the sender’s private
correlation ∇, however at the risk of alerting the sender of a
cheat with probability 1−2−c (as the sender’s input to FSF-OT

is uniform). As the correlation ∇ is broken in the Extend of
the protocol phase by being passed through a random oracle,
the receiver’s overall success probability in making a correct
random oracle query (corresponding to the key she is not
supposed to derive) is poly(κ)/2κ.

Remark. We observe that the OT extension protocol of Keller
et al. can be simulated without programming the random
oracle. Therefore, when instantiated with our πVSOT protocol,
it realizes the F`COTe functionality in the Global Random
Oracle Model under only the Computational Diffie-Hellman
assumption. To our knowledge, this is the first realization of
OT extension in this model and under this assumption.

APPENDIX E
PROOF OF SECURITY FOR MULTIPLICATION

In this section, we prove that the multiplication protocol
πMul realizes the FMul functionality in the Global Random
Oracle Model [63] under the Universal Composability (UC)
paradigm. For a definition of UC-security, we refer the reader
to the seminal work of Canetti [64]. In Appendix E-A we prove
Lemma E.2, which states that the view of Alice in πMul is
simulatable, and in Appendix E-B, Lemma E.4 makes a similar
claim with regard to the view of Bob. By the conjunction of
these two lemmas, we claim Theorem E.1.

Theorem E.1. The protocol πMul UC-realizes the functionality
FMul in the F`COTe-hybrid Random Oracle Model, in the
presence of a malicious adversary statically corrupting either
party.

A. Simulating Against Alice

Simulator 3. Multiplication against Alice
(
SAMul

)
:

This simulator interposes between a malicous Alice and the
corresponding ideal functionality FMul. It is parameterized by
the statistical security parameter s and the symmetric security
parameter κ, with ` = 2κ+2s. It also makes use of a gadget
vector g of the same form as that used by πMul. It plays the
role of the functionality F`COTe in its interaction with Alice,
and it can both observe Alice’s queries to the random oracle
H , and program the oracle’s responses.
Init:

1) Receive message (init) from Alice on behalf of F`COTe

and send (init) to FMul.
Multiplication:

2) Upon receiving (bob-ready, idmul, tA) from FMul, send
(chosen, idmul) to Alice on behalf of F`COTe.

3) Receive (transfer, idmul, {αi‖α̂i}i∈[1,`]) from Alice
on behalf of F`COTe, and receive her messages u and r.
Engage in the coin tossing protocol (corresponding to
Step 4 of πMul) with Alice to derive the values χ and χ̂.

4) For each i ∈ [1, `], compute

∆i
..= χ ·αi + χ̂ · α̂i − u

Next, compile a list I of the locations where Alice has
cheated. If, for any i ∈ [1, `],

∆i 6= 0 ∨ ri 6= χ · tAi + χ̂ · t̂Ai

then append i to I and compute

ω̃i ..=
ri − (χ · tAi + χ̂ · t̂Ai)

∆i

If there exists any index i such that ω̃i is defined but not
in {0, 1}, then abort by setting δ ..= 0 and c ..= κ and
skipping to Step 6. Otherwise, set c ..= |I| so that the
FMul functionality will abort with probability 1− 2−|I|.
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5) Choose any index i ∈ [1, `] such that χ ·αi+ χ̂ · α̂i = u
and let α ..= αi. If no such index exists, then abort by
setting δ ..= 0, c ..= κ and skipping to Step 6. Otherwise,
compute the additive offset

δ ..=
∑
i∈I

ω̃i · gi · (αi − α)

6) Send (input, idmul, α, δ, c) to FMul and halt

Lemma E.2. The view produced by SAMul and the view of
a malicious Alice in a real execution of the protocol πMul

are indistinguishable to any probabilistic polynomial time
adversary in the F`COTe-hybrid Random Oracle Model, except
with negligible probability.

Proof. Our proof of Lemma E.2 will proceed via a sequence
of hybrid experiments. The information in Alice’s view is
characterized by the values tA and t̂A that she receives as output
from F`COTe upon sending it α and α̂. The joint distribution
of outputs over which distinguishability is considered for the
purpose of this proof includes tA and tB, as well as a bit
indicating whether Bob has been induced to abort.

For our first hybrid, we will need a lemma concerning
the distribution of encodings of Bob’s input. Recall that Bob
encodes his input using Algorithm 4:

Algorithm 4. Encode(gR ∈ Zκ+2s
q , β ∈ Zq):

1) Sample γ ← {0, 1}κ+2s

2) Output Bits (β − 〈gR,γ〉) ‖γ

We wish to show that it is hard to guess an encoding ω ←
Encode(gR, β), even given β. A guess comprises a vector ω̂ ∈
{0, 1,⊥}`, where ` = 2κ+ 2s is the size of an encoding, and
the ⊥ symbol indicates that no guess is made for a particular bit.
A guess matches an encoding if and only if ω̂i = ωi∨ ω̂i = ⊥
for all indices i ∈ [1, `].

Lemma E.3. Given gR ← Zκ+2s
q , it holds with overwhelmingly

high probability that for all values β ∈ Zq and ω̂ ∈ {0, 1,⊥}`
such that g = |{ω̂i ∈ ω̂ : ω̂i 6= ⊥}|,

Pr [Encode(gR, β) matches ω̂] ≤ 2−g + 2−s

where the probability is taken over the randomness of the
encoding.

Proof. Let gL be the number of guessed bits that correspond to
the first κ bits of the encoding (i.e. the term Bits(β−〈gR,γ〉)),
and let gR be the number of guessed bits that correspond to the
remaining bits (i.e. the term γ), such that g = gL + gR. Since
γ is chosen uniformly, the probability that any gR bits of γ
can be guessed correctly is 2−g

R

. Impagliazzo and Naor [53,
Proposition 1.1] show via the random choice of γ and the
Leftover Hash Lemma [65] that the inner product 〈gR,γ〉
has a statistical distance of at most 2(κ−|γ|)/2 with respect
to the uniform distribution. We wish to know the probability
that gL bits of this inner product can be guessed correctly,

conditioned on gR bits of γ being guessed correctly. Guessing
gR bits of γ correctly is equivalent to removing them (and
their corresponding elements in gR) from the inner product;
thus under this condition 〈gR,γ〉 has a statistical distance of
at most 2(κ−|γ|+gR)/2 with respect to the uniform distribution,
and gL bits of the inner product can be guessed with probability
at most 2−g

L

+ 2(κ−|γ|+gR)/2. It follows that the probability
of guessing gL bits from the inner product and gR bits from γ
simultaneously is at most

2−g
R

·
(
2−g

L

+ 2(κ−|γ|+gR)/2
)

and substituting |γ| = κ+ 2s, we have

2−g
L−gR + 2−s−g

R/2 ≤ 2−g + 2−s

Hybrid H1 . This experiment is the same as a real-world
execution of πMul except that Step 4 of SAMul is implemented to
define ∆, ω̃, and I, and the experiment aborts with probability
1 − 2−|I| rather than aborting based on Step 6 of πMul. The
addition of Step 4 of the simulator changes no variables in
Alice’s view, and is used only to define the aforementioned
variables. We now argue that the abort events occurs with
almost the same probability in both H1 and the real world
execution of πMul.

