
Logistic regression over encrypted data from
fully homomorphic encryption

Hao Chen1, Ran Gilad-Bachrach1, Kyoohyung Han2, Zhicong Huang3, Amir
Jalali4, Kim Laine1, Kristin Lauter1

1 Microsoft Research, USA, {haoche, rang, kim.laine, klauter}@microsoft.com
2 Seoul National University, Korea, satanigh@snu.ac.kr
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Abstract. One of the tasks in the 2017 iDASH secure genome analy-
sis competition was to enable training of logistic regression models over
encrypted genomic data. More precisely, given a list of approximately
1500 patient records, each with 18 binary features containing informa-
tion on specific mutations, the idea was for the data holder to encrypt the
records using homomorphic encryption, and send them to an untrusted
cloud for storage. The cloud could then apply a training algorithm on the
encrypted data to obtain an encrypted logistic regression model, which
can be sent to the data holder for decryption. In this way, the data holder
could successfully outsource the training process without revealing either
her sensitive data, or the trained model, to the cloud. Our solution to this
problem has several novelties: we use a multi-bit plaintext space in fully
homomorphic encryption together with fixed point number encoding; we
combine bootstrapping in fully homomorphic encryption with a scaling
operation in fixed point arithmetic; we use a minimax polynomial approx-
imation to the sigmoid function and the 1-bit gradient descent method
to reduce the plaintext growth in the training process. As a result, our
training over encrypted data takes 0.4–3.2 hours per iteration of gradient
descent.

1 Background

Since 2014, iDASH (integrating Data for Analysis, Anonymization, and Shar-
ing) has hosted yearly international contests around the theme of genomic and
biomedical privacy. Teams from around the world participate to test the limits
of secure computation on genomic and biomedical tasks, and benchmark solu-
tions on real data sets. Such contests serve to bring together experts in security,
cryptography, and bioinformatics to quickly make progress on interdisciplinary
challenges. The task for outsourced storage and computation this year was to im-
plement a method for private outsourced training of a logistic regression model.

1.1 Motivation

Machine Learning (ML) over encrypted data has important applications for cloud
security and privacy. It allows sensitive data, such as genomic and health data, to



be stored in the cloud in encrypted form without losing the utility of the data.
For the third task in the 2017 iDASH Secure Genome Analysis Competition,
participants were challenged to train a machine learning model on encrypted
genomic data that will predict disease based on a patient’s genome. In a non-
interactive (with outsourced storage) setting training ML models on encrypted
data had up until now only been done for very simple models, such as Linear
Least Squares and Fisher’s Linear Discriminant Analysis [1]. Interactive settings,
where multiple parties hold shares of the data and communicate throughout the
training process, have been developed for several more complicated models, but
they require high communication costs and a non-colluding assumption between
several clouds [2].

The 2017 iDASH competition task was to train a logistic regression model,
and although in theory it can be done using Fully Homomorphic Encryption
(FHE) [3,4], until now the feasibility and efficiency of this approach had not
been studied.

1.2 Summary of Results

In this work, we show that training a logistic regression model over binary data
is possible using FHE. In particular, we use variants of gradient descent algo-
rithms, and demonstrate that it takes several minutes to one hour to run each
step. Our solution can run for an arbitrary number of steps, as opposed to the
now commonly used practical homomorphic encryption (PHE) approach [5],
where the size of the computation is determined beforehand, and parameters
chosen once and for all to support a computation of that size. Our approach
is possible via a bootstrapping operation first proposed by Craig Gentry [4],
which we implemented for the first time for the Brakerski/Fan-Vercauteren
scheme [6] using the publicly available homomorphic encryption library SEAL
(http://sealcrypto.org).

More precisely, in fully homomorphic encryption each ciphertext contains a
noise component, which grows in all homomorphic operations, and eventually
reaches a maximum value. Once this maximum is reached, the ciphertext cannot
be decrypted correctly anymore. Bootstrapping is the process of “refreshing”
FHE ciphertexts to reduce the noise levels during computation to ensure correct
decryption of at the end.

Another challenge in the approach we take is message expansion. Namely, it is
only efficient to encrypt fairly small integers with many homomorphic encryption
schemes including the BFV scheme. In machine learning, the model weights are
rational numbers which need to be scaled to large integers. This could quickly
cause an overflow to occur in our rather small integer data type, hence we need a
method to scale down encrypted integers. We describe a modified bootstrapping
operation which merges bootstrapping and such a scaling operation into one
step, significantly reducing the complexity of our algorithm.

