
Fun with Bitcoin smart contracts

Massimo Bartoletti1, Tiziana Cimoli1, Roberto Zunino2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Università degli Studi di Trento, Trento, Italy

Abstract. Besides simple transfers of currency, Bitcoin also enables var-
ious forms of smart contracts, i.e. protocols where users interact within
pre-agreed rules, which determine (possibly depending on the actual in-
teraction) how currency is eventually distributed. This paper provides
a gentle introduction to Bitcoin smart contracts, which we specify by
abstracting from the underlying Bitcoin machinery. To this purpose we
exploit BitML, a recent DSL for smart contracts executable on Bitcoin.

1 Introduction

Bitcoin and other cryptocurrencies [11,18] allow mutually distrusting parties to
securely interact over a peer-to-peer network. Abstractly, Bitcoin can be seen
as a decentralized state machine: the blockchain publicly records all the state
transitions, and from the sequence of these transitions anyone can infer the
state of the machine. The Bitcoin consensus mechanism guarantees that only
the transitions which are consistent with the current state can be appended to
the blockchain, and that previous transitions cannot be altered or removed.

The main use of Bitcoin so far is that of a cryptocurrency: state transitions
record transfers of currency from one user to another one, and the state of the
machine associates users to the amount of currency under their control. More
in general, Bitcoin also enables various forms of smart contracts, i.e. protocols
to distribute currency among users according to pre-agreed conditions [4, 21].
A variety of protocols for lotteries [1, 7, 9, 16], gambling games [15], contingent
payments [6], payment channels [17], and other kinds of fair computations [2,14]
witness the capabilities of Bitcoin as a machine for smart contracts.

In practice, the development of Bitcoin smart contracts has been hampered
by the absence of convenient abstractions: indeed, existing descriptions of smart
contracts require a thorough understanding of low-level features of Bitcoin, like
e.g. transactions signatures and scripts.

In this paper we provide a gentle introduction to Bitcoin smart contracts
by leveraging BitML [8], a recent high-level, process-algebraic language that
compiles into Bitcoin transactions. The computational soundness of its compiler
guarantees that the execution of the compiled contract is coherent with the
semantics of the source BitML specification, even in the presence of adversaries.
We start by specifying in BitML several smart contracts of growing complexity,
intuitively describing their behaviour. Then, we show how to execute them on
Bitcoin, by exploiting the BitML compiler.

2 Contracts

We illustrate Bitcoin smart contracts through a series of examples, without rely-
ing on any previous knowledge about Bitcoin. To this purpose we use BitML [8],
a formalism which allows to express contracts in a process-algebraic fashion.
In Section 3 we will show how to effectively execute these contracts on Bitcoin.

Contracts allow two or more participants (denoted as A,B, . . .) to exchange
their bitcoins (B) according to the following workflow:

1. First, a participant broadcasts a contract advertisement {G}C . The com-
ponent C is the actual contract, specifying the rules according to which the
bitcoins can be transferred among participants. The component G is a set of
preconditions to the execution of C . For instance, G can require participants
to deposit some bitcoins, and to commit to some secrets.

2. If all the involved participants accept {G}C , satisfying its preconditions,
the contract C becomes stipulated. Then, participants can interact, follow-
ing the rules specified by C . According to the actual interaction, the final
distribution of bitcoins among participants may vary.

2.1 Direct payment

Assume that A wants to give 1B to B through a contract. To this purpose, A
must first declare that she owns 1B, and that she agrees to transfer it under the
control of the contract. This is represented by the following precondition:

G = A:! 1B (1)

while the actual contract is the following:

Pay = withdraw B (2)

We show below a possible computation of {G}Pay , using the semantics in [8]
(which here we slightly simplify to ease the presentation). The configurations of
the semantics are the parallel composition of terms of the following form (other
terms needed for more advanced examples will be introduced later):

– {G}C , a contract advertisement;
– 〈C , vB〉, a stipulated contract with a balance of vB;
– 〈A, vB〉x , a deposit of vB owned by A, and with unique name x;
– A[χ], the authorization of A to perform some operation χ.

The initial configuration of our direct payment contract contains {G}Pay ,
and a deposit 〈A, 1B〉x . The computation can then proceed as follows:

〈A, 1B〉x | {G}Pay −→ 〈A, 1B〉x | {G}Pay | A[x B {G}Pay]

−→ 〈withdraw B , 1B〉
−→ 〈B, 1B〉y

At the first step, A authorizes the deposit x to be transferred to the contract,
satisfying the precondition G . At the second step, Pay becomes stipulated, as-
similating 1B from the deposit x (which is then removed from the configuration).
At this point, the contract allows B to withdraw all its balance. When this hap-
pens, the contract becomes terminated (disappearing from the configuration),
and a new deposit for B is added to the configuration.

