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Abstract. Implementation attacks like side-channel and fault attacks are
a threat to deployed devices especially if an attacker has physical access.
As a consequence, devices like smart cards and IoT devices usually provide
countermeasures against implementation attacks, such as masking against
side-channel attacks and detection-based countermeasures like temporal
or spacial redundancy against fault attacks. In this paper, we show how to
attack implementations protected with both masking and detection-based
fault countermeasures by using statistical ineffective fault attacks using a
single fault induction per execution. Our attacks are largely unaffected
by the deployed protection order of masking and the level of redundancy
of the detection-based countermeasure. These observations show that
the combination of masking plus error detection alone may not provide
sufficient protection against implementation attacks.
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1 Introduction

Fault attacks and passive side-channel attacks, like power [17] or EM analysis [21],
are very powerful attacks on implementations of cryptographic algorithms. There-
fore, devices like smart cards and IoT devices implement corresponding counter-
measures, especially if they are potentially physically accessible by an attacker. In
the case of symmetric cryptography, the typical approach to protecting an imple-
mentation against these attacks is to use masking and redundancy mechanisms.
Masking is the most prominent and widely deployed countermeasure against
passive side-channel attacks. There exists a wide range of masking schemes for
software and hardware [15,22,23] providing protection up to a given protection
order.

For redundancy mechanisms against fault attacks, there has been less research
compared to masking. A standard approach to counteract fault attacks is to use
temporal or spacial redundancy mechanisms to detect errors. The basic idea is
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to compute critical operations multiple times and to release the output only if
all redundant computations match. There are also works that directly combine
masking and redundant encoding techniques for error detection [24]. The standard
reasoning when combining masking and error-detection mechanisms is that their
effects add up. For example, assume an implementation of AES protected by a
masking scheme of protection order d and all encryption/decryption operations
are always computed d times, compared, and the output is only released if
the outputs of all d operations match. In this case, the typical assumption is
that this implementation is secured against up to d fault inductions in one
execution/encryption, because this is detected by the redundant computations, as
well as secured against side-channel attacks of up to order d due to the masking
scheme.

This reasoning is valid for fault attacks that exploit faulty outputs of a
cryptographic algorithm to reveal the key. The most prominent attacks of this
type are Differential Fault Attacks (DFA) [2] and Statistical Fault Attacks
(SFA) [13]. However, some variants of fault attacks are based on a different
approach. Ineffective fault attacks (IFA) [5] and Statistical Ineffective Fault
Attacks (SIFA) [10] exploit those outputs of a cipher that are correct although a
fault induction has been performed. While IFA requires exact knowledge about
the location and effect of a fault, SIFA has much more relaxed requirements, thus
allowing to exploit noisy faults whose exact effect is unknown to the attacker.
The basic idea of SIFA is to repeatedly execute a cryptographic operation with a
fixed key for different inputs and to apply a fault induction for each execution.
The attacker then collects those outputs of the cryptographic operation where
the fault induction has not changed any intermediate value. Given that the
implementation is protected by an error-detection scheme, such as a redundant
execution of the cipher, this corresponds exactly to the valid outputs of the
system. In fact, the error detection that is implemented against DFA provides
exactly the filtering of the outputs which is needed to apply SIFA or IFA.

Our contribution. So far, implementations combing masking and error-detec-
tion schemes were typically thought to be secure against attacks exploiting single
ineffective faults due to masking, as discussed for example by Clavier for IFA [5].
It was typically assumed that all shares representing an intermediate value would
need to be faulted for exploiting ineffective faults and it was an open question
whether this can be done efficiently in practice.

In this work, we show that SIFA attacks are much more powerful than
expected so far. Our central contribution is to show that SIFA is not only
independent of the degree of redundancy but also essentially independent of the
degree of masking for typical masked implementations and hence a suitable choice
against implementations with countermeasures against both power analysis and
fault attacks. Additionally, we show that SIFA is not restricted to biased faults.
Instead, any type of fault might be suitable to mount this kind of attack. In
order to better explain why, we introduce a change of perspective by separating
the fault location and the logical attack location. To back up our claims we

2



...

Implementation view

Round R−1

Round R
E

• E

...

Analysis view
K

E

•E

Fig. 1: Biased fault attacks on masked, redundant implementations: High-level
view.

provide a broad evaluation based on multiple (masked) S-boxes and two real
AES implementations.

More concretely, we demonstrate that faulting a single share during the
computation of an S-box is often sufficient to induce a bias in an unshared
intermediate value, which can then be exploited with a statistical analysis based
on SIFA. Unlike classical fault attacks, attackers cannot directly use this fault as
a distinguisher for the key recovery attack: they cannot recover this intermediate
value from observing the ciphertext and guessing parts of the key, but can only
recover the unshared output of the S-box (Figure 1). We analyze the impact of the
local fault on the unshared output for several different S-boxes (including the AES
S-box), fault distributions, masking schemes, and protection orders, as well as
other fault countermeasures like dummy rounds. We conclude that in all analyzed
cases, a simple fault setup with a single fault attempt per encryption is sufficient
to recover part of the key, given a suitable number of faulted encryptions. This
number depends on the precision of the fault and the deployed countermeasures;
for example, 1000 encryptions with a cheap clock glitching setup are sufficient
for an 8-bit AES software implementation protected with 10th-order masking
and arbitrary temporal redundancy on block cipher level running on a standard
8-bit microcontroller.

2 Background on Statistical Faults

2.1 Statistical Fault Attacks

Statistical Fault Attacks (SFA), originally proposed by Fuhr et al. [13], present a
way to recover an AES key with quite relaxed assumptions on the fault induction.
In fact, SFA solely requires the attacker to let one AES state byte in round 9
follow any (possibly unknown) non-uniform distribution. This can be achieved in
practice, e.g., by using several types of stuck-at faults or instruction skips.

Given a set of faulty ciphertexts, SFA works by partially decrypting every
ciphertext to the faulted state byte S9 in round 9. This requires guessing 32 bits
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of the last round key K10, as well as the calculation of the inverse ShiftRows,
SubBytes, and MixColumns operation:

S9 = MC−1 ◦ SB−1 ◦ SR−1(C ⊕K10).

Note that guessing the penultimate round key (K9) is not needed, since it does
not influence the non-uniformity of S9. For each key guess the distance of the
distribution of S9 to a uniform distribution can now be measured, e.g., by using
the χ2-statistic (CHI) or the closely related Squared Euclidean Imbalance (SEI).
For a sufficient number of evaluated ciphertexts, the key guess corresponding to
the highest CHI or SEI statistic is most likely correct. The necessary number of
ciphertexts depends on the strength of the bias, i.e., the distance of the biased
distribution p from the uniform distribution, which is quantified by the capacity
C(p). If the bias is small, then the necessary number of faulted ciphertexts is
inverse proportional to C(p); we refer to [10] for a more detailed discussion.

