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Abstract. Implementing the masking countermeasure in hardware is a
delicate task. Various solutions have been proposed for this purpose over
the last years: we focus on Threshold Implementations (TIs), Domain-
Oriented Masking (DOM), the Unified Masking Approach (UMA) and
Generic Low Latency Masking (GLM). The latter generally come with
innovative ideas to prevent physical defaults such as glitches. Yet, and
in contrast to the situation in software-oriented masking, these schemes
have not been formally proven at arbitrary security orders and their
composability properties were left unclear. So far, only a 2-cycle imple-
mentation of the seminal masking scheme by Ishai, Sahai and Wagner
has been shown secure and composable in the robust probing model – a
variation of the probing model aimed to capture physical defaults such
as glitches – for any number of shares. In this paper, we argue that this
lack of proofs for TIs, DOM, UMA and GLM makes the interpretation of
their security guarantees difficult as the number of shares increases. For
this purpose, we first put forward that the higher-order variants of all
these schemes are affected by (local or composability) security flaws in
the (robust) probing model, due to insufficient refreshing. We then show
that composability and robustness against glitches cannot be analyzed
independently. We finally detail how these abstract flaws translate into
concrete (experimental) attacks, and discuss the additional constraints
robust probing security implies on the need of registers. Despite not sys-
tematically leading to improved complexities at low security orders, e.g.,
with respect to the required number of measurements for a successful
attack, we argue that these weaknesses provide a case for the need of
security proofs in the robust probing model at higher security orders.

1 Introduction

Masking (aka secret sharing) is one of the most popular countermeasures against
side-channel attacks [11]. Evaluating its security guarantees is known to be non-
trivial, especially as the number of shares and claimed security order increase.
The latter is confirmed by various security flaws that have been exhibited in early
proposals of higher-order masking schemes, which we organize in two categories.



First, local flaws correspond to cases where a masked gadget (e.g., a multipli-
cation algorithm, a masked S-box, . . . ) does not deliver its security guarantees.
A typical example of a local flaw is the attack against the higher-order masking
scheme of Schramm and Paar [46], put forward by Coron et al. [15]. Second,
composability flaws correspond to cases where the combination of locally secure
gadgets leads to additional weaknesses. A typical example of a composability flaw
is the attack against the higher-order masking scheme of Rivain and Prouff [42]
(which describes locally secure gadgets), put forward by Coron et al. [16].

In order to avoid such security flaws, two main theoretical advances have
been introduced in the literature. First, security proofs in the probing model of
Ishai et al. [31] can be used to analyze the local security of a masked gadget.
Second, the notions of Non-Interference (NI) and Strong Non-Interference (SNI)
can be used to capture the compositional security of masked gadgets [5].

Those theoretical advances are complemented by practical ones exploiting
program verification techniques. For example, the work by Barthe et al. describes
a tool able to verify the security of a masked implementation up to a certain
order [4]. Other works propose similar but more specialized ideas [20, 40].

Furthermore, under some assumptions of sufficiently noisy and independent
leakages, security in the (abstract) probing model implies security in the (more
concrete) noisy leakage model [38], as shown by Duc et al. [18]. Since (under
the independence condition only), probing security also implies security in the
bounded moment leakage model [6], which is frequently used to assess the con-
crete security order of actual implementations [45], these results suggest probing
security as a useful first step to verify for any masked implementation.

Concretely, this first (abstract) evaluation step of masked implementations
can typically rely on two approaches. Either security is claimed for arbitrary
orders. In this case, a hand-made proof is required for the masked gadgets con-
sidered (and this proof has to guarantee composability in case the target im-
plementation is a full cipher mixing many gadgets). Or security is claimed up
to a given order that can be exhaustively analyzed thanks to program verifica-
tion techniques. To a large extent, all recent results in (what we will denote as)
software-oriented masking (to be understood as the masking schemes primarily
designed for software implementations) follow one of these approaches, leading
to easy-to-interpret guarantees. We cite [14, 7] and [6] as recent examples.

Hardware-oriented masking. In parallel to software-oriented masking, sig-
nificant efforts have also been devoted to the design of masking gadgets for
hardware implementations. In this context, one important additional issue is
that physical defaults such as glitches can easily contradict the independence as-
sumption required for secure masking [32]. Since this break of the independence
assumption directly leads to devastating attacks [33], the literature then focused
on the design of gadgets with better resistance to glitches. A popular illustration
of such progresses is the introduction of Threshold Implementations (TIs), which
showed that a simple algorithmic property (namely, the non-completeness prop-



erty) is sufficient to mitigate the glitch issue [36]. The latter was then successfully
applied to many first-order threshold implementations (e.g., [37, 34, 9]).

Yet, as in the software case, the generalization from first-order TIs to higher-
order TIs proved to be challenging. For example, the first attempt to build a
higher-order TI in [8] was not successful because of a lack of refreshing leading
to a composability flaw [39, 41]. Since then, various papers proposed innovative
ways to implement higher-order masking in hardware, mixing engineering intu-
itions and elements borrowed from the software-oriented masking literature. We
mention for example the Consolidated Masking (CMS) scheme in [41, 12], the
Domain-Oriented Masking (DOM) in [29, 29, 30], the Unified Masking Approach
(UMA) in [27, 28] and the Generic Low Latency Masking (GLM) in [26].

An interpretation issue. Reading these papers, it is tempting to conclude that
they provide solutions for higher-order secure (glitch-resistant) masking gadgets,
with a certain degree of composability. Indeed, most of them use the number of
shares as a parameter of their designs and provide performance evaluations for
full ciphers (which suggests composability is part of the authors’ concerns). Yet,
contrary to the usual situation in software-oriented masking, none of these pro-
posals comes with a probing security proof at arbitrary order. For example, the
CMS implementation in [12] investigates the concrete security of a second-order
masked AES design (using the tools of [45]), the DOM implementations in [30]
investigate the concrete security of first- and second-order masked AES designs,
the UMA implementations in [27] investigate the concrete security of dth-order
masked Ascon designs for d = 1, 2, 3, and, analogous to the GLM scheme, an-
alyze the side-channel resistance of the Ascon S-box for d = 1, 2, 3 using the
formal verification tool introduced in [10]. Hence, these examples raise the ques-
tion whether the CMS, DOM, UMA and GLM algorithms (or their generaliza-
tion) directly lead to higher-order secure implementations, or whether the lack
of proofs for these designs leaves room for weaknesses in the higher-order cases,
that require attention/tweaks? We show the second statement is correct by:

– exhibiting a local flaw in the (generalized) CMS multiplication of [12],
– exhibiting a local flaw in the DOM-dep multiplication of [29],
– exhibiting a composability flaw in the UMA of [27],
– showing that these flaws are reproduced in the GLM of [26].

We note that these flaws do not invalidate the innovative ideas in these schemes:
they only show that when moving to higher security orders, the engineering in-
tuition that led to the successful design of gadgets secure at low orders benefits
from a more formal analysis. In this regard, our only claim is that this collec-
tion of examples illustrates the difficulty to interpret the higher-order security
guarantees provided by CMS, DOM, UMA and GLM, and that, without the
appropriate tweaks, these schemes cannot be extended beyond the contexts in
which they were exhaustively analyzed. The latter leads to an error-prone situ-
ation for engineers willing to implement higher-order (glitch-resistant) masking
in hardware. We use it to argue that as in the software case, harware-oriented



masking schemes should either restrict claims to the specific orders that have been
exhaustively investigated, or provide a hand-made proof for arbitrary orders.

The need of robust probing security. The previous issues can be solved
by integrating the additional information provided by physical defaults such as
glitches in the probing model, as recently proposed by Faust et al. [21]. This
reference describes a variant of the multiplication algorithm of Ishai et al. in [31]
and proved its security in the robust probing model for this purpose. To the
best of our knowledge, this is the first (and so far only) multiplication algorithm
proven secure and composable at arbitrary orders in the presence of glitches.

In this respect, a final question is whether dealing with and analyzing physical
defaults and composability issues jointly is strictly needed? For example, is it
enough to combine a glitch-resistant (probing) secure TI gadget with a strong
(e.g., SNI) refresh and well-placed registers to obtain a gadget that is composable
in the presence of glitches? We answer the question negatively by providing
a counterexample to this approach, hence proving that analyzing the glitch-
resistance and composability of masked gadgets independently is not enough,
which provides a strong case for the need of the robust SNI abstraction.