In the real experiment, Alice induces Bob to abort when,
after we implement Step 4 of the simulator, there exists some
i ∈ I such that ω̃i is defined and ω̃i 6= ωi. In the trivial case,
when ω̃i 6∈ {0, 1}, Bob aborts with certainty. Otherwise, for
i ∈ I, we have

ri = χ · tAi + χ̂ · t̂Ai + ω̃i ·∆i

χ · tBi + χ̂ · t̂Bi = ωi · (χ ·α+ χ̂ · α̂i)− (χ · tAi + χ̂ · t̂Ai)
= (1− ω̃i)(u+ ∆i)− (χ · tAi + χ̂ · t̂Ai)
= ωi · u+ ∆i − (χ · tAi + χ̂ · t̂Ai + ω̃i∆i)

= ωi · u+ ∆i − ri

6= ωi · u− ri

where the last line follows because ∆i 6= 0 when ω̃i is defined.
Thus if Alice cheats in such a way that, for any i ∈ I, ω̃i 6= ωi,
then Bob aborts, but if ω̃i = ωi for all i ∈ I, then she cheats
and is uncaught. Consequently, the probability that Alice can
cheat without being caught in the real world is the same as the
probability that she correctly guesses Bob’s input ωi to F`COTe

at every location i ∈ I where she has cheated. By Lemma E.3,
this probability is at most 2−|I| + 2−s. On the other hand,
she sees an abort in H1 with probability 2−|I|. The advantage
of a distinguisher in distinguishing this hybrid from the real
protocol is therefore at most 2−s.

Hybrid H2 . This experiment is the same as H1, except the
following instruction is added after Alice sends her second
message: Find any index i ∈ [1, `] such that χ ·αi+ χ̂ ·α̂i = u,
and set α ..= αi. If no such index exists, or there exist two
indices i, j for which the condition holds, but αi 6= αj , then
abort.
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This hybrid experiment differs from the last in that it aborts
if there is not exactly one unique candidate for α, and thus
a malicious Alice can distinguish H2 from H1 by inducing
such a scenario without causing an abort. We argue that this
event occurs with probability poly(κ)/2κ by analyzing both
conditions (no candidate, or too many candidates) and taking
a union bound.

Consider the event in H1 when there is no candidate pair
(αi, α̂i) such that χ · αi + χ̂ · α̂i = u, and yet no abort has
occurred. This implies that ∆i 6= 0 (that is, Alice has cheated
at location i) for all indices i ∈ [1, `]. This event occurs with
probability 2−`.

Next, consider the event in H1 that there are two candidate
pairs, with indices i and j. This implies that

χ · (αi −αj) + χ̂ · (α̂i − α̂j) = 0

Note that α and α̂ are fixed before χ, χ̂ are chosen, and
that for each selection of χ, there is only one χ̂ ∈ Zq that
satisfies the equality. Because χ, χ̂ are chosen by hashing the
transcript in Step 4 of πMul, a malicious Alice may attempt to
produce different transcripts in order to satisfy this equality.
Each random oracle query made by Alice succeeds in satisfying
the condition with probability 2−κ; thus, Alice succeeds with
probability no greater than poly(κ)/2κ.

Hybrid H3 . This hybrid is the same as the previous one,
except that instead of using Step 7 of πMul to define Bob’s
output of the computation tB, define Bob’s output as

tB ..= α · β + δ − tA

where

tA ..=
∑
i∈[1,`]

gi · tAi

δ ..=
∑
i∈I

ω̃i · gi · (αi − α)

and where α, ω̃, and I are defined as in H2. Note that, as
before, if ω̃i 6= ωi for any i ∈ I, then an abort occurs. This
essentially implements Step 5 of SAMul.

Recall that tAi + tBi = αi · ωi and that the final output
shares tA and tB maintain the following relation

tA + tB =
∑
i∈[1,`]

gi · tAi +
∑
i∈[1,`]

gi · tBi =
∑
i∈[1,`]

gi ·αi · ωi

Thus, if no abort occurs, then we have

tA + tB =
∑
i∈[1,`]

gi ·αi · ωi

= α ·
∑
i∈[1,`]

gi · ωi +
∑
i∈I

gi · ω̃i · (αi − α)

= α · β + δ

which is the relation claimed at the beginning of this hybrid.
This hybrid is therefore distributed identically to H2.

Hybrid H4 . Implement the remaining steps in SAMul. These
changes are merely syntactic, and thus Alice’s view in H4 is
identical to her view in H3.

The view produced by SAMul is therefore indistinguishable
from a real execution to a probabilistic polynomial time
adversary corrupting Alice, with overwhelming probability.

B. Simulating Against Bob

Simulator 4. Multiplication against Bob
(
SBMul

)
:

This simulator interposes between a malicous Bob and the
corresponding ideal functionality FMul. It is parameterized by
the statistical security parameter s and the symmetric security
parameter κ, with ` = 2κ+2s. It also makes use of a gadget
vector g of the same form as that used by πMul. The simulator
plays the role of the functionality F`COTe in its interaction
with Bob, and it can observe Bob’s queries to the random
oracle H .
Init:

1) Receive message (init) from Bob on behalf of F`COTe

and send (init) to FMul.
2) Send (init-complete) to Bob on behalf of F`COTe

upon receipt of (init-complete) from FMul.
Multiplication:

3) Receive (choose, idmul,ω) from Bob on behalf of
F`COTe and compute

β ..=
∑
i∈[1,`]

gi · ωi

4) Send (input, idmul, β) to FMul

5) On receipt of (output, idmul, tB) from FMul, uniformly
sample t̂B, tB ← Z`q such that∑

i∈[1,`]

tBi = tB

6) Send (padded-correlation, idmul, {tBi||̂tBi}i∈[1,`])
to Bob on behalf of F`COTe.

7) Engage in the coin flipping protocol (corresponding to
Step 4 of πMul) to compute χ and χ̂ as Alice would.

8) Sample u← Zq , and for each i ∈ [1, `], compute

ri ..= χ · tBi + χ̂ · t̂Bi − ωi · u

9) Send Bob the values u and r and halt.

Lemma E.4. The view produced by SBMul and the view of a
malicious Bob in a real execution of the protocol πMul are
distributed identically in the F`COTe-hybrid Random Oracle
Model.

Proof. The information in Bob’s view is characterized by the
outputs tB and t̂B that he receives from F`COTe upon sending
ω, and by the messages u and r that he receives from Alice.
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As per the description of the F`COTe functionality, its outputs
maintain the following relations for all i ∈ [1, `]

tAi + tBi = ωi · α and t̂Ai + t̂Bi = ωi · α̂

In the real world, tA and t̂A are chosen uniformly at random
by F`COTe, and thus tB and t̂B are distributed uniformly as well.
In the simulation, on the other hand, tB is chosen uniformly
by FMul, and then tB and t̂B are chosen uniformly by the
simulator, subject to ∑

i∈[1,`]

tBi = tB

Thus, by the relationships above, the values tA and t̂A are also
distributed uniformly in the simulation, and all of these values
are distributed identically in the real and simulated views.

