Error-Detecting in Monotone Span Programs with Application to Communication Efficient Multi-Party Computation

Nigel P. Smart1,2 and Tim Wood1,2

1 University of Bristol, Bristol, UK.
2 KU Leuven, Leuven, Belgium.
nigel.smart@kuleuven.be, t.wood@kuleuven.be

Abstract. Recent improvements in the state-of-the-art of MPC for non-full-threshold access structures introduced the idea of using a collision-resistant hash functions and redundancy in the secret-sharing scheme to construct a communication-efficient MPC protocol which is computationally-secure against malicious adversaries, with abort. The prior work is based on replicated secret-sharing; in this work we extend this methodology to any multiplicative LSSS implementing a \mathbb{Q}_2 access structure. To do so we need to establish a folklore property of error detection for such LSSS and their associated Monotone Span Programs. In doing so we obtain communication-efficient online and offline protocols for MPC in the pre-processing model.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function on their combined secret inputs so that all parties learn the output of the function and no party can learn anything that cannot be inferred from the output (and their own inputs) alone. As a field it has recently received a lot of attention and has been explored in a variety of contexts: for example, private auctions [13], secure statistical analysis of personal information [11] and protection against side-channel attacks in hardware [8,35,37].

Most MPC protocols fall into one of two broad categories: garbled circuits, and LSSS-based (linear-secret-sharing-based) MPC. The garbled-circuit approach, which began with the work of Yao [39], involves some collection of parties “garbling” a circuit to conceal the internal circuit evaluations, and then later a single party or a collection of parties jointly evaluating the garbled circuit. By contrast, the LSSS-based approach involves using a so-called linear secret-sharing scheme, in which the parties: “share” a secret into several shares which are distributed to different parties, perform computations on the shares, and then reconstruct the secret at the end by combining the shares to determine the output. Secret-sharing-based MPC is traditionally presented in the context of information-theoretic security, although many modern practical protocols that realise LSSS-based MPC often make use of computationally-secure primitives.
such as SHE (somewhat-homomorphic encryption) [22] or OT (oblivious transfer) [31]. In this paper, we focus on computationally-secure LSSS-based MPC.

An access structure for a set of parties defines which subsets of parties are allowed to discover the secret (if they pool their information). Such quorums of parties are often called qualified sets of parties. Computationally-secure LSSS-based MPC has recently seen significant, efficient instantiations for full-threshold access structures [7, 21, 22, 31], which is where the protocol is secure if at least one party is honest, even if the adversary causes the corrupt parties to run arbitrary code (though this behaviour may cause the protocol to abort rather than provide output to the parties). In the threshold case similar efficient instantiations are known: for example the older VIFF protocol [20], which uses (essentially) information-theoretic primitives only.

Most LSSS-based MPC protocols split the computation into two parts: an offline phase, in which parties interact using “expensive” public-key cryptography to lay the groundwork for an online phase in which only “cheap” information-theoretic primitives are required. The online phase is where the actual circuit evaluation takes place. For the access structures considered in this work, namely Q_2 structures, the offline phase is almost as fast as the online phase. Thus the goal here is to minimize the cost of communication in both phases.

While protocols providing full-threshold security are an important research goal, in the real world such guarantees of security do not always match the use-cases that appear. Different applications call for different access structures, and not necessarily the usual threshold examples. For example, a company may have four directors (CEO, CTO, CSO and CFO) and access may be granted in the two combinations (CEO and CFO) or (CTO and CSO and CFO). In such a situation it may be more efficient to tailor the protocol to this structure, rather than try to shoe-horn the application into a more standard (i.e. full-threshold) structure. Indeed, while it is possible that a computation can be performed in a full-threshold setting and then the outputs distributed in accordance with the access structure, such a process requires all parties to participate equally in the computation, which may not be feasible in the real world, especially if the computing parties are distributed over a wide network, and susceptible to outages if the total number of parties is large.

Historically, realising MPC for different access structures has been well studied: shortly following the advent of Shamir’s secret-sharing scheme [9, 38], which inherently imposes a threshold access structure, in which any subset of parties of size at least some fixed parameter is qualified, the first formal MPC – as opposed to 2PC – protocols [5, 16, 25] were constructed, with varying correctness guarantees for different threshold structures. These works were developed by Hirt and Maurer [20], and then Beaver and Wool [3] to general access structures, culminating in Maurer’s relatively more recent work [33]. In this latter work it is shown that passively-secure information-theoretic MPC is possible if the access structure is Q_2, and full active security (without abort) is possible if the access structure is Q_3. An access structure is called Q_ℓ (for $\ell \in \mathbb{N}$) if the union of any set of ℓ unqualified sets of parties is missing at least one party. We discuss this in
some detail later, but for now the reader can think of an \((n, t)\)-threshold scheme where \(t < n/ℓ\).

In recent work \[32\], Keller et al. show that by generalising a method of Araki et al \[1,24\] communication-efficient computationally-secure MPC with abort can be realised for \(Q_2\) access structures, if replicated secret-sharing is used. The methodology in \[1,24,32\] uses the explicit properties of replicated secret-sharing so as to authenticate various shares. This enables active security with abort to be achieved relatively cheaply, albeit at the expense in general of the pre-deployment of a large number (depending on the access structure) of symmetric keys to enable the generation of pseudo-random secret sharings (PRSS) in a non-interactive manner. A disadvantage of replicated sharing is the potentially larger (than average) memory footprint needed for each party per share, and consequently there is still a relatively large communication cost involved when the parties need to send shares across the network. In this work we extend this prior work to produce a protocol for any multiplicative LSSS which supports the \(Q_2\) access structure. We remark that Cramer et al. \[18\] showed that for any \(Q_2\) access structure there is a multiplicative LSSS that implements it – namely, replicated secret-sharing.

1.1 Authentication of Shares

The security setting of many of the practical protocols starts with a basic passively-secure (a.k.a. semi-honest or honest-but-curious) protocol, in which corrupt parties execute the protocol honestly, but try to deduce anything they can about other parties' data from their own data and the communication tapes. Such passively-secure protocols for \(Q_2\) access structures are highly efficient, and are information-theoretically secure. The passively secure protocols are then augmented to obtain active security with abort by using some form of “share authentication”.

Authentication of shares provides LSSS-based MPC protocols with security against malicious (a.k.a. active) adversaries, who may deviate arbitrarily from the protocol description. At a high level, modern actively-secure LSSS-based MPC protocols combine:

1. A linear (i.e. additively homomorphic) secret sharing scheme;
2. A multiplication protocol; and
3. An authentication protocol.

The communication efficiency of the computation (usually an arithmetic or Boolean circuit) depends heavily on how authentication is performed.

The traditional methodology to add robust active security to such protocols is to use a VSS (verifiable secret-sharing) scheme \[5,36\]. These schemes can either be in the information-theoretic setting, in which case a \(Q_3\) access structure is required, or in the computational setting, in which case a \(Q_2\) access structure suffices. However, such VSS-based protocols are not as efficient as more modern approaches, although they do provide robustness – that is, even if some (bounded) set of parties provide incorrect data at any point, or no output at all,
then the remaining parties can still recover the correct function output based on the original inputs.

More recent directions give up on requiring a robust protocol, and instead opt for active security with abort, in order to obtain a more efficient protocol. For example, in the full-threshold SPDZ [22] protocol and its successors, e.g. [21, 31], authentication is achieved with additively homomorphic MACs (message authentication codes). For each secret that is shared amongst the parties, the parties also share a MAC on that secret. Since the authentication is additively homomorphic and the sharing scheme is linear, this means that the sum (and consequently scalar multiple of) of authenticated shares is authenticated “for free” by performing the addition (or scalar multiplication) on the associated MACs. More work is required for multiplication of secrets, but the general methodology for doing these operations on shared secrets is now generally considered “standard” for MPC in this setting.

One important branch of this methodology contributing significantly to their practical performance is the use of amortising verification costs by batch-checking MACs, a technique developed in [6, 22], amongst other works. A different approach to batch verification for authentication of shares, in the case of Q_2 access structures, was introduced by Furakawa et al. [24], in the context of the three-party honest-majority setting, i.e. a $(3, 1)$-threshold access structure. This work extended a passively secure protocol of Araki et al. [1] in the same threshold setting. This approach dispenses with the MACs and instead achieves authentication of shares using a collision-resistant hash function, when authenticating an open-to-all operation, and uses redundancy of the underlying secret sharing scheme when an open-to-one operation is performed. In a bit more detail, they considered the specific access structure of replicated secret-sharing in the $(3, 1)$ threshold setting, and showed how to use a hash function and share redundancy for share authentication to bootstrap the passively-secure protocol of Beaver and Wool [3] to provide a communication-efficient actively-secure protocol (with abort). By using a hash function they sacrifice the information-theoretic security of Beaver-Wool for computational security, and also use computationally-secure share generation operations to improve the offline phase.

The above protocols for replicated sharing in a $(3, 1)$-threshold access structure of [1, 24] simultaneously reduce the number of secure communication channels needed and the total number of bits sent per multiplication. Recent work [32] has shown that these techniques can be generalised from $(3, 1)$-threshold to any Q_2 access structure, using replicated secret-sharing. Both [24] and [32] make use of the fact that replicated sharing provides a trivial method to authenticate a full set of shares; i.e. it somehow offers a form of error-detection.

While replicated secret-sharing offers the flexibility of being able to realise any access structure, unfortunately it can require an exponentially large number of shares to be held by each party for each shared secret. For threshold access structures, this starkly contrasts with Shamir’s scheme, which can realise the same access structure but in such a way that each party need only hold one field element per shared secret. We show how to reduce this overhead by generalising
the method of [32] so that hash functions can be used for authentication for any \(\mathcal{Q}_2 \) access structure which is realised with any multiplicative linear secret-sharing scheme, thus enabling further performance improvements for general \(\mathcal{Q}_2 \) access structures.

The main advantage of allowing freedom in choosing the specific LSSS is that different LSSSs lead to different communication costs, and thus the parties are able to use an LSSS which minimises this cost, rather than persist with replicated secret-sharing. In summary we do the following:

– Generalise the methods of [1, 24, 32] to any \(\mathcal{Q}_2 \) access structure implemented by any multiplicative secret sharing scheme.

– Show how this translates into a communication-efficient actively-secure on-line phase (with abort); here, we not only measure the number of field elements transmitted but also the number of channels required.

– We also present an actively-secure offline phase (with abort) whose efficiency (when compared to [32]) depends on the precise access structure.

To conclude this section, we briefly remark how our work relates to the correspondence between LSSSs and linear codes. Cramer et al. [19] showed how the correspondence between linear secret-sharing schemes and linear codes reveals an efficient method by which qualified parties can correct any errors in a set of shares for some secret. The ability to do so requires the access structure to be \(\mathcal{Q}_3 \), since if this holds then the LSSS is essentially equivalent to an error-correcting code. In our work we show that if the access structure is \(\mathcal{Q}_2 \) then the LSSS is essentially equivalent to an error-detecting code. This reveals why the protocols above (viz., [1, 32]) are able to perform the error-detection causing abort. This result seems to be folklore – but we could find no statement or proof in the literature to this effect, and so we prove the required properties here.

2 Preliminaries

2.1 Notation

Let \(F \) denote a finite field; we write \(F = F_q \) for \(q \) some prime power if \(F \) is the field of \(q \) elements. We write \(r \overset{\$}{\leftarrow} F \) to mean that \(r \) is sampled uniformly at random from \(F \). Vectors are written in bold and are taken to be column vectors. We denote by \(\mathbf{0} \) a vector consisting entirely of zeros of appropriate dimension, determined by the context, and similarly by \(\mathbf{1} \) a vector consisting entirely of ones. For a vector \(\mathbf{x} \) we write the \(i \)th component as \(x_i \), whereas \(\mathbf{x}^i \) denotes the \(i \)th vector from a sequence of vectors. We use the notation \(\mathbf{e}' \) for the \(i \)th standard basis vector (defined by \(e'_i = \delta_{ij} \) where \(\delta_{ij} \) is the Kronecker delta). We denote by \([n] \) the set \(\cup_{i=1}^{n} \{i\} \), and by \(\mathcal{P} \) the complete set of parties, which we take to be \(\{P_i\}_{i \in [n]} \). Given some set \(S \), a subset of some larger set \(S' \), we write \(a \not\in S \) to indicate that element \(a \) is in \(S' \setminus S \); in general, \(S' \) will be assumed from context. We define the function \(\text{supp} : F^n \to 2^\mathcal{P} \) via \(s \mapsto \{i \in [m] : s_i \neq 0\} \). We use the notation \(A \subseteq B \) to mean that \(A \) is a (not necessarily proper) subset of \(B \), compared with \(A \subset B \) where \(A \) is a proper subset of \(B \). We write \(\lambda \) and \(\kappa \) for the statistical and computational security parameters respectively.
Given a vector space $V \subseteq \mathbb{F}^d$, we denote by V^\perp the orthogonal complement; that is, $V^\perp = \{w \in \mathbb{F}^d : \langle v, w \rangle = 0\}$, where $\langle v, w \rangle = v^\top w$. \mathbb{F} is the standard inner product. From basic linear algebra, $(V^\perp)^\perp = V$. For a matrix $M \in \mathbb{F}^{m \times d}$, we write M^\top for the transpose. If M is a matrix representing a linear map $\mathbb{F}^d \to \mathbb{F}^m$, then $\text{im}(M^\top) = \ker(M)^\perp$ by the fundamental theorem of linear algebra.

2.2 Access Structures, MSPs, LSSSs and Linear Codes

Access structures Fix $\mathcal{P} = \{P_i\}_{i \in [n]}$ and let $\Gamma \subseteq 2^P$ be a monotonically increasing set, i.e. Γ is closed under taking supersets: if $Q \in \Gamma$ and $Q' \supseteq Q$ then $Q' \in \Gamma$. Similarly, let $\Delta \subseteq 2^P$ be a monotonically decreasing set, i.e. Δ is closed under taking subsets: if $U \in \Delta$ and $U' \subseteq U$ then $U' \in \Delta$. We call the pair (Γ, Δ) a **monotone access structure** if $\Gamma \cap \Delta = \emptyset$. If $\Delta = 2^P \setminus \Gamma$, then we say the access structure is **complete**. In this paper, we will only be concerned with complete monotone access structures. A set $Q \in \Gamma$ is called **qualified**, and a set $U \in \Delta$ is called **unqualified**. Partial ordering is induced on Γ and Δ by the standard subset relation denoted by “\subseteq”: we write Γ^- for the set of **minimally qualified sets** where minimality is with respect to “\subseteq”: $\Gamma^- = \{Q \in \Gamma : \text{ if } Q' \in \Gamma \text{ and } Q' \subseteq Q \text{ then } Q' = Q\}$; similarly, Δ^+ denotes the set of **maximally unqualified sets** where maximality is with respect to “\subseteq”: $\Delta^+ = \{U \in \Delta : \text{ if } U' \in \Delta \text{ and } U \subseteq U' \text{ then } U' = U\}$.

An access structure is said to be \mathbb{Q}_2 (resp. \mathbb{Q}_3) if the union of no two (resp. three) sets in Γ is the whole of \mathcal{P}. A noteworthy consequence of this is that in a \mathbb{Q}_2 access structure, the complement of a qualified set is unqualified, and **vice versa**.

In an (n,t)-threshold access structure, $\mathcal{P} = \{P_i\}_{i \in [n]}$ and any set of $t+1$ parties is qualified, whilst any set of t or fewer parties is unqualified. Thus Γ^- contains $\binom{n}{t+1}$ sets in total. The term **full threshold** refers to an $(n,n-1)$-threshold access structure. For an arbitrary complete monotone access structure, the set of minimally qualified sets together with the set of maximally unqualified sets uniquely determine the entire structure. The dual access structure Γ^\ast of an access structure Γ is defined by $\Gamma^\ast := \{Q \in 2^P : 2^P \setminus Q \not\in \Gamma\}$. Cramer et al. [19] showed that an access structure Γ is \mathbb{Q}_2 if and only if $\Gamma^\ast \subseteq \Gamma$.

Linear Secret Sharing Schemes An **LSSS** is a method of sharing secret data amongst parties. It consists of three multi-party algorithms: **Input**, **Open**, and **ALF**, allowing parties to provide secret inputs, reveal (or open) secrets, and compute an affine linear function on shared secrets. In a practical sense, this means that the parties can add secrets, multiply by scalars, and add on public constants to a shared secret, all by local computations. In this work we consider, as examples, the three most well-known secret-sharing schemes: Shamir; replicated, also known as CNF-based (conjunctive-normal-form-based); and DNF-based (disjunctive-normal-form-based). We assume the reader is familiar with these schemes, but for completeness we give a recap in Appendix A.

A secret-sharing scheme is called **multiplicative** if the whole set of parties \mathcal{P} can compute an additive share of the product of two secrets by performing only
local computations. If the product is to be kept as a secret and used further in the computation, it is usually necessary for the parties to engage in one or more rounds of communication to convert the additive share into a sharing in the secret-sharing scheme being used. A secret-sharing scheme is called strongly multiplicative if, for any \(U \in \Delta \), the parties in \(P \setminus U \) can compute an additive sharing of the product of two secrets by local computations. Such schemes offer robustness, since the adversary, assumed to corrupt at worst an unqualified set of parties, cannot prevent the remaining honest parties from reconstructing the desired secret. Cramer et al. [18] showed that any (non-multiplicative) LSSS realising a \(Q_2 \) access structure can be converted to a multiplicative LSSS for the same access structure so that each party holds at most twice the number of shares it held originally. There is currently no known construction to convert an arbitrary \(Q_3 \) LSSS to a strongly multiplicative LSSS with only polynomial blow-up in the number of shares each party must hold [18,19].

Monotone Span Programs

Span programs, and monotone span programs specifically, were introduced by Karchmer and Wigderson [30] as a model of computation. It has been shown that MSPs have a close relationship to secret-sharing schemes, as discussed informally below.