2.2 Payment from multiple senders

In the previous contract, the initial deposit has been provided by a single par-
ticipant, but more in general, a contract can gather money from multiple par-
ticipants. For instance, assume A1 and A2 want to pay 1B each to B. We can
perform this transfer atomically by using the following precondition:

G2 = A1:! 1B | A2:! 1B (3)

and the same contract Pay as in (2). Now, to stipulate the contract, both A1

and A2 must authorize to transfer their deposits to the contract:

〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay

−→ 〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay | A1[x B {G2}Pay]

−→ 〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay | A1[x B {G2}Pay] | A2[y B {G2}Pay]

−→ 〈Pay , 1B〉 −→ 〈B, 1B〉z

Note that a similar behaviour could be obtained through the parallel com-
position of two advertisements, where A1 and A2 independently send 1B to B:

{A1:! 1B} withdraw B | {A2:! 1B} withdraw B (4)

A remarkable difference between (3) and (4) is that, once stipulated, (3)
guarantees that B will receive 2B; instead, in (4) there is no guarantee that if
A1 stipulates the contract, then also A2 will do the same.

2.3 Procrastinating payments

Assume now that A wants to stipulate a contract where she commits herself to
give 1B to B after a certain date d. For instance, this contract could represent a
birthday present to be withdrawn only after the birthday date; or the paying of
a rent to the landlord, to be withdrawn only after the 1st of the month. Using
the same precondition in (1), A can use the following contract:

PayAfter = after d : withdraw B (5)

This contract locks the deposit until time d. After then, B can perform action
withdraw B to redeem 1B from the contract, with no further time limitations.
The computations must now record the passing of time: we do this by adding

to the configuration a term t = d0, meaning that the current global time is d0.
For instance, assuming that d0 = 2018-04-01 and d = 2018-04-08, a possible
computation of {G}PayAfter is the following:

〈A, 1B〉x | {G}PayAfter | t = d0 −→ · · · −→ 〈PayAfter , 1B〉 | t = d0
7 days−−−−→ 〈PayAfter , 1B〉 | t = d −→ 〈B, 1B〉y | t = d

In the contract PayAfter , if B forgets to withdraw, the money remains within
the contract. The following contract, instead, allows A to recover her money if
B has not withdrawn within a given deadline d′ > d:

PayOrRecover = after d : withdraw B + after d′ : withdraw A (6)

where the precondition is the same as in (1). The contract allows two (mutually
exclusive) behaviours: either A or B can withdraw 1B. Before the deadline d
no one can withdraw; after d (but before d′) only B can withdraw, while after
the d′ both withdraw actions are enabled, so the first one who performs their
withdraw will get the money. This contract also models a “limited-time offer”,
which becomes unavailable after the deadline d′.

2.4 Authorizing payments

Assume that A is willing to pay 1B to B, but only if another participant O gives
his authorization. With the precondition (1), we can use the following contract:

PayAuth = O : withdraw B (7)

A computation where O gives his authorization will then proceed as follows:

〈A, 1B〉x | {G}PayAuth −→ 〈A, 1B〉x | {G}PayAuth | A[x B {G}PayAuth]

−→ 〈O : withdraw B , 1B〉
−→ 〈O : withdraw B , 1B〉 | O[O : withdraw B]

−→ 〈B, 1B〉y

The semantics of contracts ensures that withdraw B can be performed only
if the configuration contains a suitable authorization. In the computation above,
this authorization is rendered by O[O : withdraw B], added at the third step3.

We can play with authorizations and summations to construct more complex
contracts. For instance, assume we want to design an escrow contract, which
allows A to buy an item from B, authorizing the payment only after she gets the
item. Further, B can authorize a full refund to A, in case there is some problem
with the item. A näıve attempt to model this contract is the following:

NaiveEscrow = A : withdraw B + B : withdraw A

3 To avoid ambiguities, the BitML semantics decorates contract terms with unique
identifiers, referred to in authorization terms. Here we omit them for conciseness.

If both participants are honest, everything goes smoothly: when A receives
the item, she authorizes the payment to B, otherwise B authorizes the refund.
The problem with this contract is that, if neither A nor B give the authorization,
the money in the contract is frozen. To cope with this issue, we can refine the
escrow contract, by introducing a trusted arbiter O which resolves the dispute:

OracleEscrow = NaiveEscrow + O : withdraw A + O : withdraw B

The last two branches are used if neither A nor B give their authorizations: in
this case, the arbiter chooses whether to authorize A or B to redeem the deposit.
A variant of the escrow contract where O can issue a partial refund is in [8].

Another use case for authorizations is a bet, for instance on a football match.
Two players A and B deposit 1B each, with precondition A:! 1B | B:! 1B. The
winner — determined by a trusted oracle O — can redeem the whole pot:

O : withdraw A + O : withdraw B

Note that a trusted oracle will only authorize the action corresponding the
winner of the football match.

2.5 Splitting deposits

In all the previous examples, the deposit within the contract is transferred to
a single participant. More in general, deposits can be split in many parts, to
be transferred to different participants. For instance, assume that A wants her
1B deposit to be transferred in equal parts to B1 and to B2. Using the same
precondition in (1), we can model this behaviour as follows:

PaySplit = split
(
0.5B→ withdraw B1 | 0.5B→ withdraw B2

)
(8)

The split construct splits the contract in two or more parallel subcontracts,
each with its own balance. Of course, the sum of their balances must be less
than or equal to the deposit of the whole contract.

