Flexible Signatures: Towards Making Authentication Suitable for
Real-Time Environments

Duc Le Mahimna Kelkar Aniket Kate

Purdue University
{le52,mkelkar,aniket} @purdue.edu

Abstract

This work introduces the concept of flexible signatures. In a flexible signature scheme, the verifica-
tion algorithm quantifies the validity of a signature based on the number of computations performed such
that the signature’s validation (or confidence) level in [0, 1] improves as the algorithm performs more
computations. Importantly, the definition of flexible signatures does not assume the resource restriction
to be known in advance until the verification process is hard stopped by a system interrupt. Although
prominent traditional signature schemes such as RSA, (EC)DSA, EADSA seem unfit towards build-
ing flexible signatures, we find updated versions of the Lamport-Diffie one-time signature and Merkle
authentication tree to be suitable for building flexible signatures. We present a flexible signature con-
struction based on these hash-based primitives and prove its security with a concrete security analysis.
We also perform a thorough validity-level analysis demonstrating an attractive computation-vs-validity
trade-off offered by our construction: a security level of 80 bits can be ensured by performing only
around %rd of the total hash computations for our flexible signature construction with a Merkle tree of
height 20.

We see this work as the first step towards realizing flexible-security cryptographic primitives. Be-
yond flexible signatures, our flexible-security conceptualization offers an interesting opportunity to build
similar primitives in the asymmetric as well as symmetric cryptographic domains. Apart from being the-
oretically interesting, these flexible security primitives can be of particular interest to real-time systems
as well as the Internet of things: rigid all-or-nothing guarantees offered by the traditional cryptographic
primitives have been particularly unattractive to these unpredictably resource-constrained environments.

keywords: Partial Verification; Unpredictable Resource constraints; Real-time systems; Trade-off.

1 Introduction

Security for embedded and real-time systems has become a greater concern with manufacturers increasing
connectivity of these traditionally isolated control networks to the outside world. The computerization of
hitherto purely mechanical elements in vehicular networks, such as connections to the brakes, throttle, and
steering wheel, has led to a life-threatening increase of exploitation power. In the event that an attacker gains
access to an embedded control network, safety-critical message traffic can be manipulated inducing catas-
trophic system failures. In recent years, numerous attacks have impressively demonstrated that the software
running on embedded controllers can be successfully exploited, often even remotely. [15,21,24] With the
rise of the Internet of Things (IoT), more non-traditional embedded devices have started to get integrated
into personal and commercial computing infrastructures, and security will soon become a paramount issue
for the new-age embedded systems. [9, 26]

Well-established authentication and integrity protection mechanisms such as digital signatures or MACs
can effectively solve many of the security issues with embedded systems. However, the industry is hesitant

to adopt those as most embedded devices pose severe resource constraints on the security architecture in
terms of memory, computational capacity, energy and time. Given the real-time deadlines, the embedded
devices might not be able successfully complete verifications by the deadline rendering all verification
efforts useless.

Indeed, traditional cryptographic primitives are not designed for such uncertain settings with unpre-
dictable resource constrains. Consider prominent digital signature schemes (such as RSA, EC-DSA, and
EdDSA) that allow a signer who has created a pair of private and public keys to sign messages so that
any verifier can later verify the signature with the signer’s public key. The verification algorithms of those
signature schemes are deterministic and only return a binary answer for the validity of the signature (i.e.
0 or 1). Such verification mechanisms may be unsatisfactory for an embedded module with unpredictable
computing resources or time to perform the verification: if the module can only partially complete the verifi-
cation process due to resource constraints or some unplanned real-time system interrupt, there are no partial
validity guarantees available.

This calls for a signature scheme that can quantify the validity of the signature based on the number
of computations performed during the verification. In particular, for a signature scheme instantiation with
128-bit security, we expect the verification process to be flexible enough to offer a validity (or confidence)
level in [0, 1] based on the resources available during the verification process. We observe that none of the
existing signature schemes offer such a trade-off between the computation time/resource and the security
level in a flexible manner.

Our Contributions. This paper initiates the study of cryptographic primitives with flexible security guar-
antees that can be of tremendous interest to real-time systems and the emerging IoT. In particular, we in-
vestigate the notion of a flexible signature scheme that offers partial security for an unpredictably partial
verification.

As the first step, based on the standard definition of digital signatures, we propose a new definition
for a signature scheme with a flexible verification algorithm. Here, instead of returning a binary answer,
the verification algorithm returns a value, o € [0, 1] that quantifies the validity of the signature based
on number of computations performed. Next, we provide a provably secure concrete construction of the
flexible signature scheme based on the Lamport-Diffie one-time signature construction [17] and the Merkle
authentication tree [19]. The security of our signature relies on the difficulty of finding a ¢-near-collision
pair for a collision-resistant hash function. Finally, we have implemented our scheme, and demonstrated that
our construction still offers a high security level against adaptive chosen message attacks despite performing
fewer computations during verification. For example, a security level of 80-bit security can be secured by
performing only around %rd of the total required hash computations for a Merkle tree of height 20.

Related Works. Fischlin [12] proposes a similar framework for progressively verifiable message authen-
tication codes (MACs). In particular, he presents two concrete constructions for progressively verifiable
MAC:s that allow the verifier to spot errors or invalid tags after a reasonable number of computations, and
introduces the concept of detection probability, A‘;{de"(p), to denote the probability that the verifier detects
errors after verifying |np| blocks. Our work addresses the open problem suggested in this work for the
case of digital signature, and we also incorporate the detection probability into the security analysis of our
schemes.

Bellare, Goldreich, and Goldwasser [2] introduce incremental signatures. Here, given a signature on a
document, a signer can obtain a (new) signature on a similar document by partially updating the available
signature. The incremental signature computation is more efficient than computing a signature from scratch
and thus can offer some advantage to a resource-constrained signer. However, it provides no benefit for a
resource-constrained verifier; the verifier still needs to perform a complete verification of the signature.