Definition 1. A Monotone Span Program (MSP), denoted by \(M \), is a quadruple \(\langle F, M, \varepsilon, \psi \rangle \) where \(F \) is a field, \(M \in F^{m \times d} \) is a matrix for some \(m \) and \(d \leq m \), \(\varepsilon \in F^d \) is an arbitrary non-zero vector called the target vector, and \(\psi : [m] \to \mathcal{P} \) is a surjective “labelling” map of rows to parties. The size of \(M \) is defined to be \(m \), the number of rows of the matrix \(M \).

We say that the row-map \(\psi \) defines which rows are “owned” by which party. Given a set \(S \subseteq \mathcal{P} \), we denote by \(M_S \) the submatrix of \(M \) whose rows are indexed by the set \(\{i \in [m] : \psi(i) \in S\} \), and similarly \(s_S \) is the subvector of \(s \) whose entries are indexed by the same. Later, we will somewhat abuse notation by denoting again by \(M_S \), where now \(S \subseteq [m] \), the submatrix whose rows are indexed by \(S \). Context will define which matrix we mean since the indexing set is either a set of parties, or a set of row indices. If \(s \in F^m \), then we call \(s_Q \) a qualified subvector of \(s \) if \(Q \in \Gamma \), and an unqualified subvector otherwise. An MSP \(M \) is said to compute an access structure \(\Gamma \) if for all \(Q \in \Gamma \), \(\exists \lambda^Q \in F^m \) (i.e. depending on \(Q \)) such that \(M^\top \cdot \lambda^Q = \varepsilon \) and \(\psi(supp(\lambda^Q)) \subseteq Q \). Note that we write \(\lambda^Q \) to show that this vector is associated to the set \(Q \); compare with \(\lambda_Q^Q \), which is the subvector of \(\lambda^Q \) whose co-ordinates are indexed by \(Q \), to be consistent with the notation above. In words, this says that the parties in the set \(Q \) “own” rows of the matrix \(M \) which can be combined in a public, known linear combination encoded as the vector \(\lambda^Q \), to obtain the target vector \(\varepsilon \). The reason for this definition will become clear as we explain the link between MSPs and LSSSs.

Monotone Span Programs induce LSSSs in the following way: Sample \(x \xleftarrow{\$} F^d \) subject to \(\langle x, \varepsilon \rangle = s \), the secret. Now let \(s = M \cdot x \) and for each \(i \in [m] \), give \(s_i \) (that is, the \(i \)th co-ordinate) to party \(\psi(i) \). Thus party \(P_i \) has the vector \(s_{\psi(i)} \). We call \(x \) the randomness vector since in realising the secret sharing scheme, \(x \)
is chosen uniformly at random subject to \(\langle \mathbf{x}, \varepsilon \rangle = s \) to generate \(\mathbf{s} := M \cdot \mathbf{x} \), the share vector, which is a vector whose co-ordinates are precisely the shares of the secret which are distributed to parties according to the mapping \(\psi \). We say that a share vector \(\mathbf{s} \) encodes a secret \(s \) if \(\mathbf{s} = M \cdot \mathbf{x} \) for some \(\mathbf{x} \) where \(\langle \mathbf{x}, \varepsilon \rangle = s \). An MSP is called ideal if \(\psi \) is injective; since it is surjective by definition, an ideal MSP is an MSP for which \(\psi \) is bijective – i.e. each party receives exactly one share.

The associated access structure for an MSP is such that \(\varepsilon \) is contained in the linear span of the rows of \(M \) owned by any qualified set of parties, and also so that \(\varepsilon \) is not in the linear span of the rows owned by any unqualified set of parties. It is well known that, given a monotone access structure \((\Gamma, \Delta) \), there exists an MSP \(\mathcal{M} \) computing it \cite{23,27,30}.

In more detail: A qualified set of parties \(Q \in \Gamma \) can compute the secret from the qualified subvector \(\mathbf{s}_Q \) because by construction of \(M \) there is a publicly-known recombination vector \(\lambda \) associated to this set \(Q \) such that \(\psi(\text{supp}(\lambda)) \subseteq Q \) and \(M^\top \lambda = \varepsilon \). Note that while \(\psi(\text{supp}(\lambda)) \subseteq Q \), this subset of \(Q \) must still be qualified – it just may be the case that not all of the parties’ shares are required to reconstruct the secret. Since \(\psi(\text{supp}(\lambda)) \subseteq Q \), we have \(\langle \lambda, \mathbf{s} \rangle = \langle \lambda_Q, \mathbf{s}_Q \rangle \), so given \(\mathbf{s}_Q \) the parties can compute \(\langle \lambda_Q, \mathbf{s}_Q \rangle \), and since \(\langle \lambda_Q, \mathbf{s}_Q \rangle = \langle \lambda, \mathbf{s} \rangle = \langle \lambda, M \cdot \mathbf{x} \rangle = \langle M^\top \lambda, \mathbf{x} \rangle = \langle \varepsilon, \mathbf{x} \rangle = s \), they can thus determine the secret.

Conversely, for any unqualified set of parties \(U \in \Delta \), again by construction of \(M \) we have that \(\varepsilon \not\in \text{im}(M_U^\top) \), which is equivalent to each of the following three statements:

1. \(\varepsilon \not\in \ker(M_U)^\perp \)
2. \(\exists \mathbf{k} \in \ker(M_U) \) such that \(\langle \varepsilon, \mathbf{k} \rangle \neq 0 \)
3. \(\exists \mathbf{k} \in \mathbb{F}^d \) such that \(M_U \cdot \mathbf{k} = \mathbf{0} \) with \(\langle \varepsilon, \mathbf{k} \rangle = 1 \)

From the last statement, we can see that for any \(s \in \mathbb{F} \), the randomness vector defined as \(\mathbf{k}' := s \cdot \mathbf{k} \) provides the share vector \(M \cdot \mathbf{k}' \) encoding the secret \(\langle \varepsilon, \mathbf{k}' \rangle = \langle \varepsilon, s \cdot \mathbf{k} \rangle = s \cdot \langle \varepsilon, \mathbf{k} \rangle = s \), and has the property that all shares held by all parties in \(U \) are equal to zero. Thus, by linearity, for any set of shares seen by an unqualified set of parties \(U \in \Delta \), i.e. \(\mathbf{s}_U \) for some \(s \) encoding some secret \(s \), there exists a different share vector \(\mathbf{s}' \) encoding any other \(s' \in \mathbb{F} \), such that \(\mathbf{s}_U = \mathbf{s}_U' \). Thus the set of shares received by an unqualified set of parties provides no information about the secret.

Typically, \(\varepsilon = \mathbf{e}^1 \) or \(\varepsilon = \mathbf{1} \), but it can be an arbitrary non-zero vector: changing it simply changes how the vector \(\mathbf{x} \) is selected, and corresponds to performing column operations on the columns of \(M \), which does not change the access structure the MSP realises by results of Beimel et al. \cite{4}. It is often required that \(d \) be equal to the column rank of \(M \), since if this is not the case, we can remove any columns which are not linearly independent of preceding columns without changing the access structure \(\mathcal{M} \) computes.

In this work we show that for any MSP computing any \(Q_2 \) access structure, there exists a matrix \(N \) such that for any vector \(\mathbf{e} \neq \mathbf{0} \) for which \(\psi(\text{supp}(\mathbf{e})) \not\in \Gamma \), we have \(N \cdot \mathbf{e} \neq \mathbf{0} \). The matrix \(N \) is essentially the parity-check matrix of the code generated by the matrix \(M \) of the MSP.
2.3 MPC

We assume static corruptions by the adversary, meaning that the adversary corrupts some set of parties once at the beginning of the protocol. We will usually denote the set of parties the adversary corrupts by $A \subseteq \mathcal{P}$. We assume the adversary is malicious (a.k.a. active), meaning that the corrupted parties may execute arbitrary code determined by the adversary, and additionally we allow the protocol to abort prematurely — i.e. the protocols are {	extit{maliciously-secure with abort}} — rather than semi-honest (a.k.a. passive), meaning that the corrupted parties execute the protocol honestly but may try to learn additional information by examining the communication tapes. The communication channels between parties are discussed where applicable since they are different for different protocols and different parts of each protocol. If all parties follow the protocol, then the output is correct with overwhelming probability in the computational security parameter κ.

\textbf{Security Model} Our protocols are modelled and proved secure in the Universal Composability (UC) framework introduced by Canetti \cite{Canetti01} and we assume the reader is familiar with it.

\textbf{Pre-processing} Many modern MPC protocols split computation into two phases, the \textit{offline} or \textit{pre-processing phase} and the \textit{online phase}. In the offline phase, the parties engage in several rounds of communication to produce data which can then be used in the online phase. The purpose of doing this is that the pre-processing can be done at any time prior to the execution of the online phase, can be made independent of the function to be computed, and may use expensive public-key primitives, in order to allow the online phase to use only fast information-theoretic primitives. In our protocol design, we follow this model, although we only require symmetric-key primitives throughout.

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{Hash API} \\
\hline
\end{tabular}
\end{center}

The hash API implemented via the hash function $H : \mathbb{F}^* \rightarrow \{0, 1\}^\lambda$ consists of the following three algorithms:

- $H\text{-}\text{Initialise}()$: the hash function is initialised.
- $H\text{-}\text{Update}(s)$: the hash function is updated with the vector s.
- $H\text{-}\text{Output}()$: the hash function is evaluated and output provided.

\textbf{Figure 1.} Hash API

\textit{Hash authentication} The work of Furakawa et al. \cite{Furakawa10} is in the three-party honest majority case. A secret is additively split into three parts, and each party is given (a different set of) two of them. To open a secret, each party sends one field element to one other party. This suffices for all parties to obtain all shares,
but does not ensure that the one corrupt party sent the correct share. This is where the hash evaluation comes in: after a secret is opened, all parties update their hash function locally with all three shares (the two they held and the one they received); after possibly many secrets are opened, the parties broadcast (here meaning each party sends to the other two parties over a secure channel) the outputs of their hash evaluations and compare what they see. If any hashes differ, they abort. This process ensures that the shares held by all parties are consistent, even though each party need only send one share to one party per opening. If many shares are opened in the execution of the protocol (as is the case in SPDZ-like protocols, since every multiplication requires two secrets to be opened), this significantly reduces communication overhead, at the cost of cryptographic assumptions for the existence of a collision-resistant hash function. This was generalised to any replicated scheme Q_2 LSSS by Keller et al. \cite{32}.

In our work, we employ similar techniques to Kurasawa et al., and Keller et al. to the problem of opening values to parties, but in a significantly more general case. We achieve this by proving the folklore results that say an LSSS is error-detecting if and only if it is Q_2. In Figure 2 we present the methods we shall use to open secret shared data in different situations, which uses a “standard” hash function API given in Figure 1; in short, they are as follows:

- If single party P_i is required to learn a secret, all the other parties send all of their shares to P_i, and then P_i performs an error-detection check on the shares received, telling all parties to abort if errors are detected.
- If all parties are required to learn a secret, the parties engage in a round of communication in which not all parties need to communicate with each other. The parties reconstruct a view of what they think other parties have received, even if they have not communicated with that party. After opening possibly many secrets, each party calls Output on the hash function broadcasts their output; we will see that this process authenticates the secrets.

In the next two sections we outline why the methodologies for the two cases are correct.

In summary, we will show the Q_2 property of the access structure makes it possible that an honest party P_i will always abort if the adversary tries to cheat during OpenTo(i), and that the honest parties will also abort if their views differ during OpenTo(0), which only happens when the adversary cheats, or the parties will abort when calling Verify if the adversary cheated on any previously-opened value. The proof of security can be found in Figure 14 and Figure 15 in Appendix B, but it is best read in the context of the next sections.

3 Opening a Value to One Party

In this section, we show that, for a Q_2 access structure, if the share vector is modified with an error with unqualified support then the resulting share vector is either no longer a share vector according to the MSP (i.e. is not in $\text{im}(M)$), or the error encodes the secret 0, and so, by linearity, the resulting vector shares
Protocol $Π_{Opening}$

For each $P_i ∈ P$, the parties decide on some $λ^i$, which is any recombination vector such that $supp(λ^i) ⊆ q(P_i)$. See Section 4 for the definition of q. We denote by H^i the hash function updated locally by P_i which will be initialised as in Figure 5 at the start of the MPC protocol. If at any point a party receives the message $Abort$, it runs the subprotocol $Abort$.

OpenTo(i):
If $i = 0$, the secret s encoded via share vector s, is to be opened to all, otherwise it is to be opened to only player i.

If $i = 0$ then each $P_j ∈ P$ does the following:
1. Retrieve from memory the recombination vector $λ^j$.
2. For each $P_ℓ ∈ P$, for each $k ∈ q(P_ℓ)$, if $ψ(k) = P_j$ then send s_k to $P_ℓ$.
3. For each $k ∈ q(P_j)$, wait to receive s_k from party $ψ(k)$.
4. Concatenate local and received shares into a vector denoted by $s^j_{q(P_j)} ∈ F|q(P_j)|$.
5. (Locally) output $s = ⟨λ^j_{q(P_j)}, s^j_{q(P_j)}⟩$.
6. Solve $M_{q(P_j)} · x^j = s^j_{q(P_j)}$ for x^j. If there are no solutions, run $Abort$.
7. Execute H^j. Update(Mx^j).

If $i ≠ 0$, the secret encoded via share vector s is to be opened to party P_i. The parties do the following:
1. Each $P_j ∈ P \{P_i\}$ sends $s_{q(P_j)}$ to P_i, who concatenates local and received shares into a vector s.
2. Party P_i computes $N · s$; if it is equal to 0, P_i (locally) outputs $s = ⟨λ^i, s⟩$, and otherwise runs $Abort$.

Verify: Each $P_i ∈ P$ does the following:
1. Compute $h^i := H^i$. Output(i).
2. Send h^i to all other parties $P_j ∈ P \{P_i\}$ over pair-wise secure channels.
3. Wait for h^j from all other parties $P_j ∈ P \{P_i\}$.
4. If $h^j ≠ h^i$ for any j, run $Abort$.

Abort: If a party calls this subroutine, it sends a message $Abort$ to all parties and aborts. If a party receives a message $Abort$, it aborts.

Broadcast: When P_i calls this procedure to broadcast a value s,
1. Party P_i sends the secret s to all other players over pair-wise secure channels.
2. When party P_j receives the share, it executes H^j. Update(s).

Figure 2. Protocol $Π_{Opening}$

the same secret. Thus we obtain error-detection for Q_2 access structures. This will lead us to our method to open a secret value to a specified player in a way that the player can detect if an error has occurred.
As noted in the introduction, this result is closely linked to a result of Cramer et al. [19], which finds a correspondence between LSSSs implementing Q_3 access structures and linear error-correcting codes. In more detail, [19, Thm 1] roughly says that for an LSSS implementing a Q_3 access structure, every set of qualified parties can reconstruct not only the secret, but also all remaining shares, uniquely. This implies that if all parties broadcast all of their shares, then each party can reconstruct the share vector without the errors the adversary possibly introduced.

In this section we will show that an analogous error-detection property holds for any MSP computing any Q_2 access structure, and hence enables us to obtain MPC with (non-identifiable) abort for any Q_2 access structure with more efficient communication than previous work. The formal statement is as follows:

Lemma 1. For any MSP $M = (F, M, \varepsilon, \psi)$ computing a Q_2 access structure Γ, for any vector $s \in F^m$,

$$\psi(\text{supp}(s)) \notin \Gamma \implies \begin{cases} s \notin \text{im}(M), \\ s \in \text{im}(M) \text{ and } s = Mx \text{ for some } x \in F^d \text{ where } (x, \varepsilon) = 0. \end{cases}$$

Before giving the proof, we remark that this lemma is reminiscent of the ideas behind the definition provided by Nikov et al. [34, Defn 5] of Δ-non-redundant MSPs, which (intuitively) are MSPs such that for any share vector with $U := \psi(\text{supp}(s)) \notin \Gamma$, it holds that s_U is equally likely to be any element of $F^{\psi^{-1}(U)}$.

This lemma demonstrates more explicitly the qualities of unqualified share vectors, in the case of MSPs computing Q_2 access structures.

Proof. If $\psi(\text{supp}(s)) \notin \Gamma$ then $P \setminus \psi(\text{supp}(s)) \in \Gamma$ since the access structure is Q_2. Thus there is at least one set $Q \in \Gamma$ where $Q \subseteq P \setminus \psi(\text{supp}(s))$ for which $s_i = 0$ for all $i \in [m]$ where $\psi(i) \in Q$ (i.e. $s_Q = 0$), by definition of supp.

Recall that for a qualified set Q of parties to reconstruct the secret, they take the appropriate recombination vector λ (which has the property that $\psi(\text{supp}(\lambda)) \subseteq Q$) and compute $s = (\lambda, s)$. For this particular Q and corresponding recombination vector λ, we have $(\lambda, s) = (\lambda_Q, s_Q)$ since $\psi(\text{supp}(\lambda)) \subseteq Q$, and $(\lambda_Q, s_Q) = (\lambda_Q, 0) = 0$ by the above, so the secret is 0.

If $s \in \text{im}(M)$ then every set $Q \in \Gamma$ must compute the secret as 0 by the definition of MSP (though note that it is not necessarily the case that $s_Q = 0$ for all $Q \in \Gamma$). Thus the share vector s is in $\text{im}(M)$ and encodes the secret $s = 0$.

Otherwise, $s \notin \text{im}(M)$, and we are done. \qed

In our MPC protocol, this will provide an efficient method by which a party to whom a secret is opened (by all other parties sending it all of their shares) can check whether or not the adversary has introduced an error. The next lemma shows that if the adversary (controlling an unqualified set of parties) adds an error vector e to a share vector s, the resulting vector $c := s + e$ will either not be a valid share vector, or will encode the same secret as s (by linearity). Adding in an error e that does not change the value of the secret can be viewed as the adversary re-randomising the shares he holds for corrupt parties. This procedure
of opening to a single party is necessary in order for the parties to provide input and obtain output in an actively-secure manner.