In both the real and simulated views, α̂ is chosen uniformly at
random, and χ and χ̂ are derived from a coin flipping protocol.
Consequently, u = χ ·α+ χ̂ · α̂ is distributed identically in both
views. Finally, by correctness of the protocol, in the real world
r is consistent with the following relation, for all i ∈ [1, `]

ri + ωi · u = χ · tBi + χ̂ · t̂Bi
In the simulation, the value ω is received as on behalf of F`COTe,
u is chosen by the simulator, χ, χ̂ are public, and tB and t̂B
are chosen by the simulator. The simulator can therefore solve
for r, and given that the distribution of the former values is
identical to their distribution in the real world, the resulting
distribution of r must be identical to the real-world distribution
as well. The views produced by real and simulated executions
of πMul are therefore distributed identically to an adversary
that corrupts Bob.

APPENDIX F
PROOF OF SECURITY FOR 2-OF-n ECDSA

In this section, we prove the security of our setup and signing
protocols via reductions to the Computational Diffie-Hellman
Assumption and to the security of ECDSA itself in the Random
Oracle Model. As we are concerned with the security of our
threshold signing system over the lifetime of a public key, and
in consideration of the interactions of all participating parties,
we specify a shell protocol which orchestrates a signing epoch,
in which the parties perform a single setup as a group, followed
by some number of signatures between pre-determined pairs.
It is with respect to this shell protocol that we claim security.

Protocol 10. 2-of-n ECDSA
(
π2P-Epoch
nP-ECDSA

)
:

This protocol runs among a group of parties P of size n,
where each party’s unique player index in [1, n] is known
to the other parties. It is parameterized by the union of the
parameters of its subprotocols; specifically, by the group
G of order q generated by G, with κ = |q|, and by the
statistical security paramter s. It receives as input a vector
m ∈ {0, 1}∗×∗ of messages and a vector P ∈ P2×|m| of
pairs of parties to sign those messages, such that in each pair
the party with the smallest index always comes first. To each
party, it outputs a vector of signatures. After the Setup phase,

the Sign phase can be run repeatedly by pairs of parties from
this group.
Setup (2-of-n):

1) The parties jointly run π2P-Setup
nP-ECDSA with no inputs. Each

party Pi receives as output the joint public key pk and
a point p(i) on the polynomial p.

Signing:
2) For each entry mj in m, let (PA,PB) = Pj . Now PA

and PB (that is, Alice and Bob) run π2P-Sign
nP-ECDSA, supplying

p(A) and p(B) respectively, and both supplying mj . PB

receives the signature as output, and PA receives nothing.

Theorem F.1. Assuming that ECDSA is a Digital Signature
Scheme and that the Computational Diffie-Hellman Problem
is hard in elliptic curve groups, the protocol π2P-Epoch

nP-ECDSA UC-
realizes the FSampledECDSA functionality among n parties in the
(FMul,FRDL

ZK ,FRDL

Com-ZK)-hybrid Random Oracle Model and in
the presence of a single statically corrupted malicious party.

Proof. Our proof will be via a sequence of hybrid experiments
showing that the view of a corrupted party P∗i when partici-
pating in the real-world protocol π2P-Epoch

nP-ECDSA is computationally
indistinguishable from a view generated by the simulator
S2P-Epoch,i
nP-ECDSA , which accesses FSampledECDSA. Specifically, let
Z denote the environment, which chooses the messages to
be signed, the pairs of parties that will sign them, and the
order in which signing will happen. The environment is
treated as an adversary: it receives some nonuniform advice
z and it can corrupt exactly one party, P∗i , from whom it
receives a transcript of the π2P-Epoch

nP-ECDSA protocol. In a real-
world experiment, the honest parties (i.e. all parties except
P∗i ) also evaluate the π2P-Epoch

nP-ECDSA protocol, using the inputs
chosen by Z . In an ideal-world experiment, the honest parties
instead interact with FSampledECDSA, while P∗i interacts with
S2P-Epoch,i
nP-ECDSA , which in turn interacts with FSampledECDSA as an

ideal-world adversary. When all interactions are complete, Z
guesses whether P∗i has interacted with real counterparties, or
with the simulator; this guess is the output of the experiment. If
we denote by EXPTπ,A,Z (z) the outcome of the experiment
EXPT involving the protocol π, the adversary A, and the
environment Z which receives advice z, then the space of
real-world experiments is given by

H0 =
{
REALπ2P-Epoch

nP-ECDSA,P∗i ,Z (z)
}
z∈{0,1}∗

We wish to show that

H0
c≡
{
IDEALFSampledECDSA,S2P-Epoch,i

nP-ECDSA ,Z (z)
}
z∈{0,1}∗

Due to the length and complexity of this proof, we have
divided it into sections. In Appendix F-A, we give a hybrid in
which the components of P∗i ’s transcript that are due to the
setup protocol π2P-Setup

nP-ECDSA are simulated. In Appendix F-B, we
give a further sequence of hybrids that replace the transcript
components due to cases in which P∗i participates in the
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signing protocol π2P-Sign
nP-ECDSA and plays the role of Alice. In

Appendix F-C, we likewise give a sequence of hybrids to
deal with cases in which P∗i plays the role of Bob, at which
point P∗i ’s view is totally simulated, and the proof is complete.
We begin by giving a master simulator, which corresponds
to π2P-Epoch

nP-ECDSA and calls upon the simulators we introduce in
subsequent sections.

Simulator 5. 2-of-n ECDSA against P∗i (S2P-Epoch,i
nP-ECDSA):

This simulator interposes between a malicious P∗i and the
ideal functionality FSampledECDSA. It is parameterized by
the union of the parameters of the simulators that it calls;
specifically, by the group G of order q generated by G, with
κ = |q|, and by the statistical security paramter s. It receives
as input a vector of messages m ∈ {0, 1}∗×∗ and a vector of
counterparties P ∈ P |m| with which to sign those messages.
Setup (2-of-n):

1) Run SSetup,inP-ECDSA against P∗i and receive the public key
pk and P∗i ’s point p(i).

Signing:
2) For each item mj in m, use the counterparty index Pj

to calculate the appropriate Lagrange coefficient, and
use this to reconstruct the secret key share t0i for signing
with Pj . If Pj > i, invoke S2P-Sign,A

nP-ECDSA against P∗i with
message mj , secret key share t0i , public key pk, and
a fresh signature id idsig. Otherwise, invoke S2P-Sign,B

nP-ECDSA

with the same inputs.

A. Simulating Setup

We begin by giving a simulator SSetup,inP-ECDSA, which interacts
with FSampledECDSA and the corrupt party P∗i , and produces a
transcript corresponding to an invocation of π2P-Setup

nP-ECDSA.

Simulator 6. 2-of-n Setup against P∗i (SSetup,inP-ECDSA):
This simulator interposes between a malicious P∗i and the
ideal functionality FSampledECDSA, and it is parameterized by
the group G of order q generated by G, with κ = |q|. It
returns as output P∗i ’s point p(i) on a shared polynomial p,
and the public key pk. It makes use of the functionalities
FRDL

ZK and FMul.
Public Key Generation:

1) Send (init) to FSampledECDSA and receive
(public-key, pk).