Signature scheme with batch verification [1, 7] is a cryptographic primitive that offers an efficient veri-
fying property. Namely, after receiving multiple signatures from different sources, a verifier can efficiently

n Security parameter

[m] {1,...,m}

my||ma Concatenation of strings m; and mso

(di)iemm Concatenation of m elements, d1 ||dz]|...||dm

e & x x is chosen uniformly at random from some set X’
A(z,y) Hamming distance between two binary strings = and y

f(m) = poly(m) f(m) is a polynomial function in m
f(m) =negl(m) f(m) is a negligible function in m, if f(m) = o(1/m¢) Ve € N
[r] Optional parameter 7 in an algorithm definition

Figure 1: Notation

verify the entire set of signatures at once. Batch verification signature scheme and flexible signature scheme
are similar in that they offer an efficient and flexible verification mechanism. However, while the former
seeks simply to reduce the load on a busy server, the latter is more suitable for a resource constrained verifier
who can tolerate a partial security guarantee from a signature.

Freitag et. al. [13] propose the concept of signature scheme with randomized verification. Here, the
verifying algorithm takes as input the public key along with some random coin to determine the validity of
the signature. In those schemes, the attacker’s advantage of forging a valid message-signature pair, (m*, o),
is determined by the a fraction of coins that accept (m*, o*). Freitag et. al. construct a signature scheme
with randomized identity-based encryption (IBE) schemes using Naor’s transformation and show that the
security level of their signature scheme is fixed to size of the underlying IBE scheme’s identity space. While
our work can be formally defined as a signature scheme with randomized verification, our scheme offers a
more flexible verification in which the security level of the scheme can be efficiently computed based on the
output of the verifying algorithm.

Finally, Fan, Garay, and Mohassel [10] proposed the concept of short and adjustable signature scheme.
They offer three variants, namely setup-adjustable, signing-adjustable, and verification-adjustable signatures
offering different trade-offs between the length and the security of the signature. The first two variants
allow the signer to adjust the length of the signature, while the last variant allows the verifier to shorten
the signature during the verification phase. They propose three constructions for each variant based on
indistinguishably obfuscation (¢0), and one concrete construction only for the setup-adjustable variant based
on the BLS Signature Scheme [4]. Unfortunately, none of those constructions is suitable for constructing
flexible signatures tolerating unpredictable interrupts.

Organization. We organize the rest of the paper as follows: Section 2 introduces necessary preliminaries
for our work. Section 3 contains the definition of our signature scheme with flexible verification and its
security experiment. We propose our flexible Lamport-Diffie one time signature construction and prove its
security in Section 4. In Section 5, we use the Merkle authentication tree to transform one-time signature
scheme into many-time signature scheme and prove its security. Section 6 contains an evaluation of the
trade-off between number of computations and security level for each of our constructions.

2 Preliminaries

Fig. 1 presents prominent notational conventions that we use throughout this work. Our constructions em-
ploy the following standard properties of cryptographic hash functions.

We use H : K x M — {0,1}" to denote a hash function that takes as input a key k& € K where K
is some key space and message m € M where M is some message space and outputs a binary string of

length n. For this work, we consider 2 popular security properties for hash functions from [23], preimage
resistance, collision resistance, and one weaker security notion from [16, 18], £-near collision resistance.

Preimage Resistance: For all efficient adversaries .4 that run for at most #,,,, we define the adversary’s
advantage:
k& K,z &M

AdvP¢, (n) = Pr
Al y H(k,z),2 < Alk,y)

cH(k,2') = y] < €ow

We say H is (tow, €ow) preimage-resistant. H is secure if for ¢,,, = poly(n), we have €5, < negl(n)

Collision Resistance: For all efficient adversaries .4 that run for at most ¢.,., we define the adversary’s
advantage:

EE K

AdvY 7 (n) = Pr
Al (2, 2) < A(k)

c(x #2)A(H(k,x) = H(k,x’))] < €cr

We say H is (ter, €cr) collision-resistant. H is secure if for ¢, = poly(n), we have €., < negl(n)

/-near-collision Resistance: For all efficient adversaries A that run for at most ty_,. and £ < n, we
define the adversary’s advantage:

k:(ilC;

(x,2") + A(k,)

c(z# 2)N(AH (K, x), H(k, ")) < E)] < €foner

We say H iS (tgner, €oner) £-near collision-resistant. H is secure if for small £ and t;.,,., = poly(n), we
have €y e < negl(n)

Generic Attacks. To find the preimage or second preimage t,,, = 29 is required to achieve €y, = 1/2"¢
using exhaustive search. Due to the birthday paradox, however, only t., = 2?2 is required to find a
collision with a success probability of €., ~ 1/2. Finally, Lamberger et. al. showed in [16] that at least

tomer = 272)/ Zf:o (7;) is required to find a /-near-collision with a success probability of €y ., ~ 1/2.

Unkeyed Hash Functions. In practice, the key for standard hash functions is public; therefore, from this
point, we refer to the cryptographic hash function H as a fixed function H : M — {0,1}".

3 Security Definition

In this section, we define a flexible signature scheme. We adapt the standard definition of the signature
scheme [14] to the flexible security setting. An instance of an interrupted flexible signature verification is
expected to return a validity value, «, in the range [0, 1].