Besides noise growth and message expansion, another challenge in imple-
menting logistic regression with FHE is applying the sigmoid function. We used
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two polynomial approximations to the sigmoid function and compare them in
terms of both the accuracy of the trained model and the computation time.

1.3 Related Work

The closest work to our approach is [7], where the authors achieve remarkably
good performance in training small logistic regression models; in their solution it
is necessary that the number of features is very small (logarithmic in the number
of training records).

A slightly different approach is taken in [8,9], where the authors used an-
other homomorphic encryption scheme HEAAN [10] which supports approxi-
mate computation and efficient scaling down of plaintext numbers. The authors
report good performance numbers, but unlike us and [7] they only allow a very
small number of iterations. Extending to more iterations will be computation-
ally costly, which could potentially resolved using a follow-up work [11] which
proposed a bootstrapping method for the HEAAN scheme.

2 Methods

2.1 Brakerski/Fan-Vercauteren Scheme

Fully Homomorphic Encryption (FHE) refers to a type of encryption scheme,
envisioned already a few decades ago [3], that allows arbitrary computations to
be performed directly on encrypted data. A blueprint for a solution was first
proposed by Gentry [4] in 2009, and since then numerous schemes have been
proposed. In this work we use the Brakerski/Fan-Vercauteren scheme (BFV) [6]
(with bootstrapping enabled), and its implementation in the SEAL library [12].

Parameters and notation. We start by defining the parameters of the BFV
scheme. Let q � t be positive integers and n a power of 2. Denote ∆ = bq/tc.
We define R = Z[x]/(xn + 1), Rq = Zq[x]/(xn + 1), and Rt = Zt[x]/(xn + 1).
Here, Z[x] is the set of polynomials with integer coefficient and Zq[x] is the set
of polynomials with integer coefficient in range [0, q−1). As a set, Rq is equal to
all polynomials of degree at most n − 1, with coefficients integers modulo q. In
the BFV scheme, plaintexts are elements of Rt, and ciphertexts are elements of
Rq ×Rq. Let χ denote a narrow (centered) discrete Gaussian error distribution.
In practice, most implementations of homomorphic encryption use σ[χ] ≈ 3.2.
Finally, let Uk denote the uniform distribution on Z ∩ [−k/2, k/2).

Key generation. The first step in using the BFV scheme is generating a public-
secret key pair (pk, sk). To do this, sample s← Un

3 , a← Un
q , and e← χn; here

s, a, and e are all considered as elements of Rq, where the n coefficients are
sampled independently from the given distributions. To form the keys, we let

pk = ([−(as+ e)]q, a) ∈ R2
q , sk = s
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where [·]q denotes the (coefficient-wise) reduction modulo q. In fact, there are
other types of keys involved such as evaluation keys and Galois keys, but for
the sake of simplicity we will omit discussing them here, and refer the reader
to [6,12] for more details.

Encryption. Let m ∈ Rt be a plaintext message. To encrypt m with the public
key pk = (p0, p1) ∈ R2

q , sample u ← Un
3 and e1, e2 ← χn. Consider u and ei as

elements of Rq as in key generation, and create the ciphertext

ct = ([∆m+ p0u+ e1]q, [p1u+ e2]q) ∈ R2
q .

Decryption. To decrypt a ciphertext ct = (c0, c1) given a secret key sk = s,
write

t

q
(c0 + c1s) = m+ v + bt ,

where c0 + c1s is computed as an integer coefficient polynomial, and scaled by
the rational number t/q. The polynomial b has integer coefficients. m is the
underlying message, and v satisfies ‖v‖∞ � 1/2. The decryption formula is

m =

⌊
t

q
(c0 + c1s)

⌉
t

,

where b·e denotes rounding to the nearest integer. For details, see [6,12].

Homomorphic computations. A final fundamental piece in the puzzle is
how to enable additions and multiplications of two ciphertexts. For addition,
this is easy; we define an operation ⊕ between two ciphertexts ct1 = (c0, c1)
and ct2 = (d0, d1) as follows:

ct1 ⊕ ct2 = ([c0 + d0]q, [c1 + d1]q) ∈ R2
q .

