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ABSTRACT
The Supersingular Isogeny Diffie-Hellman protocol (SIDH) has re-

cently been the subject of increased attention in the cryptography

community. Conjecturally quantum-resistant, SIDH has the fea-

ture that it shares the same data flow as ordinary Diffie-Hellman:

two parties exchange a pair of public keys, each generated from

a private key, and combine them to form a shared secret. To cre-

ate a potentially quantum-resistant scheme, SIDH depends on a

new family of computational assumptions involving isogenies be-

tween supersingular elliptic curves which replace both the discrete

logarithm problem and the computational and decisional Diffie-

Hellman problems. As in the case of ordinary Diffie-Hellman, one

is interested in knowing if these problems are related. In fact, more

is true: there is a rich network of reductions between the isogeny

problems securing the private keys of the participants in the SIDH

protocol, the computational and decisional SIDH problems, and the

problem of validating SIDH public keys. In this article we explain

these relationships, which do not appear elsewhere in the litera-

ture, in hopes of providing a clearer picture of the SIDH problem

landscape to the cryptography community at large.
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1 INTRODUCTION
In 2011, with the aim of achieving a quantum-resistant cryptosys-

tem, Jao and De Feo proposed a key exchange protocol [11] based

on the security of certain conjecturally hard problems involving

isogeny computations between supersingular elliptic curves. The

key exchange protocol, commonly called Supersingular Isogeny
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Diffie-Hellman (SIDH), functions analogously to the classical Diffie-

Hellman protocol, where the difficulty of discrete log problems is

replaced by the difficulty of certain “isogeny-finding” problems, and

the difficulty of the computational and decisional Diffie-Hellman

problems is replaced by the difficulty of the computational and

decisional SIDH problems. As in the classical case, one is interested

in determining whether these problems are equivalent.

To make the analogy between the two cases more explicit, we re-

call the case of ordinary Diffie-Hellman. In ordinary Diffie-Hellman,

one is given a cyclic group generated by an element д. Alice and
Bob choose private integers a and b respectively, and compute pub-

lic keys дa and дb . They then exchange the public keys, and each

computes (дb )a = (дa )b , which they take to be their shared secret.

The difficult problems underlying such a scheme are: given (д,дa )
find a, given (д,дb ) find b, and given (д,дa ,дb ) find дab .

Intuitively, in the SIDH case, one would like a protocol which

proceeds as follows. One begins with a supersingular elliptic curve

E, analogous to the element д. Alice and Bob choose private sub-

groups A and B and compute public keys E/A and E/B, where
the public keys are so-called “quotient curves” corresponding to

those subgroups. They then exchange the public keys and compute

(E/A)/B = (E/B)/A, which they take to be their shared secret. The

difficult problems underlying the scheme would be: given (E,E/A)
find A, given (E,E/B) find B, and given (E,E/A,E/B) find E/⟨A,B⟩,
where ⟨A,B⟩ denotes the subgroup generated by the set A ∪ B.

Unfortunately, there are various technical obstructions to pro-

ceeding directly in this manner. One such obstruction is the diffi-

culty of computing the quotient (E/A)/B from knowledge of E/A
and B, since B is not actually a subgroup of E/A and one needs

instead the image of Bob’s secret subgroup B under Alice’s secret

quotient map ϕA : E → E/A. Another such obstruction is that quo-

tient curves in general are only well-defined up to isomorphism,

so one needs to take an isomorphism invariant to be the shared

secret. The key insight in the Jao-De Feo paper can be viewed as a

prescription for resolving these problems and making a protocol of

this form computationally tractable.

When one follows the Jao-De Feo prescription, one arrives at a

cryptosystem based upon the following hard problem (see Section 2

for notation). Let ℓ1 and ℓ2 be small distinct primes, and let e1 and
e2 be exponents such that log(ℓe1

1
) ≈ log(ℓe2

2
), and such that one of

p = ℓe1
1
ℓe2
2

± 1 is a prime. Given two supersingular elliptic curves

E and E ′ defined over Fp2 , and the values of a degree ℓe1
1

isogeny

ϕ : E → E ′ on E[ℓe2
2
], find ϕ. If we continue with the analogy above,

ϕ is one of the “quotient” maps ϕA : E → E/A or ϕB : E → E/B. It
is known that finding ϕ is equivalent to finding its kernel, which is

either Alice’s private subgroup A or Bob’s private subgroup B (we

provide a proof in Section 2). Thus, by the analogy above, we see
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that this problem is the analogue of the discrete logarithm problem

in classical Diffie-Hellman. The computational and decisional SIDH

problems, which also result from this construction, are discussed

further in Section 4.