To model the notion of runtime interruptions in the signature definition, we introduce the concept of an
interruption oracle iOraclex;(1™), and give the verification algorithm access to it. The interruption oracle
outputs an interruption position 7 in the sequence of computation steps involved the verification algorithm.
For simplicity, if we denote max to be the maximum number of computations needed (e.g. clock cycles,
number of hash computations, or modular exponentiations) for a signature verification, then iOracle(1™)
outputs a value r € {0, ..., max}. The specification of the interruption position may vary depending on the
choice of signature scheme. In section 4 and 5, we define the interruption position as the number of hash
computations performed in the verification algorithm. Figure 2 gives an intuition about the interruption
oracle.

Definition 1. A flexible signature scheme, 3, contains three algorithms (Gen, Sign, Ver):

e Gen(1") is a probabilistic algorithm that takes a security parameter 1™ as input and outputs a pair
(pk, sk) of public key and secret key.

e Sign(sk, m) is a probabilistic algorithm that takes a private key sk and a message m from a message
space M as inputs and outputs a signature o from signature space S.

e Ver(pk, m,o,[r]) is a probabilistic algorithm that takes a public key pk, a message m, a signature o,
and an optional interruption position r as inputs. If r is not provided, then the algorithm will query an
interruption oracle, iOraclex,(1™) to determine r. The algorithm outputs a real value o € [0, 1]U{_L}.
The signature is invalid if o = L.

The following correctness condition must hold:

V(pk, sk) < Gen(1™),

. Pr[Ver(pk, m, Sign(sk,m),r) # 1] = 1
Ym € M, Vr € {0, ..., max} r[Ver(pk, m, Sign(sk,m),r) # L]

Where max denotes the maximum number of computations for a signature verification.

iOracles (1)

max

Figure 2: an interruption oracle for a signature scheme X

Remark 1. Similar to the trusted party introduced in [12], the interruption oracle only serves as a virtual
party for definitional reasons. In practice, the verification algorithm does not receive the interruption posi-
tion v as an input, and the algorithm continues to perform computations until it receives an interruption. To
model runtime interruptions using the interruption oracle iOraclex,(1™), we expect the flow of the verifica-
tion algorithm to not be affected/biased by the r value offered by iOraclex; (1) in the beginning. Moreover,
depending on signature schemes, there is more than one way to define the interruption position, r. For
example, interruption position can be specified as time elapsed or a number of computations performed in
the verification.

Extracting function. Finally, we assume that there must exist an efficient function, iExtracty(-), that
takes as input the validity of the signature «, the security parameter n, and outputs the interruption position
r. Intuitively, for the case of an unexpected interruption, the verifier should not know when the verifica-
tion algorithm is interrupted. However, based on the validity output «, the verifier should be able to use
iExtracty(+) to learn the interruption position, . The definition of extracting function depends on the spec-
ification of the interruption position and signature scheme. We will define our iExtracty;(-) for each of our
proposed constructions in section 4 and section 5

Security of flexible signature scheme. We present a corresponding definition to the existential unforge-
ability under adaptive chosen message attack (EUF-CMA) experiment in order to prove the security of our
scheme.

For a given flexible signature scheme ¥ = (Gen, Sign, Ver) and « € [0, 1], the attack experiment is
defined as follows:

Experiment FlexExp 4 5;(1", @) :

1. The challenger C runs Gen(1™) to obtain (pk, sk) and iExtracts;(«) to obtain position r. C sends
(pk,r) to A.

2. A queries C for signatures of its adaptively chosen messages. Let ngn(Sk") = {mi}ig|q be the set

of all messages that A queries C where the i** query is a message m; € M. After receiving m;, C
computes o; < Sign(sk,m;), and sends o; to A.

3. Eventually, A outputs a pair (m*,0*) € M x S, where message m* ¢ Qign(‘qk") and sends the pair

to C.

4. C computes o < Ver(pk,m*,o*,r). If (a* # L) and (o > «), the experiment returns 1; else, it
returns 0.

Definition 2. For security parameter n and o € [0, 1], a flexible signature scheme X is (t, €, q) existential
unforgeable under adaptive chosen-message attack if for all efficient adversaries A that run for at most time
t and query Sign(sk, -) at most q times, the success probability is:

Advﬂﬁg(n) = Pr[FlexExp 4 »(1",a) = 1] < ¢

Here, t and e are functions of o and n, and q = poly(n).

4 Flexible Lamport-Diffie One-time Signature

In this section, we present our concrete construction of the flexible one-time signature scheme. This con-
struction is based on the Lamport-Diffie one time signature construction introduced in [17]. The idea of
the Lamport Diffie one-time signature scheme is to sign/verify the message/signature bit-by-bit using a
preimage-resistant hash function.

4.1 Construction

We show the concrete construction of the flexible Lamport-Diffie one-time signature in Fig. 3. In this
construction, we use the same key generation and signing algorithms from the Lamport-Diffie signature and
modify the verification algorithm.

Key Generation Algorithm. The key generation algorithm takes a parameter 1" as input, and gener-
ates a private key by choosing 2n bit strings each of length n uniformly at random from {0, 1}", namely,
SK =(ski[b])icin] pefo,1} € 10, 1}27°. The public key is obtained by evaluating the preimage-resistant hash
function on each of the private key’s n bit string, such that PK = (pk;[b])icn) pef0,1} Where pk;[b] =
F(sk;[b]) and F(-) is the preimage-resistant hash function.

Signing Algorithm. The signing algorithm takes as input the message m and the private key SK. First,
it computes the digest of the message d = G(m) = (d;);c|,) Where d; € {0,1} and G(-) is a collision-
resistant hash function that outputs digests of length n. The signature is generated based on the digest d as

o = (ski(di))iepn)-

Flexible Verification Algorithm. This algorithm takes as input a message m, a public key PK, a signature
o, and an optional interruption position [r] and outputs the validity of the signature c. In this construction,
we model the interruption condition » € {0, 1,...,n}, as the number of hash F'(-) computations performed
during verification. As mentioned earlier in Section 3, to faithfully model the interruption process, the flow
of the verification algorithm is not biased by the 7 value in any intelligent manner.