We denote this homomorphic sum by ctsum = (csum0 , csum1 ), and note that if

t

q
(c0 + c1s) = m1 + v1 + b1t ,

t

q
(d0 + d1s) = m2 + v2 + b2t ,

then
t

q
(csum0 + csum1 s) = [m1 +m2]t + v1 + v2 + bsumt ,

As long as ‖v1 + v2‖∞ < 1/2, the ciphertext ctsum is an correct encryption of
[m1 +m2]t.

Similarly, it is possible to define an operation ⊗ between two ciphertexts,
that results in a ciphertext decrypting to [m1m2]t, as long as ‖v1‖∞ and ‖v2‖∞
are small enough. Since ⊗ is much more difficult to describe than ⊕, we refer
the reader to [6,12] for details.
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Noise. In the decryption formula presented above the rational coefficient poly-
nomial v is assumed to have infinity-norm less than 1/2. Otherwise, the output
plaintext will be incorrect. Given a ciphertext ct = (c0, c1) encrypting a plain-
text m, let v ∈ Q[x]/(xn + 1) such that

t

q
(c0 + c1s) = m+ v + bt .

The infinity norm of the polynomial v called the noise, and the ciphertext de-
crypts correctly as long as the noise is less than 1/2.

When operations such as addition and multiplication are applied to encrypted
data, the noise in the result may be larger than the noise in the inputs. This
noise growth is very small in homomorphic additions, but substantially larger in
homomorphic multiplications. Thus, given a specific set of encryption parameters
(n, q, t, χ), one can only evaluate computations of a bounded size (or bounded
multiplicative depth).

To mitigate the problem of noise growth, Craig Gentry [4] described a clever
approach known as bootstrapping. In this process, an encrypted version of the
secret key is used to decrypt the message using homomorphic operations. In ef-
fect, it takes as input a ciphertext with (potentially) large noise, and output a
ciphertext with the same encrypted message and a fixed amount of noise. The
original bootstrapping process very costly, while it has been improved substan-
tially for different schemes [13,14,11,15,16,11].

2.2 Batching

The BFV scheme supports encryption of vectors and SIMD (single instruction
multiple data) operations. This capability is called “batching” and explained in
detail in [12] in the context of the SEAL library. The idea is that by choosing
the plaintext modulus t appropriately, the plaintext space Rt is isomorphic as
a ring to the k-fold product Ftn/k × . . . × Ftn/k , for some k | n. In other words,
operations in Rt translate automatically into k concurrent operations in the
finite field Ftn/k . In this work, we are able to perform k-fold SIMD operations
on integers up to t by using only the subring Zt ⊂ Ftn/k .

2.3 Logistic Regression

Logistic Regression is a common tool used in machine learning to build a model
that can discriminate between samples from two or more classes. It arises from
the need to model the posterior probabilities of K classes via linear functions
of input x ∈ RD. In this work we consider two-class classification, so K = 2.
To simplify the notation, we assume the input vector x always has 1 as the first
element, which accounts for the bias term in the linear function. Then the logistic
regression model has the form

log

[
Pr(Y = 0 | X = x)

Pr(Y = 1 | X = x)

]
= wTx ,
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where Y denotes the class, and w ∈ RD is the weight vector that we need to
learn in model training. The above model is specified in terms of log-odds ratio,
reflecting the constraint that the probabilities sum to one. An alternative and
more common form is to represent it as the following posterior probability for
class 0:

Pr(Y = 0 | X = x) =
1

1 + e−wT x
= σ(wTx) ,

where σ(t) = 1/(1 + e−t) is known as the sigmoid function. Next we present two
algorithms for learning w.

2.4 Training Algorithms

Our goal is to evaluate a training algorithm for a logistic regression model on
homomorphically encrypted data. In this section we present the two training
algorithms that we evaluated for this purpose.

Gradient descent. The standard method for training logistic regression is
gradient descent. To fix notation, let D be the number of (binary) features, and
N the number of training records of the form (X, y), where X ∈ RN×D, y ∈ RN .
In this case the weight vector w is in RD.

Gradient descent proceeds in iterations, where in each iteration the weight
vector w is updated as

w ← w − α(σ(Xw)− y)XT ,

where σ is the sigmoid function, and α > 0 a learning rate parameter. We
formalize the gradient descent algorithm below.

