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ABSTRACT
Oblivious RAM protocols (ORAMs) allow a client to access data

from an untrusted storage device without revealing to that device

any information about their access pattern. Typically this is ac-

complished through shuffling the data into random positions such

that the storage device is not sure where individual blocks are lo-

cated, resulting in an access pattern on the device which is highly

randomized. However, storage devices are usually optimized for

sequential accesses, meaning that ORAMs can often induce a sub-

stantial overhead (in addition to their increased bandwidth) due to

large numbers of disk seeks [13].

In this paper, we present an ORAM construction specifically

suited for accessing ranges of sequential logical blocks while min-

imizing disk seeks. Our construction obtains better asymptotic

efficiency than prior work with similar security guarantees [8],

achieving O(r · log2 N ) communication cost (where r is the size

of the range) and O(log2 N ) seeks per access, regardless of r . This
is an improvement of more than a O(logN ) factor in both met-

rics when compared to prior work. In evaluation, we find that our

construction is 30-50x times faster than Path ORAM for similar

workloads on local HDDs, almost 30x faster for local SSDs, and 10x

faster for network block devices.

1 INTRODUCTION
ORAM. An attacker that is capable of viewing the communications

or tracking accesses of a user over a data store can reveal a wealth

of private information. This can happen even when the data con-

tents are encrypted, because the access patterns (i.e., metadata) may

reveal nearly as much as the data contents themselves. Oblivious

RAM (ORAM) protocols [32, 52, 53] have been designed to solve

this problem by provably making any two access patterns indistin-

guishable to an adversary observing reads/writes to an untrusted

storage device.

The typical theoretical measure of ORAM performance is the

communication overhead, or bandwidth, which describes the total

number of additional data reads/writes needed to perform a single

access. This was the metric used in the seminal work by Goldreich

and Ovstrovsky [32]. Since then, other important metrics have been

considered such as local computation complexity [38] and round

complexity [48]. Numerous ORAM constructions [10, 14, 18, 34–

36, 40, 47, 52, 53, 56, 57, 59, 62] have been proposed and studied

which seek to optimize these performance measures.

Data locality and ORAM. One measure, which is known to be

important but has been largely overlooked in the ORAM literature,

is data locality. Specifically we refer to data locality as the spatial

locality of data in storage, where related data is stored adjacent

in memory rows or blocks on disk. Due to caching effects at all

levels of the memory hierarchy, it has long been understood that

taking advantage of spatial locality can have significant perfor-

mance benefits. In particular, a single cache miss has roughly 100x

overhead compared to a single instruction, and the cost overhead

of performing a disk seek can be up to 10,000x the cost of reading

a sequential block from that disk[21]. This observation has led to

the development of efficient data structures and algorithms which

improve practical performance by optimizing data locality (see, e.g.,

[22, 29]).

Unfortunately, the very randomization used by ORAMs to ensure

privacy seems to be in direct conflict with data locality. For even

a single access, a typical ORAM requires many non-sequential

accesses to underlying physical memory. Even worse, an optimized

application which makes accesses in consecutive ranges gains no

benefit using normal ORAMs, as the physical locations of memory

blocks have no correlation with their logical addresses.

Range ORAM (rORAM). Asharov et al. [8] considered this issue

and noted that providing data locality in an ORAM for range queries

seems impossible on first inspection. By definition, an ORAM must

not distinguish between a client requesting r random items or a

contiguous region of size r , and an ORAM protocol that provides

locality and protects against these two access sequences incurs

significant overhead in bandwidth. However, if the security defi-

nition is relaxed, as suggested in [8], more efficient solutions are

possible. In particular, Asharov et al. showed that range ORAMs can

be constructed with O (log3 N · (log logN )2) seeks per operation,
independent of the length r of the range, provided the additional

leakage of the size of each range that is accessed.

Our goal. In this paper, we continue this line of inquiry and sig-

nificantly improve upon the previous result while asking the same

question:

Can we construct a more efficient range ORAM scheme that
preserves data locality while leaking only the lengths of con-
tiguous regions accessed?

We show that this question can be answered with a range ORAM

constructionwithO(log2 N ) seeks andO(r ·log2 N ) communication

overhead for accessing a range of r consecutive blocks.



Seeks Bandwidth Server Space Leakage

This work O(log2 N ) O(r · log2 N ) O(N logN ) ⌈log
2
r ⌉

Asharov et al. [8] O(log3 N · (log logN )2), amortized O(r · log3 N ), amortized O(N logN ) ⌈log
2
r ⌉

Ordinary Path ORAM [53] O(r · log2 N ) O(r · log2 N ) O(N ) none

Demertzis et al. [23] O(r ) O(r · N 1/3 · log2 N ) O(N ) none

Table 1: Performance comparisons when accessing a region of r contiguous blocks.

1.1 Highlights of our Solution
In this section, we briefly highlight our solution. See Section 3 for

more detailed overview.

Multiple ORAMs each covering a subset of ranges. Our rO-
RAM construction makes use of aO(logN ) of separate sub-ORAMs,

each of which are based loosely on Path ORAM and designed to

efficiently support queries of a certain range size, namely in pow-

ers of two. A client can access one of the Ri ORAMs to retrieve a

contiguous range of 2
i
blocks. This reveals the size of the range

to an adversary that can observe which ORAM was accessed, but

the additional leakage frees up the ORAM design to support a high

degree of locality for logically sequential data.

Data locality: smart physical layout and batching. Within each

of the ORAMs, data locality is achieved by labeling the paths (i.e.,

leaf nodes) in the ORAM tree in bit-reversed lexicographic ordering,

and then storing the physical buckets across each level of the tree in
this same bit-reversed ordering. This accomplishes two goals.

• In each of the ORAMs, each range of elements is labeled ad-
jacently according to the bit-reversed order andwill therefore
be physically adjacent across levels of the tree, although
they are topologically disparate from each other in the tree.

• Evictions in the ORAMmay be scheduled deterministically

in bit-reversed order [31] and thus batched together in the

size of the range.

As a result, reading from a single ORAM tree requires O(logN )
seeks and performing O(r ) batched evictions requires O(log2 N )
seeks because each level of the ORAM trees are accessed sequentially
independent of the requested range.

Combining position map and pointer-based technique. In
the stateless setting, or when the client has limited local storage,

the position maps associating logical to physical addresses in each

of the ORAM trees must also be stored obliviously. This is a well-

known problem with tree-based ORAMs like Path ORAM. A naïve

solution should result in updating each of position maps on each

access, resulting in O(log3 N ) seeks and communication overhead.

We improve on this by combining the position maps with a

pointer-based technique similar to that in Oblivious Data Struc-

tures [61]. Namely, alongside each block in each ORAM we store

additional information that allows us to lookup the location of that

same block in the other ORAMs “for free”.

1.2 Our Contributions
Based on our rORAM construction presented herein, we make the

following contributions:

(1) A novel oblivious range construction that optimizes data

locality with more than an O(logN ) factor improvement

over previous results [8]. See Table 1.

(2) The first construction to make use of bit-reversed lexi-

cographic ordering for physical disk layout in order to

achieve batch eviction and data locality in range queries.

(3) A novel construction for maintaining data positions in the

rORAM that makes use of both position maps and pointer

based techniques across multiple ORAMs.

(4) An open-source implementation of rORAM built on top

of a widely available path ORAM implementation [10]. To

the best of our knowledge, ours is the first implementation

of a Range ORAM construction.

(5) Empirical performance measurements that indicate signif-

icant practical improvements compared to Path ORAM.

For example, rORAM is 30-50x faster than Path ORAM for

range queries of size ≥ 2
10

blocks on local HDDs, almost

30x faster for local SSDs, and 10x faster for network block

devices.

1.3 Prior Work
Oblivious RAM (ORAM) and applications. ORAM protects the

access pattern so that it is infeasible to guess which operation is

occurring and on which item. Since the seminal work by Goldreich

and Ostrovsky [33], many works have focused on improving effi-

ciency and security of ORAM (e.g., [10, 14, 18, 34–36, 40, 47, 48, 52,

53, 56, 57, 59, 62]).

ORAM plays as an important tool to achieve secure cloud stor-

age [44, 54, 55] and secure multi-party computation [26, 37, 42, 43,

59, 63] and secure processors [27, 41, 45]. There also have been

works to hide the access pattern of protocols accessing individual

data structures, e.g., maps, priority queues, stacks, and queues and

graph algorithms on the cloud server [11, 49, 58, 61]. The work of

[39] considers obliviousness in the P2P content sharing system.

Locality in searchable encryption. Data locality has been a use-

ful metric for evaluating searchable symmetric encryption [9, 16,

25]. In these models, the client stores their data remotely and en-

crypted, but the server can perform searches upon the data (e.g.,

a keyword search) without revealing the plain text. While related,

searchable symmetric encryption does not protect against access

patterns, e.g., revealing whether the same data item has been ac-

cessed multiple times.