Lemma 2. Let \(\mathcal{M} = (\mathbb{F}, M, \epsilon, \psi) \) be an MSP computing access structure \(\Gamma \) and \(c = s + e \) be the observed set of shares, given as a valid share vector \(s \) encoding secret \(s \), with error \(e \). Then there exists a matrix \(N \) such that

\[
\psi(\text{supp}(e)) \notin \Gamma \implies \text{either } e \text{ encodes the secret } e = 0, \text{ or } N \cdot c \neq 0
\]

Proof. Let \(N \) be any matrix whose rows form a basis of \(\ker(M^\top) \) and suppose \(e \in \mathbb{F}^m \). By the fundamental theorem of linear algebra, \(\ker(M^\top) = \text{im}(M)^\perp \), so \(s \in \text{im}(M) \) if and only if \(N \cdot s = 0 \). Since \(\psi(\text{supp}(e)) \notin \Gamma \), then by Lemma 1 we have that either \(e \not\in \text{im}(M) \), or \(e \in \text{im}(M) \) and \(e = 0 \).

If \(e \in \text{im}(M) \) then \(e = 0 \) and we are done, whilst if \(e \not\in \text{im}(M) \) then \(N \cdot e \neq 0 \). In the latter case, since \(s \in \text{im}(M) \) we have \(N \cdot s = 0 \) and hence \(N \cdot c = N \cdot (s + e) = N \cdot s + N \cdot e = 0 + N \cdot e \neq 0 \).

The matrix \(N \) is usually called the cokernel of \(M \), and can be viewed as the parity-check matrix of the code defined by generator matrix \(M \).

The method to open a secret to a single party \(P_i \) is then immediate: all parties send their shares to \(P_i \), who then concatenates the shares into a share vector \(s \) and computes \(N \cdot s \). Since the adversary controls an unqualified set of parties, if \(N \cdot s = 0 \) then by Lemma 2 the share vector \(s \) encodes the correct secret. In this case, \(P_i \) recalls any recombination vector – and in particular \(\lambda^i \) from \(H_{\text{Opening}} \) in Figure 2 – can be used – and computes the secret as \(s = \langle \lambda^i, s \rangle \), and otherwise tells the parties to abort.

4 Opening a Value to All Parties

To motivate our procedure for opening to all parties and to show that it is correct, we first discuss the naïve method of opening shares in a semi-honest protocol, then show how to reduce the communication, and then explain how to obtain a version which is maliciously-secure (with abort).

To open a secret in a semi-honest protocol, all parties can broadcast all of their shares so that all parties can reconstruct the secret. The problem with this naïve method is that it contains redundancy if the access structure is not full-threshold, since proper subsets of parties can reconstruct the secret by definition of the access structure. This implies the existence of “minimal” communication patterns for each access structure and LSSS, in which parties only communicate sufficiently for every party to have all shares corresponding to a qualified set of parties. This observation provides the reason for the efficient communication found in the protocols of Furakawa et al. and Keller et al.

When bootstrapping to active security, we see that the redundancy in broadcasting shares in the naïve procedure allows verification of opened secrets: honest parties can check all other parties’ broadcasted shares for correctness. Indeed, this is precisely what enables the above protocols to detect cheating. When
reducing communication with the aim of avoiding the redundancy inherent to broadcasting, honest parties must still be able to detect when the adversary sends inconsistent or erroneous shares. In particular, parties not receiving shares from the adversary must also eventually be able to detect that cheating has occurred in spite of not directly being sent erroneous shares.

To achieve this, in our protocol each party will receive enough shares from other parties to determine all shares held by all parties – that is, reconstruct the entire share vector – and then all parties will compare their reconstructed share vectors. To amortise the cost of comparison, the parties will actually update a local collision-resistant hash-function each time they reconstruct a new share vector and will then compare the final output of the hash function at the end of the computation, when output is required.

To fix ideas, consider the case of Shamir’s scheme; a set of \(t + 1 \) distinct points determines a unique polynomial of degree at most \(t \) that passes through them. This fact not only enables the secret to be computed using \(t + 1 \) shares, but additionally enables determining the entire polynomial (the coefficients of which are the share vector for the scheme) and consequently all other shares. For some LSSSs it is not the case that any qualified set of parties have enough information to reconstruct all shares. In Appendix D we provide a more formal description of MSPs in which all qualified sets of parties can reconstruct the entire share vector and explain how such MSPs are “good” for our protocol.

We are therefore required to ensure that all parties receive enough shares from other parties to reconstruct the same share vector. To allow the parties to perform reconstruction, each party is assigned a set of shares that it will receive, which we encode as a map \(q : \mathcal{P} \to 2^{[m]} \) defined as follows: for each \(P_i \in \mathcal{P} \), define \(q(P_i) \) to be a set \(S_i \subseteq [m] \) (where recall that \(m \) is the number of rows of \(M \) and \(M_S \) is the submatrix of \(M \) indexed by \(S \)) such that:
- \(\ker(M_{S_i}) = \{0\} \); that is, the kernel of the submatrix \(M \) restricted to the rows indexed by \(S_i \), is trivial; and
- \(\psi^{-1}(\{P_i\}) \subseteq S_i \), where \(\psi^{-1} \) denotes the preimage of the row-map \(\psi \); that is, each party includes all of their own shares in the set \(S_i \).

These sets are used as follows. Each \(P_i \) receives a set of shares, denoted by \(s^i_{q(P_i)} \), for a given secret. Then in order to reconstruct all shares, \(P_i \) tries to find \(x^i \) such that \(s^i_{q(P_i)} = M_{q(P_i)} \cdot x^i \) and then computes \(s^i = M \cdot x^i \) as the reconstructed share vector, which is then used to update the hash function (locally). Trivially, we can take \(q(P_i) = [m] \) for all \(P_i \in \mathcal{P} \), which corresponds to broadcasting all shares; however, better choices of \(q \) result in better communication efficiency. In Appendix C, we give a somewhat-optimised algorithm for finding a “good” map \(q \) for a given MSP.

\[3\] For example, in DNF-based sharing [29] (see Figure 12 in Appendix A), each minimally qualified set is given an independent sharing of the secret, so a party can only perform reconstruction if it receives: 1) all shares from all other players in any single minimally qualified set, and additionally 2) all shares but one for all sharings created for all other minimally qualified sets.
If such an x^i does not exist then it must be because the adversary sent one or more incorrect shares, because $s^i_{q(P_i)}$ should be a subvector of some share vector. In this case, the party or parties unable to reconstruct tell all parties to abort.

If such an x^i does exist for each party then the adversary could still cause different honest parties to construct different share vectors sharing (possibly) different secrets since we define q so that there is as little redundancy as possible while allowing the reconstruction to take place. However, the protocol will abort in this case since the hashes will differ with overwhelming probability in the computational security parameter.

Indeed, the only thing the adversary can do without causing abort – either immediately or later on when hashes are compared – is to change his shares so that his shares combined with the honest parties’ shares form a valid share vector. Intuitively, one can think of this as the adversary re-randomising the shares owned only by corrupt parties, which is not possible in Shamir or replicated secret-sharing, but is in DNF-based sharing, and in general is only possible if the LSSS admits share vectors with unqualified support. Note that Lemma 2 prevents the adversary from changing the secret by altering his shares. If the adversary does choose to force different honest parties to compute different share vectors (albeit sharing the same secret), then the honest parties will only abort after comparing hash outputs, instead of during the opening procedure; note that if this is the only form of cheating then the output will actually be correct, even though the parties abort, which is undesirable but is easily dealt with in the simulation proof.

More formally, we have the following lemma that shows that if all parties can reconstruct share vectors and the share vectors are consistent, then the adversary cannot have introduced an error.

Lemma 3. Let $q : \mathcal{P} \rightarrow 2^{[m]}$ be defined as above and let $s^i_{q(P_i)}$ denote the subvector of shares received by party P_i for a given secret. Suppose it is possible for each party $P_i \in \mathcal{P}$ to find a vector x^i such that $s^i_{q(P_i)} = M_{q(P_i)} x^i$; let $s^i := M \cdot x^i$ for each $i \in [n]$. If $s^i = s^j$ for all honest parties P_i and P_j, then the adversary did not introduce an error on the secret.

Proof. The existence of q follows from the fact that “at worst” we can take $q(P_i) = [m]$ for all $P_i \in \mathcal{P}$. There is a unique x^i solving $s^i_{q(P_i)} = M_{q(P_i)} x^i$ (not a priori necessarily the same for all parties) because $\ker(M_{q(P_i)}) = \{0\}$ for all $P_i \in \mathcal{P}$ by the first requirement in the definition of q.

Let A denote the set of corrupt parties. Since A is unqualified, the honest parties form a qualified set $Q = \mathcal{P} \setminus A$ since the access structure is Q_2.

Each honest party uses their own shares in the reconstruction process by the second requirement in the definition of q, so if $s^i = s^j$ for all honest parties P_i and P_j, then in particular they all agree on a qualified subvector defined by honest shares – i.e. $s^i_Q = s^j_Q$ for all honest parties P_i and P_j. Thus some qualified subvector of the share vector is well defined, which uniquely defines the secret by definition of MSP. □
Functionality \(F_{\text{MPC}} \)

Initialise: On input Init from all parties, the functionality initialises the array Value[]. Accept a message OK or Abort from the adversary; if the message is OK then continue, and otherwise send the message Abort to all parties and abort.

Input: On input \((\text{Input}, \text{id}, x)\) from party \(P_i\) and \((\text{Input}, \text{id}, \bot)\) from all other parties, where id is a fresh identifier, the functionality sets \(\text{Value}[\text{id}] := x\).

Add: On input \((\text{Add}, \text{id}_1, \text{id}_2, \text{id}_3)\) from all parties, if \(\text{id}_3\) is a fresh identifier and \(\text{Value}[\text{id}_1]\) and \(\text{Value}[\text{id}_2]\) have been defined, the functionality sets \(\text{Value}[\text{id}_3] := \text{Value}[\text{id}_1] + \text{Value}[\text{id}_2]\).

Multiply: On input \((\text{Multiply}, \text{id}_1, \text{id}_2, \text{id}_3)\) from all parties, if \(\text{id}_3\) is a fresh identifier and \(\text{Value}[\text{id}_1]\) and \(\text{Value}[\text{id}_2]\) have been defined, the functionality waits for a message OK or Abort from the adversary. If the adversary sends the message Abort, send the message Abort to all parties and the adversary and abort, and otherwise set \(\text{Value}[\text{id}_3] := \text{Value}[\text{id}_1] \cdot \text{Value}[\text{id}_2]\).

Output: On input \((\text{Output}, \text{id}, i)\) from all parties, if \(\text{Value}[\text{id}]\) has been defined, the functionality does the following:
- If \(i = 0\), send \(\text{Value}[\text{id}]\) to the adversary and wait for a signal OK or Abort in return. If it signals Abort, send the message Abort to all parties and the adversary and abort, and otherwise send \(\text{Value}[\text{id}]\) to all parties. If not aborted, wait for another signal OK or Abort. If the adversary signals Abort, send the message Abort to all parties and abort.
- If \(i \neq 0\) and \(P_i\) is corrupt, then the functionality sends \(\text{Value}[\text{id}]\) to the adversary and waits for the adversary to signal OK or Abort. If it signals Abort, send the message Abort to all parties and abort.
- If \(i \neq 0\) and \(P_i\) is honest, the functionality waits for the adversary to signal OK or Abort. If it signals Abort, send the message Abort to all parties and the adversary and abort, and otherwise send \(\text{Value}[\text{id}]\) to \(P_i\).

Figure 3. Functionality \(F_{\text{MPC}} \)

5 MPC Protocol

We are now ready to present our protocol to implement the MPC functionality offering active security with abort as given in Figure 3. We present the online method here, leaving the offline method for a later section. The offline method will implement the functionality given in Figure 4. Our online protocol, in Figure 5, makes use of the opening protocol \(P_{\text{Opening}} \) given in Figure 2 earlier. The majority of our protocol uses standard MPC techniques for secret-sharing. In particular, the equation the parties compute for the multiplication is a standard application of Beaver’s circuit randomisation technique [2], albeit for a general LSSS.

Correctness of our input procedure follows from the input method given in the Non-Interactive Pseudo-Random Secret-Sharing protocol of [17]. In particular for
The functionality maintains a list Value of secrets that it stores. The set A indexes the corrupt parties (unknown to the honest parties).

Triples: On input (Triple, N_T) from all parties, the functionality does the following:
1. For i from 1 to N_T:
 (a) Sample $a^i, b^i \leftarrow F$ and compute share vectors a^i and b^i.
 (b) Send (a^i_A, b^i_A) to the adversary.
 (c) Receive a subvector of shares \tilde{c}_i^A from the adversary.
 (d) Compute a vector $c^i = M \cdot x^i$ such that $\langle x^i, \varepsilon \rangle = a^i \cdot b^i$ and $c^i_A = \tilde{c}_i^A$. If no such vector c^i exists, set an internal flag Abort to true and continue.
2. Wait for a message OK or Abort from the adversary.
3. If the response is OK and the internal flag Abort has not been set to true, for each honest $P_i \in P$, send $(a^{\{P_i\}}, b^{\{P_i\}}, c^{\{P_i\}})_{i=1}^{N_T}$ to each honest party P_i, and otherwise output the message Abort to all honest parties and abort.

Figure 4. Functionality $\mathcal{F}_{\text{Prep}}$

party P_i to provide an input s in a secret-shared form s, the parties will first take a secret-sharing r of a uniformly random secret r – which is some a or b from a Beaver triple – and open it by calling $\text{OpenTo}(i)$. Then P_i determines the encoded secret (using any recombination vector) and broadcasts $\epsilon := s - r$. The parties compute the share vector as $s := \epsilon \cdot u + r$ where u is a pre-agreed sharing of 1, which may be the same vector used to compute all inputs, by which we mean that for $i \in [m]$, party $\psi(i)$ computes $s_i := \epsilon \cdot u_i + r_i$. Since this r is uniformly random by assumption, it hides the input s in the broadcast of ϵ. This is proved formally in our simulation proof.

We have the following proposition, which we prove in Appendix\[3] under the UC framework of Canetti \[15\]. Here we use $(\Pi_{\text{MPC}} || \Pi_{\text{Opening}})$ to mean simply that the union of the procedures from both protocols are used.

Proposition 1. For a Q_2 access structure, the protocol $(\Pi_{\text{MPC}} || \Pi_{\text{Opening}})$ securely realises \mathcal{F}_{MPC} in the presence of malicious adversaries in the $\mathcal{F}_{\text{Prep}}$-hybrid model, assuming the existence of a collision-resistant hash function and point-to-point secure channels.

We note that since we do not use MAC values, we can also instantiate our protocol over small finite fields\[4] or indeed using a LSSS over a ring. The latter will hold as long as the reconstruction vectors can be defined over the said ring. By taking a ring such as $\mathbb{Z}/2^{32}\mathbb{Z}$ we thus obtain a generalisation to an arbitrary Q_2 structure of the Sharemind methodology \[12\]. Also note that we can extend $\mathcal{F}_{\text{Prep}}$ in a trivial way so as to obtain other forms of pre-processing such shares of bits etc as in \[21\].

\[4\] If using a small ring/finite field we simply need to modify the sacrificing stage in the triple production process, no changes are needed for the online phase at all.
Protocol \(\Pi_{\text{MPC}}\)

Note that this protocol calls on procedures from \(\Pi_{\text{Opening}}\) in Figure 2. If a party never receives an expected message from the adversary, we assume the receiving party signals \texttt{Abort} to all other parties and aborts.

\textbf{Initialise:} The parties do the following:
1. Each \(P_i \in \mathcal{P}\) executes \texttt{H'.Initialise()}.
2. The parties call \(F_{\text{Prep}}\) with input \((\text{Triple}, N_T)\) get \(N_T\) triples.
3. The parties agree on a public sharing of the secret 1, denoted by \(u\).
4. Each party has one random secret opened to them for every input they will provide to the protocol: the parties do the following:
 (a) Retrieve from memory a sharing \(r\) of a uniformly random secret \(r\), obtained first or second random secret from a Beaver triple. (The secret used may neither be used again for input nor used in a multiplication.)
 (b) Run \texttt{OpenTo}(i) on \(r\) so that \(P_i\) obtains \(r\).

\textbf{Input:} For party \(P_i\) to input secret \(s\),
1. Party \(P_i\) retrieves a secret \(r\) from memory, corresponding to a share vector \(r\) established during \texttt{Initialise} for inputs, and all parties \(P_j \in \mathcal{P}\) retrieve their shares \(r\{P_j\}\).
2. Party \(P_i\) executes \texttt{Broadcast} to open \(\epsilon := s - r\).
3. Each party \(P_j \in \mathcal{P}\) computes \(s\{P_j\} := \epsilon \cdot u\{P_j\} + r\{P_j\}\).

\textbf{Add:} To add secrets \(s\) and \(s'\), with corresponding share vectors \(s\) and \(s'\), for each \(P_i \in \mathcal{P}\) party \(P_i\) computes \(s\{P_i\} + s'\{P_i\}\).

\textbf{Multiply:} To multiply secrets \(s\) and \(s'\), with corresponding share vectors \(s\) and \(s'\), each \(P_i \in \mathcal{P}\) does the following:
1. Retrieve from memory the shares \((a\{P_i\}, b\{P_i\}, c\{P_i\})\) of a triple \((a, b, c)\) obtained in \texttt{Initialise}.
2. Compute \(s\{P_i\} - a\{P_i\}\) and \(s'\{P_i\} - b\{P_i\}\).
3. Run \texttt{OpenTo}(0) on \(s - a\) and \(s' - b\) to obtain (publicly) \(s - a\) and \(s' - b\).
4. If the parties have not aborted, compute the following as the share of the product \(c\{P_i\} + (s - a) \cdot s'\{P_i\} + (s' - b) \cdot s\{P_i\} - (s - a) \cdot (s' - b) \cdot u\{P_i\}\).

\textbf{OutputTo}(i): If \(i = 0\), the secret \(s\), encoded via share vector \(s\), is to be output to all parties, so the parties do the following:
1. Run \texttt{Verify}.
2. If the parties have not aborted, run \texttt{OpenTo}(0) on \(s\).
3. If the parties have not aborted, run \texttt{Verify} again.
4. If the parties have not aborted, all parties (locally) output \(s\).
If \(P_i \in \mathcal{P}\), the secret \(s\) encoded via share vector \(s\) is to be output to party \(P_i\), so the parties do the following:
1. Run \texttt{Verify}.
2. If the parties have not aborted, run \texttt{OpenTo}(i) on \(s\).
3. If \(P_i\) has not aborted it (locally) outputs \(s\).