First, the verification algorithm will query the interruption oracle to determine the interruption position
7. The algorithm then computes the digest of the message, d = G(m) = (di)ic[n). Now, instead of
sequentially verifying the signature bits like the verification in the standard scheme, the flexible verification
algorithm randomly select a position 7 of the signature and checks whether F'(o;[d;]) = pk;[d;]. If there is
one invalid preimage, the verification aborts and returns o« = L. Otherwise, once the interruption condition
is met or all positions are verified, the algorithm returns the validity as the fraction of the number of bits that
passed the verification check over the length of the signature.

In this Lamport-Diffie construction, giving the validity « value output by the verification algorithm, the
verifier simply compute the interruption position as follow: iExtracts,,,, (@) = [a - n|

4.2 Security Analysis

In the flexible Lamport-Diffie one-time signature setting, as the verification algorithm doesn’t perform verifi-
cation at every position of the signature, the adversary can increase the probability of winning by outputting
two messages whose hash digests are close. This is equivalent to finding an ¢-near-collision pair where
¢ is determined by the adversary. Theorem 1 offers the trade-off between computation time and success
probability for the adversary.

Theorem 1. Let F be (tow, €ow) preimage-resistant hash function, G be (tyner, €rner) L-near-collision-
resistant hash function, kp, kg be the number of times F(-), G(-) evaluated in the verification respectively,

Flexible Lamport-Diffie One-time Signature

For the security parameter n, let F : {0,1}"™ — {0,1}", G : {0,1}* — {0,1}". The flexible Lamport-Diffie
one-time signature scheme Xy, works as follows:

Gen(1") : for eachi € [n],b € {0,1} :
choose sk;[b] & {0,1}", set pk;[b] = F(sk;[b])
output : SK = (ski[b])iefn) beto,1y, PK = (pki[b]))icm) befo.1}
Sign(SK,m) : compute d = G(m) = (d;)icn)
output : o = (sk;[di])icn)
Ver(PK,m, o, [r]) : if ris not provided: set r < iOracle(1™),
krp =0, N =[n]
compute d = G(m) = (d;);en]
write PK = (pki[b])ic(n) bef0.1}, 0 = (0i)icn]
while (r > 0) and (N # 0) :
choose i & N
if F(o;) # pki(d;), return a = L
N=N-{i}kp=hkp+1lr=r—1

output : o =kg/n

Figure 3: Construction of the Flexible Lamport-Diffie Signature

d be the Hamming distance between two message digests output by A, and tgen, tsign, tver be the time it
takes to generate keys, sign the message, and verify the signature respectively. With 1 < krp < n, kg =1,
the flexible Lamport-Diffie one-time signature ¥ fots is (t fots, € fots, 1) EUF-CMA where:

a=kp/n
trots = min{tow7 tﬁ—ncr} — tsign — tver — tgen where 0 </ <n —kp
hp—1
. d
€fots < mzn{1,2 . max{ H (1- — Z,),4n . eow}} where 0 < d < /¢
=0

Proof. Let m be the message asked by A during the experiment FlexExpy, 4(1"), and (m*,c*) be the
forgery pair. We have d = A(G(m), G(m*)). Note that for a pair (m, m*) output by the adversary during
the forgery experiment, if A(G(m), G(m*)) > n—kp, then by pigeonhole principle, at least one of different
positions will be checked (i.e. Pr[Y] = 0). Therefore, to maximize the success probability, the adversary
has to choose ¢ and output a ¢-near-collision pair where A(G(m), G(m')) < ¢ < (n — kp). To do this, A

requires at least t = ty.per = 272 /4/ Zf:o (") Thus, we have:

7
tfots = min{tow, t(—ncr} - tsign - tgen — tyer Where 0 < 0 < n — kp (D

For the success probability,let X be the event that A succeeds in the forging experiment and Y be the event
that no different bit gets verified. Since d is the Hamming distance between 2 message digests, either none
of those different positions were checked, or some of those positions passed the check (i.e. the preimage
was found). Thus, we rewrite .A’s advantage for the forging experiment as follows:

PriFlexExp 4 5;(1") = o] = PrIXAY] + PrX A Y] < Pr[Y] + PriX A Y]

The event X A Y implies that A wins the forgery experiment by providing a preimage of F'(-). Therefore,
we can use A to construct a preimage finder B. The reduction is presented in [6]. Therefore, one can show:

PrIX AY] < dn - Advit(n) ()

Finally, X A Y implies the adversary can win the forging experiment if the challenger doesn’t perform
verification on the different bits. Since d is the number of different bits between two digests, the probability
that the challenger doesn’t perform verification on those positions is:

el —a—i M d
P < = —_—m —_
XA Y] < PrlY] H — H(l —) 3)
=0 =0
From (2) and (3), we have:
kp—1 n—d—1
Pr[FlexExp 4 5;(1", o) = 1] < H — +4n - Adv%ﬁ:(n)
1=
kp—1 d
< 2-max{ H (1-— p— i),4n'€ow}
=0
kp—1 p
< min{l,Q . max{ H (1-— m),lln . eow}}
1=0
which completes the proof. O

Security Level. Towards making the security of flexible Lamport-Diffie one-time signatures more compre-
hensible, we adapt the security level computation from [6]. For any (¢, €) signature scheme, we define the
security of scheme to be log, (t/€). As, in the flexible setting, the value of the pair (¢, €) may vary as the
adversary decides the Hamming distance /, for each value of kp € {0,...,n}, we compute the adversarial
%) as the security level

of our scheme. A detailed security level analysis for the Lamport-Diffie one-time signature is available in
Section 6.1.

advantage for all values 0 < ¢ < n — kr and output the minimum value of log, (

5 Flexible Merkle Tree Signature

We use the Merkle authentication tree [19] to convert the flexible Lamport-Diffie one-time signature scheme
into a flexible many-time signature scheme.