ORAMs with locality. In the closest related work to this one,

Asharov et al. [8] first introduced the weaker security model for

range ORAMs by which the size of the range is leaked to pro-

vide data locality. Their construction, built on top of a hierarchi-

cal ORAM construction [33], also makes use O(logN ) series of
ORAMs by which each ORAM forms the layer in the tree. Locality

is achieved by storing the ranges on each level as increasingly larger

blocks of size 2
i
. They show that the number of seeks per access is



O(log3 N · (log logN )2). In this work, we adapt the same security

setting but with a more efficient constructions.

Data locality has been used previously as a performance metric

in the setting of write-only ORAMs. In this security model, reads

are assumed to be unobservable by an attacker, but writes to data

can be observed andmust be obfuscated. First introduced by Blass et

al. [13] in the context of protecting hidden volumes, a randomized

procedure was used to achieve obliviousness. Later, Roche et al. [50]

showed that write-obliviousness can be achieved with deterministic,

sequential writing patterns. However, the data locality of reads was

not evaluated, and depends largely on the write pattern itself.

Improvements for the position map have been produced by using

temporal locality. FreeCursive [27] employs a PosMap Lookaside

Buffer (PLB) to reduce the overhead of using a position map. While

leveraging temporal locality in the position map, this work does

not provide spatial data locality as is our goal here.

ORAMs have also been used to expand searchable encryption

with locality. Work by Demetrizis et al. [23] proposed a hierar-

chical square-root ORAM [32] to support searchable encryption.

This scheme makes use of locality-preserving version of Melbourne

Shuffle [46] to achieveO(1) seeks, but requiresO(n1/3 log2 N ) com-

munication and local storage with higher server storage. It also does

not support range queries naturally, which adds a multiplicative

cost to communications and seeks.

2 BACKGROUND & SECURITY DEFINITIONS
ORAM. An Oblivious RAM (ORAM) protocol allows a client to

store and manipulate an array of N blocks on an untrusted, honest-

but-curious server without revealing the data or access patterns to

the server. Specifically, the logical array of N blocks is indirectly

stored into a specialized back-end data structure on the server, and

an ORAM scheme specifies an access protocol that implements each

logical access with a sequence of physical accesses to that back-end

structure. An ORAM scheme is secure if for any two sequences of

logical accesses of the same length, the physical accesses produced

by the protocol are computationally indistinguishable.

More formally, let y⃗ = (y1,y2, . . .) denote a sequence of oper-
ations, where each yi is a Read(ai ) or a Write(ai ,di ); here, ai ∈
[0,N ) denotes the logical address of the block being read or written,
and di denotes a block of data being written. For an ORAM scheme

Π, let AccessΠ (y⃗) denote the physical access pattern that its access

protocol produces for the logical access sequence y⃗. We say the

scheme Π is secure if for any two sequences of operations x⃗ and y⃗
of the same length, it holds

AccessΠ (x⃗ ) ≈c AccessΠ (y⃗),

where ≈c denotes computational indistinguishability (with respect

to the security parameter λ).

2.1 Range ORAM and Locality
In this work, we give an ORAM construction specifically suited

for accessing sequential ranges of data. Thus we will use a slightly

different security definition to capture the fact that our construction

will access ranges of blocks instead of just single blocks.

Let let y⃗ = (y1,y2, . . .) denote a sequence of operations, where
eachyi represents an access to a range of sequential blocks. Letyi be

either ReadRange(ai , ℓi ) or WriteRange(ai , ℓi ,d1, . . . ,dℓi ). Here,
ai refers to a logical block as before, but additionally ℓi indicates

the number of sequential blocks to access starting with ai . d1, . . . ,dℓi
are the blocks of data to be written to the logical addresses ai ,ai +
1, . . . ,ai + ℓi .

Let len(yi ) signify the length ℓi for of the range access yi . A
Range ORAM scheme Π is secure if for any two sequences of opera-

tions x⃗ and y⃗ of the same length, subject to the following constraint:

∀i : len(yi ) = len(xi )

it holds that

AccessΠ (x⃗ ) ≈c AccessΠ (y⃗),

where ≈c denotes computational indistinguishability (with respect

to the security parameter λ).
Informally, this means that a Range ORAM can leak the size of

the ranges that are being accessed by each operation. This definition

is equivalent to the one used by Asharov et al. [8]. It is interesting

to note that in practice if one was to perform a query for a range of

blocks using a traditional ORAM then this would also likely leak

the size of the range in the timing channel, i.e. the client would

pause after finishing the range and the server could note how many

accesses had been done. They also show that any efficient Range

ORAM which does not leak information about the ranges being

queried must suffer poor locality [8, Theorem 8.4].

Our construction (and also that of prior works) actually achieves

a slightly stronger form of security, namely we require only the

weaker constraint:

∀i : ⌈log
2
(len(yi ))⌉ = ⌈log2 (len(xi ))⌉

That is, the length of two accesses only needs to be within

(2k , 2k+1] for some k in order for them to be indistinguishable.

Another way to view this is that O(log ℓi ) bits are leaked per ac-

cess, which is the order of magnitude of the range.

Locality. We define the locality of an algorithm as the number of
seeks required on the storage medium during the execution of that

algorithm. Specifically, if an ORAM algorithm performs accesses to

the physical storage at the addresses z⃗ = (z1, z2, . . .), in that order,

then a seek is defined as an index i such that zi+1 , zi + 1. The

total number of seeks across z⃗ we call the locality of the algorithm.

In practice, there may actually be multiple, separate physical

storage devices on the server-side. See Section 7 for a discussion of

how to extend our solution to take advantage of this setting.

2.2 Path ORAM
One of the most efficient ORAM constructions currently known is

Path ORAM, presented in the seminal work of Stefanov et al. [53].

Path ORAM works by storing data blocks in a complete binary tree

with N leaf nodes (or buckets). Each bucket in the tree has space for

a small constant number of blocks, denoted Z . During initialization,
leaf buckets are numbered 0 to N − 1 and blocks are each given

random tags (or positions) from the range [0,N ). In addition, there

is a single small stash area which holds some blocks temporarily.

The tree maintains an invariant that if a block has tag p, it will exist
either in the stash or somewhere along the path from the root of the
tree to the pth leaf node.



Data access and eviction. In order to retrieve a block, the client

must first determine the path position tag t for the block. This is
done by maintaining a map, called the position map, that relates
logical block addresses to their random positions. Once the tag t has
been found, the client retrieves the entire path from root to the t th
leaf node and stores the buckets on this path locally. The requested

logical block is accessed by scanning the retrieved buckets. The

chosen block is then assigned to a new random leaf node (i.e. a tag),

and its tag is updated accordingly and stored back in the position

map. Finally the updated block itself is appended to the stash area.

Note that this occurs whether or not the data was modified, as in

any case the tag is reassigned in order to hide the access pattern.

Because the stash has a fixed size, eventually it is necessary to

evict blocks from the stash back to the tree buckets. In the simplest

setting, every data access (which involves appending one new block

to stash) is followed immediately by rewriting, or evicting, along
a single path in the tree. In this step, the client picks a path in

the tree (either randomly or deterministically using bit-reversed

ordering [31, 53]) and retrieves the buckets for that path from the

storage device. The existing blocks in that path are then re-ordered,

along with the blocks in stash, so that every block is stored as far

down in the path as it can go, subject to the invariant and the size of

the buckets. Any block which still does not fit in the path is stored

back to the stash area.

Bucket and stash size. Because each bucket has a fixed size, as

does the stash area, it is possible for the scheme to “break” by

running out of room in the stash, a situation referred to as stash
overflow. The original Path ORAM used a random eviction strategy

and showed that if the bucket size is at least Z ≥ 5, the probability

of stash overflow decreases exponentially in the stash size [53]. The

Ring ORAM construction improved this further, demonstrating that

Z ≥ 3 is sufficient with a deterministic eviction strategy [48].

Positionmap. Themap storing each block’s tag can be quite large;

it is N log
2
N bits long. If the client is not capable of storing the map

locally, it can be stored recursively in a series of O(logN ) smaller

ORAMs on the server. Alternatively, one can use an oblivious data

structure (more specifically, an oblivious trie [50, 57]) to store the

position map. In either solution, the total communication overhead

for a single access with Path ORAM is O(log2 N ).

Seeks. If Path ORAM is used as a Range ORAM to retrieve a se-

quential range of blocks, each block is stored along a random path,

and it would require O(r · log2 N ) seeks, where r is the number of

blocks in the range. A locality-friendly ORAM, as we achieve here,

should require a number of seeks independent of the range size r .