Little is known about the security of this exact problem. More

general isogeny problems have been studied in the literature [1, 5, 6],

but the majority of such studies ignore the information provided

by the values of the isogeny on E[ℓe2
2
]. One exception is the re-

cent work of Petit [15], whose work focuses on attacks on certain

“overstreched” variants of the SIDH construction. A second ex-

ception is an argument made independently by Thormarker [19]

and Galbraith and Vercauteren [9], which shows heuristically that

one can reduce a computational isogeny problem to a decisional

variant. And while there are a handful of articles discussing these

torsion-point isogeny problems, analysis of the computational and

decisional SIDH problems is even more scarce: aside from a few

brief comments in the original paper [11] by Jao and De Feo, it is

difficult to find any reference to them at all.

Our article gives a systematic discussion of these problems, and

others, which are of interest in the cryptography community. We

begin in Section 2 by reviewing standard facts about supersingu-

lar elliptic curves, isogeny computation, and basis finding which

occur throughout the SIDH literature. In Section 3, we introduce

six natural candidate problems which underlie the security of cryp-

tosystems obtained from Jao-De Feo-like constructions, and prove

that they are all equivalent under randomized polynomial-time

reductions. Finally, in Section 4, we give a formulation of the SIDH

protocol which is more natural in two respects. Firstly, we show

that in our formulation of SIDH, a combination of the decisional

and computational SIDH problems is equivalent to the problems

studied in Section 3. Secondly, in the formulation we present, the

problem of validating public keys, which has been studied by sev-

eral authors [4, 7, 13] in hopes of obtaining a static-static or non-

interactive key exchange (NIKE), is shown to be hard, in that an

efficient solution to this problem suffices to break the cryptosystem.

This observation explains why efforts to validate the public keys

obtained from the SIDH construction have thus far been unsuccess-

ful. We argue that our formulations provide the first clear picture

of the problem landscape underlying the SIDH cryptosystem and

other cryptosystems based on similar constructions.

2 PRELIMINARIES ON ISOGENY PROBLEMS
For general background on elliptic curves we refer to Silverman [17].

Let E and E ′ be two elliptic curves defined over a finite field

in characteristic p. An isogeny ϕ : E → E ′ is defined to be a

non-constant rational map of curves which is also a group ho-

momorphism between the elliptic curve groups of E and E ′. The
kernel of an isogeny is its kernel in the sense of group theory:

kerϕ = {P ∈ E : ϕ(P) = OE }, where OE denotes the identity

element of E. One can show that all isogenies have finite kernels,

and that all isogenies are surjective over an algebraic closure. Iso-

genies have a degree, which is their degree as a rational map; this

number is always a non-negative integer. Isogenies are called sepa-
rable if the size of their kernels is equal to their degree. Separable

isogenies whose kernel consists of only the identity element are

called isomorphisms, and such isogenies have inverse maps that

are also isogenies (and isomorphisms). Each isogeny ϕ : E → E ′

has a dual isogeny ϕ̂ : E ′ → E which satisfies ϕ ◦ ϕ̂ = [degϕ] and
ϕ̂ ◦ ϕ = [degϕ], where the notation [m] for any integerm denotes

the scalar multiplication bym map, that is, P 7→ mP . The kernel
of [m] : E → E is denoted E[m], and is the set of points P ∈ E such

thatmP = OE . The phrase “m-torsion subgroup” which is widely

used in the literature also refers to E[m].
It is known that for any finite subgroup H of an elliptic curve

E there is a unique curve up to isomorphism, denoted E/H , which

is the image of a separable isogeny ϕH : E → E/H with kernel

exactly H . Hence to each finite subgroup H of E we may associate

an isomorphism class of curves which are the codomains of isoge-

nies with kernel H . Vélu [20] gave formulas using which one may

compute the curves E/H from H and compute the rational maps

corresponding to isogenies with kernel H .

