
Cryptanalysis of MORUS?

Tomer Ashur1, Maria Eichlseder2, Martin M. Lauridsen, Gaëtan Leurent3, Brice Minaud4, Yann
Rotella3, Yu Sasaki5, and Benôıt Viguier6

1 imec-COSIC, KU Leuven, Belgium
2 Graz University of Technology, Austria

3 Inria, France
4 Royal Holloway University of London, United Kingdom

5 NTT, Japan
6 Radboud University, Netherlands

tomer.ashur@esat.kuleuven.be, maria.eichlseder@iaik.tugraz.at, mail@martinlauridsen.info,
gaetan.leurent@inria.fr, brice.minaud@gmail.com, yann.rotella@inria.fr, b.viguier@science.ru.nl,

sasaki.yu@lab.ntt.co.jp

Abstract. MORUS is a high-performance authenticated encryption algorithm submitted to the
CAESAR competition, and recently selected as a finalist. There are three versions of MORUS:
MORUS-640 with a 128-bit key, and MORUS-1280 with 128-bit or 256-bit keys. For all versions the
security claim for confidentiality matches the key size. In this paper, we analyze the components of
this algorithm (initialization, state update and tag generation), and report several results.
As our main result, we present a linear correlation in the keystream of full MORUS, which can be used
to distinguish its output from random and to recover some plaintext bits in the broadcast setting.
For MORUS-1280, the correlation is 2−76, which can be exploited after around 2152 encryptions, less
than what would be expected for a 256-bit secure cipher. For MORUS-640, the same attack results
in a correlation of 2−73, which does not violate the security claims of the cipher.
To identify this correlation, we make use of rotational invariants in MORUS using linear masks that
are invariant by word-rotations of the state. This motivates us to introduce single-word versions of
MORUS called MiniMORUS, which simplifies the analysis. The attack has been implemented and
verified on MiniMORUS, where it yields a correlation of 2−16.
We also study reduced versions of the initialization and finalization of MORUS, aiming to evaluate
the security margin of these components. We show a forgery attack when finalization is reduced
from 10 steps to 3, and a key-recovery attack in the nonce-misuse setting when initialization is
reduced from 16 steps to 10. These additional results do not threaten the full MORUS, but studying
all aspects of the design is useful to understand its strengths and weaknesses.

Keywords: MORUS, CAESAR, Authenticated Encryption, Nonce Respecting, Linear Cryptanal-
ysis, Confidentiality.

1 Introduction

Authenticated Encryption (AE) schemes combine the functionality of symmetric encryption schemes
and message authentication codes. Based on a shared secret key K, they encrypt a plaintext message
M to a ciphertext C and authentication tag T in order to protect both the confidentiality and the
authenticity of M . Most modern authenticated encryption algorithms are nonce-based schemes with
associated data (AEAD), where (C, T) additionally depends on a unique nonce N (or initialization value
IV) and optional associated metadata A. One of the most prominent standardized AEAD designs is
AES-GCM [MV04,Dwo07], which is widely deployed in protocols such as TLS (since v1.2).

To address the growing need for modern authenticated encryption designs for different application
scenarios, the CAESAR competition was launched in 2013 [CAE13]. The goal of this competition is to
select a final portfolio of AEAD designs for three different use-cases: (1) lightweight hardware character-
istics, (2) high-speed software performance, and (3) robustness. The competition attracted 57 first-round
submissions, 7 of which were recently selected as finalists in the fourth selection round.

MORUS is one of the three finalists for use-case (2), together with OCB and AEGIS. This family of
authenticated ciphers by Wu and Huang [WH16] provides three main variants: MORUS-640 with a 128-bit

? c© IACR 2018. This article is a minor revision of the version to be published by Springer-Verlag in the pro-
ceedings of ASIACRYPT 2018.

key and MORUS-1280 with either a 128-bit or a 256-bit key. The design approach is reminiscent of classical
stream cipher designs and continuously updates a relatively large state with a few fast operations. MORUS
can be efficiently implemented in both software and hardware; in particular, the designers claim that the
software performance even surpasses AES-GCM implementations using Intel’s AES-NI instructions, and
that MORUS is the fastest authenticated cipher not using AES-NI [WH16].

Related Work. In the MORUS submission document, the designers discuss the security of MORUS
against several attacks, including algebraic, differential, and guess-and-determine attacks. The main focus
is on differential properties, and not many details are given for other attack vectors. In third-party analysis,
Mileva et al. [MDV15] propose a distinguisher in the nonce-reuse setting and practically evaluate the
differential behaviour of toy variants of MORUS. Shi et al. [SGLZ16] analyze the differential properties
of the finalization reduced to 2 out of 10 steps, but find no attacks. Dwivedi et al. [DKM+16] discuss
the applicability of SAT solvers for state recovery, but the resulting complexity of 2370 for MORUS-
640 is well beyond the security claim. Dwivedi et al. [DMW17] also propose key-recovery attacks for
MORUS-1280 if initialization is reduced to 3.6 out of 16 steps, and discuss the security of MORUS against
internal differentials and rotational cryptanalysis. Salam et al. [SSB+17] apply cube attacks to obtain
distinguishers for up to 5 out of 16 steps of the initialization of MORUS-1280 with negligible complexity.
Additionally, Kales et al. [KEM17] and Vaudenay and Vizár [VV17] independently propose state-recovery
and forgery attacks on MORUS in a nonce-misuse setting with negligible data and time complexities.

Finally, a keystream correlation similar in nature to our main attack was uncovered by Minaud
[Min14] on the authenticated cipher AEGIS [WP16,WP13], another CAESAR finalist. AEGIS shares the
same overall structure as MORUS, but uses a very different state update function, based on the parallel
application of AES rounds, rather than the shift/AND/XOR operations used in MORUS. Similar to
our attack, the approach in [Min14] is to build a linear trail linking ciphertext bits, while canceling the
contribution of inner state bits. How the trail is built depends primarily on the state update function, and
how it lends itself to linear cryptanalysis. Because the state update function differs significantly between
AEGIS and MORUS, the process used to build the trail is also quite different.

Our Contributions. Our main contribution is a keystream distinguisher on full MORUS-1280, built
from linear approximations of its core StateUpdate function. In addition, we provide results for round-
reduced MORUS, targeting both the initialization or finalization phases of the cipher.

In more detail, our main result is a linear approximation [Mat93,MY92] linking plaintext and cipher-
text bits spanning five consecutive encryption blocks. Moreover, the correlation does not depend on the
secret key of the cipher. In principle, this property could be used as a known-plaintext distinguisher, or
to recover unknown bits of a plaintext encrypted a large number of times. For MORUS-1280 with 256-bit
keys, the linear correlation is 2−76 and can be exploited using about 2152 encrypted blocks.

To the best of our knowledge, this is the first attack on full MORUS in the nonce-respecting setting.
We note that rekeying does not prevent the attack: the biases are independent of the secret encryption key
and nonce, and can be exploited for plaintext recovery as long as a given plaintext segment is encrypted
sufficiently often, regardless of whether each encryption uses a different key. A notable feature of the
linear trail underpinning our attack is also that it does not depend on the values of rotation constants: a
very similar trail would exist for most choices of round constants.

To obtain this result, we propose a simplified abstraction of MORUS, called MiniMORUS. MiniMORUS
takes advantage of certain rotational invariants in MORUS and simplifies the description and analysis
of the attack. We then show how the attack can be extended from MiniMORUS to the real MORUS.
To confirm the validity of our analysis, we practically verified the correlation of the full linear trail for
MiniMORUS, as well as the correlation of trail fragments for the full MORUS. Our analysis is also backed
by a symbolic evaluation of the full trail equation and its correlation on all variants of MORUS.

In addition to the previous attack on full MORUS, we provide two secondary results: (1) we analyze
the security of MORUS against forgery attacks with round-reduced finalization; and (2) we analyze its
security against key recovery in a nonce-misuse setting, with round-reduced initialization. While this
extra analysis does not threaten full MORUS, it complements the main result to provide a better overall
understanding of the security of MORUS. More precisely, we present a forgery attack for round-reduced
MORUS-1280 with success probability 2−88 for a 128-bit tag if the finalization is reduced to 3 out of 10
steps. This nonce-respecting attack is based on a differential analysis of the padding rule. The second

result targets round-reduced initialization with 10 out of 16 steps, and extends a state-recovery attack
(which can be mounted e.g. in a nonce-misuse setting) into a key-recovery attack.

Outline. This paper is organized as follows. We first provide a brief description of MORUS in Section 2.
In Section 3, we introduce MiniMORUS, an abstraction of MORUS based on a certain class of rotational
invariants. We analyze this simplified scheme in Section 4 and provide a ciphertext-only linear approxima-
tion with a weight of 16. We then extend our result to the full scheme in Section 5, showing a correlation in
the keystream over 5 steps, and discuss the implications of our observation for the security of MORUS in
Section 6. In Section 7, we present our results on the security of MORUS with round-reduced initialization
(in a nonce-misuse setting) or finalization. We conclude in Section 8.

2 Preliminaries

MORUS is a family of authenticated ciphers designed by Wu and Huang [WH16]. An instance of MORUS
is parametrized by a secret key K. During encryption, it takes as input a plaintext message M , a nonce
N , and possibly some associated data A, and outputs a ciphertext C together with an authentication
tag T . In this section, we provide a brief description of MORUS and introduce the notation for linear
approximations.

2.1 Specification of MORUS

The MORUS family supports two internal state sizes: 640 and 1280 bits, referred to as MORUS-640
and MORUS-1280, respectively. Three parameter sets are recommended: MORUS-640 supports 128-bit
keys and MORUS-1280 supports either 128-bit or 256-bit keys. The tag size is 128 bits or shorter. The
designers strongly recommend using a 128-bit tag. With a 128-bit tag, integrity is claimed up to 128 bits
and confidentiality is claimed up to the number of key bits (Table 1).

State. The internal state of MORUS is composed of five q-bit registers Si, i ∈ {0, 1, 2, 3, 4}, where
q = 128 for MORUS-640 and q = 256 for MORUS-1280. The internal state of MORUS may be represented
as S0‖S1‖S2‖S3‖S4. Registers are themselves divided into four q/4-bit words. Throughout the paper, we
denote the word size by w = q/4, i.e., w = 32 for MORUS-640 and w = 64 for MORUS-1280.

The encryption process of MORUS consists of four parts: initialization, associated data processing,
encryption, and finalization. During the initialization phase, the value of the state is initialized using
a key and nonce. The associated data and the plaintext are then processed block by block. Then the
internal state undergoes the finalization phase, which outputs the authentication tag.

Every part of this process relies on iterating the StateUpdate function at the core of MORUS. Each call
to the StateUpdate function is called a step. The internal state at step t is denoted by St0‖St1‖St2‖St3‖St4,
where t = −16 before the initialization and t = 0 after the initialization.

The StateUpdate Function. StateUpdate takes as input the internal state St = St0‖St1‖St2‖St3‖St4 and
an additional q-bit value mt (recall that q is the size of a register), and outputs an updated internal state.

StateUpdate is composed of 5 rounds with similar operations. The additional input mt is used in
rounds 2 to 5, but not in round 1. Each round uses the bit-wise rotation (left circular shift) operation
inside word, denoted ≪w in the following and Rotl xxx yy in the design document. It divides a q-bit
register value into 4 words of w = q/4 bits, and performs a rotation on each w-bit word. The bit-wise

Table 1: Security goals of MORUS.