3 OVERVIEW OF rORAM CONSTRUCTION
In this section, we describe the basic, core construction details

for rORAM. First, we build a construction based on multiple Path

ORAM trees and show how to support efficient range queries with

a local position map. Following, we make two optimizations: we

describe how to increase data locality via smart layouts of the data

blocks, based on bit-reversed ordering, and second, we show how

to use pointer-based methods to make recursive storage of the

position map possible while maintaining locality.

R0 R1 ... Rℓ

supports: length 2
0

length 2
1

length 2
ℓ

Figure 1: rORAM Organization. rORAM storing N blocks and support-

ing ranges up to 2
ℓ
consists of ℓ + 1 tree-based ORAMs R0, . . . , Rℓ . Each

component ORAM Ri contains N blocks and supports ranges of size 2
i
. All

ORAMs have the same block size.

3.1 Core Construction
Multiple ORAMs each covering a subset of ranges. The first
key construction detail, similar to that in prior work [8], is the use

of multiple ORAMs to store ranges of a specific length.

Let N be the total number of blocks stored in the rORAM, and

L ≤ N be a parameter indicating the maximum range size that will

be supported. Then the rORAM construction makes use of ℓ + 1

Path ORAMs, where ℓ = ⌈log
2
L⌉; these individual Path ORAMs are

labeled R0,R1, . . . ,Rℓ . An access on ORAM Ri will always access
exactly 2

i
blocks (see Figure 1) which are logically sequential in

the range. Note that R0 is a Path ORAM as it would normally be

constructed, with a range size of just one block.

Within a given ORAM Ri , the data is divided into ranges of size

2
i
, as in r i

1
, . . . , r iN /2i

. Each ORAM is specifically tailored so that

contiguous ranges of length 2
i
have a high degree of locality. The

tradeoff is that these ranges can only be queried in their entirety,

which is why we make use of ℓ + 1 separate ORAMs: to support

any size range with low overhead.

If the client requests a range that is exactly r ij , this could be

fulfilled with a single access on the Ri th ORAM by requesting range

j . However, we must consider a client requesting an arbitrary range,

which may not start on a power-of-two boundary. One strategy for

fulfilling such requests in a single access would be to upgrade the

query to the next, larger-range ORAM until r ij ∈ r
i′
j′ , but there is an

issue with this approach. In particular, even for a small range, as

small as size 2, it is sometimes impossible to cover the range with

a single access, unless the length of ranges of an ORAM is N . For

example, suppose N = 64 and consider a range [31, 33). No range

of the form [a · 2i , (a + 1) · 2i ) with i < 6 can cover [31, 33).
Fortunately, there exists a simpler solution as noted in [8]. If

a range overlaps a boundary, we can fulfill the request with two
accesses of the same power-of-two size, which is proportional to

the range size itself. For example, access to the range [15, 22) of
length 7 would be covered by accessing ORAM R3 (i.e., ⌈log2 7⌉ = 3)
with two ranges [8, 16) and [16, 24). We stress that so as not to leak
information about the range boundaries, we should always perform
two accesses even if the entire request fits within a single range;

note that whether a range query is handled by a single access or

two is indeed a piece of information about the range.

Operations forRi . EachRi is a tree-based, Path ORAM [48, 53, 59]

storing all N logical blocks, duplicated across all Ri ORAMs. This

allows rORAM to support range queries of any size efficiently.

Crucially, the ORAMs have the same physical block size regardless
of the served range size. This means that a single access in a given

ORAM Ri occurs on 2
i
blocks and is completed as a single batched



operation. This is a significant difference compared to prior work [8]

where each ORAM in the hierarchy used different physical block

sizes to serve size ranges; a range is effectively just a larger sized

block with a number of small blocks inside it. We will see that

storing them with the same block size is the key to making our

construction more efficient.

In rORAM, Each ORAM Ri supports the following operations:

• ReadRange(a): Takes as input a logical address a and re-

turns the 2
i
blocks in the range [a,a + 2i ) from the ORAM.

Here a must be a multiple of 2
i
, as in a = b · 2i .

• BatchEvict(k, stash): Perform k evictions as a batch to

write back multiple blocks to the ORAM from the stash for

each of k evicted paths. Evictions occur in a deterministic

order, and a global counter is used to maintain this order.

Remarks about BatchEvict. When a range is accessed from an

ORAM Rj , in order to make sure that changes to these blocks are

applied in all trees (in case a smaller or larger overlapping range is

queried later), the new values must also be written to every other

Ri for i , j. Therefore we cannot assume that the batch size k
is equal to 2

i
for ORAM Ri , because BatchEvict will occur across

all ORAMs in the same magnitude as the queried range size. This

means that a ReadRange operation on ORAM Rj will always be

followed a BatchEvict(2j , stash) to occur for all ℓ + 1 ORAMs.

With different block sizes in the prior work [8], it is difficult to

perform eviction of a small range in a larger-block ORAM with

blocks designed for a large range. Prior work addresses this issue

by amortizing the cost using a hierarchical ORAM [33]. In contrast,

eviction in our scheme is much simpler and more efficient because

the block sizes are the same in every constituent ORAM tree.

Operations on rORAM. The operations for the rORAM is com-

posed of operations on each of the Ri path ORAMs. For rORAM,

we have the following operation:

• Access(id, r ): Given a range of size r beginning at logical
identifier id, with 2i−1 < r ≤ 2

i
, performRi .ReadRange(a1)

and Ri .ReadRange(a2) with a1 = ⌊id/2i ⌋ and a2 = (a1 +
2
i ) mod N . The resulting O(r logN ) buckets in all 2

i+1

paths are scanned linearly to access each of the ORAM

tree levels. The updated data blocks are then appended

to the stash of all ℓ + 1 ORAMs. Then, for each Rj , call

Rj .BatchEvict(2i+1, stash).

As mentioned previously, an Access requires two ReadRange’s to
occur (to avoid leaking properties of the range) resulting in 2

i+1
data

blocks. For every Access, we need to perform the same magnitude

of BatchEvict’s for all ℓ + 1 ORAMs, updating the data which is

duplicated in each tree.

3.2 Optimization 1: Smart Physical Layout.
A common extension to Path ORAM is to use a deterministic evic-

tion strategy using bit-reversed ordering of the paths, as described

by Gentry et. al [31]. In bit-reverse ordering, counting occurs with

the least significant bit on the left, as compared to natural ordering,

where the most significant bit is to the left and the least significant is

the right. For example, counting in 3-bits, the number to follow 000

is not 001 but rather 100, leading to the sequence of 3-bit-reversed

number ordering as 000 (0), 100 (4), 010 (2), 110 (6), 001 (1), 101

v0
0

v0
1

v0
2

v0
3

v4
3

v2
2

v2
3

v6
3

v1
1

v1
2

v1
3

v5
3

v3
2

v3
3

v7
3

Figure 2: Labeling of ORAM tree buckets. A bucket label v ji sig-
nifies the jth bucket among those at level i in bit-reversed order.
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0

v0

1
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1

v0

2
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3
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3
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3
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3
v5

3
v6

3
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Figure 3: Physical disk storage of ORAM Ri . Buckets at each level
are stored sequentially according to the bit-reversed order.

(5), 011 (3), 111 (7) — with the decimal value in parenthesis. Each

bucket of the tree is now labeled with both its level in the tree

and its bit-reversed ordering in that level, as in Figure 2. That is, a

bucket labeled as v
j
i signifies the jth bucket among those at level i .

Evicting paths in this order ensures a good “spread” over the

tree, making it less likely that any blocks get stuck, by chance, in

the higher buckets of the tree and cause an overflow. But as we will

show, the bit-reverse ordering can also be leveraged in the physical

layout of the tree to achieve data locality for ranges.

Bit-reversed physical layout of ORAM Ri . An important ob-

servation is that the the path eviction schedule also implies deter-

ministic ordering of the evicted nodes within levels of the tree; in
particular:

The nodes at the same level are ALSO evicted according to
the bit-reversed order.

Let P (p) be a path from the root to a leaf with position p. For
example, in the tree in Figure 2, the three consecutive eviction

paths P (v2
3
), P (v3

3
), P (v4

3
) visits buckets v2

2
,v3

2
,v0

2
at level 2, v0

1
,v1

1

at level 1, and v0
0
. At each level, the buckets are accessed according

to the bit-reversed order (with wraparound).

If the ORAM stores each level sequentially on the storage device,

according to the bit-reversed eviction ordering of the level (see

Figure 3), evictions can be done with a high degree of locality.

Consecutive evictions, as is the case for BatchEvict, occur in bit-

reverse order sequentially for each level in the tree. To the best

of our knowledge, this is the first construction that considers the
physical layout to improve efficiency of ORAM performance.

Size independent O(logN ) seeks for BatchEvict. With a se-

quential layout of buckets on disk that match the bit-reversed order

at each level x in the ORAM tree,BatchEvict(k ) will visit min(k, 2x )
buckets at level x sequentially. Each level requires at most 2 seeks,

with wraparounds, and the ORAM tree has logN + 1 levels. The
total number of seeks performed for BatchEvict(k ) is therefore



O(logN ). We stress that the number of seeks is independent of k ,
the number of eviction operations performed as a batch.