A possible computation of {G}PaySplit is the following:

〈A, 1B〉x | {G}PaySplit −→ · · · −→ 〈PaySplit , 1B〉
−→ 〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉
−→ 〈B1, 0.5B〉y | 〈withdraw B2 , 0.5B〉
−→ 〈B1, 0.5B〉y | 〈B2, 0.5B〉z

We can use split together with the other primitives presented so far to
craft more complex contracts. For instance, assume that A wants pay 0.9B to
B, routing the payment through an intermediary I who can choose whether to
authorize it (in this case retaining a 0.1B fee), or not. Since A does not trust I,
she wants to use a contract to guarantee that: (i) if I authorizes the payment,

then 0.9B are transferred to B; (ii) otherwise, A does not lose money. Using the
same precondition in (1), we can model this behaviour as follows:

I : split
(
0.1B→ withdraw I | 0.9B→ withdraw B

)
+ after d : withdraw A

The leftmost branch can only be taken if I authorizes the payment: in this case,
I gets his fee, and B gets his payment. Instead, if I denies his authorization, then
A can redeem her deposit after time d.

2.6 Volatile deposits

So far, we have seen participants using persistent deposits, that are assimilated
by the contract upon stipulation. Besides these, participants can also use volatile
deposits, which are not assimilated upon stipulation. For instance:

G? = A:? 0.5B @x | A:! 0.5B

gives A the possibility of contributing 0.5B during the contract execution. How-
ever, A can choose instead to spend her volatile deposit outside the contract.
The variable x is a handle to the volatile deposit, which can be used as follows:

Pay? = putx. withdraw B

After stipulation, any participant can execute putx to transfer the deposit x
to the contract, provided that 〈A, 0.5B〉x occurs in the configuration. Unlike the
computation in Section 2.1, a computation of 〈A, 0.5B〉x | 〈A, 0.5B〉y | {G?}Pay?
(even after stipulation) is not guaranteed to reach a configuration containing
〈B, 1B〉. Indeed, since x is not paid upfront, there is no guarantee that x will be
available when the contract demands it, as A can spend it for other purposes.

Volatile deposits can be exploited within more complex contracts, to handle
situations where a participant wants to add some funds to the contract. For
instance, assume a scenario where A1 and A2 want to give B 2B as a present,
paying 1B each. However, A2 is not sure a priori she will be able to pay, because
she may need her 1B for more urgent purposes: in this case, A1 is willing to
pay an extra bitcoin. We can model this scenario as follows: A1 puts 2B as a
persistent deposit, while A2 makes available a volatile deposit x of 1B:

A1:! 2B | A2:? 1B @x

The contract is a choice between two branches:(
putx. split (2B→ withdraw B | 1B→ withdraw A1)

)
+ after d : withdraw B

In the leftmost branch, A2 puts 1B in the contract, and the balance is split
between B (who takes 2B, as expected), and A1 (who takes her extra deposit
back). The rightmost branch is enabled after d, and it deals with the case where
A2 has not put her deposit by such deadline. In this case, B can redeem 2B,
while A2 loses the extra deposit. Note that, in both cases, B will receive 2B.

2.7 Revealing secrets

A useful feature of Bitcoin smart contracts is the possibility for a participant
to choose a secret, and unblock some action only when the secret is revealed.
Further, different actions can be enabled according to the length of the secret.
Secrets must be declared in the contract precondition, as follows:

A:secret a

We give the secret a name, here a, but we never denote the value of the secret
itself. A basic contract which exploits this feature is the following:

PaySecret = reveal a if |a| > 1. withdraw A (9)

This contract asks A to commit to a secret of length greater than one4, and allows
A to redeem 1B upon revealing the secret. Until then, the deposit is frozen.

In order to describe computations where participants commit to and reveal
secrets, we extend configurations with two new kinds of terms:

– {A : a#N}, representing the fact that A has committed to a secret a. The
length of a, which is secret as well, is determined by the integer N ;

– A : a#N , representing the fact that A has revealed her secret a (hence, she
has also revealed its length N).

Running {G | A:secret a}PaySecret with a secret of length 2 yields:

〈A, 1B〉x | {A : a#2} | {G | A:secret a}PaySecret −→ · · ·
−→ {A : a#2} | 〈PaySecret , 1B〉
−→ A : a#2 | 〈PaySecret , 1B〉 −→ 〈withdraw A , 1B〉 −→ 〈A, 1B〉y

The reveal primitive can be used to design more useful contracts than the
one in (9). For instance, we show in (10) how to express a timed commitment
contract [2, 10, 13, 20], using same the precondition as above. In this contract,
A wants to choose a secret a, and reveal it before the deadline d; if A does not
reveal the secret within d, B can redeem the 1B deposit as a compensation:

TC =
(
reveal a. withdraw A

)
+

(
after d : withdraw B

)
(10)

Only A can choose the first branch, by revealing a. After that, anyone can further
reduce the contract, and transfer 1B to A. Only after time d, if the reveal has
not been performed, any participant can perform the withdraw in the second
branch, which transfers 1B to B. Therefore, before the deadline A has the option
to reveal a (avoiding the penalty), or to keep it secret (paying the penalty). If
no branch is taken by time d, a race condition occurs: in such case, the first one
who fires the withdraw gets the money.

4 After compiling to Bitcoin, the actual length of the secret will be increased by η,
where η is a security parameter, large enough to avoid brute-force preimage attacks.