2) Receive
(
com-proof, ski, G′

)
from P∗i on behalf of

FRDL

Com-ZK and receive pki from P∗i directly. Send
{(committed, j)}j∈[1,i)∪(i,n] to P∗i on behalf of
FRDL

Com-ZK. If ski · G′ 6= pki, then choose the parties’
public key fragments to be a set of uniform values{

pkj

}
j∈[1,i)∪(i,n]

← Gn−1

Otherwise, set them to be a random n−1 element additive
sharing of (pk− pki). That is, for j ∈ [1, i) ∪ (i, n],

sample pkj uniformly from G subject to∑
j∈[1,i)∪(i,n]

pkj = (pk− pki)

Send {(accept, j, pkj)}j∈[1,i)∪(i,n] to P∗i on behalf of
FRDL

ZK and receive (decom-proof) from P∗i on behalf
of FRDL

ZK . If ski ·G′ 6= pki, then abort.
3) For j ∈ [1, i)∪ (i, n], sample pj(i)← Zq and send it to
P∗i . Receive pi,j(j) from P∗i in response.

4) Pick any j ∈ [1, i) ∪ (i, n] and interpolate P∗i ’s polyno-
mial pi as the line that passes through the points (0, ski)
and

(
j, pi,j(j)

)
.

5) Enumerate any inconsistent shares that Pi may have sent,
and calculate the offset by which they are incorrect:

∆ ..=
{
pi(j)− pi,j(j)

}
j∈[1,i)∪(i,n]

6) Compute the expected public commitment to P∗i ’s share
of the secret key

T exp
i

..=
∑
j∈[1,n]

pj(i) ·G

7) For j ∈ [1, i)∪ (i, n], calculate the appropriate Lagrange
coefficients λi,j , λj,i for Shamir-reconstruction between
P∗i and Pj , and then compute

Tj ..=

(
pk− λi,j · T exp

i

)
λj,i

+ ∆j ·G

and send Tj to P∗i .
8) Receive Ti from P∗i , and abort if Ti 6= T exp

i or if there
exists any index j such that ∆j 6= 0.

Auxiliary setup:
9) Interact with P∗i on behalf of FMul, receiving (init)

messages and replying with (init-complete) messages as
appropriate.

Hybrid H1 . This hybrid experiment is the same as H0 except
that P∗i ’s invocation of π2P-Setup

nP-ECDSA is replaced by an execution
of SSetup,inP-ECDSA. The simulation is perfect. Consider the case that
P∗i attempts to cheat by sending points along pi that do not
represent a line, or that represent a line that does not pass
through ski. This implies that there must exist two parties j and
j′ such that λj,j′ ·p(j)+λj′,j ·p(j′) 6= sk. In the real world, it
follows that λj,j′ ·Tj+λj′,j ·Tj′ 6= pk, and therefore the parties
j and j′ will abort. Because the simulator receives pi,j(j) and
pi,j′(j

′), it can calculate the exact discrepancy that appears in
the real world and induce it into Tj and Tj′ , while aborting in
exactly the correct cases. Note that because the values Tj and
Tj′ are randomized, only the relationships between them need
be simulated, and so we can choose an arbitrary point along
pi from which to calculate any discrepancies.

B. Simulating Against Alice

We now consider the view of P∗i in its evaluations of
π2P-Sign
nP-ECDSA with parties Pj where j > i, and show via the series

of hybrids in this section that this view is indistinguishable
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from that generated by the simulator S2P-Sign,A
nP-ECDSA that interacts

with the ideal functionality FSampledECDSA. For any specific j,
the roles played by P∗i and Pj are consistent and determined
only by their indices. Furthermore, the post-setup interactions
of P∗i and Pj are independent of P∗i ’s interactions with
any other honest parties. Consequently, we consider each
honest Pj individually, and for each sequential instance of
the signing protocol evaluated by P∗i and Pj we apply the
following hybrids to show that instance indistinguishable from
a simulation. For readability and convenience, we refer to P∗i
as Alice in this section.

Before we specify the hybrids in this section, let us discuss
the manner in which a malicious adversary playing the role of
Alice can cheat, and the power that this cheating confers. Alice
sends only one message to Bob, and her sole mechanism for
cheating is the sending of inconsistent values in this message.
Specifically, Alice has an instance key kA which is defined by

kA = H(k′A ·DB) + k′A

where k′A is chosen adversarially by her. She also has a secret
key share t0A, from which pk was calculated, and a pad φ, which
she chooses uniformly. The values she uses in the protocol,
however, are R′ and the multiplication input vectors α1,α2a,
and α2b, all of which are functions of t0A, kA, and φ. We use
a proof of knowledge to verify the relationship between R′

and kA, but in the case of the multiplication inputs, cheating
on her part will introduce additive offsets into the outputs
of the multiplication protocol that depend directly on Bob’s
private inputs. Any offset in the final signature will cause
Bob to abort, which Alice can avoid by subtracting an equal
offset from her final message: in this way, she can guess Bob’s
input and confirm that she is correct. We show that she is
unable to do this with non-negligible probability unless she
has the power to break the Computational Diffie-Hellman or
Discrete Log Assumptions for Elliptice Curves. We use δ1,
δ2a, and δ2b to signify the offsets Alice induces by cheating
in FMul, and we use δ3, δ4, δ5, and δsig to signify the offsets
she induces directly in her subsequent messages, which she
can use to cancel out the previous offsets. The propagation of
these values through Alice and Bob’s calculations in the real
world is illustrated in Figure 3.

Simulator 7. 2-of-n Signing against Alice (S2P-Sign,A
nP-ECDSA):

This simulator interposes between a malicous Alice and the
corresponding ideal functionality FSampledECDSA. It receives
as input a message m, the signature id idsig, the public key
pk, and Alice’s share of the secret key t0A. It is parameterized
by statistical security parameter s, and the group G of order
q generated by G, with κ = |q|. It plays the roles of the
functionalities FMul and FRDL

ZK in their interactions with Alice,
and can both observe Alice’s queries to the random oracle
H and program its responses.
Multiplication and Instance Key Exchange:

1) Send (newsig, idsig,m,B) to FSampledECDSA to begin a
new signature with Bob as the counterparty, and receive

(nonce-shard, DB) in response. Forward DB to Alice.
2) Observe Alice’s queries to the random oracle H , and

let her ith query be Ri. If Ri has never been queried
before, send (nonce, idsig, i, Ri) to FSampledECDSA,
receive (offset, idsig, k∆

i,A) in response, and store
(idsig, Ri, k

∆
i,A) in memory. Program H to return k∆

i,A to
Alice as the result of her query on Ri.

3) Upon receiving R′ from Alice, find (idsig, Rj, k
∆
j,A) in

memory such that Rj = R′. If such an entry exists in
memory, remember the index j and set R ..= R′ + k∆

j,A ·
DB; otherwise, choose any value for j, let Rj

..= R′, and
abort by skipping to Step 8.