Experimental confirmation. We finally investigate the concrete exploitability
of the (local and composability) flaws exhibited in higher-order TIs, DOM, UMA
and GLM based on an FPGA case study. We conclude that these flaws can be
observed in practice (sometimes leading to lower attack complexities than the
generic attack at order (d + 1), sometimes not for the – low – security orders
we consider experimentally). In any case, we argue that the presence of these
flaws is problematic since it prevents the extrapolation of the security guarantees
of these schemes to higher orders. We also use our experiments to discuss the
additional constraints that the robust probing security abstraction implies on
the placement of registers within masked hardware implementations.

2 Background

We first recall security definitions that are relevant to our discussions.

The t-probing model was introduced by Ishai et al. in [31] in order to prove
the security of masked implementations. It assumes an adversary who can probe
a limited number t of wires inside the target implementation. Probing security
requires that the observation of these wires does not allow the adversary to learn
sensitive information. Formally, this implies to define the target implementation
as a circuit C (e.g., modeled as a graph) or as a sequence of leaking operations.
Due to its simplicity, probing security was popular to analyze the first proposals
of higher-order masking schemes. We next use the following definition:

Definition 1 (t-probing security [31, 42]). A circuit C is t-probing secure iff
every t-tuple of its intermediate variables is independent of any sensitive variable.



In the case of block ciphers, sensitive variables typically correspond to partial
computation results depending on the plaintext and key [15]. Concretely, prob-
ing security can be achieved by splitting every sensitive variable k in at least
t + 1 values (usually called shares) so that their sum gives k, performing all
computations on these shares, and re-combining the final result only.

One limitation of this definition of probing security is that it does not provide
any guarantee of composability. Thus, while it is sufficient for the direct analysis
of a complete circuit C, it does not allow the separate analysis of smaller circuit
gadgets G. The latter typically comes in handy as the size of the circuits and the
number of shares grows, making the direct analysis unpractical. More precisely,
when gadgets are composed to produce a more complex circuit, it is needed to
take into account that using an output of a gadget as input of another one can
give additional information to the adversary. The following definitions of NI and
SNI have been introduced by Barthe et al. for this purpose:

Definition 2 (t−Non-Interference [5]). A circuit gadget G is t−Non-Inter-
fering (t−NI) iff for any set of t1 probes on its intermediate values and every
set of t2 probes on its output shares with t1 + t2 ≤ t, the totality of the probes
can be simulated with only t1 + t2 shares of each input.

Definition 3 (t−Strong Non-Interference [5]). A circuit gadget G is t−
Strong Non-Interfering (t-SNI) iff for any set of t1 probes on its intermediate
values and every set of t2 probes on its output shares with t1 + t2 ≤ t, the totality
of the probes can be simulated with t1 shares of each input.

As illustrated in [7] for the case of the AES S-box, combining NI and SNI gadgets
enables compositional reasoning for arbitrary circuits. In order to satisfy these
definitions, one has to build a simulator which can mimic the adversary’s view
using only black-box access to G (i.e., without the knowledge of any internal wire
but only t1 + t2 shares (in the NI case) or t1 shares (in the SNI case) of each
secret input). The simulation is successful if no distinguisher can tell apart the
simulation from the adversary’s view. In this respect, one important technical
clarification is that in the definitions of Barthe et al., the distinguisher can
access the joint distribution of the (simulated) probes and input shares (which
is strictly necessary for the compositional proofs). As a result, SNI is a stronger
notion than NI, which it itself a stronger notion than probing security.

We finally introduce the robust probing model with the following example of
a TI gadget implementing a Toffoli gate (i.e., c = (x� y)⊕ z):

c1 = (x2 � y2)⊕ (x2 � y3)⊕ (x3 � y2)⊕ z2,

c2 = (x3 � y3)⊕ (x3 � y1)⊕ (x1 � y3)⊕ z3,

c3 = (x1 � y1)⊕ (x1 � y2)⊕ (x2 � y1)⊕ z1,

(1)

with the subscripts of the x, y, z, c variables indicating the shares’ indices.
Based on this example, first assume that the gadget is implemented in a single

cycle and in a glitch-free manner. In this case, the adversary can only probe the



input shares xi, yi, zi and output shares ci, but not the intermediate values. That
is, thanks to the glitch-free hardware, the output shares are produced from the
input shares without any transient state that would leak additional information.
It is easy to see that such an (ideal) gadget is 2-probing secure.

In practice though, most hardware implementations are not glitch-free and
transient values leak additional information about the internal values [32, 33].
The latter can be captured by the robust probing model which assumes that
probes are “extended” so that when applied to any wire of a combinatorial cir-
cuit, the adversary can observe all the inputs this wire depends on [21].3 In this
case, the adversary can choose between probing output values stored in regis-
ters (which cannot be extended) and internal values before they are stored in
registers (which can be extended). For example, in the gadget of Equation 1 im-
plemented in a single cycle, an extended probe on the internal value c1 would give
access to x2, x3, y2, y3 and z2 to the adversary. Interestingly, thanks to the non-
completeness property (which requires that every combinatorial gadget excludes
at least one share of any sensitive variable), this TI gadget remains 1-probing se-
cure. We will refer to such implementations as glitch-resistant, reflecting the fact
that they can cope with glitches by design (in contrast to glitch-free hardware
which requires the problem to be solved at the micro-electronic level).

Additional remarks. As discussed in [21], the gadget of Equation 1 is neither NI
nor SNI, even if it is implemented in glitch-free hardware. This is because it does
not use any fresh internal randomness that can help the simulation. Remember
that the distinguisher has access to the joint distribution of the (simulated)
probes and input shares, so the simulator cannot leverage the shares of z for
refreshing the shares of the x� y product, as TIs typically exploit.

Note also that the possibility for the adversary to choose between an output
probe and an internal probe for the output values stored in a register (e.g., the
ci’s in Equation 1) is essential to capture composability with glitches. Indeed,
only the (stable, non-extended) output probes are included in the t2 probes that
are excluded from the input shares’ count in the SNI definition.

3 Consolidated Masking Scheme (CMS)

At CRYPTO 2015, Reparaz et al. presented links between the established ISW
multiplication and the concept of TIs [41]. They introduced an approach to
realize masking in hardware with only d + 1 shares, which we denote in the
following as CMS.4 This scheme was later applied in [12] to implement a masked
AES with only d+1 shares. In this section, we first recall the CMS multiplication
as introduced in [41] and substantiated in [12]. Then we present a third-order
flaw based on the particular (ring) refreshing strategy of the scheme.

3 We only describe the glitch-extended probes that will be relevant to our discussions.
Extensions corresponding to other physical defaults are discussed in [21].

4 Earlier proposals of higher-order TIs usually needed more shares [8].



3.1 Multiplication with Independent Inputs

While CMS can be applied to many different operations, we restrict our analysis
to the common multiplication of two inputs. To this end, we rely on the descrip-
tion given in [12] for a two-input AND gate. Their approach is based on the
consecutive application of multiple layers to the input shares: non-linear layer
N , linear layer L, refresh layer R, synchronization layer S (i.e., register stage),
compression layer C. In the case of d + 1 shares masking, the linear layer L is
skipped for the multiplication to ensure that each term given to the refresh layer
R contains only one share of each input variable. This refresh is done in a circu-
lar manner (cf. Figure 1) requiring (d+1)2 random elements. In the compression
phase, the refreshed values are summed up in order to achieve d + 1 shares for
the output. The authors of [12] provide concrete installations only up to order
d = 2. Based on these descriptions, we generalize their approach for an arbitrary
number of shares with the algorithmic description in Algorithm 1.

Algorithm 1 CMS multiplication algorithm with d ≥ 2 shares.

Input: shares a = (ai)1≤i≤n and b = (bi)1≤i≤n, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares c = (ci)1≤i≤n, such that

⊕
i ci = a ·b.

for i = 1 to n do
ci = 0
for j = 1 to n do

ci = ci + (ai · bj + r(i−1)·d+j mod n2 + r(i−1)·d+j+1 mod n2);
end for

end for

Note that this algorithm is only a functional representation of the scheme and
lacks the concrete distinction into layers which is the basis of the CMS concept.
Therefore, Figure 1 depicts the layer-wise architecture for the d = 3 case based
on the notations of Algorithm 1. Note also that the implementation of Figure 1
does not satisfy the non-completeness property of standard TIs (which is similar
to Figure 1 in [12] that we extend in the natural manner). We will discuss the
impact of tweaking the design to make it non-complete later in the section.

3.2 A Third-Order Flaw

In the following, we demonstrate that the CMS multiplication as given in Al-
gorithm 1 and Figure 1 does not provide the claimed security guarantees for
arbitrary d. Our flaw stems from the combination of the circular refresh strategy
R with the specific compression layer C. In particular, summing up all terms
ai · bj + rk for a specific value of i cancels out many of the random terms from
the refresh layer. While this is not problematic for the orders d = 1, 2 considered
in [12], it leads to a trivial attack with only three probes for d ≥ 3.