Algorithm 1 Gradient Descent for Logistic Regression

Require: X ∈ RN×D, y ∈ RN , α > 0
Ensure: w ∈ RD

1: Initialize weight vector: w ← 0
2: for iter in [0, T ) do
3: for i in [0, N) do
4: Vi ← 〈Xi, w〉
5: Ui ← σ(Vi)
6: end for
7: for j in range [0, D) do
8: gj ←

∑
i(Ui − yi)Xij

9: wj ← wj − αgj
10: end for
11: end for
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1-bit gradient descent. A direct application of Algorithm 1 suffers from the
problem of quickly growing plaintext size—a problem which was briefly men-
tioned in Section 1.2. Namely, the plaintext modulus t in the homomorphic en-
cryption scheme is typically quite small, causing integer plaintext data to quickly
become reduced modulo t. This is similar to the problem using a too small data
type in normal programming, except that in this case it is difficult to switch
to a larger one. For this reason, we need to be able to control the growth of
our encrypted numbers either by scaling them down, and/or by designing our
computation in a way that minimizes the increase in the size of the numbers.

For the first approach, we need a homomorphic floor function, which we
discuss in Section 2.5. For the second approach, we note that multiplying by
just a sign never increases the size of a number, so replacing one multiplicand
by its sign allows the plaintext size to remain much smaller. Unfortunately,
homomorphic sign extraction is very difficult, but turns out to be still faster than
the homomorphic floor function. For this reason, we opt to use sign information
instead of evaluating floor function to make our homomorphic training faster.
By using the 1-Bit Gradient Descent (1-Bit GD) algorithm, which was invented
to compress the gradient in order to reduce communication during training [17],
our homomorphic training becomes much faster.

In the 1-Bit GD method, in each iteration we update each weight by a learn-
ing rate multiplied by the sign of the corresponding coordinate of the current
gradient, plus a residue term. The unused part of the gradient is then added
back into the residue. We also introduce a new parameter β, which reduces the
magnitude of the accumulated residues in the past. Our modified 1-Bit GD is
presented formally in Algorithm 2.

Algorithm 2 Modified 1-Bit Gradient Descent for Logistic Regression

Require: X ∈ RN×D, y ∈ RN , α > 0, β > 0
Ensure: w ∈ RD

1: Initialize weight vector w ← 0; Initialize residue vector r ← 0.
2: for iter in [0, T ) do
3: for i in [0, N) do
4: Vi ← 〈Xi, w〉
5: Ui ← σ(Vi)
6: end for
7: for j in range [0, D) do
8: gj ←

∑
i(Ui − yi)Xij

9: rj ← β · rj + gj
10: (Extract sign) sign = 1 if rj > 0 else − 1
11: wj ← wj − α · sign
12: rj ← rj − α · sign
13: end for
14: end for
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The 1-Bit GD approach can be done easily also in the stochastic setting,
where either an individual record or a subset from the training set is processed
at a time. For the sake of simplicity, in this work we focus on full gradient descent.

2.5 Fixed Point Arithmetic

Fixed point arithmetic over plaintext data. Logistic Regression is natu-
rally performed over floating point numbers. However, in the BFV scheme there
is no easy way to encrypt numbers of this type directly, so they need to be first
scaled to integers of some fixed precision.

In fixed point number representation we choose an integer base p (in this
work we will fix p to be an odd prime), the number of integral digits l, and the
number of fractional digits f . Then a fixed point number is a rational number x
of the form

x =

l−1∑
i=−f

xip
i ,

with xi ∈ [−(p− 1)/2, . . . , (p− 1)/2] ∩ Z. That is, every fixed point number has
l integral digits and f fractional digits in base p. We need f extra digits to hold
an intermediate result from multiplication, hence we let r = l + 2f and set the
modulus to be pr (see also [18]). To encode a number, we multiply by pf and
round to an integer, i.e. the representation of x is x̃ = pfx. See

To add/subtract two fixed numbers, we simply add/subtract their represen-
tations modulo pr. To multiply two fixed point numbers x and y, we compute

z̃ =

⌊
x̃ỹ (mod pr)

pf

⌋
.

Note that although standard fixed point arithmetic requires us to perform
scaling after every multiplication, it is not strictly needed. For example, if we are
going to compute

∑n
i=1 xiyi, then it is possible to not scale after each product,

but only scale after the sum. This may not save a lot of work over plaintext,
since scaling is fast; however, since scaling is expensive over encrypted data, this
technique is useful in our setting.