Optimizing seeks for ReadRange. The ReadRange on ORAM

Ri reads exactly 2
i blocks. Naively storing all the blocks along ran-

dom paths does not provide locality (as in the existing tree-based

ORAMs), and will result in O(2i · logN ) seeks to read 2
i
paths.

The number of seeks can be optimized here, similar to that of the

batch eviction, by taking advantage of the physical disk layout with

levels stored in bit-reversed order. In particular, we will have ORAM

Ri store logical blocks in the same range in paths with consecutive
bit-reverse ordered leaves. That is, according to the aforementioned

labeling of buckets, addresses [a,a + 2i ) are mapped to a paths in

the tree as follows:

• Address a: Address a is mapped to a random path, i.e.,

P (vrh ) where r is chosen at random and h = logN .

• Adresss a + j: For j = 1, . . . , 2i − 1, address a + j is mapped

to a path P (v
r+j mod N
h ).

This mapping ensures that ReadRange also requires O(logN ) disk
seeks, similar to the case of BatchEvict, because sequential paths
are accessed in the bit-reversed order. At first glance it might seem

bad for security that an entire range is stored sequentially. However

since the size of queried ranges must be leaked anyway, and the

start point of each range is chosen randomly and changed after

each read, this does not actually reveal any further information to

an adversary.

3.3 Optimization 2: Combining Position maps
and Pointer-based Techniques

While the above optimization providesO(logN ) seeks forReadRange
andO(log2 N ) forBatchEvict (oneBatchEvict in each of ℓ ≤ log

2
N

ORAMs), the system would still require O(log3 N ) seeks if the posi-
tion map could not be stored locally. However, we can use a pointer

based method, similar to that of the pointer based techniques in

Oblivious Data Structures [17, 49, 50, 61], to reduce the cost of the

extra position maps queries and maintain O(log2 N ) overall seek
performance. In this section, we offer this optimization by first

describing the challenges of maintaining the position map.

Challenges of naïve position map construction. Each Ri of
the Path ORAMs is uniquely addressed for the blocks they store,

even though each ORAM stores the same number of data blocks.

As a result, there must be a separate position map for each of the

ORAMs. If stored locally, this extra data is at no added cost, but typ-

ically the size of the position map may exceed local storage require-

ments and thus would also be stored recursively within separate

ORAMs in the remote storage. Typically implementations require

a recursive ORAM or an oblivious trie [50, 57] to store the position

map obliviously, but both implementations requireO(log2 N ) seeks
and network bandwidth

1
.

Thus a ReadRange on a single ORAM costs O(logN ) seeks to
access and evict, but a query on the position map costs O(log2 N )

1
Note that the position map for each of the range ORAMs only needs to store the start

position of the range as subsequent positions can be calculated by incrementing in

bit-reversed order. As a result, larger range ORAMs have significantly smaller position

maps that may not need to be stored recursively, but the position maps of small range

ORAMs are the worst case in the analysis.

data a p0 p1 · · · pℓ

Figure 4: The structure of a physical block. In addition to data, the
block contains the logical address a and the physical locations p0, . . . , pℓ
of the block in ORAMs R0 . . . , Rℓ respectively.

seeks. While this is an improvement over prior constructions, one

must also consider the otherO(logN ) ORAMs as data is duplicated.

An access of data blocks on one ORAM requires updating all those
data blocks on all O(logN ) other ORAMs via BatchEvict which
each require positionmap accesses. The resulting number of seeks is

O(log3 N ), increasing the overall seeks for the rORAM construction.

The goal is to reduce the number of seeks to O(log2 N ) for Access
in rORAM, and the key to achieving this is to reduce the number

of expensive position-map look-ups to just one.

Reusing physical paths in unread Path ORAMs. A key obser-

vation is that since only one of the Ri Path ORAMs is actually

read, the path locations of those blocks in the other ORAMs still

remain oblivious, thus do not need to change. Recall that while data

is duplicated across the ORAMs, the tags for which path data is

assigned to is independent. Thus, only the ORAM for which the

ReadRange occurred needs to make a position map update; the tags

of the blocks in the other ORAMs can be reused, as proposed by

Wan et al. [60] in a 2-server ORAM model for PIR.

Specifically, let a be the logical address for data block da which is

currently found at path positionpi in ORAMRi .When aReadRange
occurs that includes the logical address a in Ri , only tag pi needs
to be updated and randomly reassigned for a. The path tags in the

other ORAMs, e.g., pj in Rj for all j , i , can stay the same and be

reused because the physical path for the a was not revealed.
Reusing the tags in the Rj other ORAMs is crucial because after

a ReadRange the data blocks may be updated, and these updates

must propagate to all the other ORAMs through a commensurate

number of BatchEvict’s. Now, during a batch eviction that includes

a in ORAM Rj , the client can perform a position map look up to

retrieve pj and then replace the data for a with d ′a . Importantly,

this is the same position for a as before in Rj , and the eviction

procedure can remove duplicates by identifying fresher data higher

in the tree (as described later). Unfortunately, this is not enough to

reduce the position map lookups because while tags are only being

updated in one of the range ORAMs, we require a position map

look up in all the other ORAMs to learn the position of the data

there, i.e., learning pj for all Rj , j , i . As a result, the number of

seeks and communication remain O(log3 N ). But, we can further

improve upon this by leveraging a pointer based technique.

Pointer-based techniques [17, 49, 50, 61]. Wang et al. [61] in-

troduced pointer-based techniques to ORAM when they achieve an

oblivious data structure (ODS), specifically an AVL tree on top of

the non-recursive Path ORAM [57]. Briefly speaking, the pointer

to a child node in the data structure directly points to a physical
location instead of a logical location, and therefore it is no longer

necessary to do position map lookups for every block. In essence,

if you do a lookup for the root node you get all the remaining posi-

tions “for free” because they are contained within the links of the

data structure itself.



We extend this pointer-based technique to be applied over mul-
tiple ORAMs so that the above observation may come to fruition.

In particular, alongside each physical block is stored the physical
locations of that block in all ORAMs, as shown in Figure 4. As an

example, to query a a range of length 2 at logical addresses a and

b = a + 1 the following procedure is used:

(1) Refer to the position map of R1 and obtain the physical

location p1 of a in R1.
(2) Read the two consecutive physical paths (according to the

reversed-bit order) based on p1 in R1. Let

(da ,a,p0,p1, . . . ,pℓ ), (db ,b,q0,q1, . . . ,qℓ )

be the two physical blocks retrieved in this stage. Here pj
(resp., qj ) denotes the physical location for address a (resp.,

b) in ORAM Rj .
(3) Choose p′

1
at random. Compute q′

1
to be next to p′

1
accord-

ing to the reversed-bit order. Let d ′a ,d
′
b be the updated

data.

(4) Update the position map of R1 so that the physical location
of a should be p′

1
.

(5) For i = 0, . . . , ℓ:

Push the following two blocks in the stash for Ri :
(d ′a ,a,p0,p

′
1
,p2 . . . ,pℓ ), (d

′
b ,b,q0,q

′
1
,q2 . . . ,qℓ ).

Then, execute Ri .BatchEvict(2).

Note that the above procedure uses only a single position-map ac-

cess (i.e., for R1) in order to identify the physical location p1, which
needs O(log2 N ) seeks. The physical locations in other ORAMs

were obtained from the retrieved physical blocks and then reused

in BatchEvict, which requiresO(log2 N ) seeks as well. Generalizing
this process, the rORAM only requires O(log2 N ) seeks in total.

Handling duplicates. One thing to note here, asmentioned briefly

earlier, is that after the required range has been read from Ri , it
is evicted back to all ORAMs R0, . . . ,Rℓ , and so there must be a

process for handling duplicates. Since we do not read blocks in

the range from Rj but add copies during the batched eviction, a

block may have multiple copies in the tree that need to be removed

during subsequent evictions.

This, however, is not a problem. Since the physical location will

be reused in Rj , its old copy will also be along the same path that

includes a newer copy and will be lower down in the tree. Thus,

when the path is retrieved during an eviction the duplicate blocks in

the lower level would be recognized as older and safely overwritten.

4 FORMAL DESCRIPTION OF OUR SYSTEM
We now formally define the rORAM operations.

Position map and stash. The rORAM requires two supporting

data structures, the position map and the stash, similar to Path

ORAM. The position map for the range ORAM is similar to the

position map for existing tree-based ORAMs with a couple of mod-

ifications:

• Instead of mapping a block ID (i.e., logical address) to a

leaf identifier (i.e., physical location), we map a range ID
to a leaf label.