Concretely, after compression each output share ci can be written as:

ci = ai · b + r(i−1)·d+1 + ri·d+1. (2)
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Fig. 1. Architecture of CMS multiplication extending the proposal in [12] to d = 3,
consisting of the (green) non-linear layer N , the (yellow) refresh layer R, the (black)
synchronization (registers) layer S, and the (red) compression layer C.

Therefore, by probing:

P1 = ci, (3)

P2 = r(i−1)·d+1, (4)

P3 = ri·d+1, (5)

the adversary can observe a joint distribution (P1, P2, P3) which depends on ai ·b.
While ai is still a random value independent of a, it does not suffice as a mask
for b given the “zero bias” of multiplicative masking schemes [23] (e.g., for the
binary case, ai · b = 1 implies b = 1). Thus, the joint distribution leaks about
the sensitive value b invalidating the security of the multiplication scheme.

Example 1 (d = 3). For better understanding, we demonstrate an attack on the
simplest case with d = 3 which is shown in Figure 1. The probes are placed
according to the aforementioned guidelines as follows:

P1 = c1 = a1 · b + r1 + r5, (6)

P2 = r1, (7)

P3 = r5. (8)



The histograms of the joint distribution of (P1, P2, P3) for fixed b ∈ F2 are given
in Table 1. It is noticeable that they differ based on the value of b. Therefore,
an adversary could distinguish the value of b with only three regular probes for
any order d ≥ 3 which is less than the claimed order of security.

Table 1. Histogram of the joint distribution of (P1, P2, P3) for b = 0 and b = 1.

(P1, P2, P3) 0 1 2 3 4 5 6 7

b = 0 2 0 0 2 0 2 2 0
b = 1 1 1 1 1 1 1 1 1

3.3 Discussion

We first insist that the previous attack does not contradict the claims in [12]
since (in the core of the paper) the authors make clear that their analysis is
limited to the case d = 2, i.e., with 3 shares. Thus, our only claim is again
that the title of the paper can be misleading, since the natural extension of the
proposed algorithms does not lead to higher-order secure gadgets as one could
expect. It leaves as an open problem to find efficient solutions to fix this flaw
(some proposals can be found in Thomas De Cnudde’s PhD dissertation).

We also observe that considering a non-complete compression layer, despite
not necessary from the glitches viewpoint (since a register stage prevents the
propagation of the glitches before the compression in Figure 1), would actually
make the attack slightly more difficult. For example, imagine that no ci value in
Figure 1 depends on the 4 shares of ai or bi: then an attack would only succeed
by probing multiple ci’s together with the ri’s at their “borders” (postponing
the apparition of the security flaw to higher orders). Denoting the number of ci’s
to probe with n, the generalized attack will work with at most 3n probes, and
possibly less if the probed ci’s share a border. It is however interesting that the
non-completeness property turns out to be useful for composability purposes.
We leave the exploitation of this observation (e.g., to design secure and efficient
implementations at low orders) as an interesting scope for further research.

We finally note that, as the ring refreshing in [12] is not SNI, the general-
ization of the S-box design in this reference to higher-orders also suffers from
composability flaws similar to the ones of the UMA and GLM schemes.

4 Domain-Oriented Masking (DOM)

Domain-Oriented Masking (DOM) was proposed in 2016 by Gross et al. with
the goal to enable secure masking in hardware with only d + 1 shares [29, 30].
The main contribution is a masked multiplier initially denoted as DOM-indep.
Its randomness distribution is closely related to the ISW multiplication and
it is therefore probing secure given independently shared inputs. However, for



the multiplication of dependently shared inputs, Gross et al. include another
alternative multiplication scheme called DOM-dep in their eprint version [29]. It
is used in some of their proposed designs to improve efficiency. In this section,
we first recall the specification of DOM-dep and then demonstrate a (dd2e+1)th-
order flaw for d ≥ 2, contradicting the DOM security claims.

4.1 Multiplication with Dependent Inputs

A straightforward way to extend DOM-indep for allowing dependently shared
inputs is to SNI refresh one of the inputs [25]. This provides security but comes
with significant costs in randomness, area, and latency. DOM-dep was proposed
as a more efficient alternative which does not require re-sharing. Instead, a blind-
ing value z is introduced to multiply the inputs a and b as:

c = a · b = a · (b + z) + (a · z). (9)

Since z is a random value, the authors proposed an efficient way to compute
a · (b + z) by first decoding (b + z) and then multiplying the result with each
share of a. Therefore, DOM-dep requires only one full DOM-indep multiplication
compared to two for the previously outlined (straightforward) approach. The
generic scheme for any order is given in Algorithm 2 based on the descriptions
provided in [29], where the x notation is used to represent vectors of shares.

Algorithm 2 DOM-dep multiplication algorithm with n ≥ 2 shares.

Input: shares a = (ai)1≤i≤n and b = (bi)1≤i≤n, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares c = (ci)1≤i≤n, such that

⊕
i ci = a ·b.

for i = 1 to n do
zi

$←− Fq

xi ← (bi + zi)
end for
x = Decode(x)
c =DOM-indep (a, z)
for i = 1 to n do

ci ← ci + (ai · x)
end for

We want to note that (as for the CMS multiplication), Algorithm 2 is only
a functional representation of DOM-dep and does not show the concurrent op-
erations and register stages required for a hardware design. Instead, these are
depicted in Figure 2 (based on Figure 4 of [29]) for the special case of d = 2.

4.2 A (dd
2
e + 1)th-Order Flaw

In the following, we demonstrate that DOM-dep as given in Algorithm 2 and
Figure 2 does not provide the claimed security guarantees for arbitrary d. For
simplicity, we assume that the input encodings of a and b are identical (i.e.,
ai = bi, 1 ≤ i ≤ n). The main problem of DOM-dep stems from the Decode(x)
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Fig. 2. Architecture of DOM-dep for d = 2.

operation. In an idealized world (corresponding to unrealistic glitch-free hard-
ware discussed at the end of Section 2), this operation would be performed
without leaking information on intermediate values, and an adversary would not
be able to probe any intermediate sum of the decoding. Therefore, with one
probe on Decode(x) the adversary either receives (a) one of the input shares
bi + zi, or (b) the output value b+ z. Both cases cannot be used to construct an
attack, since for (a) it is similar as probing an intermediate value in the secure
DOM-indep multiplier (assuming ai = bi), and for (b) z is a true random value
which cannot be probed directly (only its shares zi). Hence, DOM-dep might be
secure in this idealized model (we leave the proof as an open problem).

However, as a hardware-oriented masking scheme, DOM is aimed to be glitch-
resistant and therefore to maintain security even in the more practical robust
probing model. In this case, the adversary has access to more powerful probes
which enable her to extract sensitive information from DOM-dep. For the oper-
ation Decode(x), probing the output value b + z provides information about all
input sums bi + zi, since there are no registers to prevent glitches. This alone
does not suffice for an attack, because the shares bi are still masked by the zi’s.
Nevertheless, by also probing in the DOM-indep multiplication of a and z, it is
possible to break the scheme. In particular, the adversary first accesses:

{b1 + z1, b2 + z2, . . . , bn/2 + zn/2}, (10)

with only one probe on the output of Decode(x). Then n
2 probes are placed in the

cross-product terms of DOM-indep which consist of some of the already probed



random terms zi and the remaining unprobed input shares ai:

{an/2+1 · z1, an/2+2 · z2, . . . , an · zn/2}. (11)

The distribution of these (dd2e+ 1) variables depends on the value of a. For odd
values of n, another probe might be necessary to probe an when considering
bn2 c cross-product terms. However, since there is no register between Decode(x)
and the subsequent share-wise multiplication, the adversary can simply place
the extended probe on the computation x · an. This provides the same input
sums as before with the added benefit of leaking an. Therefore, DOM-dep does
not provide the desired robust probing security for d ≥ 2.

Example 2 (d = 2). We demonstrate an attack on the simplest case with d = 2
as shown in Figure 2. The probes are placed on the output of the computation
of x · a3 and on one term of the cross-product according to the aforementioned
guidelines. We choose to target the intermediate variable (a1 + z1) · a3 accessed
by the extended probe. This leads to following probed variables:

P1 = (a1 + z1) · a3, (12)

P2 = a2 · z1, (13)

The histograms of the joint distribution of (P1, P2) for fixed a ∈ F2 are given
in Table 2. It is noticeable that they differ based on the value of a. Therefore,
an adversary could distinguish the value of a with only one extended and one
regular probe, which is less than the claimed order of security.