Confidentiality (bits) Integrity (bits)

MORUS-640-128 128 128
MORUS-1280-128 128 128
MORUS-1280-256 256 128

Table 2: Rotation constants bi for ≪w and b′i for ≪ in round i of MORUS.

Bit-wise rotation ≪w Word-wise rotation ≪

b0 b1 b2 b3 b4 b′0 b′1 b′2 b′3 b′4

MORUS-640 5 31 7 22 13 32 64 96 64 32
MORUS-1280 13 46 38 7 4 64 128 192 128 64

rotation constants bi for round i are defined in Table 2. Additionally, each round uses rotations on a
whole q-bit register by a multiple of the word size, denoted ≪ in the following and <<< in the design
document. The word-wise rotation constants b′i are also listed in Table 2.

St+1 ← StateUpdate(St,mt) is defined as follows, where · denotes bit-wise AND, ⊕ is bit-wise XOR,
and mi is defined depending on the context:

Round 1: St+1
0 ← (St0 ⊕ (St1 · St2)⊕ St3) ≪w b0, St3 ← St3 ≪ b′0.

Round 2: St+1
1 ← (St1 ⊕ (St2 · St3)⊕ St4 ⊕mi) ≪w b1, St4 ← St4 ≪ b′1.

Round 3: St+1
2 ← (St2 ⊕ (St3 · St4)⊕ St0 ⊕mi) ≪w b2, St0 ← St0 ≪ b′2.

Round 4: St+1
3 ← (St3 ⊕ (St4 · St0)⊕ St1 ⊕mi) ≪w b3, St1 ← St1 ≪ b′3.

Round 5: St+1
4 ← (St4 ⊕ (St0 · St1)⊕ St2 ⊕mi) ≪w b4, St2 ← St2 ≪ b′4.

Initialization. The initialization of MORUS-640 starts by loading the 128-bit key K128 and the 128-bit
nonce N128 into the state together with constants c0, c1:

S−16
0 = N128, S−16

1 = K128, S−16
2 = 1128, S−16

3 = c0, S−16
4 = c1.

Then, StateUpdate(St, 0) is iterated 16 times for t = −16,−15, . . . ,−1. Finally, the key is XORed into
the state again with S0

1 ← S0
1 ⊕K128.

The initialization of MORUS-1280 differs slightly due to the difference in register size and the two
possible key sizes, and uses either K = K128‖K128 (for MORUS-1280-128) or K = K256 (for MORUS-
1280-256) to initialize the state:

S−16
0 = N128 ‖ 0128, S−16

1 = K, S−16
2 = 1256, S−16

3 = 0256, S−16
4 = c0 ‖ c1.

After iterating StateUpdate 16 times, the state is updated with S0
1 ← S0

1 ⊕K.

Associated Data Processing. After initialization, the associated data A is processed in blocks of
q ∈ {128, 256} bits. For the padding, if the last associated data block is not a full block, it is padded to
q bits with zeroes. If the length of A, denoted by |A|, is 0, then the associated data processing phase is
skipped; else, the state is updated as

St+1 ← StateUpdate(St, At) for t = 0, 1, . . . , d|A|/qe − 1.

Encryption. Next, the message is processed in blocks Mt of q ∈ {128, 256} bits to update the state and
produce the ciphertext blocks Ct. If the last message block is not a full block, a string of 0’s is used to
pad it to 128 or 256 bits for MORUS-640 and MORUS-1280, respectively, and the padded full block is
used to update the state. However, only the partial block is encrypted. Note that if the message length
denoted by |M | is 0, encryption is skipped. Let u = d|A|/qe and v = d|M |/qe. The following is performed
for t = 0, 1, . . . , v − 1:

Ct ←M t ⊕ Su+t
0 ⊕ (Su+t

1 ≪ b′2)⊕ (Su+t
2 · Su+t

3),

Su+t+1 ← StateUpdate(Su+t,M t).

Finalization. The finalization phase generates the authentication tag T using 10 more StateUpdate

steps. We only discuss the case where T is not truncated. The associated data length and the message
length are used to update the state:

1. L ← |A| ‖ |M | for MORUS-640 or L ← |A| ‖ |M | ‖ 0128 for MORUS-1280, where |A|, |M | are
represented as 64-bit integers.

2. Su+v
4 ← Su+v

4 ⊕ Su+v
0 .

3. For t = u+ v, u+ v + 1, . . . , u+ v + 9, compute St+1 ← StateUpdate(St, L).
4. T = Su+v+10

0 ⊕ (Su+v+10
1 ≪ b′2)⊕ (Su+v+10

2 · Su+v+10
3), or the least significant 128 bits of this value

in case of MORUS-1280.

2.2 Notation

In the following, we use linear approximations [Mat93] that hold with probability Pr(E) = 1
2 + ε, i.e.,

they are biased with bias ε. The correlation cor(E) of the approximation and its weight weight(E) are
defined as

cor(E) := 2 Pr(E)− 1 = 2ε ,

weight(E) := − log2 | cor(E)| ,

where log2() denotes logarithm in base 2. By the Piling-Up Lemma, the correlation (resp. weight) of an
XOR of independent variables is equal to the product (resp. sum) of their individual correlations (resp.
weights) [Mat93].

We also recall the following notation from the previous section, where an encryption step refers to
one call to the StateUpdate function:

Ct : the ciphertext block output during the t-th encryption step.

Ctj : the j-th bit of Ct, with Ct0 being the rightmost bit.

Sti : the i-th register at the beginning of t-th encryption step.

Sti,j : the j-th bit of Sti , with Sti,0 being the rightmost bit.
In the above notation, bit positions are always taken modulo the register size q, i.e., q = 128 for MORUS-
640 and q = 256 for MORUS-1280.

For simplicity, in the remainder, the 0-th encryption step will often denote the encryption step where
our linear trail starts. Any encryption step could be chosen for that purpose, as long as at least four more
encryption steps follow. In particular the 0-th encryption step from the perspective of the trail does not
have to be the first encryption step after initialization.

3 Rotational Invariance and MiniMORUS

To simplify the description of the attack, we assume all plaintext blocks are zero. This assumption will
be removed in Section 5.3, where we will show that plaintext bits only contribute linearly to the trail.
Recall that the inner state of the cipher consists of five 4w-bit registers S0, . . . , S4, each containing four
w-bit words.

3.1 Rotationally Invariant Linear Combinations

We begin with a few observations about the StateUpdate function. Besides XOR and AND operations,
the StateUpdate function uses two types of bit rotations:

1. bit-wise rotations perform a circular shift on each word within a register;
2. word-wise rotations perform a circular shift on a whole register.

The second type of rotation always shifts registers by a multiple of the word size w. This amounts to
a (circular) permutation of the words within the register: for example, if a register contains the words
(A,B,C,D), and a word-wise rotation by w bits to the left is performed, then the register now contains
the words (B,C,D,A).

To build our linear trail, we start with a linear combinations of bits within a single register.

Definition 1 (Rotational Invariance). Recall that w denotes the word size in bits, and 4w is the size
of a register. A linear combination of the form:

Sti,j(0) ⊕ S
t
i,j(1) ⊕ · · · ⊕ S

t
i,j(k)

is said to be rotationally invariant iff the set of bits Sti,j(0), . . . , S
t
i,j(k) is left invariant by a circular shift

by w bits; that is, iff:

{j(i) : i ≤ k} = {j(i) + w mod 4w : i ≤ k}.

Example. The following linear combination is rotationally invariant for MORUS-640, i.e. w = 32:

St0,0 ⊕ St0,32 ⊕ St0,64 ⊕ St0,96. (1)

This definition naturally extends to a linear combination across multiple registers, and also across
ciphertext blocks. The value of such a linear combination is unaffected by word-wise rotations, since
those rotations always shift registers by a multiple of the word size. On the other hand, since bit-wise
rotations always shift all four words within a register by the same amount, bit-wise rotations preserve
the rotational invariance property. Moreover, the XOR of two rotationally invariant linear combinations
is also rotationally invariant.

This naturally leads to the idea of building a linear trail using only rotationally invariant linear
combinations, which is what we are going to do. As a result, the effect of word-wise rotations can be
ignored. Moreover, since all linear combinations we consider are going to be rotationally invariant, they
can be described by truncating the linear combination to the first word of a register. Indeed, an equivalent
way of saying a linear combination is rotationally invariant, is that it involves the same bits in each word
within a register. For example, in the case of (1) above, the four bits involved are the first bit of each of
the four words.

3.2 MiniMORUS

In fact, we can go further and consider a reduced version of MORUS where each register contains a
single word instead of four. The StateUpdate function is unchanged, except for the fact that word-wise
rotations are removed: see Figure 1. We call these reduced versions MiniMORUS-640 and MiniMORUS-
1280, for MORUS-640 and MORUS-1280 respectively. Since registers in MiniMORUS contain a single word,
bit-wise and word-wise rotations are the same operation; for simplicity we write ≪ for bit-wise rotations.

Since the trail we are building is relatively complex, we will first describe it on MiniMORUS. We will
then extend it to the full MORUS via the previous rotational invariance property.

4 Linear Trail for MiniMORUS

In this section, we describe how we build a trail for MiniMORUS, then compute its correlation and validate
the correlation experimentally.

4.1 Overview of the Trail

To build a linear trail for MiniMORUS, we combine the following five trail fragments αti, β
t
i , γ

t
i , δ

t
i , ε

t
i,

where the subscript i denotes a bit position, and the superscript t denotes a step number:

– αti approximates (one bit of) state word S0 using the ciphertext;
– βti approximates S1 using S0 and the ciphertext;
– γti approximates S4 using two approximations of S1 in consecutive steps;
– δti approximates S2 using two approximations of S4 in consecutive steps;
– εti approximates S0 using two approximations of S2 in consecutive steps.

The trail fragments are depicted on Figure 2. In all cases except αti, the trail fragment approximates a
single AND gate by zero, which holds with probability 3/4, and hence the trail fragment has weight 1. In
the case of αti, two AND gates are involved; however the two gates share an entry in common, and in both

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

Fig. 1: MiniMORUS state update function.

cases the other entry also has a linear contribution to the trail, which results in an overall contribution
of the form (see [AR16, Sec. 3.3])

x · y ⊕ x · z ⊕ y ⊕ z = (x⊕ 1) · (y ⊕ z).

As a result, the trail fragment αti also has a weight of 1. Another way of looking at this phenomenon is
that the trail holds for two different approximations of the AND gates: the alternative approximation is
depicted by a dashed line on Figure 2.

The way we are going to use each trail fragment may be summarized as follows, where in each case,
elements to the left of the arrow → are used to approximate the element on the right of the arrow:

αti : Cti → St+1
0,i+b0

βti : Cti , S
t
0,i → St1,i

γti : St1,i, S
t+1
1,i+b1

→ St4,i

δti : St4,i, S
t+1
4,i+b4

→ St+1
2,i

εti : St2,i, S
t+1
2,i+b2

→ St+1
0,i .

In more detail, the idea is that by using αti, we are able to approximate a bit of S0 using only a
ciphertext bit. By combining αti with βt+1

i+b0
, we are then able to approximate a bit of S1 (at step t + 1)

using only ciphertext bits from two consecutive steps. Likewise, γti allows us to “jump” from S1 to S4,
i.e. by combining αti with βti and γti with appropriate choices of parameters t and i for each, we are able
to approximate one bit of S4 using only ciphertext bits. Notice however that γti requires approximating
S1 in two consecutive steps; and so the previous combination requires using αti and βti twice at different
steps. In the same way, δti allows us to jump from S4 to S2; and εti allows jumping from S2 back to S0.
Eventually, we are able to approximate a bit of S0 using only ciphertext bits via the combination of all
trail fragments αti, β

t
i , γ

t
i , δ

t
i , and εti.