Using the precondition A:! 1B | A:secret a | B:! 1B | B:secret b , we can
also model a mutual timed commitment as follows:

TC2 = reveal a.C ′ + after d : withdraw B

C ′ = reveal b.C ′′ + after d′ : withdraw A (d′ > d)

C ′′ = split
(
1B→ withdraw A | 1B→ withdraw B

)
The contract TC2 can reduce to C ′ if A reveals a; otherwise (after d) B can
redeem 2B. If A reveals, then B can choose not to reveal. Doing so, however,
B will lose his deposit, since, after d′, A can withdraw the 2B deposited in
the contract. Instead, if B reveals, the 2B are split between A and B. Any
participant (either A or B) who behaves honestly is guaranteed to learn the
other participant’s secret, or to gain 1B as compensation — in this sense the
protocol is fair. Note that d′ must be sufficiently greater than d, to avoid the
attack where A waits until the very last moment to reveal her secret, so making
it difficult for B to respect the deadline.

2.8 Lotteries and other games

Now that we have introduced all the primitives of BitML, we can combine them
to construct more advanced contracts. For instance, consider a multiparty lottery
where n players put their bets in a pot, and a winner — fairly chosen among
the players — redeems the whole pot.

We model a lottery similar to the one in [2, 3], for two players A and B who
bet 1B each. The contract preconditions are the following:

A:! 3B | A:secret a | B:! 3B | B:secret b (11)

where the deposit of each player includes the 1B bet, plus a 2B collateral used
as compensation in case of dishonest behaviour. The contract is the following:

split
(

2B→ reveal b if 0 ≤ |b| ≤ 1. withdraw B + after d : withdraw A
| 2B→ reveal a. withdraw A + after d : withdraw B
| 2B→ reveal ab if |a| = |b|. withdraw A

+ reveal ab if |a| 6= |b|. withdraw B
)

The balance is split in three parts. Player B must reveal b by the deadline d;
otherwise, A can redeem B’s collateral (note that this is a timed commitment,
similar to the one in (10)). Similarly, A must reveal a. To determine the winner
we compare the lengths of the secrets, in the third part of the split. The
winner is A if the secrets have the same length, otherwise it is B. Checking that
b’s length is either 0 or 1 is needed to achieve fairness: indeed, B can increase
his probability to redeem 2B in the third part of the split by choosing a secret
with length N > 1. However, doing so will make B lose his 2B deposit, so overall
B’s average payoff would be negative. A rational B would then choose a secret
of length 0 or 1. Similarly, a rational A must choose a secret of length 0 or 1,

otherwise she decreases her probability to be the winner. When both lengths are
chosen in {0, 1}, both A and B can collect their collateral back, and they have
a 1/2 probability to win the lottery, provided that at least one of them chooses
the length of the secret uniformly.

We also show a variant of the two-players lottery which requires no collateral,
similarly to [7, 16]. The preconditions just require the 1B bets and the secrets,
while the contract is the following, where d′ > d:

reveal b if 0 ≤ |b| ≤ 1.
(

reveal a if |a| = |b|. withdraw A
+ reveal a if |a| 6= |b|. withdraw B
+ after d′ : withdraw B

)
+ after d : withdraw A

Here, B must reveal first. If B does not reveal his secret by the deadline d,
or the secret has not the expected length, then A can redeem 2B. Otherwise,
A in turn must reveal by the deadline d′, or let B redeem 2B. If both A and B
reveal, then the winner is determined by comparing the lengths of their secrets.
As before, the rational strategy for each player is to choose a secret length 0 or
1, and reveal it. This makes the lottery fair, even in the absence of a collateral.

Using similar insights, we can craft contracts for other games. For instance,
consider Rock-Paper-Scissors, a two players hand game where both players choose
simultaneously a hand-shape, and the winner is decided along with the following
rules: rock beats scissors, scissors beats paper, and paper beats rock.

We model the game for two players A and B who bet 1B each, and represent
their moves as secrets of length 0 (rock), 1 (paper), and 2 (scissors). We define
the following boolean predicate to determine the winner:

w(N,M) = (N = 0 ∧M = 2) ∨ (N = 2 ∧M = 1) ∨ (N = 1 ∧M = 0)

The contract preconditions are as in (11), while the contract is the following:

split
(

2B→ reveal b if 0 ≤ |b| ≤ 2. withdraw B + after d : withdraw A
| 2B→ reveal a if 0 ≤ |a| ≤ 2. withdraw A + after d : withdraw B
| 2B→ reveal ab ifw(|a|, |b|). withdraw A

+ reveal ab ifw(|b|, |a|). withdraw B
+ reveal ab if |a| = |b|. split (1B→ withdraw A | 1B→ withdraw B)

)
The contract is split in three parts, each with a balance of 2B: the first two

parts allow the players to redeem the collaterals by revealing their secrets in
time (similarly to the first version of the lottery), while the third one computes
the winner. The winner is A if w(|a|, |b|), and B if w(|b|, |a|). If a and b have
the same length (i.e., they represent the same move), then there is a tie, so the
bets are given back to the two players. Notice that if a player chooses a secret
of unexpected length, then it may happen that the 2B in the third part of the
split remain frozen. However, in such case the dishonest player will pay a 2B
penalty to the other one. A zero-collateral version of Rock-Paper-Scissors can
be obtained similarly to the second version of the lottery.