Table 2. Histogram of the joint distribution of (P1, P2) for a = 0 and a = 1.

(P1, P2) 0 1 2 3

a = 0 5 1 1 1
a = 1 4 2 2 0

4.3 Discussion

As previously mentioned, there is an easy (but costly) fix to this attack by using
an SNI refreshing gadget before each multiplication of dependently shared val-
ues. By contrast, the introduction of register stages in Decode(x) does not solve
the problem since any intermediate sum containing more than one share of b
could be used for an attack with less than d+ 1 probes for d ≥ 3. This for exam-
ple implies that even a software implementation of DOM-dep without glitches
would be vulnerable to the presented flaw. It recalls the gradation between the
(minimum) amount of information leaked by an ideal (glitch-free) hardware im-
plementation, the (intermediate) amount of information leaked by a standard
software implementation (where some intermediate variables are leaked) and
the worst-case amount of information leaked by a glitchy hardware one.



5 Unified Masking Approach (UMA)

Following the concept of DOM, Gross and Mangard proposed a more randomness-
efficient hardware multiplication scheme denoted as Unified Masking Approach
(UMA) in [27, 28]. It essentially combines the software-oriented parallel masking
algorithm of Barthe et al. [6] with the randomness optimizations of Belaid et
al. [7] in order to achieve (so far the most) randomness-efficient masked multipli-
cation in hardware. For certain orders d, UMA even outperforms known software
solutions. In contrast to [6, 7], the authors of UMA do not state any limitation
regarding the composability of their multiplication scheme. In the following, we
first shortly recall the UMA concept and then highlight composability issues.

5.1 A (not so) Universal Multiplication

The basis of UMA is the multiplication algorithm from Barthe et al. [6]. It is
extended with optimizations from Beläıd et al. [7] and DOM [30] for certain
values of d to reduce the randomness complexity even further. Therefore, the
generic solution given in Algorithm 3 (a+i denotes a rotation of the share vector
a by i positions) includes a distinction of different cases for d to account for
these optimizations. The multiplication is split into five blocks: Inner-Domain,
Complete, Pseudo-Complete, Half-Complete, and Incomplete.

– Inner-Domain: In this block, the inputs are multiplied share-wise. Since
this operation is implemented without mixing the input domains (assuming
independent inputs), it does not require the inclusion of register stages.

– Complete: With the Pseudo-Complete block, the Complete block implements
the masked multiplication according to Barthe et al.’s algorithm. Each loop
iteration is performed in parallel to each other, but a register stage is required
after every addition to ensure security, resulting in a delay of five cycles.

– Pseudo-Complete: This block processes the remaining terms of Barthe et
al.’s algorithm. It requires register stages after every addition, but the delay
is four cycles since it contains one less addition than the Complete block.

– Half-Complete: This block contains a further case distinction for d = 2. In
this scenario, the multiplication is implemented according to Beläıd et al.’s
optimal algorithm and requires three register stages. For the other cases,
the authors rely on DOM which only adds a delay of one cycle, because the
terms rl + a · b+2l+1 and rl+2l+2 + a · b+2l+2 are computed in parallel.

– Incomplete: Similar to the previous block, the Incomplete terms are com-
puted according to DOM and require the inclusion of one register stage.

Depending on the order d, these blocks are instantiated and their outputs are
combined as depicted in Figure 5 from [27] (cf. Figure 3). Inner-Domain is al-
ways implemented and connected to bd4c Complete blocks, and optionally to one
Pseudo-Complete, Half-Complete, or Incomplete block. Additional registers or
control logic might be necessary to ensure synchronization between the different
blocks given the difference in delay (which we will discuss in Section 8.2).



Algorithm 3 UMA multiplication algorithm with n ≥ 1 shares. [27]

Input: shares a = (ai)1≤i≤n and b = (bi)1≤i≤n, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares c = (ci)1≤i≤n, such that

⊕
i ci = a ·b.

l = b d
4
c

c = a · b Inner-Domain

for i = 0 < b d
4
c do

c← c + ri + a · b+2i+1 + a+2i+1 · b + ri+1 + a · b+2i+2 + a+2i+2 · b
end for

Complete

if d ≡ 3 mod 4 then
c← c + rl + a · b+2l+1 + a+2l+1 · b + rl+1 + a · b+2l+2

end if

Pseudo-Complete

if d ≡ 2 mod 4 then
if d = 2 then

z = {rl1, rl2, rl1 + rl2}
c← c + z + a · b+2l+1 + a+2l+1 · b

else
c← c + rl + a · b+2l+1 + rl+2l+2 + a · b+2l+2

end if
end if

Half-Complete

if d ≡ 1 mod 4 then
z = {rl, rl}
c← c + z + a · b+2l+1

end if

Incomplete

CompleteComplete
Inner-
Domain

Complete
Pseudo-
Complete

Half-
Complete

Incomplete

a b

c

⊕ ⊕ ⊕ ⊕

Fig. 3. Connection of the UMA blocks [27].
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Fig. 4. Composition of two UMA multiplications.

5.2 A Systematic Composability Flaw

Beläıd et al. and Barthe et al. analyzed the security of their multiplication al-
gorithms with formal proofs and verification in regard to both probing security
and SNI. Therefore, they were able to provide concrete assertions regarding the
composability of their schemes. In particular, it was found that the randomness-
optimized multiplications in [7] are not SNI and that the parallel multiplications
in [6] are only d-SNI until d = 2 (its composition with simple refreshing gadgets
is d-SNI for larger d’s). Therefore, a designer has to take great care where to
instantiate them without violating the security of the whole design.

By contrast, for UMA the authors do not examine their multiplication re-
garding this criterion. Their case study uses the UMA multiplication without
discussing composability explicitly. Therefore, a non-expert reader might be com-
pelled to believe that the unified masking approach is indeed universal and can
be used at any point of any masked design. In the following, we show that an
exemplary composition of two UMA multiplications does not compose well.

Following the typical pattern of composability flaws put forward by Coron et
al. in [16], our example is depicted in Figure 4. The input encoding b is initially
refreshed by multiplying it with a random encoding x. Then the refreshed output
a is multiplied with the original b resulting in c. This structure is commonly used
when an input is multiplied with a linear transformation of itself, e.g., for the in-
version in GF (28) [7]. For simplicity, we omitted the linear transformation from
our construction. In addition to the register stage between the multiplications,
there are multiple registers inside Mul1 and Mul2 depending on the order. For
now, we assume that the registers are enabled in a sequential fashion, e.g., the
second stage is enabled only after the first one. Given a freely-composable mul-
tiplication, e.g., ISW [31] or DOM [30], this structure should provide d-probing
security. However, for UMA this is not true for orders d > 1 as we demonstrate
by attacking the composition with d probes. Since the UMA multiplication dif-
fers in structure depending on the order, we look at multiple cases separately.

Example 3 (d = 2). Firstly, we consider Beläıd et al.’s optimized multiplication
for d = 2. In our structure, the second multiplication Mul2 can be written as:

c1 = a1 · b1 + r21 + a1 · b2 + a2 · b1, (14)



c2 = a2 · b2 + r22 + a2 · b3 + a3 · b2, (15)

c3 = a3 · b3 + r21 + r22 + a3 · b1 + a1 · b3, (16)

where {r21, r22} denotes the randomness used for this multiplication (resp., {r11, r12}
for Mul1). One possibility to attack b consists in probing a random element in
Mul1 and a cross-product term in Mul2 as:

P1 = r11, (17)

P2 = a1 · b3 = (x1 · b1 + r11 + x1 · b2 + x2 · b1) · b3. (18)

Since the joint distribution of (P1, P2) (reproduced in Table 3) depends on the
value of b, it can be used to distinguish the sensitive variable with only two
probes which contradicts the security claims of UMA.

Table 3. Histogram of the joint distribution of (P1, P2) for b = 0 and b = 1.