4) Interact with Alice on behalf of FRDL

ZK . On receiving
(prove, kA, DB) from her, if kA ·DB 6= R, then abort
by skipping to Step 8.

5) Interact with Alice on behalf of FMul, and in do-
ing so receive her multiplication inputs,

(
α1, δ1, c1

)
,(

α2a, δ2a, c2a
)
, and

(
α2b, δ2b, c2b

)
, and her (uniform)

output shares t1A, t2a
A , and t2b

A . Toss c1 + c2a + c2b coins,
and if any of these coins return 1, or if α2a 6= t0A/kA,
or if α2b 6= 1/kA, then abort by skipping to Step 8.
Otherwise, compute and store φ = α1 − 1/kA.

Consistency Check, Signature, and Verification:
6) Upon receiving ηφ from Alice, observe Alice’s queries

to the random oracle H , and denote her ith query as Γ 1
i .

For each query on Γ 1
i , check whether

φ
?
= ηφ −H(Γ 1

i )

Γ 1
i

?
= G+ φ · kA ·G− t1A ·R+ δ1 ·R

If no query exists such that these relations hold, abort
by skipping to Step 8. Otherwise, let Γ 1 ..= Γ 1

i .
7) Upon receiving ηsig from Alice, compute

δ2 ..= δ2a + δ2b

Γ 2 ..=
(
t1A − δ1

)
· pk−

(
t2A − δ2

)
·G

sigA
..= ηsig −H(Γ 2)

Finally, if

sigA 6= H(m) · t1A + rx · t2A −H(m) · δ1 − rx · δ2

then abort by skipping to Step 8. Otherwise send
(sign, idsig, j, kA) to FSampledECDSA and halt without
proceeding to Step 8.

Abort:
8) Cause FSampledECDSA to abort by choosing any k∗A

such that k∗A · DB 6= R′, sending (sign, idsig, j, k∗A) to
FSampledECDSA, and halting. Note that this step is only
reached when Alice has cheated.

Hybrid H2 . This hybrid experiment implements Steps 3 and 4
of S2P-Sign,A

nP-ECDSA. It is the same as H1, except that it aborts when
Alice sends a value of R′ to Bob for which she has not queried
to the random oracle. When she does send such an R′, H1 also
aborts with overwhelming probability, since kA, her input to
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Fig. 3: Illustrated Propagation of Noise and Offsets for a Malicious Alice in our 2-of-n Signing Scheme. Noise induced by inconsistencies
in the multiplication input vectors α1, α2a, and α2b is indicated with red text, and offsets chosen by Alice are indicated with blue text. Note
that both noise and offsets are defined relative to the ideal values of other variables derived from Alice’s canonical inputs.

the proof of knowledge, is derived from the oracle’s response.
Alice can guess the correct value of kA with probability no
greater than 2−κ without querying the random oracle, and thus
her statistical advantage in distinguishing H2 from H1 is 2−κ.

Hybrid H3 . This hybrid experiment is identical to H2, except
that it aborts if Alice does not query the random oracle on
the value Γ 1 = t1B · R, where t1B is computed as Bob would
compute it, using the information in his view. In the real world,
Bob makes an identical query in order to decrypt ηφ and ηsig. If
Alice has not also queried the oracle on this point, she cannot
have sent the correct encryptions except with probability 2−κ.
Thus, H3 is distinguishable from H2 with probability 2−κ.

To make the next step, we require a lemma to show that an
adversary who can compute G/x given x ·G can be used to
solve the Computational Diffie-Hellman Problem.

Lemma F.2. Let q be the order of a group G generated by G,
whose elements are represented in κ = |q| bits. If there exists

a PPT algorithm A such that

Pr[A(1κ, x ·G) = G/x : x← Zq] = ε

where the probability is taken over the choice of x, then there
exists an algorithm A′ such that

Pr[A′(1κ, x ·G) = x · x ·G : x← Zq] = ε3

Proof. The algorithm that receives a challenge X = x ·G and
uses A to compute x · x ·G is as follows:

1) Sample z ← Zq uniformly and compute Y ..= (z ·G)−X .
Let y be the discrete log of Y . Note that y is unknown,
but that z = x+ y. As z is uniform and independent of
X , so is y.

2) Compute X ′ ..= A(X) and Y ′ ..= A(Y ). Recall that X
and Y are uniform and independent challenges to A. If
A was successful in both computations, then X ′ = G/x
and Y ′ = G/y.

3) Sample r ← Zq uniformly and compute

W ..= r · A
(
r/z · (X ′ + Y ′)

)
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Note that since r is sampled independently of X and Y ,
the challenge given to A is uniform and independent of
X and Y . Note that

X ′ + Y ′ = G/x+G/y =
x+ y

x · y
·G =

z

x · y
·G

Thus, if A was successful in this step,

W = r · z
r
· x · y
z
·G = x · y ·G = x · z ·G− x · x ·G

4) Output z ·X −W = x · x ·G
The algorithm A is successful with probability ε when its input
is uniformly distributed. As A is invoked with three uniform
and independent challenges, the probability that it is correct
all three times is ε3.

Corollary F.2.1. Let q be the order of a group G generated
by G, whose elements are represented in κ = |q| bits. If there
exists a PPT algorithm A such that

Pr[A(1κ, x ·G) = G/x : x← Zq] = ε

where the probability is taken over the choice of x, then there
exists an algorithm A′ such that A′ solves the Computational
Diffie-Hellman problem in G with advantage ε6.

Proof. Follows directly from Lemma F.2 and Lemma D.2.

Hybrid H4 . This hybrid experiment implements Step 5
of S2P-Sign,A

nP-ECDSA. It differs from H3 in that it always aborts
when any of Alice’s inputs to FMul are inconsistent with one
another or with the instance key exchange. Recall that her
inputs are given by the triples

(
α1, δ1, c1

)
,
(
α2a, δ2a, c2a

)
, and(

α2b, δ2b, c2b
)
. Specifically, Alice sees an abort if any of the

following conditions hold

ηφ −H(Γ 1) 6= α1 − 1/kA

α2a 6= t0A/kA α2b 6= 1/kA

On the other hand, in experiment H3, it is possible that
some of these conditions hold and yet no abort occurs if
Alice offsets her final message ηsig in such a way that Bob
reconstructs a valid signature in Step 13 of π2P-Sign

nP-ECDSA. We
will show that if she can achieve this outcome (and thereby
distinguish H4 from H3) with non-negligible probability, then
she can be used to solve either the Computational Diffie-
Hellman Problem or the Discrete Logarithm Problem over
elliptic curves with non-negligible probability. It thus follows
that H4 is computationally indistinguishable from H3 by the
Computational Diffie-Hellman Assumption.