5.1 Construction

In the Merkle tree signature scheme, in addition to verifying the validity of the signature, the verifier uses
the authentication nodes provided by the signer to check the authenticity of the one-time public key. We
are interested to quantify such values under an interruption. To achieve such a requirement, we require the
signer to provide additional nodes in the authentication path.

Key Generation Algorithm. Our key generation remains the same as the one proposed in the original
Merkle tree signature scheme [19]. For a tree of height h, the generation algorithm generates 2" Lamport-
Diffie one-time key pairs, (PK;, SKi)ie[Qh]' The leaves of the tree are digests of one-time public keys,
H(PK;), where H(-) is a collision-resistant hash function. An inner node of the Merkle tree is the hash
digest of the concatenation of its left and right children. Finally, the public key of the scheme is the root of
the tree, and the secret key is the set of 2 one-time secret keys.

Modified Signing Algorithm. In the original Merkle signature scheme, a signature consists of four parts:
the signature state s, a one-time signature o, a one-time public key PK; and a set of authentication nodes
Authg = (ai>i€[h]' The verifier can use PKj; to verify the validity of the o, and use nodes in Authg and state
s to efficiently verify the authenticity of PKq.

Figure 4: An example of new authentication nodes for PK3 where Auths = (a1,as2,as) is the set of
authentication nodes in the original scheme and Auth§ = (], aj, a%) is the set of additional authentication
nodes

For our signing algorithm, we need additional information from the signer. Along with authentication
nodes in the old construction, we require the signer to send the nodes that complete the direct authentication

Flexible Merkle Tree Signature Scheme

For the security parameter n and the height of the tree h, let F : {0,1}" — {0,1}", H : {0,1}* — {0,1}", G :
{0,1}* = {0,1}", and Zyors = (Genfos, Sign 1,155 Versors) be the flexible Lamport-Diffie one-time signature
scheme. The stateful flexible Merkle scheme X7y, s works as follows:

Gen(1™) : generate 2" ots pairs {(PK;, SKi) Ficjzr) using Gen pos(17)
compute the inner nodes of the Merkle tree as follows:
node;[j] = H(node;_1[2j — 1]||node;—1[27])
2<i<h+1,1<j<ohti~
nodey[i] = H(PK;),1 <i < 2"
output : SK = {SK;};c[an), PK = root (i.e. nodep11[1]), s =1
Sign(SK,m, s) : compute o5 = Sign,,(SK,, m)
compute Authg = (a;);e[n), where
node;[[s/20"1] +1] if [s/2°71] =1 mod 2
i {nodei[[s/Zi_l] —1] if [s/2071] = 0mod 2
compute AuthS = (a});e(n), where a; = node;[[s/2" "]
output : 0 = (s, 05, PKs, Authg, Authg), s = s + 1
Ver(PK,m, o, [r]) : if ris not provided: set r + iOracle(1"),
set N =[n],T =[h+1],kp =0,kg =0
compute G(m) = d = (d;)ie[n)
extract (8,0 fots, PKots, Auth, Auth®) < o
write 0ots = (04)icn]s PKrots = (PFi[b])icn] bef0,1}
Authg = (ai)ig[h], Authg = (a’i)ig[h]
whiler >0and H # 0 and N # 0 do :
if 1=1/2572 <kp/(h+1):
choose i & N, if F(o;) # pki(d;), return a = L
N=N-{i}, kr=kp+1
else : choose j & T, set a1 =PK
if j=1:if ay # H(PK;),return o = L

if j > 1:if ajisnotaparent of a;_y and aj_, :

output = L.
T=T-{j},kn =kpg+1
r=r—1

output : o= (kp/n,kuy/(h+1))

Figure 5: The Flexible Merkle Signature Construction

path from the one-time public key to the root. We call this set of nodes complement authentication nodes,

Auth = (aj)icn). The reason for including additional authentication nodes is to allow the verifier to

randomly verify any level of the tree. Moreover, with additional authentication nodes, verifier can verify

different levels of the tree in parallel. Fig. 4 describes an example of the new requirement for a tree of height

three.

The modified signature consists of five parts: a state s, a Lamport-Diffie one-time signature o, a one-

10

time public key PKg, a set of authentication nodes Authg, and a set of complement authentication nodes
Autht.

Flexible Verification Algorithm. With additional authentication nodes, the verification algorithm can ver-
ify the authenticity of the public key at arbitrary levels of the authentication tree as well as use the flexible
verification described in Section 4 to partially verify the validity of the one-time signature. In the end, the
verification returns o = (v, o,) that contains both the validity of the signature and the authenticity of the
public key. In this construction, we define the interruption » € {0,1,...,n + h + 1}, as the number of
computations performed during the verification step.

In contrast to the verification performed in the one-time signature scheme, the security guarantee the
verifier gains from the authenticity verification of the one-time public key only increases linearly as the
number of computations performed on the authentication path increase: The adversary can always generate
a new one-time key pair to sign the message that is not a part of one-time key pairs created by the generation
algorithm. In the original Merkle scheme, such key pair will fail the authenticity check with overwhelming
probability because the verifier can use the authentication nodes to compute and verify the root. However, in
the flexible setting, the verifier may not be able to complete the authenticity verification, and there is a non-
negligible probability that an invalid one-time public key will be used to verify the validity of the signature.
Therefore, the verifier gains exponential security guarantee about the validity of the one-time signature but
only a linear guarantee about the authenticity of the public key as the number of computations increases.