(P1, P2) 0 1 2 3

b = 0 12 12 4 4
b = 1 14 10 2 6

This attack generalizes to higher orders. For simplicity, we first discuss the
flaw for d ≡ 0 mod 4, i.e., when the multiplication consists of only the Inner-
Domain and Complete blocks. The first output share of Mul1 is of the form:

a1 = x1 · b1 + r11 + x1 · b2 + x2 · b1 + r12 + x1 · b3 + x3 · b1, (19)

+ r13 + x1 · b4 + x4 · b1 + r14 + x1 · b5 + x5 · b1, (20)

+ · · · (21)

+ r1d
2−1

+ x1 · b d
2

+ x d
2
· b1 + r1d

2
+ x1 · b d

2+1 + x d
2+1 · b1. (22)

It contains d
2 + 1 shares of each input encoding which are masked by d

2 random
elements. Given that this output share is one of the inputs of Mul2, it is mul-
tiplied with every share of b. In particular, with b d

2+2, i.e., a share that is not

contained in a1. By putting d
2 probes in Mul1 and one probe in Mul2 as:

P1 = r11, (23)

P2 = r12, (24)

· · · (25)

P d
2

= r1d
2
, (26)

P d
2+1 = a1 · b d

2+2, (27)

the adversary can access a joint distribution (P1, . . . , P d
2+1) which depends on

d
2 + 2 shares of b. Eventually, with the remaining d

2 − 1 probes, the adversary



can now access the still unknown shares by observing:

P d
2+2 = b d

2+3, (28)

· · · (29)

Pd = bd+1, (30)

which results in a joint distribution depending on d + 1 shares of b (i.e., all n
shares) with only d probes which is against the universal security claim of UMA.
This attack can be trivially applied to any order d ≡ 0 mod 4.

For d ≡ 3 mod 4 (resp., the DOM optimization for d ≡ 2 mod 4), the
Pseudo-Complete block (resp., Half-Complete block) adds two further shares of
b and two random elements to the output share a1 of Mul1. Therefore, a similar
attack can be repeated with d

2 + 2 probes in Mul1. In the incomplete case (i.e,
d ≡ 1 mod 4), only one further share of b and one random element is added to
a1 and therefore a similar attack requires d

2 + 1 probes in Mul1.

5.3 Discussion

Since the algorithms [6, 7] which serve as a basis for UMA are not composable at
every order, the fact that composability flaws pop up in UMA is not surprising.
Interestingly, such composability flaws do not as directly appear in the specific
application to the Ascon cipher chosen by Gross and Mangard. The main reason
is that the Ascon S-box does not directly lead to simple dependent multiplica-
tions as in Figure 4 and composability flaws may only appear for larger d’s and
require to combine the shares of several rounds. So as mentioned in introduction,
the main problem of [27] is its interpretation. On the one hand, the gadgets used
in UMA are clearly not universally composable. On the other hand, exhaus-
tive analysis for full circuits at high security orders is rapidly computationally
hard [20, 4, 40, 26]. Admittedly, it may very well be that using SNI gadgets in
this context is an overkill and that the biases caused by the lack of composability
remain hard to exploit given the noise levels considered in concrete implemen-
tations until quite large security orders (as per an argument in the lines of [19],
Section 4.2), or even that additional refreshings are not needed for this partic-
ular circuit. The tools introduced in [17] could be one option for the evaluation
of this issue, which we leave as an interesting scope for further research.

6 Generic Low-Latency Masking (GLM)

Low latency is an optimization goal which has only been recently examined in
the context of masking and side-channel analysis. Some specific investigations
have been targeting the block ciphers Prince and Midori [35], Keccak [2] and
the AES S-box [22]. However, the latter investigations do not provide generic
solutions for arbitrary functions at arbitrary orders. In this respect, an important
observation is that all the algorithms discussed in the previous sections require



a fixed delay of one or multiple register stages per multiplication. Therefore,
Gross et al. proposed a Generic Low-Latency Masking (GLM) scheme in [26].
They essentially trade randomness and area for a lower latency by skipping the
compression of the shares as much as possible in their designs. In the following,
we first recall the concept of GLM and then briefly show the problems arising
from the proposed refreshing and compression strategies.

6.1 Low-Latency Masking and Compression

The main idea of GLM is to skip the compression function inherent to the other
masked multiplications. That is, instead of summing the cross-product terms
in order to obtain d + 1 output shares, Gross et al. propose to continue the
computations with the (d + 1)2 uncompressed shares:

(a1 · b1) (a1 · b2) . . . (an · bn). (31)

To avoid collisions between shares (e.g., for the computation of (a · b) · b), certain
inputs – and even parts of the circuit – are duplicated and independently encoded
ensuring that the inputs to every non-linear function are independent. While this
methodology can be applied to arbitrary functions, every non-linear operation
increases the number of shares. When this number becomes prohibitive, the
authors of GLM propose to use a refresh operation followed by a register stage
and a compression function in order to reduce the number of shares again to
d + 1. They recommend using the CMS refresh from [41] for this purpose.

6.2 Combining Previous Attacks

As noted in Section 3.2, the CMS refresh from [41] does not generalize to arbi-
trary orders. Furthermore, even with a different distribution of the cross-product
terms (i.e., with non-completeness after the compression), the CMS refreshing
is not SNI for d > 2 and it opens the door to composability flaws as discussed
in Section 5. Therefore, any GLM architecture which relies on this refresh might
be vulnerable to these previous attacks. Fixing this issue is not trivial as the
compression layer C does not include a dedicated register stage which leads to
further composability problems as discussed in more detail in Section 8.

6.3 Discussion

While the results in this section do not bring new technical elements, they il-
lustrate that the interpretation issues that we mention in the introduction can
easily lead to propagation of errors from one design to another, which can be
avoided by formulating the algorithms and their security claims accurately. As
in the previous section, we re-insist that the exploitation of a flaw may not be
obvious for all designs (e.g., in the case of the Ascon cipher). So our only state-
ment is that these limitations are not clearly stated in the original GLM paper
and limit its claims for generality. Finding updated refresh R and compression
C algorithms, which take these issues into account and enable true generality, is
an interesting topic for future work as also noted by the authors of [26].
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Fig. 5. Examples of non-complete and SNI gadgets that do not compose in the robust
probing model (independent of the synchronization stages / registers).

7 On the Need of the Robust Probing Model

The previous (and next) sections show that probing security and composability
are the result of a delicate trade-off between combinatorial computations, refresh-
ing layers and register stages. In this respect, one natural question is whether
solving these problems separately is (formally) sufficient to solve them jointly.
In this section, we show that combining a glitch-resistant (non-complete and
probing-secure) gadget with SNI refreshes and registers is in fact not sufficient,
providing a case for the need of the robust SNI abstraction in [21].

For this purpose, we use the simple examples of Figure 5 where the TI gadget
is the one given in Equation 1 (Section 2) and the SNI refresh is a 3-bit ISW
refresh. First consider the top design with only one synchronization (register)
stage S1. In this case, it is easy to see that a “glitch-extended probe” on one
share of c′ reveals all the intermediate randomness (coming from the SNI refresh)
needed to compute this share of c′ from the input shares of x,y, z. Hence, this
randomness cannot be used to simulate this single (extended) adversarial probe.
Furthermore, adding a second register layer does not solve the problem. In this
case, the adversary can directly probe c, which cannot be simulated (since the
first TI gadget only leverages the input shares to ensure probing security).

As for the previous sections, the latter examples do not imply that there
are no combinations of TI gadgets, SNI refreshes and registers that are robust
against glitches and composable (e.g., by using more than d + 1 shares). They
just show that formally, the definitions of the non-completeness property and of
SNI (without glitches) do not compose. As suggested in [21], Lemma 5, some
form of simulatability (e.g., captured by the robust-NI property) is needed for
the first (combinatorial) gadget of Figure 5. We believe such a composability is
increasingly needed as the claimed security orders in hardware masking increase,
making exhaustive analysis impossible for full implementations.



8 Experimental validation

In Sections 3 to 6 we have analyzed the local and compositional security of
multiplication gadgets which have been proposed for glitch-resistant hardware
masking and revealed that the higher-order versions of all these schemes are af-
fected by flaws in the robust probing model. In this section we answer the ques-
tion whether these flaws actually lead to exploitable leakage in real-world power
measurements from hardware implementations of the corresponding schemes. Af-
ter concluding positively in this regard, we discuss the severity of these leakages
with respect to the practical security level of the investigated circuits. Whether
or not the detected weaknesses invalidate the claims of the respective authors is
open to interpretation (it in part depends on whether claims are stated in terms
of security order or number of measurements to disclose the key). Yet, they ef-
fectively limit the generality of those proposed gadgets, which is an important
cautionary note to designers willing to implement them. This result confirms
the necessity for proofs in the robust probing model when claiming security for
arbitrary orders and when aiming to protect larger non-linear functions (like
substitution boxes of block ciphers) or full cryptographic primitives. Besides,
while all of the exhibited flaws up to this part of the paper originate from a lack
of fresh randomness, compositional security in hardware also highly depends on
the correct instantiation of register stages. Additional concerns regarding DOM,
GLM and UMA in this respect, and their connection to the robust probing
model, are discussed in the second part of this section and in Appendix A.