One obvious downside of SFA, from a practical perspective, is that it relies
on exploiting faulty ciphertexts. This is problematic, since most cryptographic
implementations that operate with critical data can be expected to have various
countermeasures against implementation attacks in place. A fault countermeasure
like temporal or spacial redundancy would already prevent SFA using single fault
inductions. While an adoption of SFA to some fault countermeasures is possible,
a significantly more powerful attacker would be required. Hence, the threat of
SFA to such protected implementations is limited.

2.2 Statistical Ineffective Fault Attacks

Statistical Ineffective Fault Attacks (SIFA) [10] allow an attacker to circumvent
many popular fault countermeasures. As the name suggests, and in contrast
to SFA, SIFA solely relies on exploiting faulted encryptions where the induced
faults are ineffective and the obtained (filtered) ciphertexts are hence always
correct. The basic observation of SIFA is that induced faults can lead to a non-
uniform distribution of intermediate values for the cases where the fault has been
ineffective, which in turn can be exploited in a key-recovery attack. The data
complexity of the attack then depends on the strength of the bias in the targeted
intermediate variable and the necessary number of faulted encryptions to obtain
sufficiently many ineffective samples.

SIFA is applicable just as easily for more than two redundant computations,
since only one computation needs to be faulted. In fact, it has been shown in [10]
that SIFA is not only applicable against redundancy countermeasures, but also
against infective countermeasures [27]. Although in the latter case more faulted
encryptions are necessary, the presented attacks are still efficient.

Consider an AES with simple temporal redundancy and an attacker that is
able to fault a certain byte in round 9 such that the faulted value follows some
non-uniform distribution, which is not known to the attacker. If the attacker is
faulting only one of the redundant computations, the attacker will eventually
observe correct ciphertexts where the induced fault was ineffective. This filtered

4



set of correct ciphertexts will, when partially decrypted using a correct key guess,
typically also show some non-uniform, biased distribution in the faulted byte,
related to the non-uniform distribution after fault induction. Now, the attacker
can perform the same key recovery attack as in SFA. The basic intuition here
is that certain values of the faulted byte lead to ineffective faults and hence
correct ciphertexts more often than others. As a consequence, when decrypting
this filtered set of correct ciphertexts using a correct key guess, certain values in
the faulted byte will show up more frequently than others. Still, knowledge about
the exact effect of the fault induction (and the resulting non-uniformity) is not
required, since the SEI or CHI metric measures the distance of any distribution
to a uniform distribution.

This fact will be important when SIFA is performed against masked imple-
mentations (cf. Section 3). Here it is practically impossible to predict the actual
effect of a fault induction if the attacked implementation is unknown. At the
same time it is still comparably easy to cause a joint non-uniform distribution
over all shares of an intermediate variable as discussed in the upcoming sections.
However, as we will see, it is beneficial to change the usual view that faults
just manipulate values. Instead, to better understand the underlying principles
exploited in our attack, it is more useful to see the faults as changes to the actual
function that is computed.

3 Faults on Masking

In this section, we study the influence of single faults on masked AND gates
and subsequently on masked S-boxes. To do so, we first briefly recapitulate the
fundamentals of masking. Then, we discuss how faults influence the distribution
of unmasked values by taking masked AND gates as an example. After that, we
evaluate how single faults influence masked implementations of some S-boxes.
Finally, we take a closer look at the internal activities in a faulted masked S-box
that allow an SFA and SIFA and argue that it is probably always possible to
influence the distribution of input and output values of masked S-boxes, so that
an attacker can exploit this behavior using techniques introduced for SFA and
SIFA.

For an easier understanding of why single faults on a single share can cause a
bias in unshared values, we consider very simple fault models such as stuck-at
faults in the following exposition. However, it is important to note that the attack
approach generalizes efficiently to noisy, unpredictable and imprecise faults. For
a discussion of how the attack complexity scales under the influence of noise, we
refer to Section 5 and the SIFA analysis in [10].

3.1 Concept of Masking

The goal of masking is to randomize the representation of security-sensitive data
in each execution to counteract side-channel analysis by making the resulting
side-channel leakage, such as power consumption or electromagnetic emanation,
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independent of the underlying data. The most popular masking approaches are
Boolean masking schemes, which are formed over finite field arithmetic in GF(2n).

In Boolean masking, a sensitive variable x is split into a number of so-called
shares (denoted xi) which, when considered on their own or in conjunction of up
to d shares, are statistically independent of the unshared variable x. This degree
of independence is usually referred to as the protection order d and requires
to split each variable with sensitive information into at least d+ 1 shares. The
shares are uniformly random in each execution, but at any time, it is ensured
that the sum over all shares again results in the unshared variable x:

x = x0 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xd .

In a similar manner, functions over shared variables are split into component
functions fi(. . . ) such that again a correct and secure sharing of the original
function is established:

f(x, y) = f0(. . . )⊕ f1(. . . )⊕ f2(. . . )⊕ · · · ⊕ fd(. . . ) .

Throughout the entire implementation, a proper separation of shares and
of the output of the component functions needs to be ensured in order to not
violate the dth-order independence, which is commonly expressed in the probing
model of Ishai et al. [16]. In the probing model, an attacker is modeled with
the ability to probe up to d intermediate results of the masked implementation.
An implementation is said to be secure if the probing attacker cannot gain any
statistical advantage in guessing any secret variable by combining the probed
results in an arbitrary manner. While this share separation can be easily ensured
for functions which are linear over GF(2n) – for example, the masked calculation
of x⊕ y can be performed share-wise (xi ⊕ yi) –, the secure implementation of
nonlinear functions usually requires the introduction of fresh randomness.

As an example for a shared implementation of a nonlinear function, we
consider the generic masked multiplication algorithm by Ishai et al. [16]. In order
to securely calculate q = x · y, each of the d+ 1 shares of x is multiplied with
each of the shares of y, resulting in (d+ 1)2 multiplication terms. Subsequently,
the multiplication terms are summed up together with fresh random variables
denoted ri,j , and distributed to the output shares qi (Algorithm 1).

A first-order masked GF(2) multiplication, which corresponds to the calcula-
tion of an AND gate, is given in (1):

q0 = x0y0 ⊕ r0,1

q1 = x1y1 ⊕ (r0,1 ⊕ x0y1 ⊕ x1y0) .
(1)

A uniform distribution of each of the shares of q is ensured by the random r
shares. In general, the joint distribution of any d shares of q in the masked multi-
plication algorithm is uniform, or in other words, any d shares are independently
and identically (uniformly) distributed. It thus appears as if in order to insert a
bias in the underlying unshared value, an attacker would need to insert a biased
fault in either each share of x or y, or to insert a bias in each of the component
functions in the calculation of q. However, in the following, we show that this
intuition is not true.
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Algorithm 1 : Masked GF(2n) multiplication according to Ishai et al. [16] (ISW)
Input: x0, . . . xd, y0, . . . yd ∈ GF(2n)
Output: q0, . . . qd ∈ GF(2n)
1: for i = 0 to d do
2: for j = i+ 1 to d do
3: ri,j

?←− GF(2n)
4: ti,j ← ri,j

5: tj,i ← ri,j ⊕ xiyj ⊕ xjyi

6: for i = 0 to d do
7: qi ← xiyi

8: for j = 0 to d do
9: if i 6= j then
10: qi ← qi ⊕ ti,j

3.2 Faulting Masked AND Gates

We first note that the calculation of the AND q = x · y itself has a probability
of 25% for q to be 1. An attacker therefore successfully biases the masked AND
gate if the probability of q to be 1 is more or less likely than 25%. As an example,
we consider an attacker who can skip any AND calculation in Equation 1, for
instance the first AND calculating x0y0 in q0. The shared function then effectively
calculates q (= q0 ⊕ q1) to be x1y1 ⊕ x0y1 ⊕ x1y0, which has a probability of
37.5% to be 1. If the attacker instead introduced a fault that skips the addition
of the uniformly random bit r0,1 in q0, then the distribution of q would again be
biased, since the probability of observing a 1 changes from 25% to 50%.