To address this issue, the verification algorithm needs to balance the computations performed on the
authentication path and the computations performed on the one-time signature. We define the confidence
for the validity of the one-time signature as 1 — 1/2~F /2 and the confidence for authenticity of the one-time
public key as kg /(h + 1), where kp is the number of computations performed on the one-time signature,
kpr is the number of computations performed on the one-time public key, and & is the height of the Merkle
tree. To balance the number of computations, the verifier needs to maintain 1 — 1/2%7/2 ~ ky /(h + 1).

This approach allows the verifier who does not perform complete verification to gain some security
guarantee about the signature. With the new signing and verifying algorithms described above, we present
a detailed construction of the flexible Merkle signature scheme in Fig. 5.

In this Merkle construction, giving the validity o = (v, o) value output by the verification algorithm,
the verifier can compute the interruption position as follow: iExtracty,, () = [awn] + [a.h)]

5.2 Security Analysis

Theorem 2 presents the trade-off between computation time and success probability for the adversary A.

Theorem 2. Let F' be (tow, €ow) preimage-resistant hash function, G be (tyner, €rner) {-near-collision-
resistant hash function, H be (tc;, €.) collision-resistant hash function, kg, kg, kg be the number of times
F(.),G(-), H(-) performed respectively, d be the Hamming distance between two message digests output
by A, and tgen, tsign, tver be the time it takes to generate keys, sign the message, and verify the signature
respectively. With1 < kp <n, 0 < kg < h+1, and kg = 1, the flexible Merkle signature construction
(X tms) from flexible Lamport-Diffie one-time signature scheme is (t fps, € fms. 2h) EU-CMA, where

11

o = (kp/m ki /(h + 1)

O(1) when kg < h + 1,
tfms = . h
mzn{towa toner, tcr} —2". tsign — tyer — tgen where 0 < ¢ <n — kp
kp—1
. h d h+logy 4n
€fms < ming 1,4 -maxq 1 —ky/(h+1),2"- H(l—m)ﬂ 27 €ows Ecr
=0

where 0 < d < ¢

Due to space constraints, the proof of Theorem 2 is shifted to Appendix A.

5.3 Other Signature Schemes

Over the last few years, several optimized versions of Merkle tree signature and one-time signature schemes
have been proposed. This includes XMSS [5] and SPHINCS [3] for the tree signatures, and HORS [20],
Biba [22], and Winternitz [19] for one-time signatures. While the security analysis for each scheme may
vary a little, we can use the same technique described above to transform those schemes into signature
schemes with a flexible verification.

We also investigated a few different number-theory based signature schemes like RSA, ECDSA, EdDSA,
and found that the same verification technique can be applied to the Fiat-Shamir Signature Scheme [11] as
its signature is partitioned into different verifiable sets. However, compared to hash function evaluations,
modular exponentiations are significantly more expensive and thus may not be suitable for flexible security
application environments. Nevertheless, it will be interesting to find a number-theoretic signature scheme
that offers an efficient flexible signature verification algorithm.

6 Evaluation, Performance Analysis and Discussion

In this section, we evaluate the performance and the security level of the flexible Lamport-Diffie one-time
signature and flexible Merkle signature schemes. For both schemes, the validity value o suggests the number
of computations performed (i.e. kg, kr) during verification. Based on the value «, the verifier determines
the security level achieved by the (interrupted) verification instance.

6.1 Security Level of Flexible Lamport-Diffie One-time Signature

The security level of a flexible Lamport-Diffie signature depends on the Hamming distance between two
message digests output by the adversary. As mentioned in previous sections, the adversary can increase
its advantage by spending more time to find a near collision pair. However, it is unclear how to precisely
measure an exact Hamming distance between two digests, and we need to outline some possible assumptions
in order to estimate the value of A(G(m), G(m*)).

First, let assume that an adversary .4 who uses a generic birthday attack can output a pair (m,m*)
such that A(G(m),G(m*)) < £ with /e, = 1 after spending t e, = 2"/?/ \/Zf:o (""). Second, for
a fixed value /¢, if the adversary finds a pair (m, m*) such that A(G(m), G(m*)) < ¢, we assume that
d = A(G(m),G(m™)) is equal to the expected value of A(G(m), G(m*)). The intuition behind the second

assumption is that as the Hamming distance d decreases by 1, probability that A(G(m),G(m*)) = d
decreases by factor of n.

12

For 6 = G(m) and 6* = G(m*), we define the set B;(0) = {z | z € {0,1}" A A(z,d) < ¢} Ttis
not difficult to see that |By(8)| = 25_, (7). If (§,6*) is £-near-collision pair then 6* € By(8). If G(-) be a
random oracle, then () ()

PrIA(6,0%) = j] = ntei = =7 @)
B~ 5, ()

Using (4), we calculate the expected value of A(d, §*) as follow:

A(5,6%)) Z] Pr[A(6,6%) = j]

With these assumptions, we compute the security level of the flexible Lamport-Diffie one-time signature

t

scheme as log, (m) For the Lamport-Diffie one-time signature construction, we have £ e, = 21, t5i9n =
€fots

tyer = n. Using Theorem 1 and the above equations, we have

n/2
Liots = max{l, 2£7 —4- n} forsome ¢ < n — kg
Pizo (7)
kp—1
. d X
€fots < mm{l,2- H (1-— — Z)} where d = E(A(G(m), G(m")))
i=0

Again, the adversary’s advantage varies depending on the value of ¢. Therefore, for a fixed Value kr, we
compute the adversarial advantage all values £ < n — kr and output the minimum value of logy (fr Oi) as
the security level of our scheme. ‘

Fig. 6 describes the trade-off between the number of computations and the security level of the flexible
Lamport-Diffie scheme. Compared to the original Lamport-Diffie scheme, our scheme offers a reasonable
security level despite a smaller number of computations. For example, while a complete verification requires
256 evaluation of F'(-) to achieve the 128-bit security level, with only 128 evaluations of F'(-), the scheme
still offers around the 92-bit security level.