Setup. In order to examine the detectability of the aforementioned flaws in prac-
tice, we conducted common fixed-versus-random t-test evaluations [24, 13] using
power traces measured from an FPGA. We have used a SAKURA-G board [1]
and implemented the designs explained below on its Spartan-6 FPGA operated
at a clock frequency of 6 MHz. The power traces have been measured by means
of a digital sampling oscilloscope at the sampling rate of 500 MS/s by monitoring
the output of the embedded AC amplifier of the SAKURA-G, which amplifies
the voltage drop over the resistor placed in the Vdd path of the target FPGA.

We have followed the procedure explained in [44] to collect the corresponding
traces suitable for fixed-versus-random t-test analysis. In this scenario the shared
input and the required fresh randomness are generated by the control FPGA.
Hence, the target FPGA, whose leakage is measured, just operates on the given
input and does not generate any true- or pseudo-randomness. It is noteworthy
that no masking or unmasking is performed in either the control or the target
FPGA. The whole communication between the PC and the measurement board
as well as between both FPGAs on the board is performed in a shared manner.
Using the resulting traces we conducted first- and higher-order univariate and
multivariate analyses, by using the incremental formulas introduced in [44].



8.1 Exploiting the Flaws

In order to keep the following results comparable we used ordinary GF (24)
multipliers as a basis to construct each of the masked multiplication gadgets.
Thus, in all designs which we analyzed the unshared operands are of 4-bit size.
We present results for CMS, DOM and UMA and omit the GLM scheme to
avoid redundancy, since it simply adopts the flaws from CMS. We demonstrate
that in all three cases the leakage that is predicted by the exhibited flaws can
be observed as multivariate leakage in the corresponding statistical moments.

CMS. As detailed in Section 3, CMS is neither probing secure nor SNI in
the presence of glitches for d > 2, since its randomness distribution inherited
from the ring structure is insufficient to deliver security for arbitrary protection
orders. We analyze the construction for d = 3, as it is the simplest case that
suffers from the third-order flaw. To be more precise we have implemented the
design shown in Figure 1 and replaced all AND gates by GF (24) multipliers.
Figure 6 shows a sample trace and the results of a non-specific t-test up to the
fourth statistical moment with 300 million traces. It is obvious that the design
only exhibits univariate leakage in the fourth order, as it would be expected from
a securely (d+ 1)-masked multiplication gadget with four shares. When moving
to the multivariate analysis, however, third-order leakage can be observed with
less than 100 million traces, as illustrated by Figure 7. The t-statistics curve in
Figure 7(a) is obtained by calculating the second-order centralized moment of
the joint distribution of each time sample together with the corresponding time
sample from the consecutive clock cycle (i.e., shifted by an offset of 1 clock cycle
- or 83 time samples), starting from time sample 500. Similarly, the t-statistics
curve in Figure 7(c) is calculated with the third-order centralized moment of
the joint distribution of each time sample with itself and the corresponding
time sample in the consecutive clock cycle (again, starting from time sample
500 with 83 time samples per clock cycle). For instance, time sample 250 in
Figure 7(c) corresponds to the third-order centralized statistical moment of the
joint distribution of time samples 750, 750 and 833 in Figure 6(a).

It is noteworthy that in our first attempt of measuring this implementation
we did not observe any (univariate or multivariate) leakage up to the third-order
with up to 500 million traces, since the signal-to-noise ratio (SNR) was too small
to detect the bias in the measurements associated with the joint distribution of
the three probes given in Equations (6) to (8). Thus, for the experiments that led
to the t-test results in Figures 6 and 7, we had to make sure that the manipulation
of the probed values consumes enough power to overcome the small signal-to-
noise ratio. In this regard we instantiated three extra modules connected to
the 4-bit values c1, r1 and r5 to amplify their corresponding leakage. Each of
such extra modules (so-called leakage amplifiers) is formed by 6 times cascading
a MIX module, which is a linear operation multiplying its 4-bit input to the



0 200 400 600 800 1000
Time samples

P
ow

er
 c

on
su

m
pt

io
n

0 200 400 600 800 1000
Time samples

-5

0

5

t-
st

at
is

tic
s

0  50 100 150 200 250 300

No. of Traces  106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 200 400 600 800 1000
Time samples

-5

0

5

t-
st

at
is

tic
s

0  50 100 150 200 250 300

No. of Traces  106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 200 400 600 800 1000
Time samples

-5

0

5

t-
st

at
is

tic
s

0  50 100 150 200 250 300

No. of Traces  106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 200 400 600 800 1000
Time samples

-10

0

10

20

t-
st

at
is

tic
s

0  50 100 150 200 250 300

No. of Traces  106

0

5

10

15

20

t-
st

at
is

tic
s

Fig. 6. Sample power trace and univariate non-specific t-test results with 300 million
measurements for a single GF (24) multiplier masked by means of CMS with d = 3. The
second to fifth rows show the t-statistics for the statistical moments 1 to 4, respectively.
The left column depicts the t-values over time, the right column illustrates the evolution
of the absolute maximum t-value over the number of traces.

following binary matrix (i.e., Midori’s MixColumns matrix [3]):


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .
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(a) 2nd order, clocks (t, t + 1)
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(c) 3rd order, clocks (t, t, t + 1)
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Fig. 7. Multivariate non-specific t-test results with 300 million measurements for a
single GF (24) multiplier masked by means of CMS with d = 3. The left column de-
picts the t-values over time, the right column illustrates the evolution of the absolute
maximum t-value over the number of traces.

Note that such leakage amplifier modules are completely separated and never
mixed with each other, which could potentially violate the independence assump-
tion of the masking scheme. They simply lead to a higher energy consumption
depending on their corresponding input, which helps to achieve a higher SNR
when the signal is much smaller than the noise level. As a result, the leakage
corresponding to the third-order flaw becomes detectable by the t-test.

DOM. Similar to the CMS experiments, we implemented the DOM-dep multi-
plier (shown in Figure 2 for the d = 2 case) by instantiating all multiplications
as GF (24) multipliers. We chose to perform the experimental verification for the
d = 3 case, since the exploitation of this flaw imposes less restrictive constraints
on the timing of the signals at the output of the register in the construction. Like
before we could only detect the leakage by amplifying the power consumption of
the probed values that are detailed in Section 4. Accordingly, one leakage ampli-
fier is connected to a3 ·z1, another one to a4 ·z2. For the last one we implemented
the XOR of the Decode operation in such a way that the XOR between the first
two elements, i.e., (a1 + z1) + (a2 + z2), is calculated before the third term is
added. The output of this earlier evaluated XOR then supplies the third leak-
age amplifier module. Note that such a particular order of the aforementioned
XORs does not violate the claims of the DOM-dep multiplier [29] and could
indeed occur in reality when synthesizing the construction.5

5 Overall, we believe it is desirable that the security of a glitch-resistant gadget does
not rely on the assumption that specific signal timings in the combinational paths
are unlikely to occur, since this leads to security guarantees which can be falsified
by physical defaults. The same is true for the example with d = 2 and two probes.



Analogous to the CMS case we report univariate non-specific t-test results
up to the fourth order in Figure 8 and multivariate analyses up to the third-
order in Figure 9. It can be seen that the univariate fourth-order t-test and the
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Fig. 8. Sample power trace and univariate non-specific t-test results with 500 million
measurements for a single DOM-dep multiplier with d = 3, based on GF (24) multipli-
cations. The second to fifth rows show the t-statistics for statistical moments 1 to 4.

multivariate third-order t-test indicate leakage with high-confidence (t > 4.5)
when considering 500 million traces. Note that the corresponding offsets for the
multivariate tests are identical to the ones previously outlined in the CMS case.
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(a) 2nd order, clocks (t, t + 1)
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(c) 3rd order, clocks (t, t, t + 1)
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Fig. 9. Multivariate non-specific t-test results with 500 million measurements for a
single DOM-dep multiplier with d = 3, based on GF (24) multiplications.

Thus, the smallest data-dependent statistical moment is indeed the third one,
which confirms the existence of the theoretically exhibited flaw.

Related work. Recently a first practical side-channel evaluation of a full block
cipher (triple-DES) protected by domain-oriented masking has been published at
COSADE 2018 [43]. This work makes extensive use of the DOM-dep multiplier
to construct the DES substitution box and provides univariate t-test results with
50 million power traces taken from an FPGA implementation of the full cipher
in the d = 1 case and 2 billion power traces in the d = 2 case. They come to the
conclusion that their masked S-box indeed delivers the corresponding protection
order promised by DOM. However, in view of our new results we assume that
a multivariate analysis could have revealed a second-order leakage in the d = 2
case, which is an interesting scope for further investigations.