We observe the same biases when looking at single faults for other masked
AND gates, like the one used in the CMS scheme of Reparaz et al. [22] or in
the Domain-Oriented Masking scheme by Gross et al. [14, 15]. This same bias
behavior results from the fact that these masked ANDs calculate the same terms
xiyj . The masked ANDs only differ in the arrangement of xiyj in q0 and q1, and
the amount of used fresh randomness. Since q is equal to q0⊕q1, the arrangement
of the terms has no influence on the bias behavior of q, and a fault of an addition
of a single random r bit has the same impact on all masked ANDs.

Another prominent protection mechanism falling in the category of masking
schemes are threshold implementations [20]. Threshold implementations use
an increased number of shares to achieve first-order side-channel resistance
without requiring fresh randomness. In order to explore the impact on threshold
implementations, we look at a four-share realization of a first-order masked AND
gate by Nikova et al. [20]:

q0 = (x2 ⊕ x3)(y1 ⊕ y2)⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3

q1 = (x0 ⊕ x2)(y0 ⊕ y3)⊕ y0 ⊕ y2 ⊕ y3 ⊕ x0 ⊕ x2 ⊕ x3

q2 = (x1 ⊕ x3)(y0 ⊕ y3)⊕ y1 ⊕ x1

q3 = (x0 ⊕ x1)(y1 ⊕ y2)⊕ y0 ⊕ x0

(2)
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For this shared AND gate, we perform two experiments. In the first experiment,
we have a look at the distribution of the output q = q0 ⊕ q1 ⊕ q2 ⊕ q3 assuming
an instruction skip. In the second, we fix one input share x0 to zero and look
what happens.

For the instruction skip, we assume that in q0 one instruction is skipped and
so q0 = (x2)(y1⊕ y2)⊕ y1⊕ y2⊕ y3⊕ x1⊕ x2⊕ x3 is calculated, the other shares
are processed correctly. In this case, we observe that for all 256 possible values
of the shared input, the unshared output is 160 times (62.5%) 0 and 96 (37.5%)
times 1, a clear deviation of the value an unfaulted AND should have.

Next, we fix x0 to zero and perform the computations according to Equation 2
for all 256 possible values the shared input can take. If we now look at q, we see
that 192 times a 0 (75%) appears and 64 times a 1 (25%), which corresponds
to the distribution of a correct AND gate. However, if we only consider correct
computations of q = x · y, we observe that only 192 out of 256 computations are
performed correctly. For those correct computations q is 160 times a 0 (83.3%)
and 32 times a 1 (16.6%). This “filtered” distribution is the one an attacker can
potentially exploit in the case of SIFA [10]. In the next section, we will discuss
the consequences of our observations with respect to S-boxes.

3.3 Faulting Masked S-boxes

In this section, we discuss how single faults influence the behavior of S-boxes. It
is worth mentioning that our selection of masked S-boxes is arbitrary and does
not imply that those S-boxes are weaker or more susceptible to SFA and SIFA
than others. We have selected those S-boxes, because they have a simple and
compact description. We will start with a compact 4-bit S-box called Sbox13 [28]
shown in Figure 2. We have implemented a masked implementation of this
S-box in software by using a four-shared threshold implementation of AND (see
Equation 2), OR and XOR. We target exclusively the AND labeled with q, x,
and y in Figure 2.

qx

y

Fig. 2: Schematic of the 4× 4 S-box: Sbox13 [28].
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For the first experiment, we assume an instruction skip that alters the exe-
cution of the first AND of the S-box, changing the calculation of one share q0
to q0 = (x2)(y1 ⊕ y2)⊕ y1 ⊕ y2 ⊕ y3 ⊕ x1 ⊕ x2 ⊕ x3. In Figure 3a, we record the
distribution of each unshared input value and each unshared output value for
each of the 24·4 = 65536 shared input combinations, which can be exploited by
an SFA [13], as well as the “filtered” distribution for ineffectively faulted S-box
transitions, which can be exploited by SIFA [10]. This “filtered” distribution
stems from the subset of transitions, for which the induction of the fault has no
influence on the output of the S-box.

I

O
SFA

I

O
SIFA

0 1 2 3 4 5 6 7 8 9 a b c d e f
4.6875%
6.25%
7.8125%

(a) Fault example 1: Skip first XOR instruction in share q0 in (2).

I

O
SFA

I

O
SIFA

0 1 2 3 4 5 6 7 8 9 a b c d e f
4.167%
6.25%
8.333%

(b) Fault example 2: Set input share x0 of the first AND to zero in (2).

Fig. 3: Distribution of input I and output O for faulted 4× 4 Sbox13.

As we can see in Figure 3a, in the unfiltered case, we see a clearly non-uniform
distribution, which can be possibly exploited by an SFA. However, we observe
a uniform distribution in the SIFA case. So does this mean this S-box is secure
against SIFA? Let us consider the distributions we obtain when setting one
share x0 at the input of the first AND permanently to 0. The corresponding
distributions we get in this experiment are shown in Figure 3b.

As we can see in Figure 3b, the situation for this fault changes, so that now,
the ineffective faults can be exploited, whereas the distribution without filtering
cannot be exploited. Until now, we have exploited the sequential sharing of
instructions, especially that we can change the distribution of an AND gate. So
one might wonder what happens if an S-box is directly shared, so that the output
shares are uniformly distributed.

To explore the case of directly shared S-boxes, let us take a closer look at
the uniform 4-share threshold implementation of the Keccak S-box proposed by
Bilgin et al. [3]. Here, A[i], B[i], C[i], and D[i] represent the 4 shares of bit i
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Fig. 4: Distribution of I,O for faulted 4-shared Keccak S-box.

with i = 0, . . . , 4. While the bit i = 3 is calculated by:

A′[3]← B[3]⊕B[0]⊕ C[0]⊕D[0]⊕ ((B[4]⊕ C[4]⊕D[4])(B[0]⊕ C[0]⊕D[0]))
B′[3]← C[3]⊕A[0]⊕ (A[4](C[0]⊕D[0])⊕A[0](C[4]⊕D[4])⊕A[0]A[4])
C ′[3]← D[3]⊕ (A[4]B[0]⊕A[0]B[4])
D′[3]← A[3]

the other bits i = 0, 1, 2, 4 are calculated by:

A′[i]←B[i]⊕B[i+2]⊕
((B[i+1]⊕ C[i+1]⊕D[i+1])(B[i+2]⊕ C[i+2]⊕D[i+2]))

B′[i]←Ci ⊕ C[i+2]⊕
(A[i+1](C[i+2]⊕D[i+2])⊕A[i+2](C[i+1]⊕D[i+1])⊕A[i+1]A[i+2])

C ′[i]←D[i]⊕D[i+2]⊕ (A[i+1]B[i+2]⊕A[i+2]B[i+1])
D′[i]←A[i]⊕A[i+2]

Now, in our simple experiment, let us consider that bits 0 to 3 are calculated
correctly and an attacker changes the value of one input share A[0] always to
0 before the calculation of the 4 shares for output bit i = 4. Then an attacker
is able to mount SIFA as indicated by the distributions of Figure 4. This leads
again to an exploitable bias of the distribution of unmasked values at the output
of the S-box and the attacker can mount SIFA.