3 From contracts to Bitcoin transactions

In this section we show how to execute on Bitcoin the contracts in Section 2.
We start by providing some minimal background on Bitcoin. A transaction rep-
resents a transfer of bitcoins, and the sequence of all transactions is stored in a
public, append-only data structure called blockchain. When a new transaction
T is appended to the blockchain, it redeems bitcoins from one or more transac-
tions already on the blockchain. For the aims of this paper we abstract from the
fact that, in Bitcoin, there exist some transactions (so-called coinbase) which
generate bitcoins from nothing, and that transactions are grouped into blocks.

The simplest Bitcoin transaction, which transfers 1B to participant A, can
be represented as follows, using the notation in [5]:

TA

in: T
wit: w
out: (λx.versigA(x), 1B)

The transaction TA is a record with three fields. The field in points to an-
other transaction T, which must occur before TA on the blockchain. The field
out is a pair, whose first element is a boolean predicate (called script in the
Bitcoin jargon), and the second element is the amount (1B) deposited in TA . To
append TA to the blockchain, T must contain at least 1B. The script specifies
the condition under which a subsequent transaction T′ can redeem the 1B in
TA , transferring it to T′. In our case, the script requires a signature x of A on
T′. To evaluate the script, the formal parameter x will be instantiated to the
value of the wit field (called witness) of T′. In the previous figure, the witness w
in TA is the actual parameter used to evaluate the script in T, the transaction
referred by TA .in. If such evaluation yields true, then TA can be appended to
the blockchain, redeeming 1B from T. That sum is now under the control of A,
since she is the only participant who can provide the needed witness in T′.

To execute a BitML contract, the involved users first translate it into a
set of Bitcoin transactions, using the compiler in [8]. Then, they append one
or more of these transactions to the Bitcoin blockchain. Intuitively, appending
a transaction corresponds to a step of the contract execution, and so it may
require users to perform the corresponding actions, like e.g. revealing a secret
or providing an authorization. To compile contracts we will often exploit more
advanced features of Bitcoin transactions than the above-mentioned ones, like
e.g. that of collecting bitcoins from many inputs, and splitting them between
many outputs. Further, we will often use more complex output scripts, and we
will specify time constraints on when a transaction can be appended to the
blockchain5. We will illustrate these features along with the examples where
they are needed (see [5] for details).

5 The BitML compiler always produces standard Bitcoin transactions, by exploit-
ing the BALZaC tool (https://github.com/balzac-lang/balzac). This is crucial,
since the Bitcoin network currently discards non-standard transactions.

https://github.com/balzac-lang/balzac

3.1 Direct payment

Recall the contract advertisement {A:! 1B} withdraw B from Section 2.1. By
exploiting the BitML compiler, A and B construct the following transactions:

Tinit

in: TA

wit: sigA
out: (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in: Tinit

wit: sigA sigB
out: (λς. versigB(ς), 1B)

where versigAB(ς0ς1) is a shorthand for versigA(ς0) ∧ versigB(ς1), and sigA repre-
sents A’s signature on the enclosing transaction (similarly for sigB).

In BitML, the stipulation of the contract starts with the following step:

〈A, 1B〉x | {G}Pay −→ 〈A, 1B〉x | {G}Pay | A[x B {G}Pay]

In Bitcoin, to perform this step the participants generate Tinit and T′
B (which

initially have an empty wit field), sign them, and exchange the signatures. After
that, they insert the signatures in the wit fields as shown in the figure above.
Crucially, the signature on Tinit is broadcast by A only after B’s signature has
been received and verified. In this way, when Tinit is put on the blockchain, start-
ing the execution of the contract, A knows all the needed signatures to redeem
it with T′

B later on. This guarantees that, after the contract starts executing, it
can be run until completion. In BitML, A’s signature on Tinit is rendered as the
authorization term A[x B {G}Pay].

The second computation step in BitML is the following:

〈A, 1B〉x | {G}Pay | A[x B {G}Pay] −→ 〈withdraw B , 1B〉

In Bitcoin, this corresponds to appending Tinit to the blockchain. This trans-
action redeems 1B from TA (displayed before at page 10) — the concrete coun-
terpart of the BitML deposit 〈A, 1B〉x. Note that, since both A and B know the
witness of Tinit , any of them can append such transaction.

The last computation step in BitML is the following:

〈withdraw B , 1B〉 −→ 〈B, 1B〉y

where y is a fresh name. In Bitcoin, this corresponds to appending to the
blockchain the transaction T′

B , which redeems 1B from Tinit . After that, 1B
is under B’s control, since the script of T′

B only requires B’s signature. The
unspent transaction T′

B corresponds to the BitML deposit 〈B, 1B〉y.