For convenience, we define a few intermediate values. Let

e1 = ηφ −H(Γ 1)− α1 + 1/kA

e2a = α2a − t0A/kA
e2b = α2b − 1/kA

That is, let e1 be the discrepancy between the value of φ that
Bob calculates and the value that Alice has used in her input
to FMul, and let e2a and e2b be the discrepancies between α2a

and α2b and their respective ideal values. Note that e2a and e2b

are defined exclusively by extractable values in Alice’s view:
t0A is extracted during setup, kA is extracted via FRDL

ZK , and the
remaining α and t values are extracted via FMul. e1, on the
other hand, depends upon Γ 1, which is defined in this hybrid
relative to values in Bob’s view (though, per H3, Alice is
guaranteed to query the random oracle on Γ 1). Our reductions
will not have access to Bob’s view, and therefore they will
require an alternate means of determining Γ 1 and e1.

In the case where Alice can potentially distinguish H4 from
H3, at least one of the error values e1, e2a, and e2b must be
non-zero. These are included with Alice’s inputs to FMul, and
the values δ1, δ2a, and δ2b represent additional errors induced
into the outputs of FMul; thus we have

t1A + t1B =
1

kA · kB
+
φ+ e1

kB
+ δ1

t1A + θ =
1

kA · kB
+
e1

kB
+ δ1

t2a
A + t2a

B =
t0A

kA · kB
+
e2a

kB
+ δ2a

t2b
A + t2b

B =
t0B

kA · kB
+
t0B · e2b

kB
+ δ2b

Additionally, Alice can induce an error directly into the
signature by including it in her final message ηsig; this is
given by

δsig = sigA −H(m) · t1A − rx · t2A
Adding this to our signing equation, substituting in the error-
laden shares above, and subtracting the value of an honest
signature, we arrive at the total error induced

H(m) ·

(
e1

kB
+ δ1

)
+ rx ·

(
e2a + t0B · e2b

kB
+ δ2

)
+ δsig

where δ2 = δ2a + δ2b. According to our premise that the
signature verifies, this expression must be equal to zero.
Assuming this to be true, and then rearranging, we have

H(m) · e
1

kB
+ rx ·

e2a + t0B · e2b

kB
= −H(m) · δ1− rx · δ2− δsig

We now partition our argument into three exhaustive subcases,
based upon the value of the left hand side of this equation.

1) The first case:

H(m) · e
1

kB
+ rx ·

e2a + t0B · e2b

kB
6= 0

In this case, we give a reduction to the Discrete Logarithm
Problem. Because both sides are nonzero, we can once
again rearrange the equation that defines our error, yielding

kB =
H(m) · e1 + rx ·

(
e2a + t0B · e2b

)
−H(m) · δ1 − rx · δ2 − δsig

Thus, if Alice can distinguish H4 from H3 when this case
holds, then can be used to solve the Discrete Logarithm
Problem with the same probability in the following way:
given X = x ·G for which x is not known, run hybrid
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experiment H4, choosing a value of sk uniformly and
calculating pk from it, rather than receiving pk and from
FSampledECDSA, and setting DB

..= X . During the course
of the experiment, all values in the right-hand side of
the above equation are extracted or received from Alice,
except for t0B, which can be calculated via t0B

..= sk− t0A,
and e1, which depends on Γ 1 as noted previously. Since
Alice is guaranteed to query the random oracle on Γ 1,
iterate over all of her queries, and for each candidate Γ 1

i ,
calculate kBi via the above equation. Upon finding the
query index i such that kBi ·G = X , let x ..= kBi and the
problem is solved.

2) The second case:

H(m) · e
1

kB
+ rx ·

e2a + t0B · e2b

kB
= 0 ∧ e2b 6= 0

In this case we also give a reduction to the Discrete
Logarithm Problem. Observe that by rearranging the
premise of the case

t0B =
−H(m) · e1

rx · e2b
− e2a

e2b

Thus, if Alice can distinguish H4 from H3 when this case
holds, then she can be used to solve the Discrete Logarithm
Problem with the same probability in the following way:
given X = x · G, for which x is unknown, run hybrid
experiment H4, choosing pk ..= X . As in the first case,
iterate over all of Alice’s random oracle queries, and for
each candidate point Γ 1

i , apply the above equation to
calculate t0Bi, followed by ski ..= t0A + t0Bi. Upon finding
the query index i such that ski ·G = X , let x ..= ski and
the problem is solved.

3) The third case:

H(m) · e
1

kB
+ rx ·

e2a + t0B · e2b

kB
= 0 ∧ e2b = 0

In this case, we give a reduction to the Computational
Diffie-Hellman Problem. Recall that

t1A + θ =
1

kA · kB
+
e1

kB
+ δ1

t2A + t2B =
sk

kA · kB
+
e2a + t0B · e2b

kB
+ δ2

and that Bob computes Γ 2 ..= t2B ·G− θ · pk. Substituting
the previous pair of equations into this yields

Γ 2 =

(
sk

kA · kB
+
e2a + e2b · t0B

kB
+ δ2 − t2A

)
·G

−

(
1

kA · kB
+
e1

kB
+ δ1 − t1A

)
· pk

Next, according to the premise of this case, e2b = 0; thus,
simplifying, we have

Γ 2 =
(
δ2 − t2A

)
·G+

(
t1A − δ1

)
· pk+ e2a − e1 · sk

kB
·G

Also by the premise of this case, e1 =
(
−rx · e2a

)
/H(m).

Given that e1 and e2a must be nonzero, it follows that

e2a − e1 · sk = 0 ⇐⇒ rx/H(m) = 1

Recall that Alice is able to sample multiple values of
R′, from which rx is derived via the random oracle.
For each value she tries, she achieves rx = H(m) with
probability 2−κ, and because she is polynomially bounded,
she achieves rx = H(m) with probability poly(κ)/2κ

overall. Thus e2a − e1 · sk 6= 0 with overwhelming
probability, and we can rearrange such that

G/kB =
Γ 2 +

(
δ1 − t1A

)
· pk+

(
t2A − δ2a

)
·G

e2a − e1 · sk
Thus if Alice can distinguish H4 from H3 when this case
holds, then she can be used to solve the Computational
Diffie-Hellman Problem with a polynomial reduction in
probability in the following way: given X = x · G,
for which x is unknown, run hybrid experiment H4

with DB
..= X . Unlike the previous two cases, we

have no mechanism by which to confirm our results are
correct, and so we cannot identify Γ 1 reliably. Instead,
choose values for Γ 1 and Γ 2 at random from the set
Q of Alice’s random oracle queries and then apply the
above equation. If Alice succeeds with probability ε,
then this algorithm recovers G/x with probability ε/|Q|2,
which is bounded by ε/poly(κ) given that Alice runs in
polynomial time. Given that G/x can be calculated with
probability ε/ poly(κ), by Corollary F.2.1 there exists
an algorithm to solve the Computational Diffie-Hellman
problem with probability ε6/ poly(κ).

These three cases are comprehensive; thus, if Alice can
distinguish H4 from H3 with non-negligible probability, then
there must exist a probabilistic polynomial time algorithm that
can solve either the Discrete Logarithm Problem or the Compu-
tational Diffie-Hellman Problem with non-negligible probability.
Consequently, H4 is computationally indistinguishable from
H3 under the Computational Diffie-Hellman Assumption, and
if in future hybrids there is no abort, then e1, e2a, and e2b

must all be equal to zero.

Hybrid H5 . This hybrid implements Step 6 of S2P-Sign,A
nP-ECDSA.