The aim of this section was to give reproducible, easy-to-follow examples of
inducing a bias in the unshared variable of masked S-boxes by just faulting one
share of the S-box. We want to mention that the given ways and locations of
introducing the faults are not exhaustive and that there are many more locations
and various types of faults that make an attack successful. In the next section,
we give a closer view on the problem of protecting an S-box against these attacks
and get more insight into the effect allowing statistical attacks with the help of a
3-bit S-box as an example.

3.4 A Closer Look

In general, fault attacks exploit knowledge about intermediate values of cryp-
tographic primitives, which are gained by disturbing the computation or in-
termediate values directly by the means of faults. In the case of DFA [2], this
knowledge is that in certain intermediate bits or bytes a difference is induced,
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while others remain fault-free. In the case of SFA and SIFA, this knowledge is
that the distribution of certain intermediate values is changed from a uniform to a
non-uniform distribution. This allows an attacker to guess parts of the round key
and calculate backwards to these influenced intermediate values from collected
ciphertexts. If a key guess is wrong, an attacker expects to see a distribution of
intermediate values, which is closer to uniform compared to the guess of the right
key.

Getting such a non-uniform distribution of intermediate values can be achieved
in many ways. For ciphers following the SPN structure, where every S-box and
the linear layer is a bijective function (permutation), non-uniform distribution of
intermediate value can be achieved, for instance, by disturbing the computation
of a single S-box, so that this S-box does not act as a permutation anymore.
While such a behavior can be expected from an unmasked S-box in the case of a
fault induction, this seems quite counterintuitive for masked implementations at
first glance. Thus, we will first discuss the unmasked case to get more insight in
which cases SFA and SIFA will work. Then we will take a closer look on masked
S-box implementations.

Influencing Unmasked S-boxes. First, we will explore the case of SFA. We
consider a bijective S-box, as illustrated in Figure 5. For the sake of simplicity, let
us assume that the S-box is implemented in a bit-sliced manner (as a sequence of
instructions), or as a Boolean circuit in hardware. Let us further assume that an
attacker influences the correct computation by the means of faults. By faulting
this computation, it is very likely that the faulted S-box does not behave as a
bijection, but rather becomes a general function, which is non-surjective. This
leads to a non-uniform distribution of intermediate values, which can be exploited
with SFA. In the case of SIFA, transitions where a fault induction has an effect
and causes a change in the output of the S-box are filtered. This filtering can
happen by using the fact that detection-based countermeasures do not deliver an
output in the case the fault has an effect, or by comparing the obtained output
with an output where no fault was injected. So in SIFA, we observe a function
where a reduced set of transitions remains compared to the unfaulted S-box.

S-boxI O

Fig. 5: An unmasked S-box.

To get more insight into the behavior of a faulted S-box, we will use the 3× 3
S-box χ based on Daemen’s χ-layer [7, 8] as an illustrative example. Figure 6a
shows the 3-bit S-box χ, where the red cross represents a fault that sets the input
of the subsequent inversion to zero and hence the input of the AND gate to 1.
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Please note that this is only one example of many how to fault an S-box to apply
an SFA or SIFA.

I[0]

I[1]

I[2]

O[0]

O[1]

O[2]

(a) Circuit with single fault

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

I O

(b) Unfaulted mapping

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

I O

(c) Faulted mapping

Fig. 6: 3-bit S-box χ with a single fault.

The fault depicted in Figure 6a changes the behavior of the χ S-box, which
is not bijective anymore. Figure 6c shows the transition graph for the faulted
S-box. The fault just changes the transitions depicted in red.

In our case, the transitions mapping from 3→ 1 and 7→ 7 in the unfaulted
S-box (Figure 6b), now map from 3→ 5 and 7→ 3 (considering I[0] and O[0]
being the LSB). This means that the output values 1 and 7 never appear, but 3
and 5 appear twice, leading to a non-surjective behavior. In the case of SIFA,
the red edges represent fault inductions that show an effect on the output. When
applying SIFA, those edges are filtered (e.g by detection-based countermeasure)
and just the black edges remain. Hence, when performing SIFA, the correct
transitions 3 → 1 and 7 → 7 do not appear and an attacker can observe an
exploitable non-uniform distribution of intermediates.

Influencing Masked S-boxes. Now let us have a look at a shared bijective
S-box. For instance, consider the masked S-box shown in Figure 7a that takes two
shares as input and returns two output shares. Here, the goal for an attacker is
also to influence the distribution or transitions of the unshared values I = I0⊕ I1
and O = O0 ⊕O1, but does not care about the concrete values of the shares.

For this reason, it is easier to work with the functional equivalent model
shown in Figure 7b. In this model, we see a masked S-box as a function, which
takes an unshared input I and some randomness R[i] and produces an unshared
output O. Here, some of the random bits symbolize all values a shared input
can take in a real implementation, e.g., I0 = I ⊕ R[0], and I1 = R[0], while
others represent randomness used in the masked implementation. Now, we can
see masking as a very special and complicated function, which takes the inputs
I, R[0], R[1],. . .R[i] and produces an output O, so that the same I always leads
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S-box
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(a) Implementation with 2 shares

S-boxI O

R[0]R[1] R[i]

(b) Functional equivalent view

Fig. 7: A masked S-box.

to the same O for all possible choices of R[0], R[1],. . .R[i]. It seems very unlikely
that a shared S-box behaves in the same manner in the presence of faults.

To apply SFA successfully, we need that not all values for O (iterating over
all values of I) appear the exact same number of times when counting for all
possible assignments of R[0], R[1], and R[2]. This prerequisite is very likely to
hold considering an attacker that can tamper with the intermediate calculation
performed, even when restricting the attacker to just manipulate one share used
in an intermediate calculation. Similarly, to apply SIFA successfully, we need a
fault such that among the ineffectively faulted computations, not all values for I
or O appear the exact same number of times over all values of R[0], R[1],. . .R[i].
This condition is similarly very likely to happen in practice when introducing
just single faults, as we will show with our practical experiments in Section 4.