However, the same bit of S0 can also be approximated directly by using αti at the corresponding
step. Thus that bit can be linearly approximated from two different sides: the first approximation uses a
combination of all trail fragments, and involves successive approximations of all state registers (except S3)
spanning several encryption steps, as explained in the previous paragraph. The second approximation only
involves using αti at the final step reached by the previous trail. By XORing up these two approximations,
we are left with only ciphertext bits, spanning five consecutive encryption steps.

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i+ b0

αt
i: weight 1 (not 2)

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

βt
i : weight 1

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i i

i+ b1

γt
i : weight 1

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i+ b4

δti : weight 1

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i+ b2

εti: weight 1

MiniMORUS-640:

αt
i : Ct

i → St+1
0,i+5

βt
i : Ct

i , S
t
0,i → St

1,i

γt
i : St

1,i, S
t+1
1,i+31 → St

4,i

δti : St
4,i, S

t+1
4,i+13 → St+1

2,i

εti : St
2,i, S

t+1
2,i+7 → St+1

0,i .

MiniMORUS-1280:

αt
i : Ct

i → St+1
0,i+13

βt
i : Ct

i , S
t
0,i → St

1,i

γt
i : St

1,i, S
t+1
1,i+46 → St

4,i

δti : St
4,i, S

t+1
4,i+4 → St+1

2,i

εti : St
2,i, S

t+1
2,i+38 → St+1

0,i .

MiniMORUS instances

Fig. 2: MiniMORUS linear trail fragments.

Of course, the overall trail resulting from all of the previous combinations is quite complex, especially
since γti , δ

t
i , and εti each require two copies of the preceding trail fragment in consecutive steps: that

is, εti requires two approximations of S2, which requires using δti twice; and δti in turn requires using
γti twice, which itself requires using αti and βti twice. Then αti is used one final time to close the trail.
The full construction with the exact bit indices for MiniMORUS-640 and MiniMORUS-1280 is illustrated
in Figure 3, where the left and right half each show half of the full trail. One may naturally wonder
if some components of this trail are in conflict. In particular, products of bits from registers S2 and
S3 are approximated multiple times, by αti, β

t
i and γti . To address this concern, and ensure that all

approximations along the trail are in fact compatible, we now compute the full trail equation explicitly.

4.2 Trail Equation

The equation corresponding to each of the five trail fragments αti, β
t
i , γ

t
i , δ

t
i , ε

t
i may be written explicitly

as At
i, Bt

i, Ct
i, Dt

i, Et
i as follows. For each equation, we write on the left-hand side of the equality the

biased linear combination used in the trail; and on the right-hand side, the remainder of the equation,
which must have non-zero correlation (in all cases the correlation is 2−1).

At
i : Cti ⊕ St+1

0,i+b0
= St1,i ⊕ St3,i ⊕ St1,i · St2,i ⊕ St2,i · St3,i

Bt
i : Cti ⊕ St0,i ⊕ St1,i = St2,i · St3,i

Ct
i : St1,i ⊕ St+1

1,i+b1
⊕ St4,i = St2,i · St3,i

Dt
i : St4,i ⊕ St+1

4,i+b4
⊕ St+1

2,i = St+1
0,i · S

t+1
1,i

Et
i : St2,i ⊕ St+1

2,i+b2
⊕ St+1

0,i = St3,i · St4,i

From an algebraic point of view, building the full trail amounts to adding up copies of the previous
equations for various choices of t and i, so that eventually all Sxy,z terms on the left-hand side cancel out.
Then we are left with only ciphertext terms on the left-hand side, while the right-hand side consists of
a sum of biased expressions. By measuring the correlation of the right-hand side expression, we are then
able to determine the correlation of the linear combination of ciphertext bits on the left-hand side. We
now set out to do so.

In order to build the equation for the full trail, we start with E2
0:

S2
2,0 ⊕ S3

2,b2 ⊕ S
3
0,0 = S2

3,0 · S2
4,0.

In order to cancel the S3
0,0 term on the left-hand side, we add to the equation A2

−b0 (where the sum of
two equations of the form a = b and c = d is defined to be a+ c = b+ d). This yields:

S2
2,0 ⊕ S3

2,b2 ⊕ C
2
−b0

= S2
3,0 · S2

4,0 ⊕ S2
1,−b0 ⊕ S

2
3,−b0 ⊕ S

2
1,−b0 · S

2
2,−b0 ⊕ S

2
2,−b0 · S

2
3,−b0 .

We then need to cancel two terms of the form St2,i. To do this, we add to the equations Dt
i for appropriate

choices of t and i. This replaces the two St2,i terms by four St4,i terms. By using equation Bt
i four times,

we can then replace these four St4,i terms by eight St1,i terms. By applying equation Bt
i eight times,

these eight St1,i terms can in turn be replaced by eight St0,i terms (and some ciphertext terms). Finally,
applying At

i eight times allows to replace these eight St0,i terms by only ciphertext bits. Ultimately, for
MiniMORUS-1280, this yields the equation:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

= S0
1,51 · S0

2,51 ⊕ S0
2,51 · S0

3,51 ⊕ S0
1,51 ⊕ S0

3,51 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
2,25 · S1

3,25 ⊕ S1
1,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
2,33 · S1

3,33 ⊕ S1
1,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
2,55 · S1

3,55 ⊕ S1
1,55 ⊕ S1

3,55 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 ⊕ S2
1,7 ⊕ S2

3,7 weight 1

S0 S1 S2 S3 S4C

27

0

α27

0 0

0

β08

13

α8,2626

31

0

31

0

γ0

0

13

0
×

δ0

31 31 31
β13,3113

13

13

7

12

α7

13

12

13

γ13

12
12 12

β12

χ1: weight 7 (not 11)

S0 S1 S2 S3 S4C

2

7

α2

7 7

7

β715

20

α15,1,271

6

27

0

7

6

7

γ7

7

20

7

δ7

0×

7

0

ε0

6 6 6
β20,620

20

20

14

19

α14

20

19

20

γ20

19
19 19

β19

χ2: weight 9 (not 13)

MiniMORUS-640

S0 S1 S2 S3 S4C

51

0

α51

0 0

0

β055

4

α55,3333

46

0

46

0

γ0

0

4

0
×

δ0

46 46 46
β4,464

4

4

37

50

α37

4

50

4

γ4

50
50 50

β50

χ1: weight 7 (not 11)

MiniMORUS-1280

S0 S1 S2 S3 S4C

25

38

α25

38 38

38

β387

20

α7,1,5129

42

51

0

38

20

38

γ38

38

42

38

δ38

0×

38

0

ε0

42 42 42
β20,4220

20

20

11

24

α11

42

24

42

γ42

24
24 24

β24

χ2: weight 9 (not 13)

Fig. 3: MiniMORUS: two approximations for S2
2,0. Numbers in each diagram denote bit positions used in

the linear approximation, i.e. subscripts of α, β, γ, δ and ε. χ1 and χ2 are two halves of the full trail which
we experimentally verify.

⊕ S2
1,29 · S2

2,29 ⊕ S2
2,29 · S2

3,29 ⊕ S2
1,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
2,37 · S2

3,37 ⊕ S2
1,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
2,51 · S2

3,51 ⊕ S2
1,51 ⊕ S2

3,51 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
2,11 · S3

3,11 ⊕ S3
1,11 ⊕ S3

3,11 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

The equation for MiniMORUS-640 is very similar, and is given in Appendix A.

4.3 Correlation of the Trail

In the equation for MiniMORUS-1280 from the previous section, each line on the right-hand side of the
equality involves distinct Sti,j terms (in the sense that no two lines share a common term), and each
line has a weight of 1. By the Piling-Up Lemma, it follows that if we assume distinct Sti,j terms to
be uniform and independent, then the expression on the right-hand side has a weight of 16. Hence the
linear combination of ciphertext bits on the left-hand side has a correlation of 2−16. The same holds for
MiniMORUS-640.

The correlation is surprising high. The full trail uses trail fragments εti, δ
t
i , γ

t
i , β

t
i , and αti, once, twice,

4 times, 8 times, and 9 times, respectively. Since each trail fragment has a weight of 1, this would suggest
that the total weight should be 1 + 2 + 4 + 8 + 9 = 24 rather than 16. However, when combining trail
fragments βi and γi, notice that the same AND is computed at the same step between registers S2 and
S3 (equivalently, notice that the right-hand side of equations Bt

i and Ct
i is equal). In both cases it is

approximated by zero. When XORing the corresponding equations, these two ANDs cancel each other,
which saves two AND gates. Since γti is used four times in the course of the full trail, this results in saving
8 AND gates overall, which explains why the final correlation is 2−16 rather than 2−24.

4.4 Experimental Verification

To confirm that our analysis is correct, we ran experiments on an implementation of MiniMORUS-1280
and MiniMORUS-640. We consider two halves χ1 and χ2 of the full trail (depicted on Figure 3), as well
as the full trail itself, denoted by χ. In each case, we give the weight predicted by the analysis from the
previous section, and the weight measured by our experiments. Results are displayed on Table 3. While
our analysis predicts a correlation of 2−16, experiments indicate a slightly better empirical correlation of
2−15.5 for MORUS-640. The discrepancy of 2−0.5 probably arises from the fact that register bits across
different steps are not completely independent.

The programs we used to verify the bias experimentally are available at:
https://github.com/ildyria/MorusBias

5 Trail for Full MORUS

In the previous section, we presented a linear trail for the reduced ciphers MiniMORUS-1280 and MiniMORUS-
640. We now turn to the full ciphers MORUS-1280 and MORUS-640.

5.1 Making the Trail Rotationally Invariant

In order to build a trail for the full MORUS, we proceed exactly as we did for MiniMORUS, following
the same path down to step and word rotation values, with one difference: in order to move from the

https://github.com/ildyria/MorusBias

Table 3: Experimental verification of trail correlations.

Weight

Approximations for MiniMORUS-640 Predicted Measured

χ1 S
2,2
0 = C0

27 ⊕ C1
0,8,26 ⊕ C2

7,13,31 ⊕ C3
12 7 7

χ2 S
2,2
0 = C1

2 ⊕ C2
1,7,15,27 ⊕ C3

6,14,20 ⊕ C4
19 9 9

χ 0 = C0
27 ⊕ C1

0,2,26,8 ⊕ C2
1,13,15,27,31 ⊕ C3

6,12,14,20 ⊕ C4
19 16 15.5

Approximations for MiniMORUS-1280

χ1 S
2,2
0 = C0

51 ⊕ C1
0,33,55 ⊕ C2

4,37,46 ⊕ C3
50 7 7

χ2 S
2,2
0 = C1

25 ⊕ C2
7,29,38,51 ⊕ C3

11,20,42 ⊕ C4
24 9 9

χ 0 = C0
51 ⊕ C1

0,25,33,55 ⊕ C2
4,7,29,37,38,46,51 ⊕ C3

11,20,42,50 ⊕ C4
24 16 15.9

one-word registers of MiniMORUS to the four-word registers of full MORUS, we make every term Sti,j
and Ctj rotationally invariant, in the sense of Section 3. That is, for every Sti,j (resp. Ctj) component in
every trail fragment and every equation, we expand the term by adding in the terms Sti,j+w, Sti,j+2w,
Sti,j+3w (resp. Ctj+w, Ctj+2w, Ctj+3w), where as usual w denotes the word size. For example, if w = 64 (for

MORUS-1280), the term S3
2,0 is expanded into:

S3
2,0 ⊕ S3

2,64 ⊕ S3
2,128 ⊕ S3

2,192.