This hybrid differs from the last in that Γ 1 is given by

Γ 1 ..= G+ φ · kA ·G− t1A ·R+ δ1 ·R

rather than Γ 1 ..= t1B · R as in H4. Note that Alice always
queries Γ 1, and because e1, e2a, and e2b are zero when no
abort occurs, as established in H4, the two derivations of Γ 1

are equivalent

Γ 1 = t1B ·R

=

(
1

kA · kB
+

φ

kB
+ δ1 − t1A

)
·R

= G+ φ · kA ·G+ δ1 ·R− t1A ·R

Consequently, H5 is distributed identically to H4.
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Hybrid H6 . This hybrid implements Step 7 of S2P-Sign,A
nP-ECDSA,

which implies two major differences relative to H5. First, Γ 2

is computed as

Γ 2 ..=
(
t1A − δ1

)
· pk−

(
t2A − δ2

)
·G

rather than being computed as

Γ 2 ..=
(
t2B ·G− θ · pk

)
as in H5. These two derivations are equivalent; observe that

Γ 2 =
(
t2B ·G− θ · pk

)

=


(

sk

kA · kB
+ δ2 − t2A

)
·G

−
(

1

kA · kB
+ δ1 − t1A

)
· pk


=
(
t1A − δ1

)
· pk−

(
t2A − δ2

)
·G

Second, H6 aborts if

sigA 6= H(m) · t1A + rx · t2A −H(m) · δ1 − rx · δ2

rather than aborting if Verify(sigA + sigB) 6= 1 as in H5.
Observe, however, that there is only one value of sig which
verifies as a signature once R and pk are fixed, and that

sig = sigA + sigB

= sigA +H(m) · θ + rx · t2B

= sigA +H(m) ·
(

1

kA · kB
+ δ1 − t1A

)
+ rx ·

(
sk

kA · kB
+ δ2 − t2A

)
= sigA +

H(m) + sk · rx
kA · kB

−H(m) · t1A − rx · t2A +H(m) · δ1 + rx · δ2

= sig + sigA

−H(m) · t1A − rx · t2A +H(m) · δ1 + rx · δ2

Thus Verify(sigA + sigB) = 1 if and only if

sigA = H(m) · t1A + rx · t2A −H(m) · δ1 − rx · δ2

and H6 is distributed identically to H5.

Hybrid H7 . In this, the last hybrid for instances of the
π2P-Sign
nP-ECDSA where P∗i plays the role of Alice, Steps 1 and 2

of S2P-Sign,A
nP-ECDSA are added, which implies that S2P-Sign,A

nP-ECDSA is
implemented completely, and no elements of Bob’s view are
required to run the experiment. These changes are syntactic,
and so the distribution of H7 is identical to that of H6.

C. Simulating Against Bob

Having dealt in Appendix F-B with the view of P∗i in its
evaluations of π2P-Sign

nP-ECDSA with parties Pj where j > i, we
now consider its view where j < i, and show via the series
of hybrids in this section that this view is indistinguishable

from that generated by the simulator S2P-Sign,B
nP-ECDSA that interacts

with the ideal functionality FSampledECDSA. For convenience
we refer to P∗i as Bob in these hybrids.

Unlike Alice, Bob cannot cheat by inducing additive offsets
into the outputs of the multiplications; he can only use
inconsistent inputs. On the other hand, because he receives the
output of the protocol, which is a (publicly verifiable) signature,
he is able in some cases to guess values and check on his own
whether his guesses are correct. Finally, note that because Bob
receives the final message in our protocol, the failure condition
for the protocol corresponds to the case when he cannot decrypt
this message or produce a valid output. For convenience, we
refer to this condition as an abort in the following section.

Simulator 8. 2-of-n Signing against Bob (S2P-Sign,B
nP-ECDSA):

This simulator interposes between a malicous Bob and the
corresponding ideal functionality FSampledECDSA. It receives
as input the public key pk, the message m, the signature id
idsig, and Bob’s share of the secret key t0B. It is parameterized
by the statistical security parameter s and the group G of
order q generated by G, with κ = |q|. It plays the roles of
the functionalities FMul and FRDL

ZK in their interactions with
Bob, and it can both observe Bob’s queries to the random
oracle H , and program the oracle’s responses.
Multiplication and Instance Key Agreement:

1) Upon receiving DB from Bob, begin a new sig-
nature with Alice as the counterparty by sending
(newsig, idsig,m,A) to FSampledECDSA.

2) Interact with Bob on behalf of FMul, and in doing so
receive his private multiplication inputs β1, β2a, and β2b

and his corresponding outputs t1B, t2a
B , and t2b

B . Note that
Bob’s inputs to the multiplications may be inconsistent.

3) If (
G/β1 = DB

)
then let kB ..= 1/β1 and continue. Otherwise, abort by
skipping to step 8.

4) If (
β1 = β2a

)
∧
(
β1 · t0B = β2b

)
then continue. Otherwise, abort by skipping to step 8.

5) Send (sign, idsig) to FSampledECDSA and receive
(signature, R, k∆, σ) in response.

Consistency Check, Signature, and Verification:
6) Compute R′ ..= R−k∆ ·G and send R′ to Bob. Program

the random oracle H such that when it receives a query
on the value R′, it replies with the value k∆/kB.

7) Interact with Bob on behalf of FRDL

ZK , and upon receiving
(prove, R, D̂B), reply with (accept,A) if R = H(R′) ·
D̂B +R′ or (fail,A) otherwise.

8) Compute Γ 1 ..= t1B ·R as Bob would if he were honest.
Sample φ← Zq uniformly and compute ηφ ..= H(Γ 1)+
φ. Send ηφ to Bob.
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9) Parse σ = (sig, rx), and then compute

θ ..= t1B − φ/kB
Γ 2 ..= (t2B ·G− θ · pk)
sigB

..= H(m) · θ + rx · t2B
sigA

..= sig − sigB

ηsig ..= H(Γ 2) + sigA

Send ηsig to Bob and halt without proceeding to step 8.
Abort:

8) Send R′ ← G, ηφ ← Zq, and ηsig ← Zq to
Bob. Interact with Bob on behalf of FRDL

ZK , and upon
receiving (prove, R, D̂B), reply with (accept,A) if
R = H(R′) · D̂B +R′ or (fail,A) otherwise. Instruct
FSampledECDSA to abort, and then halt. Note that this step
is only reached when Bob has cheated.

For the next hybrid, we rely on circular secure encryption
in the Random Oracle Model, as formalized in Lemma F.3.

Lemma F.3. Let q be the order of a group G generated
by G, whose elements are represented in κ = |q| bits. If
H : {0, 1}∗ 7→ Zq is a random oracle and x ← Zq is a
private value sampled uniformly at random, then for any public
constants C1, C2 ∈ G such that C2 6= 0, a PPT algorithm
running in time poly(κ) with oracle access to H has an
advantage no greater than poly(κ)/2κ in distinguishing the
distribution of H(C1+x·C2)+x from the uniform distribution
over Zq .