6.2 Security Level of Flexible Merkle Tree Signature
For the Merkle tree signature scheme, using the results from [8], [25], we have
tgen = 2h : 2n+2h+1 - 1atver =n+h+ 1atsi9n = (h+ 1) "n

There are two cases for the Merkle tree signature: the authenticity check is complete, ki = h + 1 or the
authenticity check is not complete, kyy < h + 1

When kg < h+ 1, the adversary’s probability of winning is always non-negligible, and time it needs to
spend on the attack is constant; therefore, when the authenticity check is not complete, we simply let

tfms = 1
€fms =1 —kpg/(h+1)

When the authenticity verification is complete, ki = h + 1, using the equation described in Theorem 2, we
obtain the following parameters for the flexible Merkle tree scheme:

tfms = maw{l, tomer — 2h+10g2(h+1)n _ ghlogy2n 210g2(n—h—1)} for¢ <n — kp

kp—1

€fms = min{l, oh . H (1-— ncjz)} where d = E(A(G(m), G(m")))
=0

13

128} 128}
_ 112t _ 112t
S 96t S 96t
(0] [0}
- 8o} - 8o}
> >
- 64l = 64l
§ 48} § 48}
@ 32t @ 32t

16} 16}

0837 64 96 128 160 192 224 256 05 8584~ 96 128 160 192 224 256

Nunber of Conputations Nunber of Conputations

Figure 6: Security Level of Flexible Lamport-Diffie =~ Figure 7: Security Level of Flexible Merkle Tree
One-time Signature Signature

n = 256
k 32 64 128 192 max
Lamport-Diffie one-time signature verification | 0.113 ms | 0.162ms | 0.242 ms | 0.358 ms | 0.425 ms
Merkle tree signature verification, h = 20 0.510ms | 0.662ms | 0.94 ms 1.10 ms 1.39 ms

Table 1: Merkle Tree Signature Randomized Verification

Using those formulas, we compute the security level of the flexible Merkle signature as logZ(iJ; _—).
Fig. 7 shows the trade-off between the security level of the scheme and the number of computations of the
flexible Merkle tree signature with h = 20.

Notice that, for small number of computations, the security level of Merkle tree construction does not
increase. The reason is that if the authenticity of the public key is not completely checked, the probability
that the adversary wins the forgery experiment is always the fraction of the number of computations on
the authentication path over the height of the tree, and the forging time remains constant. Moreover, for
a tree of height h, there are 2" instances of flexible Lamport-Diffie one-time signature. Therefore, if F(-)
evaluated only for a small number of times, the cost of finding an ¢-near-collision pair (for ¢ < n — kp) is
cheap. The probability that such a pair passes the one-time verification step in one instance of 2 instances
of flexible Lamport-Diffie one-time signature is high. This leads to an undesirable security level during first
few computations.

6.3 Implementation and Performance

We have implemented our proposed constructions in Java and evaluated the performance on an Intel core i5
CPU @ 2.6 GHz. For the cryptographic hash algorithm, we used the SHA2 implementation from Apache
Common.!

To evaluate both schemes, we construct a Merkle signature scheme of height & = 20 using SHA256, and
compare the results for the number of computations & = 32,64, 128, 192, max where max is the number
of computations needed for a complete verification. Table 1 shows the performance of both schemes.

For the case of Merkle tree signature scheme, we do not see a big improvement in the performance of
the verification as the number of hash computations decrease. This is due to the fact that the computation of
H (PKgots) is expensive because the size of the one time public key is 2n? bits. For a hash function that uses

1https ://commons.apache.org/

14

the Merkle-Damgard transformation like SHA2, £2(n) calls to the compression function are required for an
input of size 2n? which causes this operation to become a bottleneck in the computation. Another reason is
that both proposed schemes rely on the completion of the message digest computation G/(m). Again, due to
the Merkle-Damgard transformation, this computation will be expensive for large messages. Nevertheless,
for real-time environments, we expect the messages to be smaller in size.

7 Conclusion

In this paper, we defined the concept of a signature scheme with a flexible verification algorithm. We pre-
sented two concrete constructions based on the Lamport-Diffie one-time signature scheme and the Merkle
signature scheme and formally proved their security. Compared to standard signature schemes with deter-
ministic verification, our schemes allow the verifier to put different constraints on the verification algorithm
and still guarantee a reasonable security level. Our proposed signature scheme is one of the few crypto-
graphic primitives that offers a trade-off between security and resource. It can be highly useful for crypto-
graphic mechanisms in unpredictably resource constrained environments such as real-time systems and the
IoT.

In the long run, significant research will be required in this challenging flexible security area. We plan to
explore the similar ideas for confidentiality in (symmetric or asymmetric) encryptions, integrity with MACs,
and possibly beyond. We believe these cryptographic protocols will make the security mechanisms more
prevalent in the real-time systems and IoT in general.

Acknowledgment. We thank Dominique Schroder and Mikhail Atallah for encouraging discussions and
suggestions.