Thus, translating the trail from one of the MiniMORUS ciphers to the corresponding full MORUS
cipher amounts to making every linear combination rotationally invariant—indeed, that was the point
of introducing MiniMORUS in the first place. Concretely, in order to build the full trail equation for
MORUS, we write rotationally invariant versions of equations At

i, Bt
i, Ct

i, Dt
i, Et

i from Section 4.2, and
then combine them in exactly the same manner as before. This way, the biased linear combination on
MiniMORUS-1280 given in Section 4.2, namely:

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

ultimately yields the following biased rotationally invariant linear combination on the full MORUS-1280:

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55 ⊕ C1
64 ⊕ C1

89

⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183 ⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247

⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37 ⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93

⊕ C2
101 ⊕ C2

102 ⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243 ⊕ C3
11 ⊕ C3

20

⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114 ⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178

⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242 ⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

We refer the reader to Appendix A for the corresponding linear combination on MORUS-640.

5.2 Correlation of the Full Trail

The rotationally invariant trail on full MORUS may be intuitively understood as consisting of four copies
of the original trail on MiniMORUS. Indeed, the only difference between full MORUS (for either version
of MORUS) and four independent copies of MiniMORUS comes from word-wise rotations, which permute
words within a register. But as observed in Section 3, word-wise rotations preserves the rotational in-
variance property; and so, insofar as we only ever use rotationally invariant linear combinations on all
registers along the trail, word-wise rotations have no effect.

Following the previous intuition, one may expect that the weight of the full trail should simply be four
times the weight of the corresponding MiniMORUS trail, namely 64 for both MORUS-1280 and MORUS-
640. However, reality is a little more complex, as the full trail does not exactly behave as four copies of
the original trail when one considers nonlinear terms.

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i+ b1

=

MiniMORUS: weight 0 (not 2)

·

M

C

≪b0

·

≪b1

·

≪b2

·

≪b3

·

≪b4

·

M

M

M

M

i

i i

i+ b1

MORUS: weight 4× 1 (not 4× 2)

Fig. 4: Weight of βti ⊕ γti for MiniMORUS and MORUS.

To understand why that might be the case, assume a nonlinear term S0
2,0 ·S0

3,0 arising from some part
of the trail, and another term S0

2,0 · S0
3,w arising from a different part of the trail (where w denotes the

word size). Then when we XOR the various trail fragments together, in MiniMORUS these two terms are
actually equal and will cancel out, since word-wise rotations by multiples of w bits are ignored. However
in the real MORUS these terms are of course distinct and do not cancel each other.

In the actual trail for (either version of) full MORUS, this exact situation occurs when combining trail
fragments βti and γti . Indeed, βti requires approximating the term St2,i·St3,i, while γti requires approximating
the term St2,i · St3,i−w (cf. Figure 4). While in MiniMORUS, these terms cancel out, in the full MORUS,
when adding up four copies of the trail to achieve rotational invariance, we end up with the sum:

St2,i · St3,i ⊕ St3,i · St2,i+w ⊕ St2,i+w · St3,i+w ⊕ St3,i+w · St2,i+2w

⊕ St2,i+2w · St3,i+2w ⊕ St3,i+2w · St2,i+3w ⊕ St2,i+3w · St3,i+3w ⊕ St3,i+3w · St2,i. (2)

It may be observed that the products occurring in the equation above involve eight terms forming a ring.
The weight of this expression can be computed by brute force, and is equal to 3.

For MORUS-1280, since the trail fragment γti is used four times, this phenomenon adds a contribution
of 4 · 3 = 12 to the overall weight of the full trail. This results in a total weight of 4 · 16 + 12 = 76 (recall
that the weight of the trail on MiniMORUS-1280 is 16). We have confirmed this by explicitly computing
the full trail equation in Appendix A, and evaluating its exact weight like we did for MiniMORUS in
Section 4.3. That is, since the equation is quadratic, we may view it as a graph, which we split into
connected components; we then compute the weight of each connected component separately by brute
force, and then add up the weights of all components per the Piling-Up Lemma. Overall, the full trail
equation given in Appendix A yields a weight of 76 for the full trail on MORUS-1280.

In the case of MORUS-640, collisions between rotation constants further complicate the analysis.
Specifically, when using trail fragment βti , the term St2,i · St3,i occurs. As explained previously, a partial
collision with the term St2,i ·St3,i−w from trail fragment γti results in Equation (2). However trail fragment
αti+d is once used in the course of the full trail with an offset of d = b1 +b4−b0−b2 (relative to γti), which
in the case of MORUS-640 is equal to 31 + 13− 5− 7 = 0 mod 32. This creates another term St2,i · St3,i,
which ultimately destroys one of the four occurrences of Equation (2). Therefore, when computing the
full trail equation on MORUS-640, we get that the weight of the trail is 73 (cf. Appendix A).

5.3 Taking Variable Plaintext into Account

In our analysis so far, for the sake of simplicity, we have assumed that all plaintext blocks are zero.
We now examine what happens if we remove that assumption, and integrate plaintext variables into our
analysis. What we show is that plaintext variables only contribute linearly to the trail. In other words,
the full trail equation with plaintext variables is equal to the full trail equation with all-zero plaintext
XORed with a linear combination of plaintext variables.

To see this, recall that plaintext bits contribute to the encryption process in two ways (cf. Section 2.1):

1. They are added to some bits derived from the state to form the ciphertext.
2. During each encryption step, the StateUpdate function adds a plaintext block to every register except
S0.

The effect of Item 1 is that whenever we use a ciphertext bit in our full trail equation, the corresponding
plaintext bit also needs to be XORed in. Because ciphertext bits only contribute linearly to the trail
equation, this only adds a linear combination of plaintext bits to the equation.

Regarding Item 2, recall that the full trail equation is a linear combination of (the rotationally invariant
version of) equations At

i, Bt
i, Ct

i, Dt
i, Et

i in Section 4.2. Also observe that in each equation, state bits
that are shifted by a bit-wise rotation only contribute linearly. Because plaintext bits are XORed into
each register at the same time bit-wise rotation is performed, this implies that plaintext bits resulting
from Item 2 also only contribute linearly. In fact in all cases, it so happens that updating the equation
to take plaintext variables into account simply involves XORing in the plaintext bit M t

i .
It may be observed that message blocks in the StateUpdate function only contribute linearly to the

state, and in that regard play a role similar to key bits in an SPN cipher; and indeed in SPN ciphers, it
is the case that key bits contribute linearly to linear trails [Mat93]. In this light the previous result may
not be surprising.

In the end, with variable plaintext, our trail yields a biased linear combination of ciphertext bits and
plaintext bits. In regards to attacks, this means the situation is effectively the same as with a biased
stream cipher: in particular if the plaintext is known we obtain a distinguisher; and if a fixed unknown
plaintext is encrypted multiple times (possibly also with some known variable part) then our trail yields
a plaintext recovery attack.

6 Discussion

We now discuss the impact of these attacks on the security of MORUS.

Keystream Correlation. We emphasize that the correlation we uncover between plaintext and cipher-
text bits is absolute, in the sense that it does not depend on the encryption key, or on the nonce. This
is the same situation as the keystream correlations in AEGIS [Min14]. As such, they can be leveraged
to mount an attack in the broadcast setting, where the same message is encrypted multiple times with
different IVs and potentially different keys [MS01]. In particular, the broadcast setting appears in prac-
tice in man-in-the-browser attacks against HTTPS connections following the BEAST model [DR11]. In
this scenario, an attacker uses Javascript code running in the victim’s browser (by tricking the victim to
visit a malicious website) to generate a large number of request to a secure website. Because of details of
the HTTP protocol, each request includes an authentication token to identify the user, and the attacker
can target this token as a repeated plaintext. Concretely, correlations in the RC4 keystream have been
exploited in this setting, leading to the recovery of authentication cookies in practice [ABP+13].

Data Complexity. The design document of MORUS imposes a limit of 264 encrypted blocks for a given
key. However, since our attack is independent of the encryption key, and hence immune to rekeying, this
limitation does not apply: all that matters for our attack is that the same plaintext be encrypted enough
times.

With the trail presented in this work, the data complexity is clearly out of reach in practice, since
exploiting the correlation would require 2152 encrypted blocks for MORUS1280, and 2146 encrypted blocks
for MORUS640. The data complexity could be slightly lowered by leveraging multilinear cryptanalysis;
indeed, the trail holds for any bit shift, and if we assume independence, we could run w copies of the

trail in parallel on the same encrypted blocks (recall that w is the word size, and the trail is invariant
by rotation by w bits). This would save a factor 25 on the data complexity for MORUS640, and 26 for
MORUS1280; but the resulting complexity is still out of reach.

However, MORUS1280 with a 256-bit key claims a security level of 256 bits for confidentiality, and an
attack with complexity 2152 violates this claim, even if it is not practical.

Design Considerations. The existence of this trail does hint at some weakness in the design of MORUS.
Indeed, a notable feature of the trail is that the values of rotation constants are mostly irrelevant: a similar
trail would exist for most choices of the constants. That it is possible to build a trail that ignores rotation
constants may be surprising. This would have been prevented by adding a bit-wise rotation to one of the
state registers at the input of the ciphertext equation.

7 Analysis on Initialization and Finalization of Reduced MORUS

The bias in the previous sections analysed the encryption part of the MORUS. In this section, for com-
prehensive security analysis of MORUS, we provide new attacks on reduced version of the initialization
and the finalization. We emphasize that the results in this section do not threaten any security claim
by the designers. However, we believe that investigating all parts of the design with different approaches
from the existing work on MORUS provides a better understanding and will be useful especially when
the design will be tweaked in future.

7.1 Forgery with Reduced Finalization

We present forgery attacks on 3 out of 10 steps of MORUS-1280 that claims 128-bit security for integrity.
The attack only works for a limited number of steps, while it works in the nonce-respecting setting. As
far as we know, this is the first attempt to evaluate integrity of MORUS in the nonce-respecting setting.

Overview. A general strategy for forgery attacks in the nonce-respecting setting is to inject some
difference in a message block and propagate it so that it can be canceled by a difference in another
message block. However this approach does not work well against MORUS due to its large state size
which prevents an attacker from easily controlling the differences in different registers.

Here we focus on the property that the padding for an associated data A and a message M is the
zero-padding, hence A and A′ = A‖0∗ and M and M ′ = M‖0 result in identical states after the associated
data processing and the encryption parts, as long as A,A′ and M,M ′ fit in the same number of blocks.
During the finalization, since A,A′ (resp. M,M ′) have different lengths, the corresponding 64-bit values
|A| (resp. |M |) are different, which appears as ∆|A| (resp. ∆|M |) during the finalization, and is injected
through the message input interface. Our strategy is to propagate this difference to the 128-bit tags T
and T ′ such that their difference ∆T appears with higher probability than 2−128. All in all, the forgery
succeeds as long as the desired ∆T is obtained or in other words, the attacker does not have to cancel
the state difference, which is the main advantage of attacking the finalization part of the scheme.

Note that if the attacker uses different messagesM,M ′, not only the new tag T ′ but also new ciphertext
C ′ must be guessed correctly. Because the encryption of MORUS is a simple XOR of the key stream, C ′

can be easily guessed. For this purpose, the attacker should first query a longer message M ′ = M‖0∗ to
obtain C ′. Then, C can be obtained by truncating C ′.

Differential Trails. Recall that the message input during the finalization of MORUS-1280 is |A| ‖ |M | ‖
0128 where |A| and |M | are 64-bit strings. We set∆|A| to be of low Hamming weight, e.g., 0x0000000000000001.
This difference propagates through 3 steps as specified in Table 4.