3.2 Payment from multiple senders

Recall {G2}Pay = {A1:! 1B | A2:! 1B} withdraw B from Section 2.2. Assume
that the deposits of A1 and A2 are provided by two transactions TA1 and TA2

similar to the transaction TA at page 10 (but for the script). Although the initial

deposits are more than one, we still use a single transaction Tinit to gather them,
by exploiting the fact that Bitcoin transactions can have multiple inputs. The
compiler produces the following two transactions:

Tinit

in: 0 7→ TA1 , 1 7→ TA2

wit: 0 7→ sigA1
, 1 7→ sigA2

out: (λς1ς2ς. versigA1A2B(ς1ς2ς), 2B)

T′
B

in: Tinit

wit: sigA1
sigA2

sigB
out: (λς. versigB(ς), 2B)

Transaction Tinit has two inputs: the one at index 0 points to TA1
, while

the other points to TA2 . Consequently, it is possible to append Tinit to the
blockchain only if both TA1 and TA2 are still unredeemed on the blockchain.
To this purpose, Tinit needs to provide two witnesses, one for each input. In
BitML, TA1

and TA2
are represented as deposits, say 〈A1, 1B〉x and 〈A2, 1B〉y,

and communicating the two signatures on Tinit corresponds to providing the
authorizations A1[x B {G2}Pay] and A2[y B {G2}Pay]. As before, these signa-
tures are exchanged only after all the other signatures have been exchanged and
verified. Once the contract is stipulated, its execution proceeds as in Section 3.1.

3.3 Procrastinating payments

To deal with time constraints, we exploit the absLock field of the Bitcoin trans-
action: namely, setting T.absLock = d prevents T from being appended to the
blockchain before time d. For instance, recall PayAfter from (5). The BitML
compiler produces the following two transactions:

Tinit

in: TA

wit: sigA
out: (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in: Tinit

wit: sigAsigB
out: (λς. versigB(ς), 1B)
absLock: d

In this way, even if after stipulation all the participants know all the witnesses,
T′
B cannot be appended to the blockchain until time d, and as a consequence, B

cannot use the 1B in T′
B before such date.

Recall now PayOrRecover from (6). The transactions obtained by compiling
it are similar to the previous ones:

Tinit

in: TA

wit: sigA
out: (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in: Tinit

wit: sigAsigB
out: (λς. versigB(ς), 1B)
absLock: d

T′
A

in: Tinit

wit: sigAsigB
out: (λς. versigA(ς), 1B)
absLock: d′

The main difference with (5) is that now there are two transactions, T′
B

and T′
A , that can redeem Tinit . However, since Tinit cannot be redeemed twice,

only one of them can be appended to the blockchain: appending T′
B corresponds

to executing the left branch of the choice, i.e. after d : withdraw B , while T′
A

corresponds to the right branch, i.e. after d′ : withdraw A .

3.4 Authorizing payments

As seen in the previous examples, to implement contract stipulation participants
must exchange and verify their signatures on the Bitcoin transactions generated
by the compiler. However, in case of contracts with authorizations, some signa-
tures can be provided only during the execution of the contract, after stipulation.

For instance, compiling PayAuth in (7) results in the following transactions:

Tinit

in: TA

wit: sigA
out: (λς0ς1ς2. versigABO(ς0ς1ς2), 1B)

T′
B

in: Tinit

wit: sigAsigB [sigO]

out: (λς. versigB(ς), 1B)

where the square brackets around sigO in T′
B indicate that such signature does

not need to be exchanged at stipulation time. Providing such signature at run
time corresponds to the following computation step in BitML:

〈O : withdraw B , 1B〉 −→ 〈O : withdraw B , 1B〉 | O[O : withdraw B]

Only after O’s signature on T′
B is made public, it is possible to append such

transaction to the blockchain, transferring 1B to B.

3.5 Splitting deposits

Bitcoin transactions can have multiple outputs: in this case, whoever redeems the
transaction must specify which output it is redeeming. This feature is exploited
to compile the split construct of BitML. For instance, compiling PaySplit
from (8) produces the following transactions:

Tinit

in: TA

wit: sigA
out:

(λς0ς1ς2.
versigAB1B2

(ς0ς1ς2),
1B)

Tsplit

in: Tinit

wit: sigAsigB1
sigB2

out:
0 7→ (λς0ς1ς2.

versigAB1B2
(ς0ς1ς2), 0.5B)

1 7→ (λς0ς1ς2.
versigAB1B2

(ς0ς1ς2), 0.5B)

T′
B1

in: (Tsplit , 0)

wit: sigAsigB1
sigB2

out: (λς. versigB1
(ς), 0.5B)

T′
B2

in: (Tsplit , 1)

wit: sigAsigB1
sigB2

out: (λς. versigB2
(ς), 0.5B)

As usual, Tinit gathers A’s deposit and starts the contract. Then, appending
Tsplit to the blockchain splits the contract balance between two different outputs,
indexed with 0 and 1. In BitML, this would correspond to the computation step:

〈PaySplit , 1B〉 −→ 〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉

where the two contracts in the parallel composition can be executed indepen-
dently (as usual in process calculi). Similarly, the two outputs of Tsplit can be
independently redeemed by T′

B1
and T′

B2
. The in field of these transactions spec-

ifies, besides the input transaction Tsplit , also the index of the output they want
to redeem. Appending T′

B1
corresponds, in BitML, to the step:

〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉 −→ 〈B1, 0.5B〉y | 〈withdraw B2 , 0.5B〉

3.6 Volatile deposits

Recall Pay? from Section 2.6, where A uses a volatile deposit x and a persistent
one. Assume that the Bitcoin counterpart of x is a transaction Tx , from which A
can redeem 0.5B by providing her own signature. The BitML compiler outputs:

Tinit

in: TA

wit: sigA
out: (λς0ς1.versigAB(ς0ς1), 0.5B)

Tput

in: 0 7→ Tinit , 1 7→ Tx

wit: 0 7→ sigAsigB , 1 7→ sigA
out: (λς0ς1. versigAB(ς0ς1), 1B)

T′
A

in: Tput

wit: sigA sigB
out: (λς. versigA(ς), 1B)

The transaction Tinit gathers the persistent deposit, stored in TA . The trans-
action Tput has two inputs: Tinit , which can be redeemed with the signatures of
both A and B, and Tx , which can be redeemed with A’s signature only. Since all
these signatures are exchanged before stipulation, any participant can append
Tput to the blockchain — provided that Tx is still unspent. Instead, if Tx has
been spent, the contract gets stuck, and the deposit within Tinit is frozen.

3.7 Revealing secrets

Recall PaySecret from Section 2.7. In the stipulation phase, A commits to a
secret (named a) and to its length N , by publishing the term {A : a#N}. In
Bitcoin, this corresponds to choosing an actual bitstring sa for the secret, and
broadcasting its hash ha = H(sa). To ensure that sa cannot be recovered by
brute force, even when N is small6, we let the actual length of sa be η + N ,
where η is a public security parameter, large enough (e.g., η = 128). In this way,
the other participants cannot infer sa (assuming H to be preimage resistant), nor
its length. Further, A cannot later on reveal a different secret or a different length
(assuming collision resistance). The BitML compiler generates the transactions:

Tinit

in: TA

wit: sigA
out: (λςx.versigA(ς) ∧

H(x) = ha ∧ |x| > η + 1, 1B)

Treveal

in: Tinit

wit: sigA [sa]

out: (λς. versigA(ς), 1B)

T′
A

in: Treveal

wit: sigA
out: (λς. versigA(ς), 1B)

6 The reason why BitML allows secrets to have small lengths is to make it easier to
write some contracts, like e.g. those in Section 2.8.

Transaction Tinit collects A’s deposit, and its output script requires two
witnesses: a signature ς of A on the redeeming transaction, and a bitstring x
whose hash H(x) is equal to ha ; further, x must be longer than η + 1 bits, to
satisfy the condition |a| > 1 in the reveal · · · if. These witnesses are provided
by Treveal , where the square brackets around sa indicate that the secret can be
provided after stipulation. Broadcasting the secret and appending Treveal to the
blockchain correspond to the following two BitML steps (which assume N > 1):

{A : a#N} | 〈PaySecret , 1B〉 −→ A : a#N | 〈PaySecret , 1B〉 −→ 〈withdraw A , 1B〉

Note that, once the transaction Treveal is on the blockchain, everyone can read
the secret in its wit field. After that, appending T′

A corresponds to the step:

〈withdraw A , 1B〉 −→ 〈A, 1B〉y

Recall now TC = (reveal a. withdraw A) + (after d : withdraw B), the
timed commitment contract in (10). As before, we assume that A commits to a
secret sa by broadcasting its hash ha . Further, we assume that A and B generate
other two key pairs, (ksA , kpA) and (ksB , kpB), and share their public parts. The
transactions obtained by the compiler are the following:

Tinit

in: TA

wit: sigA
out:

(
λς0ς1x.versigAB(ς0ς1)
∨(versigkpAkpB

(ς0ς1)

∧ H(x) = ha

∧ |x| ≥ η),
1B

)

T′

in: Tinit

wit: sigksA
sigksB

[sa]

out: (λς0ς1.versigAB(ς0ς1), 1B)

T′
A

in: T′

wit: sigAsigB
out: (λς. versigA(ς), 1B)

T′
B

in: Tinit

wit: sigAsigB
out: (λς. versigB(ς), 1B)

absLock: d

The transaction Tinit can be redeemed in two ways, according to the two
clauses in the disjunction of its output script: either with the signatures sigA
and sigB , or with the signatures sigksA

and sigksB
and the secret value sa.

In the first case one can use the transaction T′
B , which however can be ap-

pended only after time d, because of the time constraint specified in its absLock
field. Appending T′

B corresponds to the following step in BitML (where d′ ≥ d):

〈TC , 1B〉 | t = d′ −→ 〈B, 1B〉y | t = d′

In the second case, one can use the transaction T′, by filling its wit field with
the secret sa revealed by A. Doing this corresponds to the following computation
steps in BitML (which can be performed at any time):

{A : a#N} | 〈TC , 1B〉 −→ A : a#N | 〈TC , 1B〉 −→ 〈withdraw A , 1B〉

After that, anyone can append the transaction T′
A to the blockchain to transfer

1B under A’s control. Once T′ is on the blockchain, it will be no longer possible
to append T′

B , since both transactions want to redeem Tinit .