\textbf{Figure 5.} Protocol \(\Pi_{\text{MPC}}\)
6 Improved Offline Phase

In this section we give an offline subprotocol. Recall that the offline phase of MPC protocols involves the generation of so-called Beaver triples: triples of share vectors, \((a, b, c)\) such that \(c\) encodes the product of the secrets encoded by \(a\) and \(b\). As is relatively standard practice for MPC protocols in the preprocessing model, we provide a semi-honest multiplication procedure, which is then bootstrapped to active security using the standard technique known as sacrificing to catch if errors were introduced.

The Beaver triples must be share-vectors with respect to the LSSS used in the online phase. Perhaps the most obvious methods of achieving this are the following:

- Use standard SPDZ/MASCOT techniques to generate full-threshold triples and then re-share each share using the dealer protocol of the LSSS. This requires sending \(m \cdot (n-1)\) field elements for each sharing and potentially involves expensive SHE (Somewhat Homomorphic Encryption) operations.
- Generate PRSSs (pseudo-random secret-sharings – see Figure 8) for the multiplicands of a triple, and then use the technique due to Cramer et al. [17] to convert the replicated shares into shares under any LSSS computing the same access structure by local computations (after an inexpensive one-time set-up phase). Then use the generalised version of Maurer’s information-theoretic protocol [33] as follows: first the parties perform the local multiplication procedure to get an additive sharing of the product; then each party reshares its share via a new sharing in the LSSS (by acting as dealer in the secret-sharing protocol); then, since the LSSS is additively homomorphic, the parties sum all the shares from the resharings.
- Use [32] to generate Beaver triples under replicated secret-sharing, and then use the local conversion technique of Cramer et al. [17] as in the previous method, but this time on all three parts of each triple. This requires \(m - d\) field elements to be sent, where \(m\) is exponential in \(n\) since replicated secret-sharing must be used.

In our new protocol we essentially generalise [32] to work for any LSSS. We will now briefly compare the costs involved for the previous and new protocols, restricting our analysis to the simple case of \((n, t)\)-threshold access structures; in-depth analysis is given in Section 6.4. With the optimisation provided at the end of their work, Keller et al. obtain a cost of sending \(n \cdot (n-t-1)\) field elements per multiplication. In our protocol, we obtain the same cost in the case when we use Shamir’s secret-sharing, but in doing so we significantly reduce the amount of data each party must store and the number of PRF evaluations each party is required to perform.

We note that the optimisation in [32], requiring PRF (pseudo-random function) keys to generate some shares of a product deterministically, can be instantiated using already existing PRF keys. However, the computational cost is of the order of \(\binom{n}{t} - n\) PRF evaluations. But this computational cost reduces the communication cost, so there is a trade-off here. For an ideal secret sharing, such as Shamir’s, we obtain the same communication costs as in the optimised
version of \cite{32}, but with no additional computational costs. For general secret sharing schemes/access structures, the choice over whether using replicated sharing and the protocol in \cite{32}, or using the method for general MSPs presented here, depends on the precise nature of the access structure and associated MSP.

6.1 Offline protocol of \cite{32}

The basic structure of the \cite{32} triple-generation protocol is:
1. Retrieve two replicated PRSS shares from memory and perform the (local) multiplication procedure to get an additive sharing of the product;
2. Convert the additive sharing to a replicated sharing.
3. Sacrifice triples using other triples to obtain an actively-secure protocol.

Recall that an MSP is multiplicative if the parties can perform local computations to obtain an additive sharing of the product of two secrets, and that replicated secret-sharing is always multiplicative if the access structure is Q_2.

The heart of the \cite{32} protocol – the only part requiring communication – is simply an efficient method of turning an additive sharing back into a replicated sharing. This is achieved by finding a map f which maps shares to parties: each party P_i is in charge of some set of replicated shares S_i defined by f, so to convert from an additive share, party P_i additively splits his share into $|S_i|$ pieces and treats them as replicated shares (after blinding with a pseudo-random zero-sharing – see Figure 8) that need to be distributed; these shares are then sent to the players who are supposed to hold them. This obviates the need for each player to reshare their additive share in the usual way – i.e. by acting as the dealer in the sharing protocol – so that the parties can add all reshares together to obtain a sharing of the product.

The obvious way to obtain Beaver triples for any Q_2 access structure, then, would be to use \cite{32} to generate replicated shares and then convert using \cite{17} – the third method outlined at the beginning of this section. Our generalisation can be viewed as converting the additive share into a share in the desired LSSS before transmitting the shares. The protocol is a little more nuanced to ensure privacy of the shares, but this is the general idea.

An optimisation to the plain \cite{32} protocol is for each party to designate some $s^* \in S_i$ as the one which will be communicated, and for all other shares $s \in S_i \setminus \{s^*\}$ to be computed as $s := F_{\kappa_s}(\text{count})$ where κ_s is a key known to all parties who are supposed to hold the share s; then party P_i with share x_i computes the special share as $s^* := x_i - \sum_{s \in S_i \setminus \{s^*\}} F_{\kappa_s}(\text{count})$ and sends this to the parties who are supposed to hold share s^*. This significantly reduces the communication cost.

6.2 New Offline Protocol

First we provide an algorithm, Figure 6, that, given an MSP provided by the user, transforms the the MSP into a new MSP which realises the same LSSS but has properties amenable to be used in an efficient share-conversion procedure. Then
we provide a protocol, Figure 7, which shows how to use this MSP to convert
additive shares into shares in the LSSS in a communication-efficient manner.
One way of viewing our protocol is simply as an efficient computationally-secure
resharing method optimised for resharing additive (i.e. full-threshold) shares.

Algorithm for computing a “good” MSP

The input is the multiplicative MSP $\mathcal{M} = (\mathbb{F}, M, \varepsilon, \psi)$, where we assume M has d
columns and rank d. The output is a map $\chi : [n] \rightarrow [d]$ of party indices to columns,
and a new MSP.

1. Perform column operations on M of \mathcal{M} and the same on ε to obtain an MSP
\mathcal{M}' with the same ψ and \mathbb{F} but with matrix M' and target vector ε' such that
all of the standard basis vectors in \mathbb{F}^d, $\{e_k\}_{k=1}^d \subseteq \mathbb{F}^d$, appear as rows of M'.

2. Define the map $\chi : [n] \rightarrow [d]$ in the following way, making choices so that $\text{im}(\chi)$
is as large as possible:
 - If P_i owns a row which is a standard basis vector e^k, and $\varepsilon_k \neq 0$, then set
 $\chi(i) := k$;
 - If P_i does not own such a row, assign P_i any column k in which P_i owns a
 row j such that $M_j[k] \neq 0$ and $\varepsilon_k \neq 0$;
 - If no such column exists, find any row j (not necessarily owned by P_i), and
 any column k such that $M_j[k] \neq 0$ and $\varepsilon_k \neq 0$ and set $\chi(i) = k$.

3. Output χ and \mathcal{M}'.

Figure 6. Algorithm for computing a “good” MSP

Correctness of Transformation Algorithm Any MSP can be converted to
another equivalent MSP computing the same access structure by performing
column operations on the matrix M [4]. This (potentially) changes the target
vector, but share vectors in an LSSS are merely vectors in the column-space of
the generating matrix M, so in fact share vectors under the altered scheme are
equally-well viewed as share vectors under the original scheme: one can think
of the difference as choosing different randomness vectors to generate the share
vector. Note also that column operations do not change the multiplicativity of
the LSSS since it merely represents a change of basis for the space of share vectors.\footnote{In brief, the proof of this fact involves computing the pair-wise tensor of each row
with each other row held by a given party and checking that the target vector
tensoed with itself is in the span of the resulting tensored vectors; the point is that
by tensoring the matrices corresponding to the column operations and applying these
to the tensored vectors will not change the rank of the span of the tensored rows.}

In particular, it is always possible for the matrix M with d columns and rank d
to be reduced via column operations so that all of the standard basis vectors
\(\{ e^k \}_{i=1}^d \) appear in the rows of \(M \). The map \(\chi \) is well-defined since we assume the matrix and target vector are non-zero.

Correctness of \(\Pi_{\text{Convert}} \) **We discuss when the protocol aborts in detail in the proof of security, Appendix B** here we just consider correctness of the conversion procedure.

Subprotocol \(\Pi_{\text{Convert}} \) **converting additive shares to shares in the LSSS**

At this point in the protocol, the parties have an additive sharing \(\langle x \rangle \), where \(P_i \) holds \(x_i \), and will convert it to a sharing under the current MSP \((F, M, \varepsilon, \psi)\) (output by the conversion algorithm).

1. The parties call \(F_{\text{Rand}} \) with the command \((\text{PRZS, count}, P)\) to obtain a PRZS amongst them, denoted hereafter by \((t^i)\).
2. Each \(P_i \) splits \(x_i + t_i^i \) as \(x_i + t_i^i = \sum_{k \in K_i \cap S_x} x_{i,k} \) where \(K_i := \{(\chi(P_i)) \cup ([d] \setminus \text{im}(\chi))\} \) and \(S_x \) is the support of \(\varepsilon \).
3. Each \(P_i \) samples \(\tau_{i,k} \leftarrow F \) for each \(k \in K_i \setminus S_x \).
4. For each row \(j \) which is not a standard basis vector, the parties do the following:
 (a) The parties call \(F_{\text{Rand}} \) with the command \((\text{PRZS, count}, P)\) to obtain a PRZS amongst them, denoted hereafter by \((t^i)\).
 (b) Each \(P_i \) computes
 \[
 a_i^j := \left(\sum_{k \in K_i \cap S_x} M_j[k] \cdot x_{i,k} / \varepsilon_k \right) + \left(\sum_{k \in K_i \setminus S_x} M_j[k] \cdot \tau_{i,k} \right) + t_i^j,
 \]
 where \(M_j[k] \) denotes the \(k \)th element of row \(j \).
 (c) Party \(P_i \) sends \(a_i^j \) to party \(\psi(j) \).
 (d) Party \(\psi(j) \) computes \(s_j := \sum_{i=1}^n a_i^j \).
5. For each row \(j \) which is a standard basis vector: let \(k \) be the column in which the vector is non-zero; then the parties do the following:
 (a) Let \(X = \{ P_i \in P : k \in K_i \} \); then parties in \(X \) call \(F_{\text{Rand}} \) with the command \((\text{PRZS, count}, X)\) to obtain a PRZS \((t^i)\).
 (b) Each party \(P_i \in X \) masks their secret \(s \in \{ x_{i,k} / \varepsilon_k, \tau_{i,k} \} \) for this column, by computing,
 \[
 a_i^j := M_j[k] \cdot s / \varepsilon_k + t_i^j,
 \]
 and then sends \(a_i^j \) to party \(\psi(j) \) (or retains it if \(\psi(j) = P_i \)). (Note that we always have \(M_j[k] = 1 \) in this case.)
 (c) Party \(\psi(j) \) sets \(s_j := \sum_{P_i \in X} a_i^j \).

Figure 7. Subprotocol \(\Pi_{\text{Convert}} \) **converting additive shares to shares in the LSSS**

So far, for consistency with the literature, we have denoted by \(\psi \) the map from rows of \(M \) to parties in \(P \). For clean notation, we now define \(\rho : [m] \rightarrow [n] \) by the following: for all \(j \in [m] \), \(\rho(j) := i \) if and only if \(\psi(j) = P_i \). Thus \(\psi(j) = P_{\rho(j)} \).
The goal is to reshare the additively-shared \(x \), which we denote by \(\langle x \rangle \) where party \(P_i \) holds \(x_i \) and \(\sum_{i=1}^{n} x_i = x \), under the LSSS. To do this, the parties essentially distribute an additive sharing of a share-vector sharing the sum. In more detail, each party \(P_i \) first adds on its share \(t_i^0 \) of a PRZS \(\langle t^0 \rangle \) — that is, a sharing where \(P_i \) holds \(t_i \) where \(\sum_{i=1}^{n} t_i = 0 \) — onto its share \(x_i \) and then samples a set \{ \(x_{i,k} \) \} \(k \in K_i \cap S_x \) where \(K_i := \{ \chi(i) \} \cup ([d] \setminus \text{im}(\chi)) \) and \(S_x \) is the support of \(\varepsilon \), such that \(x_i + t_i^0 = \sum_{k \in K_i \cap S_x} x_{i,k} \). In other words, \(x_i + t_i^0 \) is reshared into as many pieces as there are unassigned columns, plus one for the column assigned by \(\chi \), and except where \(\varepsilon_k = 0 \). Then for each \(k \in K_i \cap S_x \), \(P_i \) chooses its contribution to the \(k \)th co-ordinate of a randomness vector \(\mathbf{x} \) to be \(x_{i,k}/\varepsilon_k \). For columns where \(\varepsilon_k = 0 \) for some \(k \in [d] \), each party will sample some randomness \(r_{i,k} \leftarrow \mathbb{F} \) as their contribution to the \(k \)th co-ordinate \(\mathbf{x}_k \) of the randomness vector \(\mathbf{x} \). This is because this part of the randomness vector will be cancelled out upon reconstruction, and as such the parties cannot pack part of their summand \(x_i \) in this column. Note that the definition of \(\chi \) precludes any party from being mapped to a column \(k \) where \(\varepsilon_k = 0 \), so these columns necessarily lie in \([d] \setminus \text{im}(\chi)\).

Defining \(\mathbf{x} \) in this way means that overall (i.e. after all parties have done the above) we have

\[
\begin{align*}
\langle \mathbf{x}, \varepsilon \rangle &= \sum_{k \in \text{im}(\chi)} \mathbf{x}_k \cdot \varepsilon_k + \sum_{k \in ([d] \setminus \text{im}(\chi)) \cap S_x} \mathbf{x}_k \cdot \varepsilon_k + \sum_{k \in ([d] \setminus \text{im}(\chi)) \setminus S_x} \mathbf{x}_k \cdot \varepsilon_k \\
&= \sum_{k \in \text{im}(\chi)} \sum_{i \in \chi^{-1}(\{k\})} (x_{i,k}/\varepsilon_k) \cdot \varepsilon_k + \sum_{k \in ([d] \setminus \text{im}(\chi)) \cap S_x} \mathbf{x}_k \cdot \varepsilon_k + \sum_{k \in ([d] \setminus \text{im}(\chi)) \setminus S_x} \mathbf{x}_k \cdot \varepsilon_k \\
&= \sum_{i=1}^{n} (x_{i,\chi(i)}/\varepsilon_{\chi(i)}) \cdot \varepsilon_{\chi(i)} + \sum_{i=1}^{n} \sum_{k \in ([d] \setminus \text{im}(\chi)) \cap S_x} (x_{i,k}/\varepsilon_k) \cdot \varepsilon_k \\
&= \sum_{i=1}^{n} \left(x_{i,\chi(i)} + \sum_{k \in ([d] \setminus \text{im}(\chi)) \cap S_x} x_{i,k} \right) = \sum_{i=1}^{n} \sum_{k \in K_i \cap S_x} x_{i,k} = \sum_{i=1}^{n} x_i = x,
\end{align*}
\]

i.e. the share vector where \(\mathbf{x} \) is the randomness vector shares the secret \(x = \sum_{i=1}^{n} x_i \).

We will now discuss in more detail how the shares of the share vector with randomness vector defined as above are distributed amongst the parties. Each share is then computed in one of two different ways.
– For each row of the matrix which is not a standard basis vector, the parties each compute

\[a^j_i := \left(\sum_{k \in K_i \cap S_x} M_j[k] \cdot x_{i,k} / \varepsilon_k \right) + \left(\sum_{k \in K_i \setminus S_x} M_j[k] \cdot r_{i,k} \right) + t^j_i \]

where \langle t_j \rangle is an \(n \)-party PRZS; the recipient simply sums all incoming share and adds its own contribution computed in the same way. Thus the party obtains:

\[\sum_{i=1}^n a^j_i = \sum_{i=1}^n \left(\left(\sum_{k \in K_i \cap S_x} M_j[k] \cdot x_{i,k} / \varepsilon_k \right) + \left(\sum_{k \in K_i \setminus S_x} M_j[k] \cdot r_{i,k} \right) \right) + \sum_{i=1}^n t^j_i \]

\[= \sum_{k \in \text{im}(\chi)} \left(\sum_{i \in \chi^{-1}(\{k\})} M_j[k] \cdot x_{i,k} / \varepsilon_k \right) + \sum_{k \in ([d] \setminus \text{im}(\chi)) \setminus S_x} \left(\sum_{i=1}^n M_j[k] \cdot x_{i,k} / \varepsilon_k \right) + \sum_{k \in ([d] \setminus \text{im}(\chi)) \setminus S_x} \left(\sum_{i=1}^n M_j[k] \cdot r_{i,k} \right) \]

\[= \sum_{k=1}^d M_j[k] \cdot x_k = \langle M_j, x \rangle. \]

– For each row \(j \) which is a standard basis vector, the parties do the following: let \(k \) be the column index of the non-zero entry of the row; then the parties in \(P_i \) with \(k \in K_i \) retrieve a PRZS amongst them and send their contribution \(s_{i,k} \in \{ x_{i,k} / \varepsilon, r_{i,k} \} \) to party \(\psi(j) \):

\[a^j_i := M_j[k] \cdot s_{i,k} + t^j_i \]

where here \(M_j[k] = 1 \). Note that if it holds for some party \(P_i \) that \(K_i \supseteq K_j \) for some \(j \neq i \) then \(P_i \) will potentially be able to compute the value of \(x_j + t^j_j \); this is one reason for the necessity of the reason for adding the \(n \)-party PRZS. The recipient again simply sums all values received.