In isogeny-based cryptography, one is typically only concerned

with supersingular elliptic curves. These are curves which are distin-
guished by the fact that their endomorphism ring, the ring formed

by the collection of all isogenies from a curve to itself together with

the zero map, has maximum rank 4. Up to isomorphism, all such

curves can be defined over a quadratic finite field Fp2 . Curves which

are not supersingular are called ordinary. Supersingular curves have
a few special properties which make them suitable for quantum-

resistant cryptography. Firstly, a sub-exponential quantum attack

is known for isogeny-based cryptosystems derived from ordinary

curves [2], but not for those derived from supersingular curves.

Secondly, if one chooses p to be of the form p = n ± 1, one can

show that every isomorphism class of such curves contains a rep-

resentative such that E(Fp2 ) � (Z/nZ) × (Z/nZ). This fact allows
one to construct curves with highly structured groups by choosing

n (and hence p) appropriately, which is very useful in designing

isogeny-based cryptosystems.

In this paper, we are interested in curves and isogenies resulting

from the following construction. Pick a prime p = ℓe1
1
ℓe2
2
± 1, where

ℓ1 and ℓ2 are small distinct primes, and log(ℓe1
1
) ≈ log(ℓe2

2
). Find a

supersingular elliptic curve E defined over Fp2 such that E(Fp2 ) �
(Z/ℓe1

1
ℓe2
2
Z) × (Z/ℓe1

1
ℓe2
2
Z). We are then interested in cyclic ℓ

fi
i -

degree isogenies from E, that is, isogenies obtained via quotients

of the form E/⟨P⟩, where P ∈ E[ℓeii ] is a point generating a cyclic
subgroup ⟨P⟩ of order ℓfii . We note that, in general on any elliptic

curve, E[m] � (Z/mZ)×(Z/mZ) over an algebraic closure; therefore
E[ℓeii ] � (Z/ℓeii Z)×(Z/ℓ

ei
i Z) is defined over Fp2 , since the pointsQ

in E(Fp2 ) satisfying ℓ
ei
i Q = OE already account for all of (Z/ℓeii Z)×

(Z/ℓeii Z).
The reason this particular construction is of interest is that it

allows for efficient computation of the isogenies involved. Typically,

p is proportional to the relevant security parameter, and so is chosen

to be exponentially large. Consequently, these isogenies also have

exponentially large degree for fi sufficiently large, which would

normally make their computation difficult; for example, writing

down rational maps of degree ℓ
fi
i directly is infeasible. However,

the fact that ℓ
fi
i is smooth allows one to factor these isogenies as a

composition of fi isogenies of degree ℓi , each of which is easy to

compute. To construct such a factorization, we first compute the



subgroup filtration

{OE } = ⟨[ℓfii ]P⟩ ⊂ ⟨[ℓfi−1i ]P⟩ ⊂ · · · ⊂ ⟨[ℓi ]P⟩ ⊂ ⟨P⟩ .
We then represent ϕ as a composition of isogenies ϕ = ϕfi ◦ · · · ◦ϕ1,
where ϕk : Ek−1 → Ek , E0 = E and we set ϕ0 = idE . Given Ek−1,

we compute Ek := Ek−1/⟨ϕk−1([ℓ
fi−k
i ]P)⟩ and ϕk using Vélu’s

formulas. Since each ℓi is small, this step can be done efficiently,

and so the total time taken to compute ϕ is determined by fi , which
is the number of ℓi -degree isogenies in the factorization. In this

construction, the value of fi is at most
1

2
logℓi

(p), and so the isogeny
can be computed in time polynomial in the security parameter.

The above discussion implies that, in isogeny-based cryptogra-

phy, algorithmswith running time polynomial in log(p) are polynomial-

time algorithms in the usual complexity-theoretic sense, and al-

gorithms with running times bounded below by ps for some posi-

tive exponent s are exponential-time algorithms. For instance, the

best attacks on SIDH have classical complexity O(p1/4) and quan-

tum complexity O(p1/6). When we discuss polynomial-time and

exponential-time complexity throughout this paper, we will always

mean in the usual complexity-theoretic sense, i.e. polynomial and

exponential in log(p).
As discussed in Section 1, the action of isogenies on the ℓeii -

torsion subgroups of elliptic curves is important in our discussion.

To make working with these subgroups easier, we prove the follow-

ing lemma.

Lemma 2.1. For ease of notation, denote ℓ = ℓi , e = ei , and
n = p ∓ 1 = ℓe1

1
ℓe2
2
, where i ∈ {1, 2}. Then there exists a randomized

polynomial-time algorithm to compute a Z/ℓeZ-basis for E[ℓe ] �
(Z/ℓeZ) × (Z/ℓeZ).