Bootstrapping. Even for relatively small examples, Algorithm 1 and Algo-
rithm 2 result in (multiplicatively) high-depth arithmetic circuits; the depth is
equal to the number of iterations times the depth of a single iterative step.
Recalling the noise growth problem discussed above in Section 2.1, a straightfor-
ward implementation will have to use bootstrapping regularly to maintain the
correctness of the final result. Since bootstrapping is a costly operation, we in-
troduce below in Section 2.5 a modification to this step that does both the noise
cleaning and also scaling, which is used to prevent plaintext size expansion.

We modified the bootstrapping algorithm from [14], where the crucial part of
the bootstrapping procedure is a homomorphic digit removal process. Namely,
suppose the plaintext modulus of our homomorphic encryption scheme is a prime

8



power t = pr, and the plaintext is (for simplicity) just an integer m ∈ Zpr .
Then as an intermediate result in bootstrapping we have an encryption of M =
pe−rm+ v, where e > r, pe is an intermediate plaintext modulus, and |v| < pr/2
is the noise to be removed. If we have a polynomial which removes the lowest e−r
digits in an integer modulo pe, then applying it to M will give us pe−rm, which is
a scalar multiple of the original message. In the BFV scheme the scalar multiple
can be easily removed when the plaintext modulus is divided by the scalar value.
So the bootstrapping procedure finishes by removing the scalar value. We apply
these ideas to achieve bootstrapping together with scaling down of encrypted
numbers, resulting in encrypted fixed point arithmetic.

Combining bootstrapping with scaling. In order to perform the scaling
functionality over encrypted data, we need to express the functionality as a
polynomial. This is possible, however the polynomial will often have large degree,
forcing us to perform bootstrapping to refresh the noise after each scaling over
encrypted data. It turns out that these two steps can be combined for improved
performance.

Suppose we have an encryption of a message m modulo pr, and we wish to ob-
tain an encryption of bm/pic. First, we can apply a free division operation in BFV
(see e.g. [18]) to obtain an encryption of bm/pic+pr−1α with full noise, where α
represents some “upper garbage”. Then we perform modulus-switching followed
by a dot product with the bootstrapping key (see e.g. [14, Section 4.1]) to obtain
a low-noise encryption of v + pe−rbm/pic+ pe−iα (mod pe), with |v| ≤ pe−r/2.
Then we follow the bootstrapping algorithm and homomorphically evaluate a
polynomial of degree epe−r to remove the v term. Finally, we apply one extra
step to remove the α term. This can be done in a similar fashion, by evaluating
a digit removal polynomial of degree rpr−i. As a result, we obtain an encryption
of bm/pic. We will use FHE.bscale(·, i) to denote the above bootstrapping plus
scaling down by i digits in base p. For convenience of notation, we set the default
value of i to be 1. The total degree of the procedure is epe−r · rpr−i = erpe−i.

3 Results

In this section we describe experiments with the techniques described in previous
sections.

3.1 Dataset Description

We used two datasets to test the performance of our homomorphic machine
learning algorithm.

iDASH 2017 competition dataset. The dataset provided by the iDASH
competition organizers consists of 1579 training samples, where each sample
contains a binary phenotype (cancer/no cancer), and 108 binary genotypes. In
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the evaluation of the solution, the organizers selected 18 genotypes to use as the
features and therefore, in the experiments reported below only these 18 features
were used.

MNIST dataset. The MNIST dataset [19] consists of hand written digits,
stored as images, and it is commonly used as benchmark for machine learning
systems. Each image in the original dataset is a 28 × 28 pixel map, where each
pixel is represented in a 256 level gray-scale code. We first selected 1500 images
containing handwritten digits ‘3’ and ‘8’ to obtain a binary classification problem.
Then we compressed each image into 196 features with each feature an integer
in the range [0, 8), by dividing each pixel value by 32 and performing average
pooling with window of size 2× 2.

3.2 Parameter Selection

Selecting the right parameters can make a big difference in performance in terms
of speed, space, and accuracy. Here we described the parameter tuning performed
in the experiments.

FHE parameters. The FHE parameters need to be chosen carefully in order
to achieve correctness, security, and performance. There are three crucial FHE
parameters to be chosen: the ring dimension n, the ciphertext modulus q and
the plaintext modulus t.