• The leaf label we store for a range corresponds to the leaf to

which the first block in the range is mapped. This is enough

since once we know the leaf label for the first block, we can

easily determine the leaf labels for the remaining blocks

due to our labeling mechanism.

Depending on the setting, each position map is stored either on

the client-side or on the server side (in a recursive ORAM or in an

oblivious trie). rORAM also stores a stash for each ORAM on the

client-side to handle overflows from the tree.

Notations and parameters. LetN be the number of logical blocks

that rORAM stores, and L be the maximum range size the rORAM

needs to support. Let ℓ = ⌈log
2
L⌉. Then, our construction has ℓ + 1

ORAMs R0,R1, . . . ,Rℓ .
Let h = ⌈log

2
N ⌉ denote the height of each ORAM tree Ri . A

bucket label vri signifies the r th bucket among those at level i in
bit-reversed order. In an ORAM tree T , let PT (v

r
h ) be a path from

the root to a leaf vrh ; we will often omit subscript T if obvious from

the context. Note that the following property holds in an ORAM

tree:

P (vrh ) = {v
r mod 2

j

j : j = 0, . . . ,h}.

In the algorithm descriptions, we use Vj to refer to the set of nodes

on level j among the currently-considered paths.

Let PMi and stashi denote the position map and stash for ORAM

Ri . Let cnt be a global integer variable, initially 0, which is used

to track the deterministic eviction schedule according to the bit-

reversed order.

A physical bucket (d,a,p0, . . . ,pℓ ) is valid if every pj falls in the

valid range [0,N ). Let Z be the number of physical blocks that a

bucket v
j
i contains.

ReadRange. The ReadRange operation for ORAM Ri is described
in Algorithm 1, and it returns the result set of blocks with position

meta-data as well as a new path position, p′ for the start address a.
The operations performs three tasks:

(1) Query the positionmap to determine the leaf label to which

the first block in the range is mapped (Step 3).

(2) Update the position map with a new leaf label for the first

block in the range (Steps 4-5).

(3) Retrieve the buckets along the paths to which the blocks

of the range are mapped, level by level while scanning for
the required blocks (Steps 6–9). Note that the if-statement

on Step 9 handles the duplicates by ignoring older blocks

on lower levels.

Algorithm 1 Ri .ReadRange(a)

1: LetU := [a,a + 2i ).
2: result ← Scan stashi for blocks in rangeU .

3: p ← PMi .query(a) // Get the leaf label p for address a
4: p′← [0,N ) // random leaf label p′

5: PMi .update(a,p′) // Update the position map for address a
6: for j = 0, . . . ,h do
7: Read the ORAM buckets V = {vt mod 2

j

j : t ∈ [p,p + 2i )}.

8: for each valid block B = (d,a,p0, . . . ,pℓ ) in V do
9: if B.a ∈ U and B < result then result ← result ∪ {B}

10: return (result ,p′)



BatchEvict. The BatchEvict operation is described in Algorithm

2. The operation performs three tasks:

(1) Read the buckets from the server along the next k eviction

paths level by level (Steps 1-5).
(2) Evict blocks locally to the eviction paths (Steps 6-11).

(3) Write back the updated buckets read to the tree in the

level-by-level manner (Steps 12-13).

Algorithm 2 Ri .BatchEvict(k )

// cnt: a global integer variable tracking the eviction schedule

// h = logN : the height of the ORAM tree.

// Fetch buckets from server

1: for j = 0, . . . ,h do
2: Read ORAM buckets Vj = {v

t mod 2
j

j : t ∈ [cnt, cnt + k )}.
3: for each valid block B = (d,a,p0, . . . ,pℓ ) in V do
4: if stashi has no block with address B.a then
5: stashi ← stashi ∪ {B}

// Evict paths and write buckets back to server

6: for j = h, . . . , 0 do // Evicting paths: bottom-up, level-by-level

7: for r ∈ {t mod 2
j
: t ∈ [cnt,k + cnt)} do // For each path

8: S ′ ← {(d,a,p0, . . . ,pℓ ) ∈ stashi : pi ≡ r (mod 2
j )}

9: S ′ ← Select min( |S ′ |,Z ) blocks from S ′

10: stashi ← stashi / S ′

11: vr mod 2
j

j ← S ′.

// Write back buckets to server

12: for j = 0, . . . ,h do
13: Write the ORAM buckets {vt mod 2

j

j : t ∈ [cnt, cnt + k )}.

Access protocol in rORAM. We are ready to give the formal

description of theAccess protocol of rORAM. The protocol supports

any range of size r ≤ L starting at any given addres a ∈ [0,N − r ).
As explained in Section 3, this will be partitioned into two ranges

of size ⌈log
2
r⌉.

The Access protocol, described in Algorithm 3, takes the fol-

lowing input: a the start address of the range; r is the size of the
range; op is the operation, either read or write; and D∗ the new data,

optionally, to be updated during a write for data in the range. The

operation is performed in two main tasks, each performed twice to

cover arbitrary ranges obliviously:

(1) Perform a two ReadRanges on the first/second half of the

range, retrieve relevant data, and update positions (Steps

4–7).

(2) Perform a BatchEvict by updating the each ORAM’s stash

with the new data (Steps 10-13). Note that Step 10 is nec-

essary to first remove any old “stale” data from the stash

with the same address as one in the range.

On a write, the data is updated between these steps (Steps 8–9). On

a read, the values fetched within the requested range are returned

at the end (Step 15).

5 ANALYSIS
Correctness and obliviousness. Correctness of our protocol fol-
lows by inspection. Obliviousness, with leakage of the length of

the given range, holds from the following facts:

Algorithm 3 Access(a, r ,op,D∗)

1: Let i ∈ [0, ℓ) such that 2
i−1 < r ≤ 2

i

2: Let a0 = ⌊a/2
i ⌋ · 2i

3: D ← {}
// Perform two ReadRanges to cover the range [a,a + r )

4: for a′ ∈ {a0,a0 + 2i } do
5: (Ba′ , . . . ,Ba′+2i−1,p

′) ← Ri .ReadRange(a′)
6: for j ∈ [0, 2i ) do
7: Ba′+j .pi ← p′ + j // update positions for all blocks

// Update data if writing

8: if op = “write” then
9: for j ∈ [a,a + r ) do Bj .d ← D∗j

// Update stashes and evict in each tree

10: for j = 0, . . . , ℓ do
11: stashj ← stashj \ {B ∈ stashj : a0 ≤ B.a < a0 + 2

i+1}

12: stashj ← stashj ∪ {Ba0 , . . . ,Ba0+2i+1−1}
13: Rj .BatchEvict(2i+1)

14: cnt← cnt + 2i+1

15: if op = “read” then return D

• All data items exchanged over the network are encrypted

with IND-CPA secure encryption.

• ReadRange: We choose ORAM Ri based only on the length

of the range. In ORAM Ri , the paths selected for reading

do not reveal any information to the adversary other than

the fact that two ReadRange operations occurred on Ri .
• BatchEvict has a deterministic schedule.

Only the second item, on ReadRange, warrants some additional

explanation. Recall that every read in ORAM Ri will be a block of

2
i
consecutive positions in the bit-reversed order. An adversary

therefore learns from each ReadRange on Ri the first position of the
range. But this first position is chosen at random, then invalidated

and re-assigned randomly after each time it is revealed. Therefore

the adversary learns nothing from this observation.

Bandwidth and locality. Note each Access(a, r ,op,D∗) performs

ReadRange twice and BatchEvict (ℓ + 1) times. In particular,

• ReadRange: The position map access (Steps 3-5) needs

O(log2 N ) seeks and bandwidth. As to reading the paths

(Steps 6-9), we needO(r logN ) bandwidth, sinceO(r ) paths
are retrieved with each path having O(logN ) buckets. For
locality, thanks to the bit-reversed disk layout, reading

buckets in a given level (Step 7) takes at most 2 seeks,

which implies that O(logN ) seeks are necessary in total.

Overall, we have

– Bandwidth: O(log2 N + r logN )
– Locality: O(log2 N + logN ) = O(log2 N ).

• BatchEvict: It performs reading and writingO(r ) paths. By
applying the argument right above, we have:

– Bandwidth: O(r logN )
– Locality: O(logN ).

Therefore, each Access has bandwidth O(r log2 N ) and locality

O(log2 N ).



Stash analysis. Consider ORAM Ri in our construction and let Li
be the length of a range in Ri ; that is, we have Li = 2

i ≤ N . The

following theorem shows that the size of stash is stabilized around

Li · λ, where λ is the security parameter. We note that this bound is

essentially the same as that in the previous work [8], where ORAM

Ri is a usual tree-based ORAM whose block size is large enough

for a block to contain a range of size Li entirely; therefore, the size
of the stash for Ri therein has the same bound.