As an example, consider again the 3-bit Keccak χ S-box, now with the
following masked implementation:

O0[i]← (I0[i+ 1]⊕ 1)I0[i+ 2]⊕ ((I0[i+ 1]⊕ 1)I1[i+ 2]⊕ I0[i])
O1[i]← I1[i+ 1]I0[i+ 2]⊕ (I1[i+ 1]I1[i+ 2]⊕ I1[i])

This masked S-box just serves us as an illustrative example of the effect of faults
on an S-box, hence, we do not care about potential positioning of registers or
additional randomness at the output for re-sharing. Figure 8 shows the equivalent
circuit of the S-box, where again we just set a single value to 0. The result of
this fault is that the value of O0[2] equals I0[2]. Everything else is calculated
correctly.

For our example depicted in Figure 8, we list all possible assignments of I[0],
I[1], I[2], R[0], R[1], and R[2] in Table 1. The entries marked in red in Table 1
are entries where the fault depicted in Figure 8 has an effect. Due to the more
complex calculations that happen for masked S-boxes, we get a more complex
relation between masks and actual values of bits. For instance, the transition
2→ 6 is only valid if R[0] = 1 and wrong (2→ 2) if R[0] = 0.

Again, we can represent all possible transitions from inputs I, to the outputs
O in a graph shown in Figure 9 (in a similar way as in Figure 6c). However, due
to the 23 possible ways of masking our input values, each transition from input to
output will happen 8 times for an unfaulted masked 3-bit S-box χ. In the faulted
case, this condition does not hold anymore as shown in Table 1. Hence, we have
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Fig. 8: Single fault on masked 3-bit χ S-box.

additional transitions shown in red in Figure 9. These “wrong” transitions also
reduce the number of times the “correct” transition happens.
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Fig. 9: Transition graph of faulted masked 3-bit S-box χ.

If we now count the number of transitions in Figure 9 that lead to a certain
value O, we see that 12 transitions lead to values 3 and 5, whereas only 4 lead
to 1 and 7. This means that an attacker faulting a device can apply an SFA,
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Table 1: Transitions of faulted masked 3-bit S-box χ.
I[2] R[2] I[1] R[1] I[0] R[0] O[2] O[1] O[0]
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1
0 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 1 1 0
0 0 1 0 1 0 0 0 1
0 0 1 0 1 1 1 0 1
0 0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1 0
0 0 1 1 1 0 0 0 1
0 0 1 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 1 1
0 1 0 0 1 1 0 1 1
0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 1 1 0 0 1 1
0 1 0 1 1 1 0 1 1
0 1 1 0 0 0 0 1 0
0 1 1 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1
0 1 1 0 1 1 1 0 1
0 1 1 1 0 0 0 1 0
0 1 1 1 0 1 1 1 0
0 1 1 1 1 0 0 0 1
0 1 1 1 1 1 1 0 1

I[2] R[2] I[1] R[1] I[0] R[0] O[2] O[1] O[0]
1 0 0 0 0 0 1 0 1
1 0 0 0 0 1 1 0 1
1 0 0 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0 1
1 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0 0
1 0 1 0 0 0 1 1 0
1 0 1 0 0 1 0 1 0
1 0 1 0 1 0 1 1 1
1 0 1 0 1 1 0 1 1
1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 0 1 0
1 0 1 1 1 0 1 1 1
1 0 1 1 1 1 0 1 1
1 1 0 0 0 0 1 0 1
1 1 0 0 0 1 1 0 1
1 1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 0 0
1 1 0 1 0 0 1 0 1
1 1 0 1 0 1 1 0 1
1 1 0 1 1 0 1 0 0
1 1 0 1 1 1 1 0 0
1 1 1 0 0 0 1 1 0
1 1 1 0 0 1 0 1 0
1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 0 1 1
1 1 1 1 0 0 1 1 0
1 1 1 1 0 1 0 1 0
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1

since the attacker can expect a non-uniform distribution of the value after the
S-box for correct key guesses. If we apply SIFA, the transitions marked in red in
Figure 9, will be filtered. As an effect, the transitions 2→ 6, 3→ 1, 5→ 2, and
7→ 7 appear with reduced frequency for uniformly distributed R[0], R[1], and
R[2]. Again, this can be exploited in a key recovery attack.

4 Attack Evaluation

In this section, we demonstrate the applicability of Statistically Ineffective Fault
Analysis (SIFA) for two very different publicly available masked AES implemen-
tations. First, we perform a practical attack evaluation for the provable secure,
higher-order masked AES implementation from Rivain et al. [23] on a stan-
dard 8-bit microcontroller (ATXmega 128D4). We then present a comprehensive
evaluation of simulated faults for the 32-bit, bitsliced, first-order masked AES
implementation of Schwabe and Stoffelen [25]. Since both implementations do
not originally have additional fault countermeasures in place, we added temporal
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redundancy, meaning that the block cipher is executed multiple times and the
ciphertexts are compared. The number of redundant computations was set to
two, since more redundancy does not affect the effectiveness of SIFA.

Our experiments require multiple faulted encryptions, but only one fault
induction per encryption. The precise location as well as the actual effect of the
induced fault does not need to be known by the attacker. Indeed, inducing a fault
anywhere in the shared S-box in round 9 likely leads to a situation that is similar
as described in Section 3.4. The resulting joint non-uniform (biased) distribution
over all shares of an intermediate variable can then be used to distinguish correct
and wrong key candidates (cf. Section 2).

4.1 Practical Attack on AES from Rivain et al.

The higher-order masked AES from Rivain et al. [23] consists of a generic dth-order
masked S-box that is combined with a linear layer for the d + 1 shares of the
AES state. The target of our fault induction is the shared S-box implementation
in round 9. First, we briefly describe the implementation of the masked S-box.
Then we present the attack setup that was used for fault induction. The results
of this practical evaluation are stated at the end of this section.

Generic Higher-Order Masked S-box. The algebraic description of the 8-bit
AES S-box consists of determining the multiplicative inverse of a number in
F28 = F2[x]/(x8 + x4 + x3 + x + 1), followed by an affine transformation over
F8

2. While masking the affine transformation is trivial, since it can be calculated
separately for each share, the calculation of the masked multiplicative inverse
requires more work. In the design of Rivain et al. the inversion is calculated
via the power function x→ x254 over F28 which is in return calculated via the
square-and-multiply algorithm. The squaring operation in F28 is a linear function
which leaves the masking of the field multiplication as the only non-trivial task.
The used algorithm for dth-order masked field multiplication is based on the ISW
scheme (cf. Algorithm 1). For a more detailed description we refer to the original
paper [23].

Attack Setup. In the practical evaluation, we perform fault inductions on an
ATXmega 128D4 via clock glitching. More precisely, we insert an additional fast
clock cycle in between two ordinary clock cycles during the execution of one of the
redundant encryptions. The width of the induced clock cycle is chosen such that
it is recognized by the microprocessor but too short to allow a correct execution of
the current instruction. The target of our fault is one of the higher-order masked
field multiplication operations (SecMult) that occur multiple times (1st-order:
64 times, 10th-order: 2880 times) during the computation of the masked S-box
in round 9. We neither require to fault one specific SecMult invocation nor to
fault one specific instruction within any of the SecMult invocations. In fact, any
fault that causes a joint non-uniform distribution over all shares (cf. Section 3.3)
is sufficient for our attack. For this reason, finding a suitable fault location might

16



actually be easier for higher-order masked implementations since the runtime
of masked S-boxes grows faster than the runtime of the masked linear layer for
increasing masking orders.