Smaller n and q imply better speed, while in order to support bootstrapping
and scaling operations n and q need to be sufficiently large. In our experiments
we chose n = 215 and q ≈ 21020, as these parameters are just large enough
for bootstrapping and scaling, yet as small as possible for optimal performance.
More precisely, we chose q as a product of 17 primes—each 60 bits in size—as
required by SEAL. These parameters guarantee around 100 bits of security.

The value of t determines the precision of our computation: the larger t is,
the more correct digits we will expect to see in the result. On the other hand,
if t is too large, bootstrapping and scaling cannot be supported unless we also
increase the value of q. We chose to use t = pr = 1273 to balance between
precision and performance. This configuration supports 64 slots per ciphertext
(recall Section 2.2, and see Section 3.3 below).

ML parameters. We use two training algorithms. The first one uses a linear
approximation of the sigmoid function together with 1-bit GD (Algorithm 2),
while the second algorithm uses a degree 3 approximation of the sigmoid function
and normal gradient descent (Algorithm 1). Note that we chose to use a linear
approximation of the sigmoid function in the 1-bit GD method, because there is
no need to use higher degree approximation due to only the sign being considered.
For the iDASH dataset we let the training algorithm perform 36 iterations over
the training data, while for the MNIST dataset we perform 10 iterations. For
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the iDASH dataset, the learning parameters were set to α = 0.1 and β = 0.2 for
Algorithm 2, and α = 0.0002 for Algorithm 1. For the MNIST data set, we used
α = 0.01 and β = 0.2 for Algorithm 2, and α = 10−5 for Algorithm 1.

Approximating the sigmoid function. There are several methods to find
an approximate polynomial for a given function. The best known method is
probably Taylor polynomials, but it minimizes the error only in the vicinity of
one point. For this reason, we instead use an approach similar to [20], and use a
so-called minimax approximation.

Let Pd denote the set of polynomials of degree at most d, and for a continuous
function f ∈ C[a, b] denote ‖f‖ = max{|f(x)| : x ∈ [a, b]}.

Definition 1. p ∈ Pd is a d-th minimax approximation of f ∈ C[a, b] if

‖f − p‖ = inf{‖f − q‖ : q ∈ Pd}.

For more details, we refer the reader to [21].
A minimax approximation algorithm (or uniform approximation) is a method

to find the polynomial p in the above definition. The Remez algorithm [22] is an
iterative minimax approximation algorithm, and yields the following results for
the interval [−5, 5] and degrees 1 and 3:

σ1(x) = 0.125x+ 0.5 , σ3(x) = −0.004x3 + 0.197x+ 0.5 .

(a) f(x) = 0.5 + 0.125x (b) f(x) = 0.5 + 0.197x− 0.004x3

Fig. 1: Minimax approximates for sigmoid

3.3 Data Batching Method

In order to efficiently use the batching capabilities in SEAL (recall Section 2.2),
we encode the training dataset “vertically”, i.e. each ciphertext will store one
single genotype/phenotype from k samples, where k is the number of slots in
one plaintext. For example, the FHE parameters presented above in Section 3.2
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yield k = 64 slots. On the other hand, we will need D plaintexts to represent the
weights, where within each plaintext vector the weight is repeatedly encoded k
times. As a result, the data matrix X is encoded into a dN/ke × D matrix X
of plaintexts, and the vector of labels y is encoded into a vector Y of plaintexts.
These plaintexts are then encrypted and sent to an untrusted party (e.g. cloud
service), which performs the homomorphic training computation, resulting in
D ciphertexts holding the encrypted weights of the final model. The gradient
descent training algorithm over encrypted data (Algorithm 3) is presented below.

Algorithm 3 Gradient Descent over encrypted data using batching

Require: X ,Y
Ensure: W

Initialize W = (Enc(0), . . . ,Enc(0))
for iter in range [1, T ] do

for i in range [0, N ′) do
V [i] := FHE.innerproduct(X [i],W )
U [i] = FHE.evalPoly*(V [i], σ3)
U ′[i] = FHE.sub(Y[i], U [i])

end for
for j in range [0, D) do
∆[j] = FHE.innerproduct(U ′,X [·][j])
∆[j] = FHE.sumslots(∆[j])
W[j] := FHE.sum(W[j],FHE.plainmult*(α,∆[j]))

end for
end for

In Algorithm 3, we put a ‘*’ after the evalPoly and plainmult functions to
indicate that the corresponding functions are combined with the bootstrap-
ping/scaling function bscale in order to emulate fixed point arithmetic. We pro-
vide more details about homomorphically evaluating σ3 and multiplying by α in
Section 3.5.