Theorem 5.1. Suppose ORAM Ri has bucket size Z ≥ 3. Let st(Ri )
be the number of blocks in the stash after a sequence of operations in
ORAM Ri . Then, as long as Li ≤ N /4, we have

Pr[st(Ri ) > Li · (λ + 1)] < 3.5 · Li · Z
−λ .

Since Li ≤ N /4 is independent of λ, the probability above de-

creases exponentially in λ.

Proof intuition. When looking into Figure 2, we can identify an

interesting property:

All labels with an even (resp., odd) number belong to the left
(resp., right) half.

Going further, letT0,T1,T2,T3 be subtrees in Figure 2, each contain-

ing two leaf nodes such thatTk is rooted with nodevk
2
. Observe that

each subtree Tk contains all leaf nodes v
j
3
such that j ≡ k (mod 4).

This property provides the ORAM with an interesting partition-

ing power. In particular, consider a length-4 range (a,a+1,a+2,a+
3); this range will be assigned some leaf labels (r , r + 1, r + 2, r + 3),
where r is chosen randomly. Then, blocks a,a+1,a+2,a+3 will be-
long to Tr mod 4

,T(r+1) mod 4
,T(r+2) mod 4

,T(r+3) mod 4
respectively.

In other words, each Tk will have exactly one block, no more or no

less, from the range.

Therefore, in general, in ORAM Ri , we will have 2
i
subtrees, each

of which behaves as a single block ORAM. So, by taking the union

bound over these 2
i
subtrees, we can prove the above theorem. The

complete proof is found in Appendix A.

6 EMPIRICAL MEASUREMENT
6.1 Implementation Details
The rORAM is implemented on top of a publicly available Java

library [4, 10] that provides optimized implementations of several

well-known ORAM schemes, including Path ORAM. The imple-

mentation requires about 2000 LOC and is publicly available on

github[7] (currently redacted for submission).

Data layout. The layout of data on disk requires careful consid-

eration in the measurements. Prior work primarily focused on

performance metrics related to communication and computation,

and as such, may have used layouts that failed to expose the costs of

disk seeks. For example, a standard data layout for evaluation is to

store tree-based ORAM’s in a series of individual, smaller files, e.g.,

one bucket per file. While this layout eliminates the costs of seeks

within files—each file/bucket is read in a single seek access—the

measurement of a query time will then mostly capture the costs

of computation and accesses of local memory but not the costs of

seeks. Additionally, this storage technique is prohibitively expen-

sive or impossible for larger databases. A 4 TB ORAM (including

the position map) would require more than 2
32

files, exceeding the

number of that can be allocated in a ext4 file system with 32-bit

inode labeling [3]. To better capture the impact of seeks using a

more realistic setup, we store the entire rORAM in a multiple 1GB

files.

Platform. All benchmarks were evaluated on Linux installation

with Intel Core i7-3520M processors running at 2.90GHz and 8GB+

of DDR3 DRAM. The storage devices of choice were:

(1) Local Hard Drive – 1TB IBM 43W7622 SATA HDD run-

ning at 7200 RPM. The average seek time and rotational

latency of the disk is 9ms and 4.17ms respectively. The data

transfer rate is 300MB/s.

(2) Local Solid State Drive – 1 TB Samsung-850 Evo SSD.

(3) Network Block Device – 1TB Amazon EBS [1] volume
2

(cold storage HDD)mounted as an iSCSI device [6]. The net-

work bandwidth between the local client and the t2.large

Amazon instance hosting the EBS volume is measured to

be around 40 - 60MBps using iperf [5].

6.2 Measurement Techniques
Benchmarks. To the best of our knowledge, this is the first imple-
mentation and evaluation of a range ORAM construction. Previous
theoretical constructions [8, 24] are non-trivial to implement and

have higher asymptotic costs, and so we use Path ORAM as a

comparison point. While Path ORAM is not optimized for seek

performance, it does provide a good baseline and the addition of

our optimizations with a relaxed security definition does indeed

result in significantly more efficient constructions for native Path

ORAM without ranges.

A 16GB database size is used for evaluation (2
22

blocks of 4KB

each). We instantiate Path ORAMwith a recursively stored position

map and a locally stored stash of size set for 128-bits of security

according to [28]. The rORAM setup supports a maximum range

size of L = 2
14

and the stashes are set for 128-bit security. Each test

comprises of 5 trials with a new random permutation to initialize

the ORAMs. Results are collected with a 95% confidence interval.

Metrics. The main metrics for our evaluation are query access time
and overall query throughput. As noted in [10], high query access

times for logically related queries (such as a range) is the major

bottleneck for synchronous ORAMs. This forces applications to

wait indefinitely while multiple logically related blocks are fetched

individually, one at a time. rORAM solves this problem by allowing
range queries for multiple logically related data blocks.

Traditionally, ORAMs are evaluated based on the average time

required to complete a query (query access/response time). The

query access time is measured as the time elapsed between the

time when a query (for any range size) was initiated and the time

when the query was finally completed. For tests, we generate ran-

dom queries (of different sizes) at a steady rate and measure the

clock-time required to complete these queries. The next query is

issued only when the previous one has completed. Note by de-

sign Path ORAM supports only synchronous query processing.

2
The choice of an EBS over Amazon S3 [2] is intentional – EBS provides a block storage

device (the use-case for our construction) while S3 is an object store.
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(c) Query access time on Network disk

Figure 5: Query access time (lower is better). Database size = 2
22

4kB blocks (16GB). For the local HDD, rORAM is 30-50x faster than Path ORAM

for ranges sizes ≥ 2
10
. rORAM is faster by almost 20-30x for local SSDs and 10x faster for network block devices.
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Figure 6: Sequential access throughput (higher is better). Database size = 2
22

4kB blocks (16GB). rORAM is 10-15x faster than Path ORAM for

the local HDD and SSD. rORAM is almost 6x faster for network block devices.
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Figure 7: Average query access time (lower is better) for Path
ORAM with batched evictions. For the local HDD, the combination

of the seek-optimized physical layout and reduced number of I/Os due

to batching results in a 2x improvement in average query response times.

Similar improvements for SSDs and network devices is a result of reduce

I/O requests (round-trips) due to batching.

Asynchronous versions of Path ORAM [51] can easily replace the

synchronous versions used in our implementation.

6.3 Results
Batched evictions. The batch eviction procedure can improve the

performance of Path ORAM, even without the addition of seek-

optimized range functionality. To measure the effect of batch evic-

tion, we evaluate the average query access time for Path ORAM

with a deterministic eviction schedule (based on the bit-reverse

ordering of leaves) performed in batches. The results are presented

in Figure 7. As expected, batched evictions improve query access

times by reducing the total number of seeks performed. Interest-

ingly, batching evictions is helpful even for local SSDs and network

devices since it reduces the number of I/O requests (round-trips).

Range queries. As a measurement of the range functionality, we

measure the query access time query ranges of varying sizes for

regular Path ORAM, Path ORAM with batched evictions (batch size

= 32) and rORAM (Figure 5). Note that the values on the X-axis are

range size exponents. The query access time for a range of size 2
x

can be determined by multiplying the Y-axis value corresponding

to x with 2
x
. E.g., the total query time for a range of size 2

6
for

Path ORAM on the local HDD (Figure 5 (a)) is around 10 × 2
6

seconds. For all cases, the query access time for Path ORAM and

Path ORAM with batched evictions increases linearly with the

range size. Batching evictions generally improves performance by

reducing the overall number of seeks.

For smaller ranges, Path ORAM performs better than rORAM

due to lower asymptotic bandwidth costs. For all platforms, rORAM

performs better than Path ORAM for ranges of size 2
5
and more.

For the local HDD, rORAM is almost 30x faster than Path ORAM for

range sizes ≥ 2
10

(which corresponds to 4MB of logically sequential

data) and 50x faster than Path ORAM for even larger ranges of size

> 2
12

(16MB of sequential data). This is the result of optimizing

seeks and reducing overall I/O since rORAM accesses larger chunks

of data with a single request compared to a large number of requests

generated in case of Path ORAM.

In fact, the reduction in I/O requests makes rORAM faster than

Path ORAM even for SSDs (around 30x) and network block devices

(around 10x). As noted previously [50], ensuring locality of accesses



improves performance on SSDs while the reduced number of round-

trips required to fetch all blocks in a range makes rORAM faster

than Path ORAM for network block devices.

Sequential query throughput. Although rORAM is primarily

designed for range query applications, the construction can also

be used to speedup applications that have largely sequential access

patterns. Logically sequential blocks can be fetched as a range.

To measure this effect, we assess query throughput for largely

sequential workloads. Specifically, similar to [10], we replay traces

of the sequential read/write workloads used by FileBench version

1.4.9.1 tomeasure sequential access throughput. FileBench evaluates

throughput by performing sequential accesses of user-specified

sizes at random offsets followed by a small number of random

accesses. To generate the trace, we first log all requests generated

by FileBench while benchmarking a loopback device implemented

in BUSE [19] and replay these requests to both Path ORAM and

rORAM. Throughput results are presented in Figure 6 (a).