Proof. The algorithm can distinguish a sample drawn from
H(C1 +x ·C2)+x from uniform only by guessing the correct
value of x, querying H , and testing whether the result matches.
Given that the algorithm can make at most poly(κ) queries to
H and that C1 + x · C2 is distributed uniformly over Zq , the
probability that this point is queried to H is poly(κ)/2κ.

Hybrid H8 . This hybrid implements Steps 2 and 3 of
S2P-Sign,B
nP-ECDSA. Relative to H7, this experiment always aborts if

Bob uses β1 6= 1/kB as input to his first invocation of FMul,
whereas in previous hybrids, Bob could use such an inconsistent
input and nevertheless avoid an abort by guessing certain
intermediate values and checking whether a valid signature is
produced. We will show that he succeeds in avoiding an abort
with negligible probability in H7.

Suppose that Bob passes β1 ..= 1/kB+e to his first invocation
of FMul, instead of 1/kB as he is supposed to do. The output
of this invocation will then take the form

t1A + t1B =
φ

kB
+

1

kA · kB
+ φ · e+ e

kA

and Alice will compute the first check value as

Γ 1 ..= G+ φ · kA ·G− t1A ·R
= G+ φ · kA ·G

−
(
φ

kB
+

1

kA · kB
+ φ · e+ e

kA
− t1B

)
·R

=

(
t1B − φ · e−

e

kA

)
·R

She will then encrypt φ and transmit her encryption to Bob

ηφ ..= φ+H

((
t1B − φ · e−

e

kA

)
·R

)
By Lemma F.3 and the fact that φ is drawn uniformly, Bob
cannot distinguish ηφ from uniform (and thereby recover φ)
with probability better than poly(κ)/2κ. Subsequently, Alice
computes Γ 2 ..= t1A · pk− t2A ·G, which implies

Γ 2 = t1A · pk− t2A ·G

=

(
1

kA · kB
+

e

kA
+

φ

kB
− t1B

)
· pk

−
(

sk

kA · kB
− t2B

)
·G

=

(
e

kA
+

φ

kB

)
· pk−

(
t1B · pk− t2B ·G

)
Because Bob can calculate φ with probability poly(κ)/2κ, his
probability of deriving Γ 2 and correctly decrypting Alice’s
message ηsig is also bounded by poly(κ)/2κ. Thus, if Bob
passes β1 ..= 1/kB + e to his first invocation of FMul in
H7, the experiment aborts with overwhelming probability, and
consequently H7 and H8 are computationally indistinguishable.

Hybrid H9 . In this hybrid experiment, Step 4 of S2P-Sign,B
nP-ECDSA

is partially implemented. Specifically, if Bob uses β2a 6= β1

as his input to the second invocation of FMul, then the values
ηφ and ηsig are sampled uniformly. Because our real-world
protocol coalesces Bob’s first and second invocations of FMul

as described in Section VI-C, Bob is in fact already constrained
to using β1 = β2a. Therefore, H9 is distributed identically to
H8, and if β2a 6= 1/kB, then then the values ηφ and ηsig are
sampled uniformly.

Hybrid H10 . This hybrid experiment fully implements Step 4
of S2P-Sign,B

nP-ECDSA. Bob’s view in this hybrid differs from his view
in H9 in that ηφ and ηsig are replaced with uniform values if
Bob uses β2b 6= t0B/kB as his input to the third invocation of
FMul. We must reason about the power that Bob has to guess
intermediate values and correctly decrypt Alice’s final message
ηsig in the case that he has cheated in this way. Recall that to
decrypt the final message, Bob computes

sig = sigB + ηsig −H(Γ 2)

If he does not query the random oracle on the correct value of
Γ 2 (in either this hybrid or H9), then he must guess its output,
which he succeeds at doing with no better probability than he
has of guessing a valid signature from whole cloth. Suppose,
however, that he cheats by passing β2b = t0B/kB + e to the
third invocation of FMul, and nevertheless queries the correct
value of Γ 2. We will show that if he can achieve this with
non-negligible probability, then he can be used to break the
Computational Diffie-Hellman Assumption.
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We have previously established that if there is no abort, then
β1 = 1/kB and α1 = 1/kA + φ, and the first invocation of
FMul yields shares to Alice and Bob such that

t1A + t1B =
1

kA · kB
+

φ

kB

Bob is thus able to calculate

Γ 1 ..= t1B ·R
φ ..= ηsig −H(Γ 1)

θ ..= t1B − φ/kB

If Bob supplies β2b = t0B/kB + e as his input to the third
invocation of FMul, then it will yield shares such that

t2b
A + t2b

B =
t0B

kA · kB
+

e

kA

which implies that

t2A + t2B =
sk

kA · kB
+

e

kA

We have supposed that Bob queries the random oracle on
the same value of Γ 2 that Alice uses to encrypt ηsig; thus

Γ 2 = t1A · pk− t2A ·G

=

(
1

kA · kB
− θ
)
· pk−

(
sk

kA · kB
+

e

kA
− t2B

)
·G

= t2B ·G−
e

kA
·G− θ · pk

which in turn implies

G/kA =
t2B ·G− θ · pk− Γ 2

e

Thus, given a (uniform) challenge X = x ·G for which x
is unknown, we can use Bob in the following way to compute
G/x with a polynomial probability loss. First, sample a random
value h← Zq , and then run the hybrid experiment H10, using
R′ ..= kB ·X − h ·DB. Program the random oracle such that
H(R′) = h; this implies that

R = H(R′) ·DB +R′ = x · kB ·G

which is uniform, as it is in the real execution, due to the
fact that x is uniform. Extract Bob’s input β2b to the third
invocation of FMul, along with his input 1/kB = β1 to the first
invocation, and t0B, his secret key share chosen during setup,
and with these values calculate

e ..= β2b − t0B/kB

Finally, if Bob terminates with an output, choose one of his
random oracle queries at random to be the value Γ 2, and then
apply the equation above to compute

G/x ..=
t2B ·G− θ · pk− Γ 2

e

If Bob queries the correct value of Γ 2 with probability ε,
and queries at most polynomially many values in total, then
this reduction computes G/x with probability ε/poly(κ). By

Corollary F.2.1, this implies that Bob can be used to solve
the Computational Diffie-Hellman Problem with probability
ε6/poly(κ). Consequently H10 is computationally indistin-
guishable from H9 under the Computational Diffie-Hellman
Assumption.

Hybrid H11 . This hybrid implements the remaining steps in
S2P-Sign,B
nP-ECDSA, to completely simulate Bob’s view. The changes

from the last hybrid are merely syntactic, and thus H11 and
H10 are distributed identically.

The party P∗i ’s view is entirely simulated in H11, and so

H11 =
{
IDEALFSampledECDSA,S2P-Epoch,i

nP-ECDSA ,Z (z)
}
z∈{0,1}∗

By this sequence of hybrids, H11
c≡ H0; in other words,

the view of a static adversary corrupting a single party P∗i
in the real world is computationally indistinguishable from
a simulated execution of the same set of protocol instances
under the Computational Diffie-Hellman Assumption in the
(FMul,FRDL

ZK ,FRDL

Com-ZK)-hybrid Random Oracle Model, and
Theorem F.1 is proved.
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