The implementation of the higher-order masked AES by Coron et al. [6] has a
configurable masking order d. Our experiments were performed up to 10th-order
masking, with temporal redundancy as an additional fault countermeasure. In
order to attack such a protected implementation we exploit statistically ineffective
faults. The restriction to ineffective faults is required, since we want to circumvent
the redundancy countermeasure and the subsequent statistical fault analysis is
required, since the effect of a fault is almost impossible to predict, in particular
if masked and/or unknown implementations are attacked.

If the induced fault results in a faulty computation we do not observe any
ciphertext, because of the redundancy countermeasure. However, we do observe
correct ciphertexts stemming from faulted encryptions where the induced fault
was ineffective. This filtered set of correct ciphertexts can then again be used to
perform key recovery. Since our attacks work comparably well for any masking
order d we only state concrete results for d = 10 in this section.

Results. In Figure 10, we show the distribution of the AES state bytes in round
9 from the 48 collected correct ciphertexts. For a correct partial key guess, we
can observe a strong biased distribution in one of the state bytes in round 9
and thus can perform key recovery (cf. Section 2.1). Note that in the attack we
only exploit correct ciphertexts and thus successfully circumvent the redundancy
countermeasure. Already 20 (of the 48) collected correct ciphertexts stemming
from about 1 000 faulted encryptions the SEI of the observed distributions is
the highest for the correct partial key guess. The time required for collecting
the correct ciphertexts was about 3 minutes, and key recovery was performed
in about 2 minutes with negligible memory requirements. Repetitions of the
experiment lead to very similar results.

(a) Correct key guess. (b) An incorrect key guess.

Fig. 10: 10th-order masked AES with temporal redundancy. One clock
glitch was performed during the calculation of the masked Sbox in round 9.
Distribution of AES state bytes after S-box in round 9 after collecting a sufficient
amount of correct ciphertexts. 32 key bits can be recovered.
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4.2 Simulated Attacks on AES from Schwabe and Stoffelen.

In this section, we present a comprehensive analysis of simulated faults for
an assembler-optimized, masked AES implementation for the 32-bit Cortex-
M4 platform with high practical relevance of Schwabe and Stoffelen [25]. This
implementation can encrypt two 128-bit inputs per block cipher call in CTR
mode and is fully unrolled. For our purposes, we add temporal redundancy but
only encrypt one 128-bit input per block cipher call in ECB mode to have the
same scenario as in the previous section. We briefly describe the masked S-box
implementation of Schwabe and Stoffelen and then we discuss the results of our
evaluation that is split into three parts:

First, we analyse how many instructions in the masked S-box in round 9 are
“susceptible” to faults considering two common fault models, i.e., would allow an
attacker to mount SIFA. Then we pick one susceptible instruction and discuss
the required effort of mounting SIFA considering 7 common fault models. For
each fault model we give the required amount of faulted encryptions and the
amount of recoverable key bits. Finally, we present a figure that illustrates the
effect of faulting the masked Sbox on the unmasked AES state bytes (that are
observed during key recovery).

Optimized, Bitsliced, 1st-Order Masked S-box. One shared S-box compu-
tation consists of 688 instructions and is executed in parallel for the entire AES
state. The implementation is based on the efficient bitsliced, S-box implemen-
tation from Boyar et al. [4]. Masking via Trichina gates [26] as well as efficient
platform-specific scheduling was added by Schwabe and Stoffelen [25].

Results – Susceptible Instructions. In this section, we demonstrate that
SIFA is neither restricted to a specific fault model nor requiring precise information
of the attacked implementation. We have performed experiments using two
common fault models (single bitflip and byte-stuck-at-0) and simulated fault
inductions that cause an erroneous value in the result of the targeted instruction
of an S-box computation in round 9. This simulation is performed separately for
each of the 688 instructions in the masked S-box. For each instruction and both
types of simulated faults we performed 2 000 encryptions and collected correct
ciphertexts from unaffected encryptions (if there were any). Then we performed
key recovery, i.e., for each targeted instruction, both types of simulated faults,
and the corresponding set of collected ciphertexts we guessed 32 bits of the
last round key, calculated back to round 9 and checked if some bytes follow a
non-uniform distribution (using the SEI distinguisher). To reduce the runtime of
the evaluation we took one shortcut by always fixing 16-bit of the 32-bit partial
key guess to the correct value. While this significantly reduced the runtime of
our exhaustive analysis, it does not affect the results.

The results of our analysis are presented in Figure 11. Figure 11a shows for
each of the 688 instructions within the masked S-box whether or not single bitflips
in this specific instruction allow an attacker to mount SIFA, i.e., recover bits
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of the key. Note that black lines represent susceptible instructions while white
lines represent the other instructions. An instruction is not susceptible, e.g., if a
bitflip is never ineffective, always ineffective, or does not lead to a non-uniform
distribution that is distinguishable from uniform after observing 2 000 faulted
encryptions. In total, 359 out of 688 (52%) of the instructions are susceptible to
single bitflips. In Figure 11b, we show the same analysis using byte-stuck-at-0
faults instead. Here, 483 (70%) of the instructions are susceptible. If we oppose
these results with the fact that the masked linear layer in round 9 only consists
of 290 instructions, it is fairly safe to say that finding a suitable fault location
should be easy in practice.
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(a) Bitflips: 359 (52%) of the S-box in-
structions are susceptible.
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(b) Byte-stuck-at-0: 483 (70%) of the S-
box instructions are susceptible.

Fig. 11: Instructions in the masked S-box in round 9 that are susceptible to faults
and allow to mount SIFA.

Results – Attack Performance for Various Fault Models. After determin-
ing that large parts of the masked S-box are susceptible to single fault inductions
in the previous section, we now discuss the effort of key recovery when targeting
one of these susceptible instructions. This time we consider 7 different fault
models and the results are presented in Table 2. For each of the 7 fault models
we give the number of faulted encryptions, the number of resulting ineffective
fault inductions (i.e., correct ciphertexts), and the number of key bits that can
be recovered from those correct ciphertexts. Each experiment was repeated 3
to 5 times, and the averaged values are presented. The relative position of the
affected bytes/bits within the targeted 32-bit register is not important for the
analysis.

From the results we can see that faults with fine granularity (only affecting
single bits) allow an attacker to recover key bits faster (= using less faulted
encryptions). However, only 32 key bits can be recovered in these scenarios
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since only a small portion of the AES state is affected by those fault inductions.
On the other side, faults that affect whole bytes/registers require more faulted
encryptions but cause a non-uniformity in bigger portions of the AES state.
Consequently, an attacker can recover more key bits.

Table 2: 32-bit Cortex-M4: Attack evaluation when targeting one of the instruc-
tions in the masked S-box in round 9. Each experiment was repeated 3 to 5 times,
the resulting numbers were averaged.