Recall that each step consists of 5 rounds and the input message is absorbed to the state in rounds 2
to 5. The trail in Table 4 initially does not have any difference and the same continues even after round 1.
Differences start to appear from round 2 and they will go through the bitwise-AND operation from round
4. We need to pay 1 bit to control each active AND gate. The probability evaluation for round 15 can be
ignored since in this round only S4 is non-linearly updated, while S4 is never used for computing the tag.
Finally, bitwise-AND in the tag computation is taken into account. Note that the tag is only 128 LSBs,

thus the number of active AND gates should be counted only for those bits. As shown in Table 4, we can
have a particular tag difference ∆T with probability 2−88. Thus after observing A and corresponding T ,
A‖0 and (T ⊕∆T) is a valid pair with probability 2−88.

Remarks. The fact that the S4 is updated in the last round but is not used in the tag generation implies
that the MORUS finalization generally includes unnecessary computations with respect to security. It
may be interesting to tweak the design such that the tag can also depend on S4. Indeed in Table 4, we
can observe some jump-up of the probability in the tag computation. This is because the non-linearly
involved terms are S2 ·S3, and S3 that was updated 2 rounds before has a high Hamming weight. In this
sense, involving S4 in non-linear terms of the tag computation imposes more difficulties for the attacker.

7.2 Extending State Recovery to Key Recovery

Kales et al. [KEM17] showed that the internal state of MORUS-640 can be recovered under the nonce-
misuse scenario using 25 plaintext-ciphertext pairs. As claimed by [KEM17] the attack is naturally ex-
tended to MORUS-1280 though Kales et al. [KEM17] did not demonstrate specific attacks. The recovered
state allows the attacker to mount a universal forgery attack under the same nonce. However, the key
still cannot be recovered because the key is used both at the beginning and end of the initialization,
which prevents the attacker from backtracking the state value to the initial state. In this section, we show
that meet-in-the-middle attacks allow the attacker to recover the key faster than exhaustive search for a
relatively large number of steps, i.e., 10 out of 16 steps in MORUS-1280.

Overview. We divide the 10 steps of the initialization computation into two subsequent parts F0 and
F1. (We later set that F0 is the first 4 steps and F1 is the last 6 steps.) Let S−10 be the initial state value
before setting the key, i.e., S−10 = (N ‖ 0128, 0256, 1256, 0256, c0 ‖ c1). Also let S0 be 1280-bit state value
after the initialization, which is now assumed to be recovered with the nonce-misuse analysis [KEM17].
We then have the following relation.

F1 ◦ F0

(
S−10 ⊕ (0,K, 0, 0, 0)

)
⊕ (0,K, 0, 0, 0) = S0.

We target the variant MORUS-1280-128, where K = K128 ‖ K128.
Here, our strategy is to recover K128 by independently processing F0 and F−1

1 to find the following
match.

F0(S−10 ⊕ (0,K128‖K128, 0, 0, 0))
?
= F−1

1 (S0 ⊕ (0,K128‖K128, 0, 0, 0)).

To evaluate the attack complexity, we consider the following parameters.

– G0: a set of bits of K128 that are guessed for computing F0.
– G1: a set of bits of K128 that are guessed for computing F−1

1 .
– G2: a set of bits in the intersection of G0 and G1.
– x bits can match after processing F0 and F−1

1 .

Suppose that the union of G0 and G1 covers all the bits of K128. The attack exhaustively guesses G2 and
performs the following procedure for each guess.

1. F0 is computed 2|G0|−|G2| times and the results are stored in a table T . (Because |G1| − |G2| bits are
unknown, only a part of the state is computed.)

2. F−1
1 is computed 2|G1|−|G2| times and for each result we check the match with any entry in T .

3. The number of possible combinations is 2|G0|−|G2|+|G1|−|G2|, and the number of valid matches reduces
to 2|G0|−|G2|+|G1|−|G2|−x after matching the x bits.

4. Check the correctness of the guess by using one plaintext-ciphertext pair.

In the end, F0 is computed 2|G2| ·2|G0|−|G2| = 2|G0| times. Similarly, F−1
1 is computed 2|G1| times. The

number of the total candidates after the x-bit match is 2|G2| · 2|G0|−|G2|+|G1|−|G2|−x = 2|G0|+|G1|−|G2|−x.
Hence, the key K128 is recovered with complexity

max(2|G0|, 2|G1|, 2|G0|+|G1|−|G2|−x).

Table 4: Differential propagation through 3 Steps. Five lines for round i denote the difference of S0, · · · , S4

after the round i transformation.
Round State difference Weight Accumulated probability

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

Ini 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 −
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0

1 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

2 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000400000000000 0000000000000000 0000000000000000 0000000000000000 1

3 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

4 0000004000000000 0000000000000000 0000000000000000 0000000000000000 1 1
0020000000000080 0000000000000000 0000000000000000 0000000000000000 2
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−15 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0020000000000080 0000000000000000 0000000000000000 0000000000000000 2
0000040000000010 0000000000000000 0000000000000000 0000000000000000 2
0000000000100004 0000000000000000 0000000000000000 0000000000000000 2
0000000000000000 0000000000000000 0000400000000000 0000000000000000 1

2−36 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000040000000010 0000000000000000 0000000000000000 0000000000000000 2
0000000000100004 0000000000000000 0000000000000000 0000000000000000 2
0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−67 0000000000000000 0000000000000000 0000000000000000 0000004000000000 1
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0004400001000000 0000000000000000 0000000010000000 0000000000000000 4

2−108 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4
0000000000000000 0000000000000000 0000000000000000 0020000000000080 2
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−149 0400014000000000 0000000000000000 0000000000000000 0000000000001000 4
0220000080000080 0000000000000000 0000000800000000 1000000000004000 7
0000000000000000 0000000000000000 0000040000000010 0000000000000000 2
0000000000000000 0000000000100004 0000000000000000 0000000000000000 2
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−2010 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0220000080000080 0000000000000000 0000000800000000 1000000000004000 7
4000140000000010 0000000000000000 0000400000000100 0000000000010000 7
0000100000100044 0000000200008000 0001000000000000 0000000008000200 9
0000000010000000 0000000000000000 0004400001000000 0000000000000000 4

2−2811 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
4000140000000010 0000000000000000 0000400000000100 0000000000010000 7
0000100000100044 0000000200008000 0001000000000000 0000000008000200 9
0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−3912 0000000000000000 0000000000000000 0000000000001000 0400014000000000 4
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0004500005000400 0000000000000000 0040000100000040 4000000000000000 10

2−5313 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14
0000000000000000 0000000800000000 1000000000004000 0220000080000080 7
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

2−6914 0400114000040000 0020000000000080 0004000000400000 0000800100005002 14
0228000280020080 0000040000000000 2000008000202008 1000004000004021 18
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7
0000000008000200 0000100000100044 0000000200008000 0001000000000000 9
0040000100000040 4000000000000000 0004500005000400 0000000000000000 10

15 0020000000000080 0004000000400000 0000800100005002 0400114000040000 14 −
0228000280020080 0000040000000000 2000008000202008 1000004000004021 18
0000400000000100 0000000000010000 4000140000000010 0000000000000000 7

∆T 600080830020f00a 1405414005044421 2−88

Suppose that we choose |G0| and |G1| to be balanced i.e., |G0| = |G1|. Then, the complexity is

max(2|G0|, 22|G0|−|G2|−x).

Two terms are balanced when x = |G0| − |G2|. Hence, the number of matched bits in the middle of two
functions must be greater than or equal to the number of independently guessed bits to compute F0 and
F−1

1 .
In the attack below, we choose |G0| = |G1| = 127 and |G2| = 126 (equivalently |G2| − |G0| =

|G2| − |G1| = 1) in order to aim x = 1-bit match in the middle, which maximizes the number of attacked
rounds.

Full Diffusion Rounds. We found that StepUpdate was designed to have good diffusion in the forward
direction. Thus, once the state is recovered, the attacker can perform the partial computation in the
backward direction longer than the forward direction. We set G0 and G1 as follows.

G0 = {1, 2, · · · , 127} Bit position 0 is unknown.

G1 = {0, 1, · · · , 7, 9, 10, · · · , 127} Bit position 8 is unknown.

Those will lead to 4 matching bits after the 4-step forward computation and the 6-step backward com-
putation. The analysis of the diffusion is given in Table 5. In the end, K128 can be recovered faster than
the exhaustive search by 1 bit, i.e., with complexity 2127.

Remarks. The matching state does not have to be a border of a step. It can be defined on a border of a
round, or even in some more complicated way. We did not find the extension of the number of attacked
steps even with this way.

As can be seen in Table 5, the updated register in step i is independent of the update function in step
i+ 1 in the forward direction, and starts to impact from step i+ 2. By modifying this point, the diffusion
speed can increase faster, which makes this attack harder.

8 Conclusion

This work provides a comprehensive analysis of the components of MORUS. In particular, we show that
MORUS-1280’s keystream exhibits a correlation of 2−76 between certain ciphertext bits. This enables a
plaintext recovery attack in the broadcast setting, using about 2152 blocks of data. While the amount of
data required is impractical, this seems to violate the security claims of MORUS-1280 because the attack
works even if the key is refreshed regularly. Moreover, the broadcast setting is practically relevant, as was
shown with attacks against RC4 as used in TLS [ABP+13].

We have shared an earlier version of this paper with the authors of MORUS and they agree with the
technical details of the keystream bias. However they consider that it is not a significant weakness in
practice because it requires more than 264 ciphertexts bits. In the context of the CAESAR competition,
we believe that certificational attacks such as this one should be taken into account, in order to select a
portfolio of candidates that reflects the state of the art in terms of cryptographic design.

Acknowledgments. The results presented here were originally found during the Flexible Symmetric
Cryptography workshop held at the Lorentz Center in Leiden, Netherlands. The authors would like to
thank Meltem Sonmez Turan, who participated in the initial discussion. The second author was supported
by the European Union’s H2020 grant 644052 (HECTOR). The fourth and sixth authors are partially
supported by the French Agence Nationale de la Recherche through the BRUTUS project under Contract
ANR-14-CE28-0015. The fifth author was supported by EPSRC Grant EP/M013472/1.

Table 5: Analysis of the diffusion and matching bits over 10 steps. ‘0’ and ‘1’ denote that the state bit can
and cannot be computed from a partial knowledge of K128, respectively. After the partial computations
from each direction, 4 bits of S−6 can match.