The only other place that requires further explanation is the FHE.sumslots
function. The input to this function is a batched encryption of a vector v =
(v0, v1, . . . , vk−1), and the output is an encryption of v′ = (

∑
i vi, . . . ,

∑
i vi).

In general, this function can be implemented based on the slot rotation func-
tionality. More precisely, our choice of FHE parameters guarantees that we can
cyclically rotate the values in an encrypted vector. Note that the number of
slots k is a divisor of the FHE parameter n, hence is always a power of 2. Let
k = 2`, and let FHE.rotate(c,j) denote the operation of cyclic rotation to the
right by j slot, i.e., it sends an encryption of (v0, . . . , vk−1) to an encryption
of (vk−j , vk−j+1, . . . , vk−j−1). Then the FHE.sumslots function is as presented in
Algorithm 4.
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Algorithm 4 FHE.sumslots function

Require: c = Enc(v)
Ensure: an encryption of (

∑
i vi, . . . ,

∑
i vi).

1: c′ = c
2: for i in range [0, `) do
3: c′ := FHE.add(c′,FHE.rotate(c′, 2i)).
4: end for
5: return c′

Lemma 1. Algorithm 4 is correct, i.e. the output c′ is an encryption of (
∑

i vi, . . . ,
∑

i vi).

Proof. Since k = 2`, we have that the final result c′ is equivalent to

k−1∑
i=0

FHE.rotate(c, i) .

The claim now follows, since the sum of all rotations of the vector v is exactly v′.

3.4 Optimization Techniques

We introduce an optimization to further accelerate our implementation. In the
last step of Algorithm 3, the FHE.plainmult operations (see [12]) needs to be
performed D times. Although these operations themselves are fast, the accom-
panied homomorphic scaling is expensive. Therefore, we employ an optimization
to reduce the number of multiplications from D to D/k. Since ∆[j] is an en-
cryption of a constant vector (δj , . . . , δj), we can combine the content of up to
k of these into one ciphertext, encrypting (δ0, . . . , δk−1). Then multiplying this
ciphertext by α would multiply the values in all slots, resulting in an encryption
of (αδ0, . . . , αδk−1). After the multiplication, we can “expand” the result back to
k ciphertexts, each encrypting a constant vector of αδi. This expansion step can
be implemented via FHE.sumslots. The algorithms FHE.combine and FHE.expand
are presented in Algorithm 5 and Algorithm 6.

Algorithm 5 FHE.combine

Require: A vector c of ciphertexts, where c[i] = Enc((δi, . . . , δi)) for 0 ≤ i < k
Ensure: An encryption of (δ0, . . . , δk−1).
1: return FHE.innerproduct(c, e);

Note: e[i] denotes a plaintext that is the batch encoding of the i-th unit vector.
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Algorithm 6 FHE.expand

Require: Ciphertext c which is an encryption of (v0, . . . , vk−1).
Ensure: A vector C of k ciphertexts, where C[i] is an encryption of (vi, vi, . . . , vi).
1: for i in range [0, `) do
2: tmp = FHE.plainmult(c, e[i]);
3: C[i] = FHE.sumslots(tmp) ;
4: end for
5: return C

3.5 Incorporating Scaling

Some attention to details is needed since the arithmetic system uses fixed point
representation.

Evaluating σ3. Recall that σ3(x) = 0.5 + 0.197x− 0.004x3, and the represen-
tation uses fixed point arithmetic with p = 127, l = 1, f = 1. We will scale 0.5
to b0.5p2c = 8064 with a scaling factor of 2. The second coefficient 0.197 will
be scaled to b0.197pc = 25. For the coefficient 0.004 ≈ 0.0632, we scale 0.063 to
b0.063pc = 8. Then we can compute σ3(x) over encrypted data in the following
way (recall that x̃ = bxpc):

σ3(x) ≈ bscale(8064 + 25x̃− bscale(bscale(8x̃)2) · x̃).

Multiplying by learning rate. In the last step of each iteration of the training
algorithms, the ciphertext is multiplied by the learning rate α. The challenge
is that the learning rate we use (α = 0.002) is so small that it can not be
represented by the fixed point representation we use. To see this, note that we
have p = 127 and f = 1, so the smallest positive number that can be represented
is 1/127 ≈ 0.008. To resolve this issue, we start by writing α = (

√
α)2. Since√

0.002 ≈ 0.0447, it can be represented by our fixed point system, as [0.00447p] =
6. Then we multiply the input by this value twice to obtain the result. After each
multiplication, bscale is used to put the underlying number to correct scale. That
is:

αx ≈ bscale(6 · bscale(6 · x̃)) .