For the local HDD and SSD, the overall query throughput of

rORAM increases with increases in sequential access size. For the

local HDD (Figure 6 (a)) and the local SSD (Figure 6 (b)), rORAM can

support up to 10 and 21 queries per second respectively, when per-

forming sequential access of 8MB. This is almost 20x improvement

over the query throughput of Path ORAM. Note that the overall

query throughput of Path ORAM and Path ORAM with batched

evictions remains largely unaffected by sequential accesses since

each query is treated as a query for a random block, regardless

of sequentiality. For the network block device, the overall query

throughput increases but plateaus as larger ranges throttle the

available bandwidth.

7 SYSTEM TWEAKS AND OPTIMIZATIONS
The described Range ORAM construction is designed with the main

goal of minimizing the number of disk seeks per operation in the

general setting of client/server ORAMs with limited client storage.

In practice, there are a number of other parameters or settings

which the client may alter to allow further improvements. In this

section, we briefly outline a few of these alternations and tweaks.

7.1 Parallel Seeks with Multiple Heads or Disks
Previously, the analytic assumption was that there existed a single

read/write “head” on the server’s storage device, butmodern storage

systems are not designed in this manner and may have multiple

read/write heads (a high-capacity HDD disk has up to 8) or use

arrays of high capacitive disks that may be striped (e.g., using a

RAID). Such configurations, where seeks can occur in parallel, can

lead to significant performance gains, and rORAM can leverage

these situations with limited modification.

Assume that if the server’s storage is partitioned into k equal-

sized parts (disk platters or cluster nodes), and that each part can

be read or written separately in parallel, it can be shown that the

number of parallel seeks per access can be reduced to

O
(
logN ·

(
1 +

logN
k

))
.

That is, perfect parallel speedup in the number of seeks is possible

for k ≤ logN .

This improvement is achieved by observing that an access for a

range of length r consists of essentially three stages:

(1) 2 position map accesses in the target ORAM tree

(2) 2 range-r read operations in the target ORAM tree

(3) r batch evictions in each of the O(logN ) ORAM trees.

Step 2 already incurs only O(logN ) seeks which fits the bound

stated above. For Step 3, roughly (logN )/k ORAM trees are stored

on each of the k disks which allows for batch evictions to occur in

parallel, meeting the stating bound.

The position map access (Step 1) is more challenging due to the

recursion which must occur sequentially because the path to access

in the next smaller, recursive ORAM is only revealed once the path

in the larger ORAM has been accessed, leading to O(log2 N ) seeks.
However, retrieving each of the buckets along the path is determin-

istic and can be completed using parallel seeks by distributing the

levels of the recursive ORAMs across k disks. Fetching a single path

at a single recursive level incurs O((logN )/k ) parallel seeks, and
repeating this sequentially for each of the recursive levels gives the

cost stated above. construction itself.

7.2 Reducing position map costs
As described above, parallel seeks can improve the performance of

the position map, but there are other optimizations for decrease the

cost of the position map and increasing the overall performance of

the rORAM if we consider larger client storage scenarios.

O(logN ) seeks with larger block sizes. First observe that larger
block sizes improve the performance of a position map because the

number of seeks for a single position map access is only O(
log

2 N
log B ),

where B is the size of a block. For example, with 4KB blocks and

1GB total storage, the number of recursive levels in any position

map is just 2. More generally, if the block size B is large enough to

store N α
pointers for some constant 0 < α < 1, then the number of

seeks per position map operation is only O(logN ). In this setting,

there areO (1) levels of recursion for the position map and the total

cost cat e O (1) with parallel seeks across levels, as described above.

Locally-stored positionmapoptimizations. If the positionmap

can be stored locally in persistent storage, it does afford a number

of optimizations. The most obvious of which is that a single global

position map suffices, rather than one for each tree. The second

optimization is that locally-stored position maps can be reduced if

smaller ranges were not supported.

A position map for all the O(logN ) ORAM trees could require

O(N ) local storage for the position map, but many of those stored

positions are a result of tracking locations in the smaller range trees.

The position map in the larger range trees are significantly smaller

since only the position of the first block in the range is required to

reveal the other blocks due to the bit-reversed position ordering

within a range. By eliminating a small portion of the smaller range
trees, the position map size is dramatically reduces without greatly

effecting the functionality of the system. For example, in the situ-

ation with 1GB total data split into 4KB blocks, the total storage

for a local position map is roughly 11MB. Removing the bottom 3

range trees, reasonably requiring that all accesses are on ranges is

at least 8 blocks, reduces the global position map size to less than

1MB.



7.3 Revealing operation type
The security definition for range ORAM requires that any two ac-

cess patterns with the same range sizes are indistinguishable, hiding

the contents, addresses, and operation type of each access. Only

the size of the range is leaked. An interesting security/performance

tradeoff to consider is relaxing the definition to reveal the opera-

tion type (read or write) to an observer in addition to the range.

Roughly speaking, such a security definition allows for leakage of

the direction of information flow which may be an acceptable in

some situations.

If operation type is leaked, we claim that the number of seeks

per operation can be reduced to just O(logN ) without affecting the
bandwidth under the following conditions.

(1) The position map seek cost is O(logN ) using some ideas

from the previous subsection

(2) The operation type (read or write) is revealed.

(3) Each write operation is for a single block at a time.

In particular, such a construction still allows for read ranges, but

only single block writes. We argue this scenario is actually quite

common and useful; for example, revealing the operation type

and limiting updates to one block at a time are quite common in

searchable symmetric encryption (SSE) scenarios [15, 20, 30].

O(logN ) seeks per read. For reading a range of size r = 2
i
, two

accesses occur on the ORAM tree Ri and r batch evictions in every

tree, but for a read operation the data is not actually modified. If the

operation type is revealed, batch evictions on the other Rj where
j , i other ORAM trees does not need to occur because there is no

update to the data blocks, reducing the seek cost to O (logN ).

O(logN ) seeks per write. Consider first the writing a single item,

the R0 ORAM tree needs to be updated, at a cost of O(logN ) seeks,
and the modified item must also be updated in all the other ORAM

trees. If those evictions are performed immediately, the cost would

be O(log2 N ) seeks. However, because the write was only to a

single block, we can delay those evictions by simply appending

the updated block to each stash and only performing a single batch
eviction on one other tree, deterministically.With single itemwrites,

i.e., no range writes, we can achieve O(logN ) seeks.
Specifically, say the construction contains ℓ ∈ O(logN ) ORAM

trees. Then each single block write always updates the R0 tree,

appends the updated block to all ℓ − 1 other stashes, and then

performs a batch eviction of size (ℓ − 1) for tree index (i mod (ℓ −
1)) + 1. All three steps — updating R0, appending to ℓ − 1 other

stashes, and performing a single batch eviction — require O(logN )
seeks. Furthermore, because each stash is cleared out afterO(logN )
updates, the size of stash for each ORAM tree no more than doubles.

7.4 Malicious security
The rORAM construction, as described, is secure against an honest-

but-curious adversary who always follows the protocols correctly,

but may observe and remember all communication and past states

of the remote storage. Achieving a higher level of security against

a malicious adversary who may actually change the contents of

remote storage or otherwise disobey the protocol requires relatively

straightforward techniques for ensuring integrity, as previously
seen in multiple ORAM protocols [12, 53].

As in prior works, a Merkle tree can be embedded within each

individual ORAM trees to ensure integrity. However, there is one

important difference which is critical for minimizing the number

of disk seeks. In a typical Merkle tree, each node stores a com-

bined hash of its two children. However, doing this would require

doubling the number of seeks because updating a single tree path

requires reading all sibling nodes in the path as well.

Instead, each ORAM tree node stores a separate hash of each

child node so that updating a path in any of the ORAM trees only

requires reading and re-writing the nodes in that path. The extra

hashes introduce a (small) constant factor increase in the bandwidth

and remote storage size but does not change the number of seeks.

The hashes are stored contiguously with the data.

Finally, the individual hashes of all O(logN ) ORAM trees are

collected into a single “root block” of hashes, which is stored con-

tiguously with the root node of any one of the ORAM trees. Reading

the root block on every access does not introduce any extra seeks,

and the client only needs to store the hash of this root block locally

in persistent storage.

8 CONCLUSION
In this paper, we introduce a new range ORAM construction that

is locality optimized, only requiring O(log2 N ) seeks, an O(logN )
improvement over prior work [8]. This is accomplished by making

use of bit-reversed lexicographic ordering for the physical layout,

batch eviction, and combining a pointer based technique with the

position map. The implementation of the range ORAM is 30x-50x

faster than using performing range queries on Path ORAM alone

and a batch eviction Path ORAM. We also introduced a number

of other tweaks and optimizations, including relaxing the security

definition to reveal operation type and providing obliviousness in

the malicious setting. Through this work, it should be clear that

locality, the number of seeks, is an important factor in ORAMdesign.