Round State Difference
0000000000000000 0000000000000000 0000000000000000 0000000000000000

S−10 ⊕K128

0000000000000000 0000000000000001 0000000000000000 0000000000000001
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000002000 0000000000000000 0000000000002000 0000000000000000
0000000000000000 0000400000000000 0000000000000000 0000400000000000

1 0008000000000000 0000000000000000 0008000000000000 0000000000000000
0000000000100000 0020000000000000 0000000000100000 0020000000000000
0000000000020000 0084000000000000 0000000000020000 0084000000000000
0800000000000004 0000000204000001 0800000000000004 0000000204000001
8000000a00000000 0000002110000004 8000000a00000000 0000002110000004

2 0400010221000000 008000400a000081 0400010221000000 008000400a000081
1000050001000244 4200118a08000280 1000050001000244 4200118a08000280
880004a0a0200858 4840123350000050 880004a0a0200858 4840123350000050
023d63c00050a850 00a1442000489380 023d63c00050a850 00a1442000489380
02b63380056aaa48 00b5563005dcd6c0 02b63380056aaa48 00b5563005dcd6c0

3 d42ab556bf5dfcd6 5a26f633a8556aaa d42ab556bf5dfcd6 5a26f633a8556aaa
5fbbf556bd556c65 7aab99aaee6bea2c 5fbbf556bd556c65 7aab99aaee6bea2c
abff7f3ad7feafad cfff777ffddffd6d abff7f3ad7feafad cfff777ffddffd6d
fff77dfffffdcf57 fefad7efffdffbf7 fff77dfffffdcf57 fefad7efffdffbf7
ffffffffffffbfff fffbf7fffddfff77 ffffffffffffbfff fffbf7fffddfff77

4 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff fffbffffefffffff ffffffffffffffff fffbffffefffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

2-bits match 2-bits match
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

5 ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff
ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7
ffffffffedffffff fffff7ffedfffff7 ffffffffedffffff fffff7ffedfffff7
fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757

6 fffbf5e7cdfffbf7 fffff7bfcdfff757 fffbf5e7cdfffbf7 fffff7bfcdfff757
7ffd75b6cdfff357 fffbf5a6ccfcfb73 7ffd75b6cdfff357 fffbf5a6ccfcfb73
7ffbf5a6ccfcf373 7ff975b6ccfff353 7ffbf5a6ccfcf373 7ff975b6ccfff353
7efbf5a6cc7cf353 7fd975a6cceff353 7efbf5a6cc7cf353 7fd975a6cceff353
7eb950a4cc78e353 7dd07184cced7153 7eb950a4cc78e353 7dd07184cced7153

7 7eb950a4cc78e353 7dd07184ccec7153 7eb950a4cc78e353 7dd07184ccec7153
7cd051044c6c3153 3e985024cc48a313 7cd051044c6c3153 3e985024cc48a313
3c905004cc482313 7c9051044c6c2113 3c905004cc482313 7c9051044c6c2113
2c905004c4482113 7c9050040c682113 2c905004c4482113 7c9050040c682113
2810100444082112 5c1010040c402113 2810100444082112 5c1010040c402113

8 2810100444082112 1c1010040c402113 2810100444082112 1c1010040c402113
0c00100404400113 2800000404082112 0c00100404400113 2800000404082112
0800000404002112 0800100404400113 0800000404002112 0800100404400113
0800000404002112 0800100004000112 0800000404002112 0800100004000112
0000000404000102 0000100004000110 0000000404000102 0000100004000110

9 0000000404000102 0000000004000110 0000000404000102 0000000004000110
0000000004000110 0000000000000102 0000000004000110 0000000000000102
0000000000000100 0000000004000110 0000000000000100 0000000004000110
0000000000000100 0000000004000100 0000000000000100 0000000004000100
0000000000000000 0000000004000100 0000000000000000 0000000004000100

10 0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000100 0000000000000000 0000000000000100 0000000000000000
0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000000

S0 ⊕K128

0000000000000000 0000000000000100 0000000000000000 0000000000000100
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000

References

ABP+13. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering, and Jacob
C. N. Schuldt. On the security of RC4 in TLS. In USENIX Security Symposium 2013, pages 305–320.
USENIX Association, 2013.

AR16. Tomer Ashur and Vincent Rijmen. On linear hulls and trails. In Orr Dunkelman and Somitra Kumar
Sanadhya, editors, Progress in Cryptology – INDOCRYPT 2016, volume 10095 of LNCS, pages 269–
286, 2016.

CAE13. CAESAR Committee. CAESAR: Competition for authenticated encryption: Security, applicability,
and robustness. Call for submissions, 2013.

DKM+16. Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Morawiecki, Ivica Nikolić, Josef Pieprzyk, and Sebas-
tian Wójtowicz. SAT-based cryptanalysis of authenticated ciphers from the CAESAR competition.
Cryptology ePrint Archive, Report 2016/1053, 2016. https://eprint.iacr.org/2016/1053.

DMW17. Ashutosh Dhar Dwivedi, Pawel Morawiecki, and Sebastian Wójtowicz. Differential and rotational
cryptanalysis of round-reduced MORUS. In Pierangela Samarati, Mohammad S. Obaidat, and En-
rique Cabello, editors, E-Business and Telecommunications – ICETE/SECRYPT 2017, pages 275–284.
SciTePress, 2017.

DR11. Thai Duong and Juliano Rizzo. Here come the ⊕ ninjas. Ekoparty, 2011.
Dwo07. Morris J. Dworkin. NIST SP 800-38D: Recommendation for block cipher modes of operation: Ga-

lois/Counter Mode (GCM) and GMAC. National Institute of Standards and Technology (NIST)
Special Publication (SP), 2007. https://www.nist.gov/node/562956.

KEM17. Daniel Kales, Maria Eichlseder, and Florian Mendel. Note on the robustness of CAESAR candidates.
IACR Cryptology ePrint Archive, Report 2017/1137, 2017. https://eprint.iacr.org/2017/1137.

Mat93. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor, Advances in
Cryptology – EUROCRYPT 1993, volume 765 of LNCS, pages 386–397. Springer, 1993.

MDV15. Aleksandra Mileva, Vesna Dimitrova, and Vesselin Velichkov. Analysis of the authenticated cipher
MORUS (v1). In Enes Pasalic and Lars R. Knudsen, editors, Cryptography and Information Security
in the Balkans – BalkanCryptSec 2015, volume 9540 of LNCS, pages 45–59. Springer, 2015.

Min14. Brice Minaud. Linear biases in AEGIS keystream. In Antoine Joux and Amr M. Youssef, editors,
Selected Areas in Cryptography – SAC 2014, volume 8781 of LNCS, pages 290–305. Springer, 2014.
See also: https://eprint.iacr.org/2018/292.

MS01. Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Fast Software Encryption –
FSE 2001, volume 2355 of LNCS, pages 152–164. Springer, 2001.

MV04. David A. McGrew and John Viega. The security and performance of the Galois/Counter Mode
(GCM) of operation. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology –
INDOCRYPT 2004, volume 3348 of LNCS, pages 343–355. Springer, 2004. See also: https://eprint.
iacr.org/2004/193.

MY92. Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext attack of FEAL cipher.
In Rainer A. Rueppel, editor, Advances in Cryptology – EUROCRYPT 1992, volume 658 of LNCS,
pages 81–91. Springer, 1992.

SGLZ16. Tairong Shi, Jie Guan, Junzhi Li, and Pei Zhang. Improved collision cryptanalysis of authenticated
cipher morus. In Artificial Intelligence and Industrial Engineering – AIIE 2016, volume 133 of Advances
in Intelligent Systems Research, pages 429–432. Atlantis Press, 2016.

SSB+17. Md. Iftekhar Salam, Leonie Simpson, Harry Bartlett, Ed Dawson, Josef Pieprzyk, and Kenneth Koon-
Ho Wong. Investigating cube attacks on the authenticated encryption stream cipher MORUS. In
IEEE Trustcom/BigDataSE/ICESS 2017, pages 961–966. IEEE, 2017.

VV17. Serge Vaudenay and Damian Vizár. Under pressure: Security of CAESAR candidates beyond their
guarantees. Cryptology ePrint Archive, Report 2017/1147, 2017. https://eprint.iacr.org/2017/

1147.
WH16. Hongjun Wu and Tao Huang. The authenticated cipher MORUS (v2). Submission to CAESAR:

Competition for Authenticated Encryption. Security, Applicability, and Robustness (Round 3 and
Finalist), September 2016. http://competitions.cr.yp.to/round3/morusv2.pdf.

WP13. Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm. In Tanja Lange,
Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography – SAC 2013, volume 8282
of LNCS, pages 185–201. Springer, 2013. See also: https://eprint.iacr.org/2013/695.

WP16. Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption algorithm (v1.1). Submis-
sion to CAESAR: Competition for Authenticated Encryption. Security, Applicability, and Robustness
(Round 3 and Finalist), September 2016. http://competitions.cr.yp.to/round3/aegisv11.pdf.

https://eprint.iacr.org/2016/1053
https://www.nist.gov/node/562956
https://eprint.iacr.org/2017/1137
https://eprint.iacr.org/2018/292
https://eprint.iacr.org/2004/193
https://eprint.iacr.org/2004/193
https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147
http://competitions.cr.yp.to/round3/morusv2.pdf
https://eprint.iacr.org/2013/695
http://competitions.cr.yp.to/round3/aegisv11.pdf

A Trail Equations

In this section, we provide full trail equations for all variants of MORUS. In each case, we decompose the
right-hand side of the equality (involving state bits) into connected components, and compute the weight
of each of these connected components. If we assume that distinct state bits are uniformly random and
independent, then each connected component is independent. By the Piling-Up Lemma, it follows that
the weight of the full equation is equal to the sum of the weights of the connected components.

A.1 Trail Equation for MiniMORUS-1280

This trail equation was already given in Section 4.2.

C0
51 ⊕ C1

0 ⊕ C1
25 ⊕ C1

33 ⊕ C1
55 ⊕ C2

4 ⊕ C2
7 ⊕ C2

29 ⊕ C2
37

⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C3

11 ⊕ C3
20 ⊕ C3

42 ⊕ C3
50 ⊕ C4

24

= S0
1,51 · S0

2,51 ⊕ S0
2,51 · S0

3,51 ⊕ S0
1,51 ⊕ S0

3,51 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
2,25 · S1

3,25 ⊕ S1
1,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
2,33 · S1

3,33 ⊕ S1
1,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
2,55 · S1

3,55 ⊕ S1
1,55 ⊕ S1

3,55 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 ⊕ S2
1,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
2,29 · S2

3,29 ⊕ S2
1,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
2,37 · S2

3,37 ⊕ S2
1,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
2,51 · S2

3,51 ⊕ S2
1,51 ⊕ S2

3,51 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
2,11 · S3

3,11 ⊕ S3
1,11 ⊕ S3

3,11 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

The total weight of the trail is 16.

A.2 Trail Equation for MiniMORUS-640

C0
27 ⊕ C1

0 ⊕ C1
2 ⊕ C1

8 ⊕ C1
26 ⊕ C2

1 ⊕ C2
13 ⊕ C2

15

⊕ C2
27 ⊕ C2

31 ⊕ C3
6 ⊕ C3

12 ⊕ C3
14 ⊕ C3

20 ⊕ C4
19

= S0
1,27 ⊕ S0

3,27 ⊕ S0
1,27 · S0

2,27 ⊕ S0
2,27 · S0

3,27 weight 1

⊕ S1
1,26 ⊕ S1

3,26 ⊕ S1
1,26 · S1

2,26 ⊕ S1
2,26 · S1

3,26 weight 1

⊕ S1
1,8 ⊕ S1

3,8 ⊕ S1
1,8 · S1

2,8 ⊕ S1
2,8 · S1

3,8 weight 1

⊕ S2
3,1 ⊕ S2

1,1 ⊕ S2
1,1 · S2

2,1 ⊕ S2
2,1 · S2

3,1 weight 1

⊕ S2
1,7 ⊕ S2

3,7 ⊕ S2
1,7 · S2

2,7 ⊕ S2
2,7 · S2

3,7 weight 1

⊕ S2
1,15 ⊕ S2

3,15 ⊕ S2
1,15 · S2

2,15 ⊕ S2
2,15 · S2

3,15 weight 1

⊕ S2
1,27 ⊕ S2

3,27 ⊕ S2
1,27 · S2

2,27 ⊕ S2
2,27 · S2

3,27 weight 1

⊕ S1
1,2 ⊕ S1

3,2 ⊕ S1
1,2 · S1

2,2 ⊕ S1
2,2 · S1

3,2 weight 1

⊕ S3
3,14 ⊕ S3

1,14 ⊕ S3
1,14 · S3

2,14 ⊕ S3
2,14 · S3

3,14 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
2,31 · S2

3,31 weight 1

⊕ S2
3,0 · S2

4,0 weight 1

⊕ S3
0,7 · S3

1,7 weight 1

⊕ S3
2,6 · S3

3,6 weight 1

⊕ S3
2,12 · S3

3,12 weight 1

⊕ S4
2,19 · S4

3,19. weight 1

The total weight of the trail is 16.