PRZSs/PRSSs The functionality is given in Figure 8. We do not provide the protocol here as it is given in [32], but we note that we may trivially extend the protocol there to allow the generation of PRZSs for any subset of parties if we
The Functionality $\mathcal{F}_{\text{Rand}}$

PRZS:
- On input $(PRZS, \text{count}, S)$ from all parties in a set $S \subseteq P$, if the counter value is the same for all parties and has not been used before, the functionality arbitrarily chooses some P_i^*, and then for each party P_i in $S \setminus \{P_i^*\}$ samples $t_i \leftarrow \mathcal{F}$ uniformly at random, fixes $t_i^* := -\sum_{i \in S \setminus \{P_i^*\}} t_i$ and sends t_i to party P_i for each $i \in S \setminus \{P_i^*\}$ and t_i^* to P_i^*.

PRSS:
- On input $(PRSS, \text{count})$ from all parties, if the counter value is the same for all parties and has not been used before, the functionality samples a set $\{r_B\}_{B \in \mathcal{B}} \leftarrow \mathcal{F}$ and for each $B \in \mathcal{B}$ sends r_B to all $i \in B$.

Rand
- On input $(Rand, \text{count})$ from all parties, if the counter value is the same for all parties and has not been used before, the functionality samples $r \leftarrow \mathcal{F}$ and sends it to all parties.

Our extension by the procedure Rand is possible if we assume the existence of random oracles; this is required for the sacrifice step.

6.3 Full Pre-processing Protocol

Our conversion procedure replaces the conversion of the triple-generation protocol of [32]; for the sake of completeness and to show how it interfaces with our more specialised opening protocol Π_{Opening}, in Figure 9 we provide the full protocol. In summary, the protocol generates Beaver triples in an actively-secure manner assuming black-box access to a functionality generating additive sharings of zero and of random secrets. Active security is obtained by doing a multiplication passively and then employing the standard technique of sacrificing. Extending the protocol to produce other forms of pre-processing (such as shared bits – see [21] for details) is trivial and therefore omitted.

Proposition 2. For a Q_2 access structure, the protocol $(\Pi_{\text{Prep}} || \Pi_{\text{Opening}})$ (Figure 9) securely implements $\mathcal{F}_{\text{Prep}}$ (Figure 4) in the $\mathcal{F}_{\text{Rand}}$-hybrid model.
Protocol Π_{Prep}

Pre-processing for any LSSS computing a Q_2 access structure. It takes in a parameter N_T for the number of triples, and then the parties do the following:

1. Initialise a global counter count and agree on some sharing u of the value 1.
2. For i from 1 to N_T, do the following:
 (a) Call F_{Rand} with input $(\text{PRSS}, \text{count})$ four times, incrementing count after each call, to obtain additively-shared secrets a^i, b^i, x^i and y^i.
 (b) Each party performs local computations on its shares so that together they obtain an additive sharing of the product of a^i and b^i, and then do similarly with x^i and y^i.
 (c) Run the subprotocol Π_{Convert} to obtain a sharing c^i sharing the secret $a^i \cdot b^i$ and a sharing z^i sharing the secret $x^i \cdot y^i$.
3. Now sacrifice: for i from 1 to N_T, do the following:
 (a) Call F_{Rand} with input $(\text{Rand}, \text{count})$ to obtain r^i, increment count, and run $\Pi_{\text{Opening, OpenTo}}(0)$ on $r^i x^i - a^i$ and $y^i - b^i$.
 (b) Locally compute
 \[t^i := r^i z^i - (y^i - b^i) a^i - (r^i x^i - a^i) b^i - c^i - (r^i x^i - a^i)(y^i - b^i) u. \]
 (c) Run $\Pi_{\text{Opening, OpenTo}}(0)$ on t^i to obtain t^i.
4. Run $\Pi_{\text{Opening, Verify}}$.
5. If $t^i = 0$ for all i, locally output the triples $(a^i, b^i, c^i)_{i=1}^{N_T}$.

Figure 9. Protocol Π_{Prep}

6.4 Costs

To make some asymptotic comparisons with previous Beaver-triple generation methods, we now consider two informative examples. The first is the (n, t)-threshold, and the second is the example given in [32]:

\[\Delta^+ = \{ \{2, 5, 6\}, \{3, 5, 6\}, \{4, 5, 6\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \} \]

In Appendix E, we use this access structure to establish a directly comparable cost between using Maurer’s protocol [33], the offline phase of [32], and our new offline phase. The communication costs are summarised in Table 1. The power of our new protocol is that it works for any LSSS whereas [32] works only for replicated secret-sharing. Thus in the third column of the table, m is always exponential in n for [32], whereas it may be linear in n for our protocol. Hence, there can be instances where our protocol beats that of [32]. Note that the costs for our protocol are only a rough guide, since the exact protocol depends on which MSP and access structure is being used.

Channels We note that an additional goal of [32] was to reduce the number of communication channels required to perform MPC. Indeed, our protocol uses a
Protocol	# elements sent per passive mult. before sacrifice
Threshold | Example | General
---|---|---
33 | $n \cdot (n - 1)$ | 75 | $m \cdot (n - 1)$
32 | $\binom{n}{2} \cdot (n - t - 1)$ | 30 | $m - d$
Optimised 32 | $n \cdot (n - t - 1)$ | 15 | $n \cdot (d - n)$
Ours | $n \cdot (n - t - 1)$ | 36 | $(m - d) \cdot (n - 1) + (n - d)$

Table 1. A comparison of communication cost in terms of number of field elements for the passive multiplication used in the offline phase to generate Beaver triples, before sacrifice is performed. In 33’s and our protocol, the first column assumes Shamir’s secret-sharing is used, and the second column assumes the MSP from Appendix E is used, whereas 32 (necessarily) uses the standard replicated MSP for both. The bottom-right entry becomes $(m - d) \cdot (n - 1) + n \cdot (d - n)$ if $d > n$.

Another big advantage of not using replicated sharing is that opening secrets is more efficient. Indeed, our analysis shows that by using the MSP in Appendix E for the example used in 32, opening a secret in our protocol requires sending 19 elements over 12 authenticated channels, compared with 25 elements over 12 authenticated channels using replicated, as in 32. (We remark that their work claims a cost of 19 channels, but making different choices results in this reduced number of channels.) This induces a significant improvement in the online phase, in which the only communication during actual circuit evaluation (i.e. after input is provided) is the opening of two secrets for each multiplication gate.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and

References

A Standard Linear Secret-Sharing Schemes

In order to aid the reader, in this appendix we outline some examples of standard Linear Secret Sharing Schemes that we refer to in the main text. For each, we point out how the schemes relate to the notions in our paper in terms of error-detection. The three schemes we select are Shamir, Replicated and DNF-based sharing; the latter is sometimes referred to as ISN sharing. Replicated and DNF-based sharing can be derived from the conjunctive and disjunctive normal forms of the Boolean formulae describing their access structures, respectively. Every \(\text{OR}(A, B) \) in the formulae denotes that the parties in \(A \) and \(B \) get the current share; and every \(\text{AND}(A, B) \) denotes that the current share is additively shared between \(A \) and \(B \). Proofs of correctness are omitted: the interested reader may refer to [28,38].

A.1 Shamir Sharing

<table>
<thead>
<tr>
<th>Shamir Sharing (\Pi_{\text{Shamir}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>The access structure is ((n, t))-threshold.</td>
</tr>
</tbody>
</table>

Input: For party \(P_i \) to provide input \(s \), it does the following:
1. Sample an irreducible polynomial \(f \in \mathbb{F}[X] \) of degree \(t \) subject to \(f(0) = s \).
2. For each \(P_j \in \mathcal{P} \setminus \{ P_i \} \), give party \(P_i \) the value \(f(i) \).

Open: For a qualified set of parties \(Q \) to open a secret \(s \),
1. Each party \(P_i \in Q \) broadcasts their share \(f(i) \) to all other parties in \(Q \).
2. Each party uses Lagrange interpolation to compute \(f(0) \).

ALF: To compute an affine function \(L(s^1, \ldots, s^k) + a \) where \(L \) is a linear function, \(a \) a public constant, and \(\{s^1, \ldots, s^k\} \) a set of secrets, each party computes \(L(f_{s^1}(i), \ldots, f_{s^k}(i)) + a \).

Figure 10. Shamir Sharing \(\Pi_{\text{Shamir}} \)

We now give examples of Shamir sharing to make ideas more concrete.
Shamir, (3, 1)-threshold Consider Shamir’s secret-sharing scheme for a (3, 1)-threshold access structure and for simplicity assume that P_i receives $f(i)$. The MSP matrix is a Vandermonde matrix. We write it below with the row-map ψ on the left:

$$M = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

The target vector in this case is $\epsilon = e^1 = (1, 0) \top \in \mathbb{F}^2$. Let N be the cokernel of M, for some choice of basis; one possible choice is:

$$N = (1\ -2\ 1).$$

There are no share vectors with unqualified support, since such a share vector corresponds to a polynomial of degree t with $t + 1$ zeros, which cannot exist. Hence, by linearity, the adversary cannot change the share vector so that the resulting vector is still a valid share vector. This is consistent with our lemmata since the access structure is Q_2.

Shamir, (4, 1)-threshold Now we do the same for (4, 1)-threshold. We have

$$M = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$

and a possible parity-check matrix

$$N = \begin{pmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{pmatrix}.$$

A.2 Replicated Sharing

Again we give some basic examples.

Replicated, (3, 1)-threshold Consider the replicated secret-sharing for the (3, 1)-threshold access structure. One choice of MSP matrix is:

$$M = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
Replicated Sharing $Π_{\text{Replicated}}$

Let $B := \{B \in 2^P : P \setminus B \in \Delta^+\}$.

Input: For party P_i to provide input s, it does the following:
1. Sample a set $\{s_B\}_{B \in B} \leftarrow \mathbb{F}$ subject to $\sum_{B \in B} s_B = s$.
2. For each $B \in B$, give s_B to all $i \in B$.

Open: For a qualified set of parties Q to open a secret s,
1. A qualified set Q of parties together has all shares, i.e. the set $\{s_B\}_{B \in B}$. For each $B \in B$, if $P_j \in Q$ and $P_j \not\in B$ then all parties $P_i \in B$ send s_B to party P_j.
2. Each party computes $s = \sum_{B \in B} s_B$.

ALF: To compute an affine linear function $L(s^1, \ldots, s^k) + a$ where L is a linear function, a a public constant, and $\{s^1, \ldots, s^k\}$ a set of secrets, each $P_i \in P$, for each $B \in B$ where $B \ni P_i$, computes the output as $s_B := L(s^1_B, \ldots, s^k_B)$, and then for some $B \in B$, every $P_i \in B$ sets the share s_B as $s_B := L(s^1_B, \ldots, s^k_B) + a$.

Figure 11. Replicated Sharing $Π_{\text{Replicated}}$

where the numbers to the left of the matrix indicate which party owns each row (i.e. they indicate the map ψ). The target vector is $\mathbf{e}^1 = (1, 0, 0, 0, 1, 1) \top \in \mathbb{F}^3$. Let N be the cokernel of M, for some choice of basis; one possible choice is:

$$N = \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1
\end{pmatrix}.$$

As with Shamir’s secret-sharing, there are no share vectors with unqualified support: if $N \cdot t = \mathbf{0}$, then t is of the form $(t_1, t_1, t_2, t_2, t_3, t_3) \top$ where $t_i \in \mathbb{F}$; however, the image under ψ of the support of an error with this form (for which the encoded secret is non-zero) is necessarily qualified (e.g. $t = (0, 0, 0, 0, 1, 1) \top$ has support $\{1, 3\}$, which is qualified). Thus the adversary cannot change the share vector so that the new shares encode the same secret, let alone changing the share so that it shares a different secret, without the resulting vector not being in $\text{im}(M)$.

A.3 DNF-based Sharing

Here we choose a little more exotic an example. Consider the Q_2 access structure given by (where we are just writing party indices, for clarity):

$$\Gamma^- = \{\{4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$$

$$\Delta^+ = \{\{1\}, \{2\}, \{3\}\}.$$
DNF Sharing Π_{DNF}

Input: For party P_i to provide input s, it does the following:
1. For each $Q \in \Gamma^{-}$, sample $\{s_Q^j\}_{P_i \in Q} \xleftarrow{\$} \mathbb{F}$ subject to $\sum_{P_i \in Q} s_Q^j = s$.
2. For each $Q \in \Gamma^{-}$, for each $P_j \in Q$, give s_Q^j to P_j.

Open: For a qualified set of parties Q to open a secret s,
1. A qualified set Q of parties has all shares in the set $\{s_Q^j\}_{P_i \in Q}$. Each party $P_i \in Q$ broadcasts their share s_Q^j to all other parties in Q.
2. Each party in Q computes $s = \sum_{P_i \in Q} s_Q^j$.

ALF: For notational simplicity, we describe how to compute the affine linear function $L(x, y) = \alpha x + \beta y + \gamma$ where $\alpha, \beta \in \mathbb{F}$ define a linear function on secrets x and y, and $\gamma \in \mathbb{F}$ is a public constant.
Each $P_i \in \mathcal{P}$, for each $Q \in \Gamma^+$ where $Q \ni P_i$, computes $z_Q^i := \alpha x_Q^i + \beta y_Q^i$. The public constant γ must be added to each of the $|\Gamma^-|$ sharings, so for each $Q \in \Gamma^-$ the parties decide on some $P_i \in Q$ to modify z_Q^i to be $z_Q^i := z_Q^i + \gamma$.

Figure 12. DNF Sharing Π_{DNF}

One choice of MSP matrix is:

$$
M = \begin{pmatrix}
P_4 & 1 & 0 & 0 & 0 \\
P_1 & 1 & -1 & 0 & 0 \\
P_2 & 0 & 1 & 0 & 0 \\
P_1 & 1 & 0 & -1 & 0 \\
P_3 & 0 & 0 & 1 & 0 \\
P_2 & 1 & 0 & 0 & -1 \\
P_3 & 0 & 0 & 0 & 1
\end{pmatrix}.
$$

The target vector in this case is $\mathbf{e} = \mathbf{e}^1 = (1, 0, 0, 0)^\top \in \mathbb{F}^4$. Let N be the cokernel of M, for some choice of basis; one possible choice is:

$$
N = \begin{pmatrix}
1 & -1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 & -1
\end{pmatrix}.
$$

As with the Q_2 Shamir and Replicated secret sharing examples, there are no share vectors with unqualified support. This is because any share vector must contain the secret in the first component, which automatically makes its support qualified since $\psi(1) = \{P_4\}$, which is qualified.
B Proofs

B.1 Proof of Proposition 1

Following standard proofs in the UC model, we provide a simulator in Figure 13, Figure 14 and Figure 15 and will argue that no environment, which provides input and output to all parties, and additionally decides on all action and views all internal behaviour of the adversary, can distinguish between the world in which the simulator provides a transcript running the adversary as a subroutine and interacting with F_{MPC} given in Figure 3, and a hybrid world in which the honest parties and adversary instead interact in a protocol execution given in Figure 2 and Figure 5 where in this hybrid world the existence of F_{Prep} given in Figure 4 is assumed. Before we give the formal indistinguishability argument, we make a couple of remarks on the proof and simulation.

Correctness of Simulation The majority of the simulation merely involves running the protocol honestly with the adversary, extracting inputs, and faking inputs of honest parties; we briefly provide some remarks.

Initialise: Note that F_{MPC} must even allow the adversary to abort during the initialisation since the F_{Prep} protocol allows the adversary to abort. Agreement of the sharing of 1 can be done in different ways and is not particularly interesting for our protocol; for example, one party can generate a random sharing of 1 and broadcast it; the parties can then update the hash function with the sharing they observed to ensure (after running $H_{\text{MPC,Verify}}$) that all parties receive the same vector. It is for this reason that the details are omitted from the protocol description.

When opening the random mask r which will be an input mask, the functionality must allow a message from the adversary to abort or continue because in the simulation the adversary can cause an abort during $H_{\text{Opening, OpenTo}}$. Recall, however, that the adversary can either cause an abort, or the party providing input necessarily computes the correct mask r, by Lemma 1 in particular, then, the adversary cannot cause the (honest) party to use an incorrect value instead of r. Note also that if the party providing input is corrupt and sends different values of ϵ to different honest players (emulated by the simulator), the flag Abort is not set as true because the protocol is supposed to continue; however, the hashes are computed by the simulator exactly as they would be in the real world, and hence the protocol will abort if the adversary behaves in this manner.

LSSSs admitting non-trivial sharings of 0 We highlight this part of the proof since it is important for understanding why simulation is possible even though for some LSSSs the adversary can cause different parties to reconstruct different share vectors which share the same secret.
Note that if the LSSS admits non-trivial sharings of the secret 0, the adversary could open a secret to different honest parties by making them reconstruct different share vectors, even though the secret must be the same because of the inherent error-detection in the MSP. In this case, the honest parties in the protocol will abort before output is given by Lemma 3, even though the output will be correct, since the hashes will differ with overwhelming probability in the computational security parameter. In other words, in this case the protocol aborts sometimes even when no error has been introduced; what matters is that the protocol never succeeds when an error has been introduced, and that in either of these cases the simulation matches the real-world protocol. This was discussed in Section 4.

Indistinguishability

Proof. Following standard practice, we provide a sequence of hybrid executions between the real-world and ideal-world executions, prove that each hybrid is indistinguishable from the next, and conclude that the first and last executions are indistinguishable.

Hybrid 0: This is the hybrid world in which the adversary and simulator run the protocol and the simulator additionally responds to all calls to F_{Prep}. Here the simulator uses the actual inputs of honest parties. Using knowledge of the mask from internally running F_{Rand}, the simulator extracts input of the adversary from the broadcast and passes it to F_{MPC}, which interacts with honest parties with their inputs from the environment. Whatever the behaviour of the adversary, the simulator continues the protocol honestly, and sends the message to F_{MPC} to abort if an honest party or the adversary in the protocol would signal abort.