Even for ORAMs that do not naturally support range queries, we

have shown that locality can have a large impact on performance

and that seek optimization should be a design criteria for future

ORAM technology.
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A PROOF OF THEOREM 5.1
As in the previous work [48, 53], we use ∞-ORAM, where each

node in the tree has infinite capacity. It receives the same input

request sequence as Ri .
A rooted subtree is a subtree which contains the parent of every

node in the subtree; in particular every non-empty rooted subtree

contains the root. For any rooted subtree T , let X (T ) be a random
variable denoting the number of non-stale blocks stored in the

nodes inT in∞-ORAM. Let n(T ) denote the number of nodes in T .
Then, by letting p (γ ) = Pr[∃T : X (T ) > Z · n(T ) + γ ], we have the
following consequence of Lemma 2 in [53]:

Pr[st(Ri ) > Li · (λ + 1)] = p (Li · (λ + 1)).

Partition of a rooted subtree. Consider the ORAM treeRi , which
we partition into S−1, S0, . . . , SLi−1 as follows:

• Let S−1 be a subtree containing all the nodes at levels

0, 1, . . . , i − 1.

• For j = 0, 1, . . . ,Li − 1, let Sj be a subtree rooted with v
j
i

(i.e., a node at level i) that has all the descendants of v
j
i as

well.

So the entire tree consists of the first i levels in S−1 and then the

2
i
disjoint subtrees S0, . . . , SLi−1 going from level i down to the

leaves.

Then, for any rooted subtree T , we have

X (T ) = X (T ∩ S−1) +X (T ∩ S0) +X (T ∩ S1) + · · · +X (T ∩ SLi−1).

Let E (T ,γ ) denote an event that X (T ) > n(T ) · Z + γ and Ej (T ,γ )
denote an event that X (T ∩ Sj ) > n(T ∩ Sj ) · Z + γ . Then, by the

pigeon-hole principle, we have:

E (T ,Li (λ + 1)) ⇒ E−1 (T ,Li ) ∨
*.
,

Li−1∨
j=0

Ej (T , λ)
+/
-
.

Let pj (γ ) = Pr[∃T : Ej (T ,γ )]. The union bound gives:

p (Li · (λ + 1)) = Pr[∃T : E (T ,Li (λ + 1)]

≤ Pr[∃T : E−1 (T ,Li )] +

Li−1∑
j=0

Pr[∃T : Ej (T , λ)]

= p−1 (Li ) +

Li−1∑
j=0

pj (λ).

Boundingp−1 (Li ). Wefirst argue thatp−1 (Li ) = 0. This is because

our deterministic eviction schedule ensures that after every Li = 2
i

evictions, all blocks are pushed down at or below level i in∞-ORAM.

Therefore, only at most Li blocks must remain in S−1.

Chernoff-like bound. We would like to bound pj (λ). Fix some

rooted subtreeT . We start our analysis by relying on the paritioning

effect that is explained in Section 5. That is, each Sj will have at
most one non-stale block for each range, which implies that T ∩ Sj
will have at most one block for each range. Let Rangei be the set of
all logical ranges for Ri ; each range has length 2

i
, and its starting

logical label is a multiple of 2
i
. Let Y (T ) denote the number of

different ranges to which the blocks in T belong. Then, due to the

partitioning effect, we have

X (T ∩ Sj ) = Y (T ∩ Sj ).

That is, every block in T ∩ Sj belongs to a unique logical range of

Ri .
In our construction, a logical range [a · 2i , (a+ 1) · 2i ) is assigned

physical labels [r , r + 2i ), where r is chosen at random from [0,N ).
As observed in [8, Claim 3.2], this implies that the event that a range

will be in Sj is independent of the event that other ranges will be in
Sj . Therefore, we can apply the Chernoff-like bound given in [48,

Section 4.3] where we denote Yj = Y (T ∩ Sj ):

E
[
et ·Yj

]
≤ e (e

t−1)E[Yj ].

Denote X j = X (T ∩ Sj ). Since we have X j = Yj , we have:

E
[
et ·X j

]
≤ e (e

t−1)E[X j ].

Bounding E[X j ]. The same analysis as in [48, Lemma 3] with

A = 1 applies, and we get

E[X j ] ≤ n(T ∪ Sj ).

This is because dependency (among the blocks in the same range)

becomes irrelevant, when we consider the expectation due to linear-

ity of expectation. Nevertheless, we give the proof for completeness.
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For each node v of the ORAM tree, we define a random variable

χv to be the number of blocks in v after the last eviction. Note that

we have

E[X j ] =
∑

v ∈T∩Sj

E[χv ].

So, it is sufficient to show that E[χv ] ≤ 1 for any node v .
For our analysis, given a node v and a logical block with address

x , we define an indicator random variable χx,v ∈ {0, 1} for the
event that a logical block with address x is located in node v at the

end of the last eviction. Let qx,v = Pr[χx,v = 1].

Ifv is a leaf node, a fresh record corresponding to logical address

x can be stored in that bucket if x is mapped to v and there was

some evict operation that puts x in v . Since a block x is mapped to

a random leaf, the probability that a block x is mapped to v is 1/N ,

which implies qx,v ≤ 1/N and thereby E[χx,v ] ≤ 1/N . Since there

are at most N logical blocks, by taking the linearity of expectation,

we have

E[χv ] ≤ E



∑
x ∈[0,N )

χx,v


=
∑

x ∈[0,N )

E[χx,v ] ≤
∑

x ∈[0,N )

(1/N ) ≤ 1.

Suppose v is a non-leaf node at level ℓ. Consider the last two

evictions paths p1 and p2 that touch v , where p2 takes place later.
Say that the second path p2 goes through v and some child c of v .
Then, our deterministic scheduling makes sure that p1 goes through
v and the other child c ′. Note:

• Blocks coming before the time ofp1 will never be inv , since
two eviction paths p1 and p2 will push all blocks down at

or below level ℓ + 1.

• Blocks coming after time of p2 will never be in v , since p2
is the last eviction that touches v .

This means that the only blocks that entered between p1 and
p2 can possibly remain in v . Let Between be the set of such blocks.

Our deterministic scheduling ensures that the time span between p1
and p2 is exactly 2

ℓ
, implying that |Between| ≤ 2

ℓ
(one can make

a similar argument if there is only one eviction path that touches v
throughout the entire access sequence).

Moreover, if a block in Between remains in v after p2, it must be

the case that the block must have been mapped to a physical leaf

label from the descendant of c ′; otherwise,p2 will push it down to at

or below c . Since the number descendant leaves of c ′ is N /2ℓ+1, for
a block x ∈ Between, the probability that x is randomly assigned

to one of such leaves is 1/2ℓ+1. Therefore, we have

E[χv ] ≤ E


∑
x ∈Between

χx,v


=

∑
x ∈Between

E[χx,v ]

=
∑

x ∈Between
1/2ℓ+1 ≤ 1/2.

Let n = n(T ∩ Sj ) for simplicity. As long as Li ≤ N /4 which

ensures that |Sj | ≥ 7, we have at most
4

7
· n leaves. Therefore, we

have:

E
[
X j ] ≤

∑
v ∈leaves

E[χv ] +
∑

v ∈internal

E[χv ]

≤
4n

7

· 1 +
3n

7

·
1

2

≤
11

14

· n

Putting them all together. Now, we are ready to bound pj (λ).
Consider a subtree T and recall n = n(T ∩ Sj ). Then we have

Pr[Ej (T , λ)] = Pr[X j > Zn + λ]

= Pr[etX j > e−t (Zn+λ)]

≤ E
[
etX j

]
· e−t (Zn+λ)

≤ e (e
t−1) 11n

14 · e−t (Zn+λ)

≤ e−tλ · e (e
t−1−tZ )n

= Z−λ · e−n (Z lnZ− 11

14
(Z−1))

We took t such that et = Z in the last line in the above.

Let q = Z lnZ − 11

14
(Z − 1) − ln 4.We assume Z ≥ 3. Note, then

we have
1

1−e−q < 3.5. Finally, we have

pj (λ) = Pr[∃T : Ej (T , λ)] ≤
∑
n≥1

4
n · max

T :n (T∩Sj )=n
Pr[Ej (T , λ)]

≤
∑
n≥1

4
n · Z−λ · e−n (Z lnZ− 11

14
(Z−1))

=
∑
n≥1

Z−λ · e−nq

<
Z−λ

1 − e−q

< 3.5 · Z−λ

In summary, we have:

p (Li · (λ + 1)) = p−1 (Li ) +

Li−1∑
j=0

pj (λ) ≤ 3.5 · Li · Z
−λ .
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