UMA. In the case of UMA we do not evaluate a single instance to reveal the
existence of a local flaw, but compose two multiplications (with d = 2) as de-
picted in Figure 10 to show that UMA suffers from a lack of composability. Each
of the multiplications (upper and lower half of the figure) consists of one half-
complete block and the corresponding inner-domain terms (as detailed in [27]).
Furthermore, the randomness optimizations by Beläıd et al. are in place. The
registers which are depicted in black solid lines are mandatory by design. Ac-
cording to the authors of UMA, the green dashed registers are optional pipeline
registers; the red dashed registers are output synchronization stages to separate
the multiplications from each other; the blue registers are optional pipelining
registers due to the composition; and the purple registers are optional pipeline
registers for the inner-domain terms (which are not considered by the authors of
UMA). Each multiplication in Figure 10 depicts the instantiation of one GF (24)
multiplier. To show that UMA does not satisfy composability as ensured by the
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Fig. 10. Composition of two UMA multiplications (d = 2) with several kinds of
(mandatory and optional) pipelining and synchronization register stages.

definition of strong non-interference (SNI) we consider the following scenario. If
an adversary places one output probe on the leftmost output register of the first
multiplication and one internal probe on the fresh randomness r11 he can observe
a joint distribution that depends on two shares of b and two shares of x and
thus can not be simulated with only one share of each input. The latter leads
to the attack with only two probes on the composed multiplications detailed in
Section 5. Probably caused by the lower number of shares compared to the pre-
vious experiments, or just a stronger bias that is imposed by the flaw, we were
not forced to use any leakage amplifiers or other particular considerations to
detect the corresponding leakage. When applying all (mandatory and optional)
registers that are included in Figure 10 the leakage corresponding to the com-
posability flaw can directly be observed as multivariate second-order leakage. A
sample trace and the univariate t-test results up to the third order are depicted
in Figure 11, while the multivariate second-order result can be seen in Figure 12.
In this last experiment the multivariate leakage could not be observed in two
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Fig. 11. Sample power trace and univariate non-specific t-test results with 400 million
measurements for two composed UMA multiplications with d = 2, based on GF (24)
multipliers. The second to fourth rows show the t-statistics for the statistical moments
1 to 3, respectively, arranged like before.
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Fig. 12. Multivariate second-order non-specific t-test results, clocks (t, t+ 5), with 400
million measurements for two composed UMA multiplications with d = 2, based on
GF (24) multipliers, arranged like before.

consecutive clock cycles, but in sample points with an offset of 5 clock cycles.
Figure 12(a) shows the resulting t-statistics curve when shifting this offset of 5
clock cycles over the whole 1000 time samples.



Discussion. In this section we have demonstrated that all of the exhibited
flaws from Sections 3 to 6 are practically detectable in real-world power mea-
surements, which effectively reduces the protection order of the corresponding
schemes. However, our results do not imply that these flaws necessarily reduce
the practical security level of full implementations instantiating these schemes.
Admittedly, the biases caused by the flaws have a low amplitude and therefore
may be hard to exploit in some cases. For example, for the concrete signal-
to-noise ratio and number of shares in our experiments, an exploitation of the
univariate leakage in the (d + 1)-th order will generally succeed with less traces
than considering the multivariate d-th order leakage for an analysis. Yet, the
reduction of the protection order raises doubts about higher noise levels and a
larger number of shares (especially in the case of CMS, where the exploitation
effort due to the flaw does not scale with the number of shares when d > 2).

We note that our findings do not imply that it is impossible to construct
d-probing secure circuits with the investigated gadgets. In case of UMA for
example the authors build a substitution box using the locally secure gadgets
and verify the probing security of the composition by exhaustively analyzing
the resulting circuit for small protection orders [28]. In this regard they make
use of the recently introduced tool in [10]. Such an approach is generally valid
and can potentially lead to more efficient constructions than composing only
SNI gadgets. However, the (smart) exhaustive analysis it performs still does not
scale well for full implementations protected with a large numbers of shares.

8.2 Composability in Hardware - A Matter of Registers

As already mentioned, compositional security does not only depend on the
amount of fresh randomness that is applied, but also on the correct instantia-
tion of register stages in the composed circuits. While this is usually not an issue
for software implementations, where all operations are inherently processed in a
sequential manner, hardware implementations offer a lot more freedom in terms
of parallelization and order of operations. Thus, special care needs to be taken
in order to not degrade the security of the whole implementation by an incorrect
placement of memory elements. In the robust probing model, this is formalized
by the fact that an adversary can always choose to probe an internal (glitchy)
computation or a stable output, and only the latter ones are excluded from the
probe count in the SNI definition. Combined with the fact that the “share fan-in”
of a glitch-robust and composable multiplication should be minimum, it guided
the design of the (so far only) robust and composable multiplication algorithm
and implementation proposed in [21], which requires (d + 1)2 + (d + 1) registers
to store all the (refreshed) partial products and the final output.

DOM. As a case study, we take a look at the DOM-indep multiplier of the
domain-oriented masking scheme, initially proposed in [29]. The refresh layer
(called resharing step in [29]) of the DOM-indep multiplier is d-SNI. Further-
more, the full multiplier is d-probing secure in the presence of glitches. However,
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Fig. 13. Composition of two DOM-indep multiplications (d = 2) with several kinds of
(mandatory and optional) pipelining and synchronization register stages.

this is not sufficient to guarantee that any composition of DOM-indep multipli-
ers leads to a d-probing secure (or d-SNI) circuit. In Figure 13 we have depicted
such a composition of two DOM-indep multipliers for the d = 2 case where dif-
ferent possibilities for the inclusion of register stages are illustrated. Only the
black solid registers are mandatory by design. In particular the green and red
dashed registers are claimed to be optional (and not relevant for the security of
the gadget) [29]. We show in the following that especially the red dashed output
registers which separate both multipliers from each other are in fact crucial for
the compositional security. For this purpose, we have implemented the design in
Figure 13, but left out the red output registers as well as the neighboring blue
ones to ensure correct pipelining. With respect to the robust probing model such
an implementation violates the requirement that any composition of two gadgets
with a limited share fan-in should be separated by memory elements [21]. Like
before the construction has been implemented based on GF (24) multipliers. We
acquired 500 million power traces suitable for a non-specific t-test evaluation.
The results for the univariate case are shown in Figure 14. As illustrated in the
figure, a significant univariate second-order leakage can be observed. To explain
the source of this leakage we consider one extended probe on the computation
of the cross-product c1 · b2, where c is the output of the upper DOM-indep
multiplier. This probe gives access to the following input variables:

P1,1 = b2, (32)

P1,2 = x1 · b1, (33)
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Fig. 14. Sample power trace and univariate non-specific t-test results with 500 million
measurements for two composed DOM-indep multiplications (d = 2) based on GF (24)
multipliers without output registers but with pipeline registers applied. The second to
fourth row show the t-statistics for the statistical moments 1 to 3, respectively.

P1,3 = x1 · b2 + r11, (34)

P1,4 = x1 · b3 + r12. (35)

Combining P1,1, P1,2 as:

P ′1 = P1,1 + P1,2 = b2 + x1 · b1. (36)

results in a distribution that depends on two shares of b already. Placing a second
(regular) probe on b3 (or an extended probe on some cross-product involving b3)
leads to a distribution depending on b, which results in (univariate) second-order
leakage. An analogous attack with one probe exists for the d = 1 case.

Related work. The same article that already instantiated DOM-dep multipliers
to protect a full triple-DES circuit also proposes to use DOM-indep multipli-
ers in their construction [43]. Unfortunately, the authors make the mistake of
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Fig. 15. Iterative multiplication following the concept of GLM with refresh layer R,
synchronization layer S, and compression layer C.

composing DOM-indep multipliers without any output register in between (as
apparent for example in Figure 3 of [43]). No practical side-channel analysis is
presented for the implementations that make use of the DOM-indep multipli-
ers. It is an interesting open question whether a univariate leakage in the d-th
moment would show up in such a case, as in our experiments.

GLM. After having seen that the GLM scheme, explained in Section 6, is
insecure for higher orders due to its instantiation of the CMS refresh layer, it
might be tempting to simply replace the insufficient refreshing step by an SNI
one, for example the DOM-indep refresh layer (especially since the authors of
GLM specifically leave the search for a more suitable alternative open to future
work [26]). A simplified schematic of the GLM hardware design is shown in
Figure 15. One can see that no register stage is placed after the compression layer.
Due to the absence of this register stage, the just presented composability issues
of the DOM-indep multiplication would arise, rendering the whole construction
insecure. Adding such a register stage would on the one hand fix the security
issue, but on the other hand also add an additional delay of one clock cycle
per cross-product, which is not ideal for a low-latency construction. To confirm
that including the output register indeed fixes the security problems we have
implemented the design in Figure 13 with all of the registers being present and
measured another 500 million traces. A sample trace and the corresponding
results can be seen in Figure 16 for the univariate case and in Figure 17 for the
multivariate case. As expected no leakage in the first two statistical moments can
be observed, although admittedly the t-values in the multivariate second-order
analysis come close to the 4.5 threshold. We observed those large t-values for an
offset of 4 clock cycles and assume them to be a random occurrence.