Hybrid 1: Same as Hybrid 0, but the simulator additionally stores errors for each sharing, as induced by the adversary during calls to $\Pi_{\text{Opening.Broadcast}}$ and $\Pi_{\text{Opening.OpenTo}}$. Then, during calls to $\Pi_{\text{MPC.Add}}$, the simulator add errors in the obvious way, and in $\Pi_{\text{MPC.Multiply}}$ replace opening of vectors $s - a$ and $s' - b$ in Multiply with share vectors $\rho + \delta^{(s)}$ and $\sigma + \delta^{(s')}$ sharing uniform secrets, but which agree with the shares held by the adversary on $s_A - a_A$ and $s'_A - b_A$ respectively. See the appropriate procedures in \mathcal{S}_{MPC} in Figure 13 for details.

Hybrid 2: Same as Hybrid 1 but the simulator replaces the broadcast of $\epsilon = s - r$ for honest parties’ actual inputs s, and r from F_{Prep}, with uniformly randomly sampled inputs instead (or equivalently sample and broadcast a uniform ϵ). Note that in the previous hybrid we removed the dependence on the inputs of honest parties of the transcript during $\Pi_{\text{MPC.Multiply}}$. The only remaining place to remove the dependence is during output. To do this, the simulator stores all share vectors output from F_{Prep}, and executes the entire remainder of Π_{MPC} (after the alterations in Input) just as honest parties would, except for output, in which the simulator generates new shares derived from the output of the functionality F_{MPC} and the internally-run
\(\mathcal{F}_{\text{Prep}} \) and passes these to the adversary during the call to \text{OutputTo} (detailed in Figure 15). The simulator sends the message to \(\mathcal{F}_{\text{MPC}} \) to abort if an honest party or the adversary in the protocol would signal abort.

Hybrid 0 \rightarrow Hybrid 1 Hybrid 0 produces the same transcript for the adversary as would be generated in the protocol execution since at this point we give the simulator the actual inputs of honest parties, and the simulator uses the honest parties’ inputs to perform the protocol honestly. Observe that any errors induced on share vectors by acting maliciously in \(\Pi_{\text{Opening}}, \text{Broadcast} \) or \(\Pi_{\text{Opening}}, \text{OpenTo} \) will (possibly) be observed by the adversary in the procedure \(\Pi_{\text{MPC}}, \text{Multiply} \), since the honest parties will not necessarily have aborted by this point; of course, the protocol will still abort in \(\Pi_{\text{MPC}}, \text{OutputTo} \), but the simulation of the protocol must continue until this is called, since honest parties in the real (hybrid) world would also continue. Moreover, note that \(\Pi_{\text{MPC}}, \text{Multiply} \) is the only place errors are (possibly) observable by the adversary. Therefore, to replace the secrets opened in \(\Pi_{\text{MPC}}, \text{Multiply} \) with uniform secrets, which we want to do as then they are trivially independent of the honest parties’ inputs, the simulator must keep track of the errors introduced by the adversary throughout and ensure those errors are observed during the calls to \(\Pi_{\text{Opening}}, \text{OpenTo} \) of \(\Pi_{\text{MPC}}, \text{Multiply} \). By “observed”, we mean that the same sets of honest and/or corrupt parties will fail to reconstruct and consequently request that the protocol abort. (Note that this set of parties is somewhat governed by the function \(q \) since this defines how shares are reconstructed (before verification), but we are not claiming any secrecy on this function.) Since the simulator is able to extract these errors and maintain them through the computation (see Figure 14, Figure 15), the adversary will observe the same set of parties failing or succeeding in \(\Pi_{\text{Opening}}, \text{OpenTo} \) as if the protocol were followed honestly. Note that the errors \(\delta \) computed by the simulator will be (subvectors of) sharings of zero if the adversary behaves honestly with the inputs provided by the simulator.

More concretely, consider \text{Input} for corrupt parties’ inputs: the simulator needs to maintain a record of the corrupt shares by computing \(s_{\{P_j\}} := \epsilon_j \cdot u_{\{P_j\}} + r_{\{P_j\}} \) for each honest \(P_j \), where \(\epsilon_j \) is what the adversary sent to honest \(P_j \), not necessarily the same to all honest parties since we only assume pair-wise secure channels. Observe that if the adversary behaves dishonestly and sends a different \(\epsilon \) to the simulator for some honest party, then the hashes will differ in \text{Verify} later on; otherwise, the adversary behaves honestly and the simulator is able to extract the well-defined input of the adversary as \(s := \epsilon + r \) and forward it to the functionality \(\mathcal{F}_{\text{MPC}} \) because the mask \(r \) was provided by \(\mathcal{F}_{\text{Prep}} \), which the simulator ran internally, and forwarded it to the adversary during \text{Initialise}.

Note also that maintaining a list of these errors allows the simulator to evaluate the hash function used in \text{Verify} identically to how honest parties would in the protocol.

Finally, note that the replacement secrets the simulator uses during multiplication were sampled uniformly, so the contribution to the distributions is the same between the hybrids because:
1. The secrets a and b in the triple are never revealed, so the secrets $s - a$ and $s' - b$ are computationally indistinguishable from uniform since a and b are pseudo-randomly generated.

2. The errors induced by the adversary during calls to Π_{Opening}, $\Pi_{\text{Broadcast}}$ and Π_{Opening}. Π_{OpenTo} were carried through.

Hybrid 1 \rightarrow Hybrid 2 Since r is generated from pre-processing and the encoded secret r is uniform and unknown to the adversary, the broadcasted value ϵ masks the input of honest parties computationally since r is only generated as a pseudo-random secret. Indeed, note that every call to Π_{Opening}. Π_{OpenTo} is of sharings encoding uniformly random secrets, and that when Π_{Opening}. $\Pi_{\text{Broadcast}}$ is called when honest parties are to provide inputs, the broadcasted value is also uniform. Thus the transcript reveals nothing about the inputs of honest parties, and in particular (computationally) hides the fact that the simulator samples honest parties’ inputs during S_{MPC}. Input in Hybrid 2.

Moreover, the simulator is able to create a convincing output vector which shares the secret output by the functionality because a set of unqualified parties learns no information about the secret from the shares they hold. Note that some generalised forms of secret-sharing do not offer such guarantees: see, for example, ramp schemes [10] in which some sets of parties are neither unqualified nor qualified and are allowed to learn something about the secret. If the set of shares revealed something about the secret (say, for example, that the sampled secret lay in a strict subset of the domain) then if the functionality later outputs a secret not in this domain, the simulator cannot necessarily provide a set of shares which convincingly opens to the actual input (and not the sampled secret). Since this does not happen, the inputs and outputs of all parties are the same, the transcript is independent of the input, and the parties abort with the same distributions in both worlds.

Since each pair of hybrids is indistinguishable (computationally or better), by the triangle inequality applied to the success probabilities adversary in distinguishing between each pair, the F_{Prep}-hybrid world and the ideal world are computationally indistinguishable. □

B.2 Proof of Proposition 2

We will first briefly justify the correctness of the protocol in the sense that it will always abort if the adversary cheats. Note that our protocol allows any party to alter the encoded secrets simply by changing their beginning summand x_i; sacrificing is used to ensure that this does not happen. Let the error the adversary introduces be δ.

1. If $N\delta \neq 0$ then the adversary has introduced errors so that the resulting vector is not a valid sharing of any secret in the LSSS. An error of this form will cause honest parties construct different but valid share vectors when opening shares during sacrifice. Such an error is moreover not detected during the sacrifice stage, during Π_{Opening}. $\Pi_{\text{OpenTo}}(0)$, if and only if the adversary
manages to cancel the error in the other triple used during sacrifice: i.e. if the adversary manages to introduce errors \(\delta_{a,b} \) and \(\delta_{x,y} \) on \(c \) and \(z \), and errors when broadcasting for the sacrifice check so that the vector defined by

\[
\mathbf{r} \cdot \delta_{x,y}^{P_i} - (\mathbf{r} - \mathbf{r}^i) \cdot \mathbf{b}_{(P_i)} - (\sigma^i - \sigma) \cdot \mathbf{a}_{(P_i)} - \delta_{x,y}^{P_i} - (\rho^i \cdot \sigma^i - \mathbf{r} \cdot \sigma) \cdot \mathbf{u}_{(P_i)}
\]

for each \(i \in [n] \) is a valid sharing of zero, where \(\rho^i \) and \(\sigma^i \) are the values reconstructed by \(P_i \) in opening \(\rho \) and \(\sigma \). Since \(\rho \) and \(\sigma \) are uniform, the protocol will abort during \(\Pi_{\text{Opening}} \) except with probability \(1/q \) where \(q = |F| \).

2. If \(N\delta = \mathbf{0} \) then the adversary has introduced errors so that the resulting vector is a valid sharing of some secret which is different from the secret encoded by the original additive sharing. In this case, the protocol will abort unless the adversary manages to compute something to add to \(c \) and \(z \) such that in the sacrifice step it holds that

\[
0 = \mathbf{r} \cdot (x \cdot y + \delta^z) + a' \cdot b' - (a' \cdot b' + \delta^c) - \mathbf{r} \cdot x \cdot y.
\]

In other words, the adversary must add on errors to \(c \) and \(z \) encoding secrets \(\delta^c \) and \(\delta^z \) such that \(r\delta^z - \delta^c = 0 \), which again only happens with probability \(1/q \) since \(r \) is uniformly random (since it is derived from \(\rho \) and \(\sigma \) which are uniform.

Thus in either case, the protocol will abort with overwhelming probability.

We now turn to proving security. Our simulator is given in Figure 17 and Figure 18. We will discuss correctness of the simulation, and then prove that the simulator successfully provides a transcript to adversary so that no environment, who provides all inputs, sees all outputs of honest parties, and additionally controls all internal behaviour of the adversary, can distinguish between the ideal world in which the simulator acts with \(F_{\text{Prep}} \), and the hybrid world in which the honest parties interact with the adversary as in the protocol and additionally have access to \(F_{\text{Rand}} \).

Correctness of Simulation Since we are in the \(F_{\text{Rand}} \)-hybrid world, the simulator is required to respond to all calls of the adversary to generate PRSSs and PRZSs and public random values \(r \).

Throughout the simulation, the simulator keeps track of errors introduced by the adversary on honest parties’ shares by storing a vector \(\delta \) along with share vector; these vectors (potentially) change after each round of communication, which is the only time the adversary can influence shares of honest parties. More specifically, the simulator must keep track of errors from \(\Pi_{\text{Convert}} \) so that the correct distribution of honest parties aborts during \(\Pi_{\text{OpenTo}}() \) or \(\Pi_{\text{Verify}} \).

Because all of the raw data used to construct the Beaver triples comes from either \(F_{\text{Rand}} \) or \(F_{\text{Prep}} \), the simulator can always compute what the adversary would compute were he to follow the protocol, as the simulator runs \(F_{\text{Rand}} \) internally and interfaces between the adversary and \(F_{\text{Prep}} \); using this information, he
can exactly determine the errors the adversary introduces when sending information to (emulated) honest parties; the simulator can then use this information to provide a transcript indistinguishable between the hybrid world and the ideal world, even without learning the shares received by honest parties, as we shall prove.

Note that if the LSSS admits share vectors with unqualified support, the adversary can potentially create a set of shares different from those generated by the multiplication protocol but so that the sacrifice check passes; this can be viewed as re-randomising shares, as was discussed in Section 4. However, by Lemma 2, any re-randomisation cannot affect the value of the secrets encoded. In particular, this means that the shares the adversary holds at the end may not be the same as the shares given to the functionality by the simulator, who simply passes on exactly what the adversary would compute were he to follow the protocol; however, if the adversary follows the protocol then the distributions of the final share vectors held by all parties are the same in both real (hybrid) and ideal worlds, since by linearity,

\[\{ c : c \text{ encodes the secret } c \} = \{ c + e : c \text{ encodes the secret } c \} \]

for any \(e \) with \(\psi(\text{supp}(e)) \subseteq A \), since \(e \) must encode 0, and the functionality uniformly selects the share vector \(c \) to which to lift the subvector \(c_A \), subject to the constraint that it must share \(a \cdot b \).

Indistinguishability

Proof. We will show directly that our simulator provides the correct view, instead of hopping between a series of hybrids.

The simulator creates a view for the adversary as if it were running the protocol, and responds to all calls to \(F_{Rand} \). Note that there is no input from the adversary to the functionality, so there is no need for the simulator to extract any inputs from the adversary. The simulator runs \(F_{Rand} \) honestly internally for calls to PRZS. For the calls to the simulator for \(x \) and \(y \), the simulator runs \(F_{Rand} \) internally honestly and sends the adversary the appropriate output. The secrets \(x \) and \(y \) are never revealed to the adversary and the simulator can compute them since it stored all outputs of \(F_{Rand} \). Thus for these two calls by the adversary to \(F_{Rand} \), the protocol transcript produced in the real world and the transcript the simulator produces are identically distributed.

When the adversary requests a PRSS for \(a \) and \(b \), the simulator only receives a subset of shares for corrupt parties – namely \(a_A \) and \(b_A \). Thus the simulator cannot know secrets \(a \) and \(b \) sampled by \(F_{prep} \), and so it samples random secrets \(a' \) and \(b' \) and creates share vectors consistent with these secrets and the outputs of \(F_{prep} \).

However, later in the protocol the simulator replaces share vectors which should encode the secrets \(r \cdot x - a' \) and \(y - b' \) with share vectors encoding uniform secrets but which also agree on shares held by corrupt parties; the simulator can do this as it knows the values of \(a'_A, b'_A, x_A \) and \(y_A \) from the above.
Note that by definition of MSP, it is always possible to create a share vector for any secret given only some unqualified subvector. This fact is used repeatedly in our simulator to replace the shares of honest parties. Note that choosing r in the way defined in Figure 17 it is indistinguishable from uniform as σ and ρ were sampled uniformly. This removes the dependence of the transcript during Π_{Opening} on the secrets a' and b' the simulator initially sampled.

Observe that if $\rho^i = \rho$ and $\sigma^i = \sigma$ for all i, then since the simulator simply runs the protocol honestly and stores errors introduced, the sacrifice will fail, with the same set of parties initially calling for abort, with the same distributions in both worlds.

We still require that the transcript reveal nothing about the secrets the simulator sampled, a' and b'. Consider what can be learnt from the protocol transcript during Π_{Convert}:

1. For any row which is not a standard basis vector, the owner of the row receives shares from all other parties and learns the value of $\langle M_j, x \rangle$. Since the summands a^j_i contain PRZS masks, the recipient can learn nothing more than what they can learn from their own shares and the value $\langle M_j, x \rangle$.

2. For any row which is a standard basis vector, the owner can learn the sum of reshares assigned to the column whose index is the index of the non-zero entry of the row. Here the n-party PRZS added to $\langle x \rangle$ prevents the recipient from learning anything about any of the shares x_i of the secret before conversion, and hence nothing from the original secrets a and b used to create $\langle x \rangle$ which otherwise might be learnable since x_i is a sum of a subset of shares of a and b.

Note that for any column in which $\epsilon_k = 0$, the parties randomise the sharing by choosing a random scalar multiple of this column to the final share vector. This is possible because the fact that $\epsilon_k = 0$ means that any amount of the secret value shared via share vectors in the linear span of column $M[k]$ are cancelled out in recombination. Randomising in this way is necessary because the secrets corresponding to these columns are essentially used to mask the secret. (Consider an MSP for Shamir, as in Appendix A: all entries of the target vector but the first are zero; if one were always to assume one column of the latter columns of the MSP matrix contributed nothing to the final share vector, the resulting access structure would have threshold one less than before – i.e. the access structure would change).

This shows that the transcript during Π_{Convert} does not reveal information to the adversary about the values of the secrets being multiplied.

Now consider values opened in Π_{Opening}. In the real (hybrid) world, x and y are uniform, and hence the broadcasted values $r \cdot x - a$ and $y - b$ reveal nothing about a and b; thus the simulation in which ρ and σ encode uniform secrets is contributes the same distribution of elements here. Then, observe that in $\Pi_{\text{Opening}} \cdot \text{OpenTo}(0)$ on t the shares of honest parties are independent of a' and b', since even $\delta^{a,b}$ is computed by the adversary based only on knowledge of a_A and b_A. Thus the transcript is independent of a', b' and $a' \cdot b'$, and so the environment is not able to detect that a different triple has been generated.
from the one in the ideal world (with high probability) since the simulator did not receive shares for honest parties from F_{prep} and thus could not compute the secrets. This shows that the transcript during H_{Opening} does not reveal information on a' and b', and hence hides the fact that they are not the same as in the ideal world.

Thus, since the adversary and environment cannot learn information on the encoded secrets from the transcript, the simulator can provide a convincing transcript by replacing the share vectors which are multiplied and opened with share vectors encoding uniform secrets, subject to the constraint that the share vectors be consistent with whatever was previously seen by the adversary.

Since the triples are produced independently of each other, the combined distribution of triples offers no information to the environment.

Since the hybrids are computationally indistinguishable, the hybrid world and the ideal world are also computationally indistinguishable. \square
Simulator S_{Opening}

The set $A \subseteq \mathcal{P}$ is the set of corrupt parties; let $I_A \subseteq [n]$ denote the corresponding indexing set. We write $i \not\in I_A$, and $P_i \not\in A$, if P_i is honest. See the protocol description in Figure 2 for the definition of λ' and Section 4 for the definition of q. We denote by $H^i_\mathcal{P}$ the hash function updated locally by P_i. Error vectors δ are computed in $S_{\text{MPC, Input}}, S_{\text{MPC, Multiply}}$ and $S_{\text{MPC, Add}}$. In the protocol, if an honest party never receives an expected message from the adversary, it signals abort; in the simulation, if this happens then simulator sets the internal flag Abort to true.

OpenTo(i): By the time this is called in the simulation, the simulator has obtained a secret s, knows the complete share vector s, and has the corresponding error vector δ.

- To open a secret to all parties, the simulator does the following:
 1. Retrieve from memory the recombination vectors λ', for $j \in [n]$.
 2. For each $j \in I_A$ and $k \in q(P_j)$, if $\psi(k) \not\in A$ then send $s_k + \delta_k$ to the adversary.
 3. For each $j \notin I_A$ and $k \in q(P_j)$, if $\psi(k) \in A$ then wait for s_k from adversary.
 4. For each $j \notin I_A$, concatenate local and received shares into a vector $s(q(P_j)) \in \mathbb{F}_{q(P_j)}$.
 5. For each $j \notin I_A$, solve $M_{q(P_j)} x' = s'_j(q(P_j))$ for x', if it exists. If for any j there is no such x', send the message Abort to the adversary to abort the protocol and set the internal flag Abort to true.
 6. If the protocol has not aborted, for all $j \notin I_A$ execute $H^j_\mathcal{P}.\text{Update}(Mx')$.