4 Related work and conclusions

We have illustrated Bitcoin smart contracts from a programming languages per-
spective, by exploiting the BitML calculus [8]. Although BitML can express
many of the smart contracts appeared in literature [4], there exist some con-
tracts which can be executed on Bitcoin but are not expressible in BitML. This
is the case e.g. of contingent payment contracts, where a participant A promises
to pay B for a value x satisfying a predicate chosen by A (e.g., x is a prime factor
of a given large number). Contingent payments can be implemented in Bitcoin
similarly to timed commitment contracts: A pays a deposit, which is taken by
B after revealing a preimage of H(x) which satisfies the predicate. An off-chain
protocol [6] (which exploits zero-knowledge proofs) is used to guarantee that
H(x) is indeed the hash of a value x satisfying the predicate (note that, in the
Bitcoin scripting language, one can only check trivial predicates, like e.g. equal-
ity). Another kind of contracts which are not expressible in BitML are those for
which one cannot pre-determine a finite set of transactions, or of signatures, be-
fore executing the contract. This is the case, e.g., of crowdfunding contracts [4],
where participants invest some money until a given threshold is reached. Here,
we do not statically know neither the number of participants, nor their identities,
so it is not possible to statically produce (and pre-sign) a set of transactions,
as required by BitML. To the best of our knowledge, the existence of negative
results on the expressiveness of Bitcoin contracts is still an open question

Only a few other languages for Bitcoin contracts have been proposed so far.
TypeCoin [12] is an high-level language which allows to model the updates of
a state machine as affine logic propositions. Users can “run” this machine by
putting transactions on the blockchain, with the guarantee that only the legit
updates can be performed. A downside of [12] is that liveness is guaranteed only
by assuming cooperative participants, i.e., a dishonest participant can make the
others unable to complete an execution. Note instead that in BitML, honest
participants can always make a contract progress, regardless of the behaviour of
the environment. Cooperation is incentivized by punishing misbehaviour with
penalties, like e.g. in the lottery of Section 2.8. The other works we are aware of,
IVY7, BALZaC8 and Simplicity [19], replace the Bitcoin scripting language with
more high-level languages, through which they simplify writing the transactions
needed in a smart contract (e.g., by providing static checks to determine if
a transaction can redeem another one, etc.). Compared to these approaches,
BitML completely abstracts from Bitcoin transactions, in this way allowing for
more elegant specifications of contracts (compare e.g. the lotteries in Section 2.8
with those in [3, 7, 16]), and paving the way towards automatic verification.

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
projects “Sardcoin” and “Smart collaborative engineering”.

7 https://ivy-lang.org/bitcoin
8 https://blockchain.unica.it/balzac/

https://ivy-lang.org/bitcoin
https://blockchain.unica.it/balzac/

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via Bitcoin deposits. In: Financial Cryptography Workshops. LNCS,
vol. 8438, pp. 105–121. Springer (2014)

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014)

3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016)

4. Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., Zunino, R.: SoK: unraveling Bitcoin
smart contracts. In: Principles of Security and Trust (POST) (2018)

5. Atzei, N., Bartoletti, M., Lande, S., Zunino, R.: A formal model of Bitcoin trans-
actions. In: Financial Cryptography and Data Security (2018)

6. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. LNCS, vol. 9879, pp.
261–280. Springer (2016)

7. Bartoletti, M., Zunino, R.: Constant-deposit multiparty lotteries on Bitcoin. In: Fi-
nancial Cryptography Workshops (2017), also in IACR Cryptology ePrint Archive
955/2016

8. Bartoletti, M., Zunino, R.: BitML: a calculus for Bitcoin smart contracts. Cryptol-
ogy ePrint Archive, Report 2018/122 (2018), https://eprint.iacr.org/2018/122

9. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. LNCS, vol. 8617, pp. 421–439. Springer (2014)

10. Boneh, D., Naor, M.: Timed commitments. In: CRYPTO. LNCS, vol. 1880, pp.
236–254. Springer (2000)

11. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

12. Crary, K., Sullivan, M.J.: Peer-to-peer affine commitment using Bitcoin. In: ACM
Conf. on Programming Language Design and Implementation. pp. 479–488 (2015)

13. Goldschlag, D.M., Stubblebine, S.G., Syverson, P.F.: Temporarily hidden bit com-
mitment and lottery applications. Int. J. Inf. Sec. 9(1), 33–50 (2010)

14. Kumaresan, R., Bentov, I.: How to use Bitcoin to incentivize correct computations.
In: ACM CCS. pp. 30–41 (2014)

15. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized
poker. In: ACM CCS. pp. 195–206 (2015)

16. Miller, A., Bentov, I.: Zero-collateral lotteries in Bitcoin and Ethereum. In: Eu-
roS&P Workshops. pp. 4–13 (2017)

17. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: Payment channels
that go faster than lightning. CoRR abs/1702.05812 (2017), http://arxiv.org/
abs/1702.05812

18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)

19. O’Connor, R.: Simplicity: A new language for blockchains. In: PLAS (2017), http:
//arxiv.org/abs/1711.03028

20. Syverson, P.F.: Weakly secret bit commitment: Applications to lotteries and fair
exchange. In: IEEE CSFW. pp. 2–13 (1998)

21. Szabo, N.: Formalizing and securing relationships on public networks. First Mon-
day 2(9) (1997), http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/
fm/article/view/548

https://eprint.iacr.org/2018/122
http://arxiv.org/abs/1702.05812
http://arxiv.org/abs/1702.05812
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1711.03028
http://arxiv.org/abs/1711.03028
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

	Fun with Bitcoin smart contracts