A.3 Trail Equation for full MORUS-1280

C0
51 ⊕ C0

115 ⊕ C0
179 ⊕ C0

243 ⊕ C1
0 ⊕ C1

25 ⊕ C1
33 ⊕ C1

55 ⊕ C1
64 ⊕ C1

89

⊕ C1
97 ⊕ C1

119 ⊕ C1
128 ⊕ C1

153 ⊕ C1
161 ⊕ C1

183 ⊕ C1
192 ⊕ C1

217 ⊕ C1
225 ⊕ C1

247

⊕ C2
4 ⊕ C2

7 ⊕ C2
29 ⊕ C2

37 ⊕ C2
38 ⊕ C2

46 ⊕ C2
51 ⊕ C2

68 ⊕ C2
71 ⊕ C2

93

⊕ C2
101 ⊕ C2

102 ⊕ C2
110 ⊕ C2

115 ⊕ C2
132 ⊕ C2

135 ⊕ C2
157 ⊕ C2

165 ⊕ C2
166 ⊕ C2

174

⊕ C2
179 ⊕ C2

196 ⊕ C2
199 ⊕ C2

221 ⊕ C2
229 ⊕ C2

230 ⊕ C2
238 ⊕ C2

243 ⊕ C3
11 ⊕ C3

20

⊕ C3
42 ⊕ C3

50 ⊕ C3
75 ⊕ C3

84 ⊕ C3
106 ⊕ C3

114 ⊕ C3
139 ⊕ C3

148 ⊕ C3
170 ⊕ C3

178

⊕ C3
203 ⊕ C3

212 ⊕ C3
234 ⊕ C3

242 ⊕ C4
24 ⊕ C4

88 ⊕ C4
152 ⊕ C4

216

= S1
2,0 · S1

3,192 ⊕ S1
2,0 · S1

3,0 ⊕ S1
2,64 · S1

3,0 ⊕ S1
2,64 · S1

3,64

⊕ S1
2,128 · S1

3,64 ⊕ S1
2,128 · S1

3,128 ⊕ S1
2,192 · S1

3,128 ⊕ S1
2,192 · S1

3,192 weight 3

⊕ S2
2,4 · S2

3,4 ⊕ S2
2,68 · S2

3,4 ⊕ S2
2,68 · S2

3,68 ⊕ S2
2,132 · S2

3,68

⊕ S2
2,132 · S2

3,132 ⊕ S2
2,196 · S2

3,132 ⊕ S2
2,196 · S2

3,196 ⊕ S2
2,4 · S2

3,196 weight 3

⊕ S2
2,102 · S2

3,38 ⊕ S2
2,102 · S2

3,102 ⊕ S2
2,166 · S2

3,102 ⊕ S2
2,166 · S2

3,166

⊕ S2
2,230 · S2

3,166 ⊕ S2
2,230 · S2

3,230 ⊕ S2
2,38 · S2

3,230 ⊕ S2
2,38 · S2

3,38 weight 3

⊕ S3
2,42 · S3

3,42 ⊕ S3
2,106 · S3

3,42 ⊕ S3
2,106 · S3

3,106 ⊕ S3
2,170 · S3

3,106

⊕ S3
2,170 · S3

3,170 ⊕ S3
2,234 · S3

3,170 ⊕ S3
2,234 · S3

3,234 ⊕ S3
2,42 · S3

3,234 weight 3

⊕ S0
1,51 · S0

2,51 ⊕ S0
1,51 ⊕ S0

2,51 · S0
3,51 ⊕ S0

3,51 weight 1

⊕ S0
1,115 · S0

2,115 ⊕ S0
1,115 ⊕ S0

2,115 · S0
3,115 ⊕ S0

3,115 weight 1

⊕ S0
1,179 · S0

2,179 ⊕ S0
1,179 ⊕ S0

2,179 · S0
3,179 ⊕ S0

3,179 weight 1

⊕ S0
1,243 · S0

2,243 ⊕ S0
1,243 ⊕ S0

2,243 · S0
3,243 ⊕ S0

3,243 weight 1

⊕ S1
1,25 · S1

2,25 ⊕ S1
1,25 ⊕ S1

2,25 · S1
3,25 ⊕ S1

3,25 weight 1

⊕ S1
1,33 · S1

2,33 ⊕ S1
1,33 ⊕ S1

2,33 · S1
3,33 ⊕ S1

3,33 weight 1

⊕ S1
1,55 · S1

2,55 ⊕ S1
1,55 ⊕ S1

2,55 · S1
3,55 ⊕ S1

3,55 weight 1

⊕ S1
1,89 · S1

2,89 ⊕ S1
1,89 ⊕ S1

2,89 · S1
3,89 ⊕ S1

3,89 weight 1

⊕ S1
1,97 · S1

2,97 ⊕ S1
1,97 ⊕ S1

2,97 · S1
3,97 ⊕ S1

3,97 weight 1

⊕ S1
1,119 · S1

2,119 ⊕ S1
1,119 ⊕ S1

2,119 · S1
3,119 ⊕ S1

3,119 weight 1

⊕ S1
1,153 · S1

2,153 ⊕ S1
1,153 ⊕ S1

2,153 · S1
3,153 ⊕ S1

3,153 weight 1

⊕ S1
1,161 · S1

2,161 ⊕ S1
1,161 ⊕ S1

2,161 · S1
3,161 ⊕ S1

3,161 weight 1

⊕ S1
1,183 · S1

2,183 ⊕ S1
1,183 ⊕ S1

2,183 · S1
3,183 ⊕ S1

3,183 weight 1

⊕ S1
1,217 · S1

2,217 ⊕ S1
1,217 ⊕ S1

2,217 · S1
3,217 ⊕ S1

3,217 weight 1

⊕ S1
1,225 · S1

2,225 ⊕ S1
1,225 ⊕ S1

2,225 · S1
3,225 ⊕ S1

3,225 weight 1

⊕ S1
1,247 · S1

2,247 ⊕ S1
1,247 ⊕ S1

2,247 · S1
3,247 ⊕ S1

3,247 weight 1

⊕ S2
1,7 · S2

2,7 ⊕ S2
1,7 ⊕ S2

2,7 · S2
3,7 ⊕ S2

3,7 weight 1

⊕ S2
1,29 · S2

2,29 ⊕ S2
1,29 ⊕ S2

2,29 · S2
3,29 ⊕ S2

3,29 weight 1

⊕ S2
1,37 · S2

2,37 ⊕ S2
1,37 ⊕ S2

2,37 · S2
3,37 ⊕ S2

3,37 weight 1

⊕ S2
1,51 · S2

2,51 ⊕ S2
1,51 ⊕ S2

2,51 · S2
3,51 ⊕ S2

3,51 weight 1

⊕ S2
1,71 · S2

2,71 ⊕ S2
1,71 ⊕ S2

2,71 · S2
3,71 ⊕ S2

3,71 weight 1

⊕ S2
1,93 · S2

2,93 ⊕ S2
1,93 ⊕ S2

2,93 · S2
3,93 ⊕ S2

3,93 weight 1

⊕ S2
1,101 · S2

2,101 ⊕ S2
1,101 ⊕ S2

2,101 · S2
3,101 ⊕ S2

3,101 weight 1

⊕ S2
1,115 · S2

2,115 ⊕ S2
1,115 ⊕ S2

2,115 · S2
3,115 ⊕ S2

3,115 weight 1

⊕ S2
1,135 · S2

2,135 ⊕ S2
1,135 ⊕ S2

2,135 · S2
3,135 ⊕ S2

3,135 weight 1

⊕ S2
1,157 · S2

2,157 ⊕ S2
1,157 ⊕ S2

2,157 · S2
3,157 ⊕ S2

3,157 weight 1

⊕ S2
1,165 · S2

2,165 ⊕ S2
1,165 ⊕ S2

2,165 · S2
3,165 ⊕ S2

3,165 weight 1

⊕ S2
1,179 · S2

2,179 ⊕ S2
1,179 ⊕ S2

2,179 · S2
3,179 ⊕ S2

3,179 weight 1

⊕ S2
1,199 · S2

2,199 ⊕ S2
1,199 ⊕ S2

2,199 · S2
3,199 ⊕ S2

3,199 weight 1

⊕ S2
1,221 · S2

2,221 ⊕ S2
1,221 ⊕ S2

2,221 · S2
3,221 ⊕ S2

3,221 weight 1

⊕ S2
1,229 · S2

2,229 ⊕ S2
1,229 ⊕ S2

2,229 · S2
3,229 ⊕ S2

3,229 weight 1

⊕ S2
1,243 · S2

2,243 ⊕ S2
1,243 ⊕ S2

2,243 · S2
3,243 ⊕ S2

3,243 weight 1

⊕ S3
1,11 · S3

2,11 ⊕ S3
1,11 ⊕ S3

2,11 · S3
3,11 ⊕ S3

3,11 weight 1

⊕ S3
1,75 · S3

2,75 ⊕ S3
1,75 ⊕ S3

2,75 · S3
3,75 ⊕ S3

3,75 weight 1

⊕ S3
1,139 · S3

2,139 ⊕ S3
1,139 ⊕ S3

2,139 · S3
3,139 ⊕ S3

3,139 weight 1

⊕ S3
1,203 · S3

2,203 ⊕ S3
1,203 ⊕ S3

2,203 · S3
3,203 ⊕ S3

3,203 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
0,64 · S2

1,64 weight 1

⊕ S2
0,128 · S2

1,128 weight 1

⊕ S2
0,192 · S2

1,192 weight 1

⊕ S3
0,230 · S3

1,230 weight 1

⊕ S2
2,46 · S2

3,46 weight 1

⊕ S2
2,110 · S2

3,110 weight 1

⊕ S2
2,174 · S2

3,174 weight 1

⊕ S2
2,238 · S2

3,238 weight 1

⊕ S2
3,64 · S2

4,0 weight 1

⊕ S2
3,128 · S2

4,64 weight 1

⊕ S2
3,192 · S2

4,128 weight 1

⊕ S2
3,0 · S2

4,192 weight 1

⊕ S3
0,38 · S3

1,38 weight 1

⊕ S3
0,102 · S3

1,102 weight 1

⊕ S3
0,166 · S3

1,166 weight 1

⊕ S3
2,20 · S3

3,20 weight 1

⊕ S3
2,50 · S3

3,50 weight 1

⊕ S3
2,84 · S3

3,84 weight 1

⊕ S3
2,114 · S3

3,114 weight 1

⊕ S3
2,148 · S3

3,148 weight 1

⊕ S3
2,178 · S3

3,178 weight 1

⊕ S3
2,212 · S3

3,212 weight 1

⊕ S3
2,242 · S3

3,242 weight 1

⊕ S4
2,24 · S4

3,24 weight 1

⊕ S4
2,88 · S4

3,88 weight 1

⊕ S4
2,152 · S4

3,152 weight 1

⊕ S4
2,216 · S4

3,216 weight 1

The total weight of the trail is 76.