- To open a secret to P_i, the simulator does the following:
 1. If P_i is corrupt,
 (a) For each $P_j \not\in A$, send $s(q(P_j))$ to the adversary.
 (b) If the adversary signals Abort then send the message Abort to the adversary to abort the protocol and set the internal flag Abort to true.
 2. If P_i is honest,
 (a) For each $P_j \in A$, for each $i \in I_A$, wait for some subvector $s'_j(q(P_j))$ from the adversary.
 (b) Let s' be the vector s modified so that $s(q(P_j)) := s'_j(q(P_j))$ for all $j \notin I_A$. If $Ns' \neq 0$, then run send the message Abort to the adversary to abort the protocol and set the internal flag Abort to true.

Verify: The simulator runs the procedure as honest parties would:

1. Compute $h^i := H^i_\mathcal{P}.\text{Output}()$ for all $i \not\in I_A$ and send to the adversary.
2. Wait for $\{h^{i,j}\}_{j \in I_A, j \not\in I_A}$ from the adversary, where $h^{i,j}$ denotes the output of the hash function sent by the adversary for corrupt P_j to the simulator in place of honest P_j.
3. For each $i \not\in I_A$, if $h^{i,j} \neq h^i$ for any $j \in I_A$, send the message Abort to the adversary to abort the protocol and set the internal flag Abort to true.

Broadcast: The simulator runs the procedure as honest parties would: when P_i needs to run this procedure to broadcast some ϵ, the simulator does the following:

- If the broadcasting party P_i is honest, then for each $j \not\in I_A$ set $\epsilon' := \epsilon$ and then send $\{\epsilon'\}_{j \not\in I_A}$ to the adversary on behalf of P_i.
- If the broadcasting party P_i is corrupt, wait for the adversary to send $\{\epsilon'\}_{j \not\in I_A}$.

For each $j \not\in I_A$, update the local hash function $H^j_\mathcal{P}.\text{Update}(\epsilon')$.

Figure 13. Simulator S_{Opening}
The simulator stores all share vectors with their identifiers, along with error vectors (see below). The set I_A denotes the indexing set of corrupt parties. The simulator always performs $\Pi_{Opening}$ exactly as honest parties would in the protocol, but we define our simulator $S_{Opening}$ because we must keep track of, and incorporate into any revealed shares or secrets, all errors the adversary introduces during the protocol.

Initialise: The simulator does the following:
1. Set the internal flag Abort to false and for each $i \notin I_A$, initialise a local hash function H^i by running $H^i.\text{Initialise}()$.
2. Initialise an internal copy of F_{Prep}. When the adversary sends a message (Triple, N_T), execute $F_{Prep}.\text{Triples}$ honestly with the adversary and store all information sent from the adversary and output from the functionality. If F_{Prep} aborts, send the message Abort to the adversary, and send Init and then Abort to F_{MPC} and abort, and otherwise continue. For each share vector s output from F_{Prep}, determine the encoded secret s by computing $\langle s, \lambda \rangle$ using any recombination vector λ, and store it.
3. Agree with the adversary on the sharing of 1, denoted by u.
4. For generating input masks, the simulator honestly executes the protocol:
 (a) For providing input to corrupt or honest P_i, retrieve a sharing r and corresponding secret r from memory.
 (b) Run $S_{Opening}.\text{OpenTo}(i)$ with the adversary on r.
5. Send the message Init to F_{MPC}, followed by a message Abort if the internal flag Abort is set to true, or OK otherwise.

Input: For P_i to give input, the simulator does the following:
1. Do the following:
 - If P_i is honest, sample $\epsilon \leftarrow F$ and do the following:
 (a) Run $S_{Opening}.\text{Broadcast}$ with the adversary, with P_i broadcasting ϵ.
 (b) Define an error vector to be used later by $\delta_{\{P_j\}} := 0$ for all $j \in [n]$ and store the share vector $s := \epsilon \cdot u + r$.
 (c) Using the fresh identifier id, send $(\text{Input}, id, \bot)_{P_j \in A}$ to F_{MPC}.
 - If P_i is corrupt, do the following:
 (a) Run $S_{Opening}.\text{Broadcast}$ with the adversary (where the adversary provides input) so that the simulator obtains a set $\{\epsilon_j\}_{j \notin I_A}$. Choose any $j \notin I_A$ and set $\epsilon := \epsilon_j$.
 (b) Define an error vector to be used later by $\delta_{\{P_j\}} := (\epsilon_j - \epsilon) \cdot u_{\{P_j\}}$ for all $j \in [n]$ and also store the share vector $s := \epsilon \cdot u + r$.
 (c) If the internal flag Abort has not been set to true, using the fresh identifier id, send $(\text{Input}, id, \epsilon + r)$ and $(\text{Input}, id, \bot)_{j \in I_A \setminus \{i\}}$ to the functionality F_{MPC}, and then additionally send OK; otherwise sample some ϵ, send $(\text{Input}, id, \epsilon)$ and $(\text{Input}, id, \bot)_{j \in I_A \setminus \{i\}}$ to F_{MPC} and then send the message Abort.

Figure 14. Simulator S_{MPC} Part 1 of 3 (Commands Part 1 of 3)
Simulator \mathcal{S}_{MPC} Part 2 of 3 (Commands Part 2 of 3)

Add: When adding secrets shared via s and s' with identifiers id_a and $\text{id}_{a'}$, the simulator does the following:
1. Retrieve s and s' from memory along with error vectors $\delta(s)$ and $\delta(s')$.
2. Compute the sum as $s + s'$ and a new error vector $\delta(s) + \delta(s')$, and store these with the new identifier id.
3. Send the command $(\text{Add}, \text{id}_a, \text{id}_{a'}, \text{id})$ to \mathcal{F}_{MPC}.

Multiply: When multiplying secrets shared via s and s' with identifiers id_a and $\text{id}_{a'}$, the simulator does the following:
 - Retrieve the share vectors for the triple a, b, and c, and the corresponding identifiers.
 - Retrieve from memory the share vectors s and s' and corresponding error vectors $\delta(s)$ and $\delta(s')$.
 - Sample two share vectors ρ and σ of uniform secrets ρ and σ such that $\rho = a - a$ and $\sigma = s' - b$.
 - Execute $\mathcal{S}_{\text{Opening}}(\text{OpenTo}(0))$ on $\rho + \delta(s)$ and $\sigma + \delta(s')$ to obtain for honest parties $\{\rho^i\}_{i \in I_A}$ and $\{\sigma^i\}_{i \in I_A}$.
 - If the internal flag Abort has been set to true, send the command $(\text{Multiply}, \text{id}_a, \text{id}_{a'}, \text{id})$ to \mathcal{F}_{MPC}, and then send the message Abort; otherwise, do the following:
 - Compute $\{\rho^i\}_{i \in I_A}$ and $\{\sigma^i\}_{i \in I_A}$ based on knowledge of ρ_A and σ_A.
 - Store the new share vector as

 $$s'' := c_{(P_i)} + \rho \cdot s'_{(P_i)} + \sigma \cdot s_{(P_i)} - \rho \cdot \sigma \cdot u_{(P_i)}$$

 and also store the new error on the product defined by

 $$\delta(s'')_{(P_i)} := (\rho^i - \rho) \cdot s'_{(P_i)} + (\sigma^i - \sigma) \cdot s_{(P_i)} + \rho^i \cdot \delta(s)_{(P_i)} + \sigma^i \cdot \delta(s')_{(P_i)} - (\rho^i \cdot \sigma^i) \cdot u_{(P_i)}$$

 for all $i \in [n]$.
 - Send the command $(\text{Multiply}, \text{id}_a, \text{id}_{a'}, \text{id})$ to \mathcal{F}_{MPC}, and then send the message Abort if the internal flag Abort was set to true, and otherwise send the message OK.

Figure 15. Simulator \mathcal{S}_{MPC} Part 2 of 3 (Commands Part 2 of 3)
Simulator S_{MPC} Part 3 of 3 (Commands Part 3 of 3)

OutputTo(i): When the adversary requests to open a sharing s encoding secret s, the simulator does the following:

1. Send the command $(Output, id, 0)$ to F_{MPC}.
2. Retrieve the identifier id used for this secret and the error vector $\delta^{(s)}$.
3. Run $S_{Opening, Verify}$.
4. - If $i = 0$,
 (a) Receive the secret s from F_{MPC}.
 (b) Run $S_{Opening, OpenTo}(0)$ to open $s + \delta^{(s)}$.
 (c) If the internal flag Abort has been set to true, send the message Abort to F_{MPC} and otherwise run $S_{Opening, Verify}$.
 (d) If the internal flag Abort has been set to true, send Abort to F_{MPC}, and otherwise send OK.
- If $P_i \in P$,
 • If P_i is corrupt,
 (a) Send the command $(Output, id, i)$ to F_{MPC} and receive back the secret s.
 (b) Retrieve from memory the share vector s corresponding to this secret along with its error vector $\delta^{(s)}$ and sample a new share vector t that encodes the secret s and it holds that $s_A = t_A$.
 (c) Run $S_{Opening, OpenTo}(i)$ on $t + \delta^{(s)}$.
 (d) If the internal flag Abort has been set to true, send Abort to F_{MPC}, and otherwise send OK.
 • If P_i is honest,
 (a) Run $S_{Opening, OpenTo}(i)$ with the adversary.
 (b) If the internal flag Abort has been set to true, send Abort to F_{MPC}, and otherwise send OK.

Figure 16. Simulator S_{MPC} Part 3 of 3 (Commands Part 3 of 3)
Simulator S_{Prep}

We omit indices for the N_T triples for the sake of clarity and because all triples are generated independently. The simulator does the following:

1. Initialise count.
2. For i from 1 to N_T, do the following:
 - When the adversary sends a message PRSS to the simulator for F_{Rand}, invoke F_{Prep} and forward to the adversary the vectors a_A and b_A it receives. Create share vectors a' and b' such that they share uniform secrets a' and b', respectively, and such that $a'_A = a_A$ and $b'_A = b_A$.
 - When the adversary asks for shares of x and y, run F_{Rand} internally and give the appropriate outputs to the adversary.
 - As in the protocol, perform the local computations to obtain additive sharings of the products of a' with b' and x with y. Using knowledge of the shares given to the adversary from F_{Rand} and F_{Prep}, the simulator can do this for all parties, including corrupt.
 - Now run S_{Convert} with the adversary; the simulator obtains share vectors c and \tilde{c} and an error vector $\delta_{a,b}$, where c is computed by emulating the whole Π_{Convert} protocol honestly using knowledge of a_A' and b_A'.
 - Do similarly for x and y to obtain share vectors z and \tilde{z} and error vector $\delta_{x,y}$.
 - Send to F_{Prep} the share (sub)-vector c_A computed as in the execution of Π_{Convert} on the additive sharing of the product of a' and b'.
 - Run F_{Rand} honestly internally to obtain some r and send it to the adversary.
 - Create sharings ρ and σ of uniform secrets ρ and σ subject to the requirement that $\rho_A = r \cdot x_A - a'_A$ and $\sigma_A = y_A - b'_A$, which is possible as A is unqualified.
 - Execute $\Pi_{\text{Opening. OpenTo}}(0)$ as in the protocol (aborting if necessary and sending the message Abort to F_{Prep}), but opening ρ and σ instead of $r \cdot x - a'$ and $y - b'$. Denote by ρ_i and σ_i respectively the values each party $i \notin I_A$ opened the secrets to.
 - Now set
 \[
 t_{\{P_i\}} := r \cdot (\rho_{\{P_i\}} + \delta_{\{P_i\}}^{a,b}) - \rho \cdot (\rho_{\{P_i\}} - \sigma_{\{P_i\}}) - \sigma \cdot (r \cdot x_{\{P_i\}} - \rho_{\{P_i\}})
 \]
 and run $\Pi_{\text{Opening. OpenTo}}(0)$ on t. If the procedure $\Pi_{\text{Opening. OpenTo}}(0)$ aborts or one of the (emulated) honest parties computes an opening different from 0, then the simulator sends the message Abort to F_{Prep} and the adversary.
3. Execute $\Pi_{\text{Opening. Verify}}$ as in the protocol, sending the message Abort to F_{Prep} if an honest party would abort and otherwise sending OK.

Figure 17. Simulator S_{Prep}
Simulator $\mathcal{S}_{\text{Convert}}$

When this part of the simulation is called, the simulator has one summand x_i of the secret product for each party (including summands the corrupt parties are supposed to be holding, since they were derived from secrets known to the simulator).

1. Following the protocol, the simulator samples a set of shares $\{x_{i,k} : i \not\in A, k \in K_i\}$ such that $\sum_{k \in K_i} x_{i,k} = x_i$ for each $i \not\in I_A$.

2. Following the protocol, for each $j \in [m]$, the simulator does the following:
 (a) When the adversary sends the command $(PRZS, \text{count}, \mathcal{P})$ to the simulator, run $\mathcal{F}_{\text{Rand}}$ honestly to obtain some $PRZS \langle t_j \rangle$, record all outputs, and forward appropriate outputs to the adversary.
 (b) If $\psi(j) \not\in A$ then wait to receive a set $\{a_{j,i}^t : i \in I_A\}$ of shares from the adversary, and additionally compute the shares $\{a_{j,i}^t : i \not\in I_A\}$ by following the protocol for honest parties. Compute $\tilde{s}_j := \sum_{i \in I_A} a_{j,i}^t + \sum_{i \not\in I_A} a_{j,i}^t$ and $s_j := \sum_{i=1}^n a_{j,i}^t$.
 (c) If $\psi(j) \in A$ then execute the protocol honestly to compute the shares $\{a_{j,i}^t : i \not\in I_A\}$, and send them to the adversary. Additionally, compute the shares an honest adversary would compute $\{a_{j,i}^t : i \in I_A\}$ using knowledge of outputs of $\mathcal{F}_{\text{Prep}}$ and $\mathcal{F}_{\text{Rand}}$ and then set $s_j := \tilde{s}_j := \sum_{i=1}^n a_{j,i}^t$.

3. If j is not a standard basis vector, the simulator does the following:
 (a) When the adversary sends the command $(PRZS, \text{count}, \mathcal{P})$ to the simulator, run $\mathcal{F}_{\text{Rand}}$ honestly to obtain some $PRZS \langle t_j \rangle$, record all outputs, and forward appropriate outputs to the adversary.
 (b) If $\psi(j) \not\in A$ then wait to receive a set $\{\tilde{a}_{j,i} : i \in I_A\}$ of shares from the adversary. Compute $\tilde{s}_j := \sum_{i \in X \cap I_A} \tilde{a}_{j,i} + \sum_{i \not\in X \setminus I_A} a_{j,i}^t$ and $s_j := \sum_{i \in X} a_{j,i}^t$.
 (c) If $\psi(j) \in A$ then execute the protocol honestly and send $\{a_{j,i}^t : i \in X \setminus I_A\}$ to the adversary. Additionally, compute the shares an honest adversary would compute $\{a_{j,i}^t : i \in I_A\}$ using knowledge of outputs of $\mathcal{F}_{\text{Prep}}$ and $\mathcal{F}_{\text{Rand}}$ and then set $s_j := \tilde{s}_j := \sum_{i=1}^n a_{j,i}^t$.

4. If j is a standard basis vector e^k for some k, the simulator does the following:
 (a) When the adversary sends the command $(PRZS, \text{count}, \mathcal{X})$ to the simulator, run $\mathcal{F}_{\text{Rand}}$ honestly to obtain some $PRZS \langle t_j \rangle$, record all outputs, and forward appropriate outputs to the adversary.
 (b) If $\psi(j) \not\in A$ then wait to receive a set $\{\tilde{a}_{j,i} : i \in X \cap I_A\}$ of shares from the adversary. Compute $\tilde{s}_j := \sum_{i \in X \cap I_A} \tilde{a}_{j,i} + \sum_{i \not\in X \setminus I_A} a_{j,i}^t$ and $s_j := \sum_{i \in X} a_{j,i}^t$.
 (c) If $\psi(j) \in A$ then execute the protocol honestly and send $\{a_{j,i}^t : i \in X \setminus I_A\}$ to the adversary. Additionally, compute the shares an honest adversary would compute $\{a_{j,i}^t : i \in I_A\}$ using knowledge of outputs of $\mathcal{F}_{\text{Prep}}$ and $\mathcal{F}_{\text{Rand}}$ and then set $s_j := \tilde{s}_j := \sum_{i=1}^n a_{j,i}^t$.

5. The simulator computes an error
 $$\delta := s - \tilde{s}$$
 (and note that $\delta_{\mathcal{P} \setminus A} = 0$).

Figure 18. Simulator $\mathcal{S}_{\text{Convert}}$
C Algorithm for finding a (crudely optimised) map q

See Section 4 for the definition of q. In this section we provide an algorithm to find a map q such that $|\text{supp}(q(i))|$ is “quite small”, for all i. We have a choice as to whether to minimise the number of implied uni- or bi-directional channels. In the algorithm below, by choosing the qualified sets as described we crudely optimise the number of uni-directional channels.

For the algorithm, we assume the MSP matrix M has linearly independent columns, since if not then we can take a linearly independent subset to obtain a new LSSS which realises the same access structure [4]. We also assume that the map ψ is increasing so that each party owns a contiguous submatrix of M. If it is not, the rows can be interchanged so that this is true.

![Algorithm for determining q](image)

Figure 19. Algorithm for determining q
D Share-reconstructable

In this section, we briefly define “share-reconstructable” MSPs as those in which share vectors can be reconstructed entirely from any qualified subvector. They are of interest to us because their use offers particularly good communication efficiency in our protocol, as \(q(P_i) \) is “as small as possible” for each \(P_i \in \mathcal{P} \), which makes our opening protocol very efficient. If an MSP is used in our protocol which is both share-reconstructable and ideal (such as Shamir’s scheme), then the communication cost in our protocol obtains its minimum for that access structure.