References

[1] Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signatures.
In: Advances in Cryptology — EUROCRYPT’98. pp. 236-250. Springer Berlin Heidelberg, Berlin, Heidelberg
(1998)

[2] Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In:
Advances in Cryptology — CRYPTO ’94. pp. 216-233 (1994)

[3] Bernstein, D.J., Hopwood, D., Hiilsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Schneider, M.,
Schwabe, P., Wilcox-O’Hearn, Z.: Sphincs: Practical stateless hash-based signatures. In: Advances in Cryptol-
ogy — EUROCRYPT 2015. pp. 368-397 (2015)

[4] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal of Cryptology 17(4), 297-319
(Sep 2004)

[5] Buchmann, J., Dahmen, E., Hiilsing, A.: Xmss - a practical forward secure signature scheme based on minimal
security assumptions. In: Post-Quantum Cryptography. pp. 117-129 (2011)

[6] Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In: Post-Quantum Cryptography.
pp- 35-93 (2009)

[7]1 Camenisch, J., Hohenberger, S., Pedersen, M.@.: Batch verification of short signatures. In: Naor, M. (ed.)
Advances in Cryptology - EUROCRYPT 2007. pp. 246-263. Berlin, Heidelberg (2007)

[8] Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-preimage resistant hash func-
tions. In: Post-Quantum Cryptography: Second International Workshop, PQCrypto 2008. pp. 109-123 (2008)

[9] Denning, T., Kohno, T., Levy, HM.: Computer security and the modern home. Commun. ACM (1), 94-103 (Jan
2013)

15

[10]
[11]

[12]

[22]

[23]

[24]
[25]

[26]

A

Fan, X., Garay, J.A., Mohassel, P.: Short and adjustable signatures. IACR Cryptology ePrint Archive 2016, 549
(2016)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In:
CRYPTO’ 86. pp. 186-194 (1987)

Fischlin, M.: Progressive verification: The case of message authentication. In: Progress in Cryptology - IN-
DOCRYPT 2003. pp. 416-429. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

Freitag, C., Goyal, R., Hohenberger, S., Koppula, V., Lee, E., Okamoto, T., Tran, J., Waters, B.: Signature
schemes with randomized verification. In: Applied Cryptography and Network Security. pp. 373-389 (2017)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography, chap. 12, pp. 442-443 (2007)

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson,
D., Shacham, H., Savage, S.: Experimental security analysis of a modern automobile. In: 31st IEEE Symposium
on Security and Privacy, S&P 2010. pp. 447-462 (2010)

Lamberger, M., Teufl, E.: Memoryless near-collisions, revisited. CoRR (2012)

Lamport, L.: Constructing digital signatures from a one way function. SRI intl. CSL-98 (1979)
Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography. 1st edn. (1996)
Merkle, R.C.: A certified digital signature. In: CRYPTO’ 89 Proceedings (1990)

Perrig, A.: The biba one-time signature and broadcast authentication protocol. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security. pp. 28-37. CCS *01 (2001)

Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles sensors: Experiments on
camera and liDAR. Black Hat Europe 11 (2015)

Reyzin, L., Reyzin, N.: Better than biba: Short one-time signatures with fast signing and verifying. In: Proceed-
ings of the 7th Australian Conference on Information Security and Privacy. pp. 144—153. ACISP *02 (2002)

Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision resistance. In: Fast Software Encryption. pp.
371-388 (2004)

Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial internet of things. In:
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1-6 (June 2015)

Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) Advances in
Cryptology - EUROCRYPT 2004. pp. 541-554. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

Yu, T., Sekar, V., Seshan, S., Agarwal, Y., Xu, C.: Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the internet-of-things. In: Proceedings of the 14th ACM Workshop on Hot
Topics in Networks. pp. 5:1-5:7 (2015)

Proof of Theorem 2

In this section, we provide the detailed proof of Theorem 2. Intuitively, if adversary A provides an invalid
one-time public key, the verification must fail for at least one level of tree. Otherwise, A successfully finds
a collision of H. However, in our scheme, since every level of the tree may not be verified, there is a
possibility that the forged level is not checked. We formalize the intuition as following; we let X be the
event that .4 succeeds in the forgery experiment and Y be the event that A provides an invalid public key.
Consider the Merkle tree construction based on the one-time signature construction.

Pr[X] = Pr[X A Y] + Pr[X A Y] 6)

16

Event X A'Y implies that 4 provided an invalid one-time public key but won the forgery experiment.
Thus, either the verifier failed to check a “bad” level of the tree or A found a collision of H(-). For a tree
of height h, there are h + 1 levels that one needs to verify for the complete authentication. Since kp is the
number of times H (-) is evaluated, using a union bound, we have:

k H kH
Pr[X AY] gl—m—i-ecrglmax{l—m,ecr} 6)
If A found a collision of H (+), then we can construct a collision finder [6].
Event X A'Y implies that A found an existential forgery for one instance of the underlying flexible one-
time signature. Since we defined kr to be the number of F'(-) evaluated, the underlying flexible one-time
signature is (% fots, € fots, Kr /1, 1). Therefore, using Theorem 1, we get:

kp—1
d
€fots < 2 - max{ H (1-— E)An “€ow)y Where 0 < d </l <n-—kp @)
i=0

Since there are 2" instances of the flexible Lamport-Diffie one-time signature, using union bound, it means
that A outputs a forgery pair with probability Pr[X A Y]/2":

kp—1
_ d
PrXAY] <2 maz{2"- H (1— ——),2"Mos2dn ¢ Vwhere 0 < d < ¢ <n—kp (8)
n—i1
i=0
From 5 and 7, we have:
kp—1
_ h T _L h+log, 4n
€fms < 4-max{l —ky/(h+1),2" J] (1 —),2 * €ow, €cr ©
i=0

where 0 < d </ <n-—kp

When kg < h + 1 we simply let ¢, = 1 because A will win the forgery experiment with probability
1 — kg /(h + 1). Consider the case when ki = h + 1, we have:

kp—1
u d

€fms < 4 - max{Qh . H (1-— 7,),2]”10&4" “€ow, €crp Where 0 < d <l <n—kp
n—1
i=0

and using [6, Theorem 5], we have ¢ ,,s = min{ter, tfors} — oh. tsign — tver — tgen. Now, using Theorem 1,

we get:
tfms = min{towa toner, tcr} - 2h : tsign — tyer — 75gen where 0 </ <n—k (10)

which completes the proof. |

17