Pipelining Registers We further detail the relevance of pipelining registers
for the security of multiplication gadgets in Appendix A and show that they
are not optional with case studies based on DOM and UMA. In this case as
well, the main message is that in order to preserve robustness against glitches
and composability jointly, it is needed to implement registers to separate all the
refreshed partial product computations and the compressed output. As detailed
in [21], the latter requires (d+ 1)2 + (d+ 1) registers for a 2-cycle multiplication,



0 200 400 600 800 1000
Time samples

P
ow

er
 c

on
su

m
pt

io
n

0 200 400 600 800 1000
Time samples

-5

0

5

t-
st

at
is

tic
s

0  100 200 300 400 500

No. of Traces  106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 200 400 600 800 1000
Time samples

-5

0

5

t-
st

at
is

tic
s

0  100 200 300 400 500

No. of Traces  106

0

1

2

3

4

5

t-
st

at
is

tic
s

0 200 400 600 800 1000
Time samples

-200

0

200

400

600

t-
st

at
is

tic
s

0  100 200 300 400 500

No. of Traces  106

0

200

400

600

t-
st

at
is

tic
s

Fig. 16. Sample power trace and univariate non-specific t-test results with 500 million
measurements for two composed DOM-indep multiplications (d = 2) based on GF (24)
multipliers with all registers applied. The second to fourth row show the t-statistics for
the statistical moments 1 to 3, respectively, arranged like before.
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Fig. 17. Multivariate second-order non-specific t-test results, clocks (t, t+ 4), with 500
million measurements for two composed DOM-indep multiplications (d = 2) based on
GF (24) multipliers with all registers applied, arranged like before.

which is quite expensive. Interestingly, our conclusion for DOM and UMA is in
fact identical. Finding solutions (or showing impossibility) with less registers (or
randomness), is one more direction for future investigations.



9 Further remarks and conclusions

In contrast with software-oriented masking, security proofs are not yet an es-
tablished tool in hardware-oriented masking. One reason for this situation was
the lack of an appropriate model that formally covers the local security and
composability of masked gadgets in presence of physical defaults. As a result,
engineering intuition and informal considerations of probing security with re-
spect to glitches were often the only considered arguments supporting security
claims of proposed masked circuits. The robust probing model in [21] now makes
it possible to analyze and subsequently prove security guarantees of masked
hardware gadgets. Our broad analysis of (scalable) hardware-oriented masking
schemes revealed that not a single multiplication gadget which comes without
a proof in the robust probing model actually delivers local and compositional
security for arbitrary protection orders (at least when instantiated like proposed
by the respective authors). This is confirmed by our empirical investigations,
which showed that flaws with respect to the robust probing model can directly
translate to exploitable leakage in real-world power measurements. Although the
fact that these flaws lead to the most informative leakages depends on the im-
plementations, it at least reveals an undesirable source of risk, especially as the
claimed security orders increases. In fact, only when tweaking the ISW multi-
plier [31] in a way that makes it similar to the DOM-indep multiplier in [29], but
employing its pipeline registers and additionally storing its outputs in a further
register stage, one ends up with a gadget that is SNI in the presence of glitches.
This gadget was proposed and proven secure for arbitrary orders in [21] and
additionally, it is the only (d + 1)-masked multiplication circuit that did not
exhibit detectable leakage up to the d-th order in our experiments.
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A On the Need of (Pipelining) Registers

In the second part of Section 8 we have shown that register stages are crucial
ingredients for the construction of composable gadgets. However, up to this
part it was only demonstrated that a lack of output registers can have serious
consequences on the compositional security of locally secure gadgets. In this
appendix, we provide experimental evidence for the fact that, even when output
registers are employed, a lack of pipelining stages can lead to a reduction of the
protection order as well. We illustrate this claim with UMA and DOM.

The starting point of our analysis is the illustration of Figure 10, where one
could assume that the depicted registers are supposed to be enabled all at once
and then be kept active for a determined number of clock cycles until the correct
results are stable at the output. One might also assume that the registers are
reset (e.g., to zero) before applying new values to the inputs, as it is a usual
practice in hardware design (especially when pipelining is not a considered use
case). We show that it is not possible to safely make those assumptions when
composing UMA multiplications and argue that the same is true for the DOM-
indep multiplier when implemented without pipelining registers.

In the case of UMA no pipelining registers (not even optional ones) are in-
cluded in the paths for the inner-domain terms. Thus, the purple dashed registers
in Figure 10 are not present in the UMA scheme as proposed by the authors. Ac-
cordingly, the result of the inner-domain terms will propagate to the output of a
UMA gadget first. Let us assume for a moment that a state machine controlling
this circuit iterates over the following three simple states. At first all registers are
reset to zero, then the shared multiplication inputs are applied to the inputs of
the circuit and afterwards all registers are enabled for 8 consecutive clock cycles.
In this case x1 · b1, x2 · b2 and x3 · b3 are evaluated right after the inputs are
applied. Before being saved into the output register of the first multiplier these
values are input to an XOR with zero (due to the reset of the registers), which
does not change their value. Accordingly, after being enabled for one clock cycle,
x1 · b1, x2 · b2 and x3 · b3 are propagated to the second multiplier, where they are
multiplied with all shares of b individually (i.e., two shares of b are combined in
each multiplication without proper resharing). Thus, trivial univariate second-
order leakage emerges due to the early propagation of partial results. This is
confirmed by the univariate non-specific t-tests considering 200 million power
traces in Figure 18, where we also performed a reset of all registers before each
multiplication. When taking a look at the DOM-indep multiplier in Figure 13,
it appears that omitting the green (and neighboring blue) registers leads to the
same problem. To demonstrate this we also measured 100 million power traces
of two composed DOM-indep multipliers without pipelining registers, but with
output registers. The results of the t-test are depicted in Figure 19.

In fact in both of those cases the leakage is even more drastic when addi-
tionally removing the output registers as well. We have verified this again with
experiments (100 million traces each), as apparent in Figures 20 and 21. We
note again that we do not claim these bad combinations are the only possible
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Fig. 18. Sample power trace and univariate non-specific t-test results with 200 million
measurements for two composed UMA multiplications (d = 2) based on GF (24) multi-
pliers without pipeline registers for the inner-domain terms. The second to fourth row
show the t-statistics for the statistical moments 1 to 3, respectively.

ones. We just mean that the authors’ guidelines are not strictly sufficient to avoid
these issues. For example, if the gadgets are not as directly connected as in our
examples, but with synchronization stages and other modules in between, these
problems may not arise. Furthermore, in all the presented cases the security is-
sues can easily be fixed by putting additional constraints on the registers that
have to be observed by a state machine (e.g., not allowing a reset; only activating
the output register after a certain number of clock cycles; not propagating b to
the second multiplier before the first one is finished; ...). However, our results
highlight that without an explicit guideline on how to treat the register stages,
it is strongly advised to use fully pipelined circuits, even when pipelining is not a
considered use case, in order to mitigate the early propagation of partial results.
This directly complies to the fact that the so far only multiplication gadget which
has been proven secure in the robust probing model requires (d + 1)2 registers
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Fig. 19. Sample power trace and univariate non-specific t-test results with 100 million
measurements for two composed DOM-indep multiplications (d = 2) based on GF (24)
multipliers with output registers but without pipeline registers applied. The second to
fourth row show the t-statistics for the statistical moments 1 to 3.

to store the (refreshed) cross-products, and (d + 1) registers to store the shared
multiplication output. In this case no specific constraints have to be set on the
registers and the gadget is suitable for all reasonable use cases.
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Fig. 20. Sample power trace and univariate non-specific t-test results with 100 million
measurements for two composed UMA multiplications (d = 2) based on GF (24) mul-
tipliers with only the mandatory registers applied. The second to fourth row show the
t-statistics for the statistical moments 1 to 3, respectively, arranged like before.
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Fig. 21. Sample power trace and univariate non-specific t-test results with 100 million
measurements for two composed DOM-indep multiplications (d = 2) based on GF (24)
multipliers with only the mandatory registers applied. The second to fourth row show
the t-statistics for the statistical moments 1 to 3, respectively, arranged like before.