Fault
Effect

# Ineffective
Faults

# Faulted
Encryptions

# Recoverable
Key Bits

Flip one bit 194 386 32
Set one bit to zero 214 428 32
Randomize one bit 574 763 32
Flip one byte 192 2 940 128
Set one byte to zero 192 3 129 128
Randomize one byte 602 1 808 128
Instruction skip 400 45 527 128

Results – Non-Uniformity of AES State Bytes. Finally, we present more
arguments why the statistical fault analysis (SFA) portion of SIFA is crucial
to mount such manifold attacks as presented in this work. If we take a look
at Figure 12, we can see the distribution of AES state bytes in round 9 after
inducing one byte-stuck-at-0 fault during multiple encryptions and performing
key recovery using unaffected, correct ciphertexts. Even though our simulated
faults are noise-free, i.e., they have the same effect on each faulted instruction,
there is no meaningful way (other than having precise knowledge of the attacked
implementation and the induced fault) for the attacker to predict the resulting
non-uniformity in the state bytes which would allow for faster key recovery than
in SIFA (or SFA). In fact, the observed distributions have some relations with
the pen-and-paper examples given in Section 3.3 and can be expected to vary
significantly depending on the attacked implementation, the fault location, and
the actual fault effect. This motivates our choice of simply using a metric of
non-uniformity to distinguish the key candidates.

5 Discussion

5.1 On the Nature and Number of Faults

In Section 3, we explored the behavior of masked building blocks using deter-
ministic stuck-at-0 faults or instruction skips. The reason for this is to make
the processes leading to a bias easier to understand. However, it is easy to see
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(a) Correct key guess. (b) An incorrect key guess.

Fig. 12: 1st-order masked, bitsliced AES with temporal redundancy.
Byte-stuck-at-0 fault model. Distribution of AES state bytes after S-box in round
9 after collecting a sufficient amount of correct ciphertexts. The whole 128-bit
key can be recovered.

that making the fault probabilistic, e.g., assuming a more realistic setup, where
an instruction skip does not work all the time, or that a bit is only set to 0
with a certain probability, just affects the bias an attacker observes and hence,
the amount of ciphertext the attacker has to collect, but the attack still works
(see [10] for more details).

Furthermore, clock glitches and setting values to zero are not an exhaustive
list of effects that a fault could have in order to make the attack work. For
instance, in Section 4.2 we show that attacks are possible even for random faults
and bitflips. All in all, the only requirement we have on the fault is that it
leads to a biased distribution of the real (unmasked) value at a suitable place
in the primitive among the filtered encryptions. In general, a fault can have a
more complex nature than only the cases discussed in Section 3 or Section 4.2.
For instance, in software implementations of masked ciphers, a large number of
instructions are LOAD instructions from memory since all shares might not fit in
the registers. We have observed in experiments that skipping a LOAD can also
lead to biased S-box distributions, but having a quite complex effect depending
on previous calculations. However, the big benefit of SIFA is the fact that an
attacker does not have to know or model the effect of a fault.

This fact also comes into play when dealing with the location of a fault. The
examples for the location (e.g. skipped instruction) of the fault given in Section 3
just show one out of many different locations, where a fault targeting the S-box
leads to a biased distribution that can be exploited in SFA or SIFA. In Section 4.2,
we evaluated the number of instructions that can be faulted and in turn, can be
exploited in an attack for one particular implementation. However, how many
such locations exist crucially depends on how the S-box is implemented. In a
similar manner as for the effect of a fault, an attacker does not have to know, or
to aim for just one specific instruction or location to fault. The only requirement
for the attack to work in practice is that the faulted location leads to a bias. All
these points make the attack to be executed in practice quite easily, even with a
rather cheap setup using clock glitches as demonstrated in Section 4.
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The last point, we want to discuss regarding faults is the number of faults per
execution. We have opted for a single fault per execution, since inserting multiple
faults per execution is usually considered to be harder. This is probably related
to the prominence of fault attack techniques where attacks requiring multiple
faults per execution have high requirements of the exact location and effects of
the induced faults. However, at least in the case of SFA, we are not interested in
the number of faults, since there are no strong requirements regarding effect and
location. In fact, injecting multiple consecutive faults usually just leads to a lower
number of necessary ciphertexts as the bias increases. For SIFA, the situation is
slightly different; however, multiple faults injected in the computation of a single
S-box might to reduce the required number of faulted encryptions, while being
not necessarily harder to conduct in practice.

5.2 Countermeasures

In the following, we discuss the effectivity and practicability of well-known
countermeasures against our attacks. Since most fault countermeasures prevent
the SFA variants of our attack using a single fault per execution, we focus on
the SIFA variants and show that it is not easy to prevent these attacks. In fact,
some countermeasures (e.g. detection) even facilitate certain aspects of SIFA in
practice.

Self-Destruct. The most radical approach of destroying the device as soon as
a fault is detected is a valid countermeasure against any fault attack. However,
this technique has a few downsides and limitations, including false positives and
additional effort to reliably destroy a circuit.

A lot of cryptographic devices deployed in the field like smart cards and RFID
tags have to function and operate under rather tough conditions. They typically
have to deal with abrupt loss of power, for instance if a smart card is withdrawn
from the terminal while working. Furthermore, they have to handle power spikes
from electrostatic discharges or electromagnetic fields. Hence, deciding between
an active fault attack and interference due to normal usage is not a trivial task
and would potentially lead to detection of a huge amount of false positives that
render such an approach useless for a wide range of applications.

One way to compensate some false positives is to destruct a device only once
a certain amount of faults was detected. Such a fault counter could be considered
an effective countermeasure, yet is still not used by a large portion of embedded
devices, since it is challenging to implement appropriately tamper-resistant,
especially in hardware.

Correction. A different approach to make use of redundancy is to correct the
effect of a fault, for instance using error-correcting codes or simple majority
voting. However, correction-based countermeasures usually can be reduced to
the detection-based case using additional faults. How hard this is and which
requirements this might have on the precision of the fault crucially depends on
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the implementation of the countermeasure. As an example let us assume a simple
majority voting between the result of 3 block cipher calls. To do this, the 3 block
cipher calls take the same inputs and hence, perform redundant computations.
An attacker can now use an additional fault to just ensure that the computations
performed on one redundant block cipher call will always be incorrect. This
usually does not require a precise fault. This reduces the majority voting of 3
block cipher calls to a construction which essentially behaves as a detection-based
countermeasure (or infection-like countermeasure if the majority voting happens
at bit-level of the ciphertext). Then, an attacker can proceed with the same
attacks as before, using a second targeted fault.

Infection. In [10], the application of SIFA on an infective countermeasure [27]
has been demonstrated. The employed dummy rounds in this countermeasure
increase the needed number of faulted encryptions until the key can be recovered.
However, when aiming to prevent SIFA, dummy rounds that do not infect the
state in the case of a fault should provide even more protection. Hence, we explore
this countermeasure next.

