You are looking at a specific version 20180514:150605 of this paper. See the latest version.

Paper 2018/442

SecureNN: Efficient and Private Neural Network Training

Sameer Wagh and Divya Gupta and Nishanth Chandran

Abstract

Neural Networks (NN) provide a powerful method for machine learning training and prediction. For effective training, it is often desirable for multiple parties to combine their data -- however, doing so conflicts with data privacy. In this work, we provide novel three-party and four-party secure computation protocols for various NN building blocks such as matrix multiplication, Rectified Linear Units, MaxPool, normalization etc. This enables us to construct three-party and four-party information-theoretically secure protocols for training and prediction of CNNs, DNNs and a number of other NN architectures such that no single party learns any information about the data. Experimentally, we build a system and train a (A) 3-layer DNN (B) 4-layer CNN from MiniONN, and (C) 4-layer LeNet network. Compared to the state-of-the-art prior work SecureML (Mohassel and Zhang, IEEE S&P 2017) that provided (computationally-secure) protocols for only the network A in the 2 and 3-party setting, we obtain 93X and 8X improvements, respectively. In the WAN setting, these improvements are more drastic - for example, we obtain an improvement of 407X. Our efficiency gains come from a >8X improvement in communication, coupled with the complete elimination of expensive oblivious transfer protocols. In fact, our results show that the overhead of executing secure training protocols is only between 17-33X of the cleartext implementation even for networks that achieve >99% accuracy.

Metadata
Available format(s)
PDF
Category
Cryptographic protocols
Publication info
Preprint. MINOR revision.
Keywords
secure computationneural network traininginformation-theoretic security
Contact author(s)
nichandr @ microsoft com
t-digu @ microsoft com
snwagh @ gmail com
History
2019-03-08: revised
2018-05-14: received
See all versions
Short URL
https://ia.cr/2018/442
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.