A.4 Trail Equation for full MORUS-640

C0
27 ⊕ C0

59 ⊕ C0
91 ⊕ C0

123 ⊕ C1
0 ⊕ C1

2 ⊕ C1
8 ⊕ C1

26 ⊕ C1
32 ⊕ C1

34

⊕ C1
40 ⊕ C1

58 ⊕ C1
64 ⊕ C1

66 ⊕ C1
72 ⊕ C1

90 ⊕ C1
96 ⊕ C1

98 ⊕ C1
104 ⊕ C1

122

⊕ C2
1 ⊕ C2

13 ⊕ C2
15 ⊕ C2

27 ⊕ C2
31 ⊕ C2

33 ⊕ C2
45 ⊕ C2

47 ⊕ C2
59 ⊕ C2

63

⊕ C2
65 ⊕ C2

77 ⊕ C2
79 ⊕ C2

91 ⊕ C2
95 ⊕ C2

97 ⊕ C2
109 ⊕ C2

111 ⊕ C2
123 ⊕ C2

127

⊕ C3
6 ⊕ C3

12 ⊕ C3
14 ⊕ C3

20 ⊕ C3
38 ⊕ C3

44 ⊕ C3
46 ⊕ C3

52 ⊕ C3
70 ⊕ C3

76

⊕ C3
78 ⊕ C3

84 ⊕ C3
102 ⊕ C3

108 ⊕ C3
110 ⊕ C3

116 ⊕ C4
19 ⊕ C4

51 ⊕ C4
83 ⊕ C4

115

= S1
2,0 · S1

3,0 ⊕ S1
2,0 · S1

3,96 ⊕ S1
2,32 · S1

3,0 ⊕ S1
2,96 · S1

3,96

⊕ S1
2,96 · S1

3,64 ⊕ S1
2,64 · S1

3,64 ⊕ S1
2,64 · S1

3,32 ⊕ S1
2,32 · S1

3,32 weight 3

⊕ S2
2,13 · S2

3,13 ⊕ S2
2,13 · S2

3,109 ⊕ S2
2,45 · S2

3,13 ⊕ S2
2,109 · S2

3,109

⊕ S2
2,45 · S2

3,45 ⊕ S2
2,109 · S2

3,77 ⊕ S2
2,77 · S2

3,45 ⊕ S2
2,77 · S2

3,77 weight 3

⊕ S3
2,20 · S3

3,20 ⊕ S3
2,20 · S3

3,116 ⊕ S3
2,52 · S3

3,20 ⊕ S3
2,116 · S3

3,116

⊕ S3
2,52 · S3

3,52 ⊕ S3
2,116 · S3

3,84 ⊕ S3
2,84 · S3

3,52 ⊕ S3
2,84 · S3

3,84 weight 3

⊕ S0
1,27 ⊕ S0

1,27 · S0
2,27 ⊕ S0

2,27 · S0
3,27 ⊕ S0

3,27 weight 1

⊕ S0
1,59 ⊕ S0

1,59 · S0
2,59 ⊕ S0

2,59 · S0
3,59 ⊕ S0

3,59 weight 1

⊕ S0
1,91 ⊕ S0

1,91 · S0
2,91 ⊕ S0

2,91 · S0
3,91 ⊕ S0

3,91 weight 1

⊕ S0
1,123 · S0

2,123 ⊕ S0
2,123 · S0

3,123 ⊕ S0
1,123 ⊕ S0

3,123 weight 1

⊕ S1
1,2 ⊕ S1

1,2 · S1
2,2 ⊕ S1

2,2 · S1
3,2 ⊕ S1

3,2 weight 1

⊕ S1
1,8 ⊕ S1

1,8 · S1
2,8 ⊕ S1

2,8 · S1
3,8 ⊕ S1

3,8 weight 1

⊕ S1
1,26 ⊕ S1

1,26 · S1
2,26 ⊕ S1

2,26 · S1
3,26 ⊕ S1

3,26 weight 1

⊕ S1
1,34 ⊕ S1

1,34 · S1
2,34 ⊕ S1

2,34 · S1
3,34 ⊕ S1

3,34 weight 1

⊕ S1
1,40 ⊕ S1

1,40 · S1
2,40 ⊕ S1

2,40 · S1
3,40 ⊕ S1

3,40 weight 1

⊕ S1
1,58 ⊕ S1

1,58 · S1
2,58 ⊕ S1

2,58 · S1
3,58 ⊕ S1

3,58 weight 1

⊕ S1
1,66 ⊕ S1

1,66 · S1
2,66 ⊕ S1

2,66 · S1
3,66 ⊕ S1

3,66 weight 1

⊕ S1
1,72 ⊕ S1

1,72 · S1
2,72 ⊕ S1

2,72 · S1
3,72 ⊕ S1

3,72 weight 1

⊕ S1
1,90 ⊕ S1

1,90 · S1
2,90 ⊕ S1

2,90 · S1
3,90 ⊕ S1

3,90 weight 1

⊕ S1
1,98 ⊕ S1

1,98 · S1
2,98 ⊕ S1

2,98 · S1
3,98 ⊕ S1

3,98 weight 1

⊕ S1
1,104 ⊕ S1

1,104 · S1
2,104 ⊕ S1

2,104 · S1
3,104 ⊕ S1

3,104 weight 1

⊕ S1
1,122 ⊕ S1

3,122 ⊕ S1
1,122 · S1

2,122 ⊕ S1
2,122 · S1

3,122 weight 1

⊕ S2
1,1 ⊕ S2

1,1 · S2
2,1 ⊕ S2

2,1 · S2
3,1 ⊕ S2

3,1 weight 1

⊕ S2
1,7 ⊕ S2

1,7 · S2
2,7 ⊕ S2

2,7 · S2
3,103 ⊕ S2

3,103 weight 1

⊕ S2
1,15 ⊕ S2

1,15 · S2
2,15 ⊕ S2

2,15 · S2
3,15 ⊕ S2

3,15 weight 1

⊕ S2
1,27 ⊕ S2

1,27 · S2
2,27 ⊕ S2

2,27 · S2
3,27 ⊕ S2

3,27 weight 1

⊕ S2
1,33 ⊕ S2

1,33 · S2
2,33 ⊕ S2

2,33 · S2
3,33 ⊕ S2

3,33 weight 1

⊕ S2
1,39 ⊕ S2

1,39 · S2
2,39 ⊕ S2

2,39 · S2
3,7 ⊕ S2

3,7 weight 1

⊕ S2
1,47 ⊕ S2

1,47 · S2
2,47 ⊕ S2

2,47 · S2
3,47 ⊕ S2

3,47 weight 1

⊕ S2
1,59 ⊕ S2

1,59 · S2
2,59 ⊕ S2

2,59 · S2
3,59 ⊕ S2

3,59 weight 1

⊕ S2
1,65 ⊕ S2

1,65 · S2
2,65 ⊕ S2

2,65 · S2
3,65 ⊕ S2

3,65 weight 1

⊕ S2
1,71 ⊕ S2

1,71 · S2
2,71 ⊕ S2

2,71 · S2
3,39 ⊕ S2

3,39 weight 1

⊕ S2
1,79 ⊕ S2

1,79 · S2
2,79 ⊕ S2

2,79 · S2
3,79 ⊕ S2

3,79 weight 1

⊕ S2
1,91 ⊕ S2

1,91 · S2
2,91 ⊕ S2

2,91 · S2
3,91 ⊕ S2

3,91 weight 1

⊕ S2
1,97 ⊕ S2

1,97 · S2
2,97 ⊕ S2

2,97 · S2
3,97 ⊕ S2

3,97 weight 1

⊕ S2
1,103 ⊕ S2

1,103 · S2
2,103 ⊕ S2

2,103 · S2
3,71 ⊕ S2

3,71 weight 1

⊕ S2
1,111 ⊕ S2

1,111 · S2
2,111 ⊕ S2

2,111 · S2
3,111 ⊕ S2

3,111 weight 1

⊕ S2
1,123 ⊕ S2

3,123 ⊕ S2
2,123 · S2

3,123 ⊕ S2
1,123 · S2

2,123 weight 1

⊕ S3
1,14 ⊕ S3

1,14 · S3
2,14 ⊕ S3

2,14 · S3
3,14 ⊕ S3

3,14 weight 1

⊕ S3
1,46 ⊕ S3

1,46 · S3
2,46 ⊕ S3

2,46 · S3
3,46 ⊕ S3

3,46 weight 1

⊕ S3
1,78 ⊕ S3

1,78 · S3
2,78 ⊕ S3

2,78 · S3
3,78 ⊕ S3

3,78 weight 1

⊕ S3
1,110 ⊕ S3

3,110 ⊕ S3
1,110 · S3

2,110 ⊕ S3
2,110 · S3

3,110 weight 1

⊕ S2
0,0 · S2

1,0 weight 1

⊕ S2
0,32 · S2

1,32 weight 1

⊕ S2
0,64 · S2

1,64 weight 1

⊕ S2
0,96 · S2

1,96 weight 1

⊕ S2
2,31 · S2

3,31 weight 1

⊕ S2
2,63 · S2

3,63 weight 1

⊕ S2
2,95 · S2

3,95 weight 1

⊕ S2
2,127 · S2

3,127 weight 1

⊕ S2
3,32 · S2

4,0 weight 1

⊕ S2
3,64 · S2

4,32 weight 1

⊕ S2
3,96 · S2

4,64 weight 1

⊕ S2
3,0 · S2

4,96 weight 1

⊕ S3
0,7 · S3

1,7 weight 1

⊕ S3
0,39 · S3

1,39 weight 1

⊕ S3
0,71 · S3

1,71 weight 1

⊕ S3
0,103 · S3

1,103 weight 1

⊕ S3
2,6 · S3

3,6 weight 1

⊕ S3
2,12 · S3

3,12 weight 1

⊕ S3
2,38 · S3

3,38 weight 1

⊕ S3
2,44 · S3

3,44 weight 1

⊕ S3
2,70 · S3

3,70 weight 1

⊕ S3
2,76 · S3

3,76 weight 1

⊕ S3
2,102 · S3

3,102 weight 1

⊕ S3
2,108 · S3

3,108 weight 1

⊕ S4
2,19 · S4

3,19 weight 1

⊕ S4
2,51 · S4

3,51 weight 1

⊕ S4
2,83 · S4

3,83 weight 1

⊕ S4
2,115 · S4

3,115 weight 1

The total weight of the trail is 73.

	Cryptanalysis of MORUS
	Introduction
	Preliminaries
	Specification of MORUS
	State.
	The StateUpdate Function.
	Initialization.
	Associated Data Processing.
	Encryption.
	Finalization.

	Notation

	Rotational Invariance and MiniMORUS
	Rotationally Invariant Linear Combinations
	MiniMORUS

	Linear Trail for MiniMORUS
	Overview of the Trail
	Trail Equation
	Correlation of the Trail
	Experimental Verification

	Trail for Full MORUS
	Making the Trail Rotationally Invariant
	Correlation of the Full Trail
	Taking Variable Plaintext into Account

	Discussion
	Keystream Correlation.
	Data Complexity.
	Design Considerations.

	Analysis on Initialization and Finalization of Reduced MORUS
	Forgery with Reduced Finalization
	Overview.
	Differential Trails.
	Remarks.

	Extending State Recovery to Key Recovery
	Overview.
	Full Diffusion Rounds.
	Remarks.

	Conclusion
	Acknowledgments.

	Trail Equations
	Trail Equation for [1280]
	Trail Equation for [640]
	Trail Equation for full MORUS-1280
	Trail Equation for full [640]