Definition 2. Let \(M = (\mathbb{F}, M, \varepsilon, \psi) \) be an MSP, where \(\ker(M) = \{0\} \), computing a \(Q_2 \) access structure \(\Gamma \). \(M \) is called share-reconstructable if for every any \(s \in \im(M) \), for every \(Q \in \Gamma \), \(s_Q \) uniquely determines the vector \(s \).

The following lemma is a restatement but provides a more concrete check of whether or not a given MSP is share-reconstructable, though it requires the computation of exponentially-many submatrices (naïvely).

Lemma 4. Let \(M = (\mathbb{F}, M, \varepsilon, \psi) \) be an MSP, where \(\ker(M) = \{0\} \), computing a \(Q_2 \) access structure \(\Gamma \). Then \(M \) is share-reconstructable if and only if for every \(Q \in \Gamma \) it holds that \(\ker(M_Q) = \{0\} \).

Proof. Suppose \(M_Q \) has full column rank for all \(Q \in \Gamma \), and that there exist \(s, s' \in \im(M) \) such that \(s \neq s' \) but \(s_Q = s_Q' \) for some \(Q \in \Gamma \). Then let \(Mx = s \) and \(Mx' = s' \). Then \(M_Q(x - x') = M_Qx - M_Qx' = s_Q - s_Q' = 0 \), so since \(\ker(M_Q) = \{0\} \), we have \(x = x' \). But then \(s = Mx = Mx' = s' \), which is a contradiction. Thus no such pair of share vectors exist, so \(M \) is share-reconstructable.

Suppose there exists some \(Q \in \Gamma \) such that \(\ker(M_Q) \neq \{0\} \) and suppose we are given \(s_Q \neq 0 \). Fix some \(x \) such that \(s_Q = M_Qx \) and fix \(k \in \ker(M_Q) \setminus \{0\} \). We have \(M_Q(x + k) = M_Qx + M_Qk = s_Q + 0 = s_Q \). Let \(s = Mx \) and \(s' = M(x + k) \). Since \(\ker(M) = \{0\} \) and \(k \neq 0 \) it holds that \(Mk \neq 0 \), so \(s' = M(x + k) = Mx + Mk \neq Mx = s \); but \(s_Q \neq s_Q' \), so \(s_Q \) does not have a unique reconstruction, and hence \(M \) is not share reconstructable. \(\square \)

Example 1. Shamir’s secret-sharing scheme is an example since any \(t \) rows of the Vandermonde matrix are linearly independent.

Example 2. Consider the access structure defined by \(\Gamma^- = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3, 4\}\} \) and \(\Delta^+ = \{\{1\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\} \) computed by the MSP given as follows:

\[
\begin{align*}
P_1 & \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \\
P_2 & \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \\
P_3 & \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \\
P_4 & \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \\
\end{align*}
\]

50
where $\varepsilon = (1, 1, 1)$. The reader may check that $\ker(M_Q) = \{0\}$ for every $Q \in \Gamma^-$, so given s_Q there is always unique solution to $M_Qx = s_Q$ for x, and hence s can be determined from s_Q by finding x and computing $s = Mx$.

We know by Lemma 1 that for any MSP computing a Q_2 access structure, share vectors all have qualified support unless they encode the secret 0; to allow a unique construction of each share vector from qualified subsets, share-reconstructable MSPs are those for which the secret 0 is only encoded via the zero vector or with share vectors with qualified support.

Lemma 5. Let $\mathcal{M} = (\mathbb{F}, M, \varepsilon, \psi)$ be an MSP, where $\ker(M) = \{0\}$, computing a Q_2 access structure Γ. Then \mathcal{M} is share reconstructable if and only if

$$s \in \text{im}(M) \implies \psi(\text{supp}(s)) \in \Gamma \cup \{\emptyset\}$$

for all $s \in \mathbb{F}^m$.

In other words, \mathcal{M} is share-reconstructable if and only if the only share vector with unqualified support which encodes the secret 0 is the zero vector. For intuition, one can think of Shamir’s scheme: the only polynomial of degree at most t which has at least $n - t > t$ zeros is the zero polynomial. The statement is corollary to the previous lemmata by linearity of the MSP, but we give the formal proof below.

Proof. Suppose that \mathcal{M} is not share-reconstructable. Then there exists $Q \in \Gamma$ for which $\exists x \in \ker(M_Q)$ such that $x \neq 0$. Since $M_Qx = 0$ it holds that $\psi(\text{supp}(Mx)) \subseteq P \setminus Q$, which is unqualified, since Γ is Q_2. Since $\ker(M) = \{0\}$ and $x \neq 0$, it holds that $Mx \neq 0$. Now $Mx \in \text{im}(M)$, is non-zero, and has unqualified support. In other words, we have $Mx \in \text{im}(M)$ and $\text{supp}(Mx) \notin \Gamma \cup \{\emptyset\}$.

Conversely, suppose there exists some $s \in \text{im}(M)$ such that $\text{supp}(s) \notin \Gamma \cup \{\emptyset\}$, i.e., $s \neq 0$ and $\text{supp}(s)$ is unqualified. Let x be such that $s = Mx$, which exists since $s \in \text{im}(M)$. Then $Q := P \setminus \psi(\text{supp}(s))$ is qualified since Γ is Q_2. Since $s_Q = 0$, we have $M_Qx = s_Q = 0$, so $x \in \ker(M_Q)$. If $x = 0$ then $s = Mx = 0$; but $\text{supp}(s) \neq \emptyset$, so this is not the case, and so $\ker(M_Q) \neq \{0\}$, and thus \mathcal{M} is not share-reconstructable by Lemma 4.

Share-reconstructable MSPs yield comparatively communication-efficient instantiations of our protocol because to each P_i the map q can assign a smallest $Q \in \Gamma^-$ containing P_i.

Theorem 1. For every Q_2 access structure there exists a share-reconstructable MSP computing it.

Proof. Replicated secret-sharing is always share reconstructable since a qualified set of parties together hold all shares by definition and so can vacuously compute the shares held by all other parties. \qed
We now demonstrate our new method. Below, on the left we have an MSP which realises access structure from \([32]\) (see Section 6.4 for a description); on the right we have the result of performing column operations as in the algorithm in Figure 6, and thus an MSP computing the same access structure.

\[
\begin{array}{cccccc}
P_1 & 1 & 2 & 2 & 0 & 0 \\
P_1 & 0 & 0 & 0 & 1 & 0 \\
P_1 & 0 & 0 & 0 & 0 & 1 \\
P_2 & 1 & 3 & 5 & 0 & 0 \\
P_2 & 0 & 0 & 0 & 0 & 1 \\
P_2 & 0 & 0 & 0 & 0 & 1 \\
P_3 & 1 & 4 & 10 & 0 & 0 \\
P_3 & 0 & 0 & 0 & 1 & 0 \\
P_3 & 0 & 0 & 0 & 0 & 1 \\
P_4 & 1 & 5 & 17 & 0 & 0 \\
P_4 & 0 & 0 & 0 & 1 & 0 \\
P_4 & 0 & 0 & 0 & 0 & 1 \\
P_5 & 1 & 6 & 26 & 0 & 0 \\
P_5 & 1 & 7 & 37 & 0 & 0 \\
P_6 & 1 & 8 & 32 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
P_1 & 1 & 0 & 0 & 0 & 0 \\
P_1 & 0 & 1 & 0 & 0 & 0 \\
P_1 & 0 & 0 & 1 & 0 & 0 \\
P_2 & 0 & 0 & 0 & 0 & 1 \\
P_2 & 0 & 0 & 0 & 1 & 0 \\
P_2 & 0 & 1 & 0 & 0 & 0 \\
P_3 & 0 & 0 & 0 & 0 & 1 \\
P_3 & 0 & 0 & 0 & 1 & 0 \\
P_3 & 0 & 0 & 1 & 0 & 0 \\
P_4 & 0 & 0 & 0 & 1 & 0 \\
P_4 & 0 & 1 & 0 & 0 & 0 \\
P_4 & 0 & 0 & 1 & 0 & 0 \\
P_5 & 0 & 0 & 0 & 0 & 1 \\
P_5 & 0 & 0 & 0 & 0 & 1 \\
P_6 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[\varepsilon = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \varepsilon = \begin{pmatrix} 3 & 1 & 1 & 1 & -3 & 1 \end{pmatrix}\]

Now we define the map \(\chi\) as follows:

\[
\begin{array}{ccccccc}
\chi(1) & 1 & 2 & 3 & 4 & 5 & 6 \\
\chi(2) & 1 & 3 & 2 & 1 & 6 \\
\chi(3) & 1 & 2 & 3 & 4 & 5 & 6 \\
\end{array}
\]

Then we have \([6] \setminus \text{im}(\chi) = \{4\}\) and \(S_{\varepsilon} = \emptyset\). Thus:

\[
\begin{align*}
K_1 &= \{1, 4\} \\
K_2 &= \{4, 5\} \\
K_3 &= \{3, 4\} \\
K_4 &= \{2, 4\} \\
K_5 &= \{1, 4\} \\
K_6 &= \{4, 6\}
\end{align*}
\]

1. Party 1
 (a) Write \(x_1 + t_1 = x_1,1 + x_{1,4}\);
 (b) Send \(1 \cdot x_{1,4}/1 + t_{1}^{10}\) to \(P_2\);
 (c) Send \(1 \cdot x_{1,4}/1 + t_{1}^{10}\) to \(P_3\);
 (d) Send \(1 \cdot x_{1,1}/3 + 0 \cdot x_{1,4}/1 + t_{1}^{11}\) to \(P_4\);
Now the parties combine the shares:

1. Row 1 P_1 computes $s_1 := 1 \cdot x_{1,1}/3$;

2. Party 2
 (a) Write $x_2 + t_2^0 = x_{2,4} + x_{2,5}$;
 (b) Send $1 \cdot x_{2,4}/1 + t_2^4$ to P_1;
 (c) Send $1 \cdot x_{2,4}/1 + t_2^{10}$ to P_3;
 (d) Send $0 \cdot x_{2,4}/1 + -3 \cdot x_{2,5}/-3 + t_2^{11}$ to P_4;
 (e) Send $0 \cdot x_{2,4}/1 + -8 \cdot x_{2,5}/-3 + t_2^{14}$ to P_5;
 (f) Send $0 \cdot x_{2,4}/1 + -15 \cdot x_{2,5}/-3 + t_2^{15}$ to P_6.

3. Party 3
 (a) Write $x_3 + t_3^0 = x_{3,3} + x_{3,4}$;
 (b) Send $1 \cdot x_{3,3}/1 + t_3^3$ to P_1;
 (c) Send $1 \cdot x_{3,3}/1 + t_3^5$ to P_1;
 (d) Send $1 \cdot x_{3,3}/1 + t_3^6$ to P_2;
 (e) Send $0 \cdot x_{3,3}/1 + 0 \cdot x_{3,4}/1 + t_3^{11}$ to P_4;
 (f) Send $1 \cdot x_{3,3}/1 + t_3^{13}$ to P_4;
 (g) Send $0 \cdot x_{3,3}/1 + 0 \cdot x_{3,4}/1 + t_3^{14}$ to P_5;
 (h) Send $0 \cdot x_{3,3}/1 + 0 \cdot x_{3,4}/1 + t_3^{15}$ to P_6.

4. Party 4
 (a) Write $x_4 + t_4^0 = x_{4,2} + x_{4,4}$;
 (b) Send $1 \cdot x_{4,2}/1 + t_4^2$ to P_1;
 (c) Send $1 \cdot x_{4,2}/1 + t_4^3$ to P_1;
 (d) Send $1 \cdot x_{4,2}/1 + t_4^6$ to P_2;
 (e) Send $1 \cdot x_{4,2}/1 + t_4^7$ to P_2;
 (f) Send $1 \cdot x_{4,2}/1 + t_4^{10}$ to P_3;
 (g) Send $0 \cdot x_{4,2}/1 + 0 \cdot x_{4,4} + t_4^{14}$ to P_5;
 (h) Send $0 \cdot x_{4,2}/1 + 0 \cdot x_{4,4} + t_4^{15}$ to P_6.

5. Party 5
 (a) Write $x_5 + t_5^0 = x_{5,1} + x_{5,4}$;
 (b) Send $1 \cdot x_{5,1}/3 + t_5^1$ to P_1;
 (c) Send $1 \cdot x_{5,1}/3 + t_5^2$ to P_1;
 (d) Send $1 \cdot x_{5,1}/3 + t_5^6$ to P_2;
 (e) Send $0 \cdot x_{5,1}/3 + 0 \cdot x_{5,4}/1 + t_5^{11}$ to P_4;
 (g) Send $6 \cdot x_{5,1}/3 + 0 \cdot x_{5,4}/1 + t_5^{15}$ to P_6.

6. Party 6
 (a) Write $x_6 + t_6^0 = x_{6,4} + x_{6,5}$;
 (b) Send $1 \cdot x_{6,4}/1 + t_6^5$ to P_1;
 (c) Send $1 \cdot x_{6,4}/1 + t_6^6$ to P_2;
 (d) Send $1 \cdot x_{6,4}/1 + t_6^8$ to P_3;
 (e) Send $1 \cdot x_{6,4}/1 + t_6^{10}$ to P_3;
 (f) Send $0 \cdot x_{6,4}/1 + 3 \cdot x_{6,6}/1 + t_6^{11}$ to P_4;
 (g) Send $0 \cdot x_{6,4}/1 + 6 \cdot x_{6,6}/1 + t_6^{14}$ to P_5.

Now the parties combine the shares:
2. Row 2 P_1 computes $s_2 := t_1^2 + (1 \cdot x_{4,2}/1 + t_2^2)$;
3. Row 3 P_1 computes $s_3 := t_1^2 + (1 \cdot x_{3,3}/1 + t_3^2)$;
4. Row 4 P_1 computes $s_4 := t_1^2 + (1 \cdot x_{2,4}/1 + t_2^2) + (1 \cdot x_{3,4}/1 + t_3^2) + (1 \cdot x_{4,4}/1 + t_4^2) + (1 \cdot x_{5,4}/1 + t_5^2) + (1 \cdot x_{6,4}/1 + t_6^2)$;
5. Row 5 P_2 computes $s_5 := 1 \cdot x_{2,5}/-3$;
6. Row 6 P_2 computes $s_6 := t_9^2 + (1 \cdot x_{1,4}/1 + t_0^0) + (1 \cdot x_{3,4}/1 + t_3^0) + (1 \cdot x_{4,4}/1 + t_4^0) + (1 \cdot x_{5,4}/1 + t_5^0) + (1 \cdot x_{6,4}/1 + t_6^0)$;
7. Row 7 P_2 computes $s_7 := t_7^2 + (1 \cdot x_{4,2}/1 + t_1^2)$;
8. Row 8 P_3 computes $s_8 := t_3^0 + (1 \cdot x_{6,6}/1 + t_6^0)$;
9. Row 9 P_3 computes $s_9 := 1 \cdot x_{3,3}/1$;
10. Row 10 P_3 computes $s_{10} := t_1^{10} + (1 \cdot x_{1,4}/1 + t_1^{10}) + (1 \cdot x_{2,4}/1 + t_2^{10}) + (1 \cdot x_{4,4}/1 + t_4^{10}) + (1 \cdot x_{5,4}/1 + t_5^{10}) + (1 \cdot x_{6,4}/1 + t_6^{10})$;
11. Row 11 P_3 computes $s_{11} := 0 \cdot x_{4,2}/1 + 0 \cdot x_{4,4}/1 + t_1^{11} + (1 \cdot x_{1,1}/3 + 0 \cdot x_{1,4}/1 + t_4^{11}) + (0 \cdot x_{2,4}/1 + -3 \cdot x_{2,5}/-3 + t_2^{11}) + (1 \cdot x_{5,1}/3 + 0 \cdot x_{5,4}/1 + t_5^{11}) + (0 \cdot x_{6,4}/1 + 3 \cdot x_{6,6}/1 + t_6^{11})$;
12. Row 12 P_3 computes $s_{12} := 1 \cdot x_{4,2}/1$;
13. Row 13 P_4 computes $s_{13} := t_1^{13} + (1 \cdot x_{3,3}/1 + t_3^{13})$;
14. Row 14 P_5 computes $s_{14} := 3 \cdot x_{5,1}/3 + 0 \cdot x_{5,4}/1 + t_4^{14} + (3 \cdot x_{1,1}/3 + 0 \cdot x_{1,4}/1 + t_4^{14}) + (0 \cdot x_{2,4}/1 + -8 \cdot x_{2,5}/-3 + t_2^{14}) + (0 \cdot x_{3,3}/1 + 0 \cdot x_{3,4}/1 + t_3^{14}) + (0 \cdot x_{6,4}/1 + 6 \cdot x_{6,6}/1 + t_6^{14})$;
15. Row 15 P_6 computes $s_{15} := 0 \cdot x_{6,4}/1 + 10 \cdot x_{6,6}/1 + t_6^{15} + (6 \cdot x_{1,1}/3 + 0 \cdot x_{1,4}/1 + t_4^{15}) + (0 \cdot x_{2,4}/1 + -15 \cdot x_{2,5}/-3 + t_2^{15}) + (0 \cdot x_{3,3}/1 + 0 \cdot x_{3,4}/1 + t_3^{15}) + (0 \cdot x_{4,2}/1 + 0 \cdot x_{4,4}/1 + t_4^{15}) + (6 \cdot x_{5,1}/3 + 0 \cdot x_{5,4}/1 + t_5^{15})$.

In total, 36 elements are sent, compared to the mere 15 elements required in the optimised version of [32] protocol. The advantage is that in [32], amongst all the parties there are 20 PRF evaluations per multiplication, and the parties hold a cumulative total of 41 shares per secret, instead of 15 as here. Moreover, in our protocol, since the sharing scheme is not replicated, opening secrets requires only 19 elements to be sent over 12 authenticated channels, instead of 25 elements over 19 authenticated channels. Since the online phase essentially only consists of opening secrets over and over, our protocol gives significant online optimisation.