Sign extraction in 1-Bit GD. In order to implement the 1-Bit GD training
algorithm, we need a function FHE.signExtract that homomorphically extracts
the sign in a fixed point number. Fortunately, this function can be implemented
using the bscale function as a subroutine. Since FHE ciphertexts encrypt scaled
integers rather than point numbers, it suffices to extract the sign from an signed
integer. Moreover, because the sign of an integer is just the most significant digit
in its base-p expansion, we can extract it directly using bscale(·, r − 1).

Note that the total degree of this algorithm is erpe−r+1, which is smaller
than the usual fixed point scaling, which has degree erpe−f . This advantage
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motivates the use of the 1-Bit GD algorithm in our work. The rest of the 1-Bit
GD algorithm over encrypted data is exactly the same as Algorithm 3, hence we
omit the details.

3.6 Performance Results

Table 1 presents the performance results for the iDASH dataset, and Table 2
presents the performance numbers for a subset of the MNIST dataset containing
only handwritten digits ‘3’ and ‘8’. In both tables the performance of models
trained on plaintext data using MATLAB are compared to models produced
by training on encrypted data. We performed the experiments on an Intel(R)
Xeon(R) CPU E3-1280 v5 @ 3.70GHz and 16GB RAM. Our experiments use
only a single thread, although we note that some of the costliest parts of the
computation would be easily parallelizable. We run the same training algorithms
on both encrypted and unencrypted data, and compare the results. In order to
evaluate the quality of the predictive models obtained, we run a 10-fold cross
validation on both training sets, and compute the average Area Under the Curve
(AUC) values. Since the unencrypted computation in MATLAB is several orders
of magnitude faster than the encrypted computation (less than 1 second), we
decided not to compare the unencrypted and encrypted running times side-by-
side.

Training method # iterations Avg. training time Avg. AUC Avg. AUC (unencrypted)

GD + σ3 36 115.33 h 0.690 0.690

1-Bit GD + σ1 36 14.90 h 0.668 0.690

Table 1: Running 10-fold cross-validation on the iDASH dataset with 1579 sam-
ples and 18 selected genotypes. The first average AUC value is obtained from
running the training algorithm using SEAL on encrypted data. The second AUC
value is obtained from running the same algorithm on unencrypted data using
MATLAB.

Training method # iterations Avg. training time Avg. AUC Avg. AUC (unencrypted)

GD + σ3 10 48.76 h 0.974 0.977

1-Bit GD + σ1 10 27.10 h 0.974 0.978

Table 2: Running 10-fold cross-validation on compressed MNIST dataset with
1500 samples and 196 features. The first average AUC value is obtained from
running the training algorithm using SEAL on encrypted data. The second AUC
value is obtained from running the same algorithm on unencrypted data using
MATLAB.
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The algorithms, when operated on encrypted data, were able to obtain almost
identical accuracy compared to training on unencrypted data. Obviously training
on encrypted data is much slower than training on unencrypted data, which
can be acceptable in some use-cases; for the datasets that we used, training
can take between half a day to few days, although substantial improvements in
computational performance can be expected by improving our implementation,
and extending it to use multiple threads.

4 Discussion and Conclusions

There is a growing interest in applying machine learning algorithm to private
data, such as medical data, genomic data, financial data and more. Homomor-
phic encryption provides a high level of data privacy during computation, but
also comes with a high cost, especially in terms of computation time. In this work
we presented new ways to train Logistic Regression models over encrypted data,
which allow an arbitrary number of iterations thanks to FHE bootstrapping,
thus making our models efficiently updatable once new data becomes available,
without requiring decryption at any point; this is different from other recently
proposed approaches that limit the number of iterations in the training process.
The time per iteration scales linearly with the data size. Hence, the total time
for training on N samples with D features per sample using T iterative steps
over encrypted data is a linear function in the product N ·D · T . Therefore, our
solutions scale nicely with the size of the data. Moreover, many of the ideas pre-
sented in this work can be applied to training other machine learning models, for
example neural networks, by using polynomial approximations to the activation
functions.
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