Hiding. The goal of hiding countermeasures is to reduce the attacker’s knowledge
of what is currently computed, and thus effectively decrease his precision when
placing the fault. Examples include adding dummy rounds randomly between the
relevant rounds, or shuffling the order of execution, for example the order in which
the 16 AES S-boxes per round are executed. In the following, we analyze the
case of dummy AES rounds in more detail, and show that the noise introduced
this way quadratically increases the necessary number of faulty encryptions for
the analysis.

Dummy Rounds. We consider a protected AES implementation and make the
following assumptions for our model:

– The attacker needs to fault round 9 out of 10 (identical) AES rounds.
– The protected implementation executes 10 real AES rounds and (k − 1) · 10

ineffective dummy rounds in a uniformly random ordering, labeled 1, . . . , R
with R = 10k.

– The attacker targets round R− t. Three outcomes are possible:
1. Hit: It is the real round 9 with probability σ, resulting in a distribution

with ineffectivity rate πfault and ineffective distribution pfault.
2. Miss: It is a dummy round with ineffectivity rate πdummy = 1 and uniform

ineffective distribution θ
3. Miss: It is a real round, but not round 9, with ineffectivity rate πfault

and uniform ineffective distribution θ. For simplicity, we assume an
ineffectivity rate of πdummy = 1, so this case can be merged with item 2.
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With these assumptions, the success probability that round R− t of R is a hit
(signal) is

σfault[R, t] = P
[
Hit in round R− t

]
=
t ·
(

R−t−1
8
)(

R
10
) = 90 · t

R(R− 1)

9∏
s=2

[
1− t− 1

R− s

]
.

This parametrized function is plotted in Figure 13 and attains its maximum
near t = k = R

10 . The resulting function σfault[10k, k] for the optimized success
probability is also plotted in Figure 13 (dashed, with x-axis t = k), and can be
approximated as

σfault[10k, k] = P
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Hit in round 9k of 10k
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Fig. 13: Success probability σ[R, t] when targeting round R − t, for different
R = 10k. For the choice t = k (dashed line), σ[10k, k] ≈ 0.387

k for k � 2.

A SIFA attacker samples the resulting distribution ptotal among the ineffective
faults, with a total ineffectivity rate of πtotal and a signal of σtotal:

πtotal = σfault · πfault + (1− σfault) · 1 = 1− (1− πfault) · σfault

σtotal = σfault · πfault
πtotal

ptotal(x) = σtotal · pfault(x) + (1− σtotal) · θ(x)

The necessary sample size to distinguish ptotal is inverse proportional to the
capacity

C(ptotal) = σ2
total · C(pfault) ,

which corresponds to a data complexity proportional to (πtotal ·σ2
total ·C(pfault))−1.
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Thus, for a fixed fault setup with pfault, πfault, increasing the dummy factor k
increases the data complexity of the attack quadratically (Figure 14):

(πtotal · σ2
total)−1 = 1− (1− πfault) · σfault

σ2
fault · π2

fault
≈ k2 1

(0.387 · πfault)2 − k
1− πfault

0.387 · π2
fault

.
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Fig. 14: Increasing data complexity with dummy factor k, for different πfault.

Shuffling. Similar to dummy rounds, shuffling operations reduces the attacker’s
precision and success probability in hitting the right S-box and thus induces noise
in the distribution. However, in the case of SIFA, there is an important difference
due to the ineffectivity rate in case of misses, which we assume is the same as in
case of hits. For this reason, the data complexity will also grow quadratically in
the number of shuffled operations in the relevant scope (e.g., 16 S-boxes), but
only linearly instead of quadratically in the inverse ineffectivity rate π−1

fault.

Limiting the Data Complexity. For our attacks to work, we usually need
several faulted encryptions per key to retrieve it. Therefore, methods that restrict
the usage of the key and hence, put a limit on the data complexity can be a
viable strategy for providing protection against this type of attack. Existing
re-keying strategies can be roughly split into two groups, one where the used
key is derived via a re-keying function from a static master key [1, 11, 12, 18] and
the other group being methods where a secret internal state is maintained and
constantly updated. In the first group, the problem of protection against the
attack is basically shifted to the re-keying function and has to be solved there.

5.3 Choice of the Target and Attack Setup

It is important to note that we have not chosen the S-boxes in Section 3 or AES
in Section 4 as targets of our attacks because we have found them to be weaker
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than others. In fact, we chose them, because many masked implementations for
them are publicly available.

Furthermore, we performed the practical experiments using clock glitches
because the equipment is cheap and we do not have easy access to other, more
sophisticated equipment at the moment. Obviously, the attack is not limited to a
specific fault injection method; quite on the contrary, we expect other methods of
inserting faults, such as Lasers, needle probes, etc., to be far superior compared
to our cheap setup using clock glitches [9].

5.4 Further Applications

For the sake of simplicity, we have put the main focus of this paper on the
application of statistical fault attacks for (masked) design strategies using bijective
S-boxes, where we want to distinguish a uniform from a non-uniform distribution.
However, this does not mean that the attack in only applicable on primitives
using bijective S-boxes. As discussed in Section 3.4, a fault attack may influence
only some transitions in the transition graph, while leaving others intact. In the
case of SIFA, an attacker can observe and exploit the “filtered” graph, where
most likely only the intact transitions remain. Note that in the masked case,
there is more than one transition from one input to one output value, due to
masks. Hence, an attacker can potentially exploit all cases where this “filtered”
transition graph shows a differently distributed occurrence of input and output
transitions.

As another narrative restriction, we have restricted our focus on block ciphers.
One potential countermeasure one could come up with against our attack is
the use of a PRF like the AES-PRF [19] instead of a block cipher. Such a PRF
prevents an attacker from observing ciphertexts and decrypting backwards under
guessing the key. However, SIFA remains possible by targeting the input of the
AES-PRF since here, a known input like a nonce is usually processed. In general,
the presented attacks are almost always applicable whenever some known input
is mixed with a secret, which covers most stateless symmetric cryptographic
primitives. However, it is an interesting future research topic to evaluate how
well such attacks will work.

6 Conclusion

This paper demonstrates that SIFA is a very powerful attack. We show that
state-of-the-art countermeasures against implementation attacks, redundancy
against faults and masking against side-channels, are not as effective against
SIFA as expected. In particular, SIFA is still possible using just a single fault per
execution, contradicting the common folklore that masking plus a detection-based
countermeasure provides sufficient protection against fault attacks.

We presented a comprehensive analysis of simulated faults for an assembler-
optimized, masked AES implementation for the 32-bit Cortex-M4 platform that
might be of high practical relevance. We showed that most of the instructions of
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the masked S-box implementation are “susceptible” to faults and can be exploited
in SIFA using any of the common fault models.

Moreover, the practical feasibility of the attack was shown by attacking a 10th-
order masked AES software implementation with arbitrary temporal redundancy
on block cipher level on a standard 8-bit microcontroller without specific security
features using a cheap clock glitch setup. Even with such a cheap setup, we are
able to recover 32 bits of the key after collecting 20 ciphertexts where the fault
is ineffective, needing approximately a total of 1000 encryptions where a single
fault induction is performed.
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