Proof. Consider a curve equation y2 = x3 + ax + b for E in

Weierstrass form. It is well-known that by choosing a random value

of x in Fp2 and computing the square-root of the right-hand side one

obtains a random point in E(Fp2 ) with probability asymptotically

equal to
1

2
. Furthermore, ignoring the case of the identity point

(which is of no interest), the case when y = 0 (which is easily

accounted for as a special case), and making sure to choose the sign

of y uniformly at random, this process will sample the elements of

E(Fp2 ) uniformly at random. Since these steps may be computed

in polynomial time, we may assume that we can efficiently sample

uniformly random points of E(Fp2 ).
Note that ℓe is relatively prime to n/ℓe , and that there is a fac-

torization E(Fp2 ) = E[ℓe ] × E[n/ℓe ]. Thus a random point P in

E(Fp2 ) can be thought of as corresponding in a unique way to a

pair (P1, P2), where P = P1 +P2, P1 ∈ E[ℓe ] and P2 ∈ E[n/ℓe ]. If we
compute [n/ℓe ]P we will get ([n/ℓe ]P1,OE ). Since the map [n/ℓe ]
restricts to an isomorphism on E[ℓe ], this process can be thought

of as selecting an element of E[ℓe ] uniformly at random.

To complete the proof, we simply randomly choose elements

of full order in E[ℓe ] until we obtain two that are independent.

Note that because E[ℓe ] � (Z/ℓeZ) × (Z/ℓeZ), an element will

have full order provided that at least one of its coefficients under

such an isomorphism is not divisible by ℓ, which will happen a

1 − 1

ℓ2
fraction of the time. Two such full-order elements P and

P ′ will be independent provided that ⟨P⟩ ∩ ⟨P ′⟩ = {OE }, which is

equivalent to the statement that ⟨[ℓe−1]P⟩ , ⟨[ℓe−1]P ′⟩. There are

ℓ+1 subgroups of order ℓ in E[ℓe ], so this happens with probability

1− 1

ℓ+1 . This shows that selecting random pairs of full order points

will give us a basis with probability bounded below by a constant,

which completes the proof. □

Remark 2.2. In Costello et al. [3], optimized versions of the above
computations are implemented for the case where ℓe1

1
= 2

372 and
ℓe2
2
= 3

239, and the authors show that finding a basis for E[ℓeii ]
requires no more than 10 milliseconds on a modern machine.

Remark 2.3. Given a basis for E[ℓe ], one also has a basis for
E[ℓe−k ] obtained via scalar multiplication by [ℓk ].

We mentioned earlier that one can think of separable isogenies

as being in correspondence with their kernels, and also with their

duals. Since we wish to use these correspondences in the context

of polynomial-time reduction theorems, we will need the fact that

these correspondences can be computed efficiently. Lemma 2.4

serves this purpose.

Lemma 2.4. Suppose that ϕ : E → E ′ is an isogeny with degree
dividing ℓe , with the same definitions as Lemma 2.1. Then there
is a randomized polynomial-time algorithm to compute any of the
following four pieces of data from knowledge of just one of them.
(i) The kernel H of ϕ.
(ii) A sequence of prime degree rational maps ϕ1, . . . ,ϕs such that

ϕ = ϕs ◦ · · · ◦ ϕ1.
(iii) The kernel H ′ of ϕ̂.
(iv) A sequence of prime degree rational maps ϕ ′

1
, . . . ,ϕ ′s such that

ϕ̂ = ϕ ′s ◦ · · · ◦ ϕ ′1.

Proof. We have already seen that given (i) one may obtain (ii),

and analogously given (iii) one may obtain (iv). Hence to complete

the proof, it suffices to show that given (ii) we can find (iii), and

analogously given (iv) we can find (i).

In the first case, we use Lemma 2.1 (or Remark 2.3) to choose a

basis for E[degϕ]. We know that ϕ̂ ◦ ϕ = [degϕ], which has kernel

exactly E[degϕ]. Hence the kernel H ′
of ϕ̂ is exactly ϕ(E[degϕ]),

which is easily computed by evaluating ϕ on the basis for E[degϕ].
The other case is analogous. □

One last useful tool will be the Weil pairing. The Weil pairing

of order m is a surjective bilinear map em : E[m] × E[m] → µm ,

where µm is themth roots of unity in the (algebraic closure of the)

underlying field. A key fact about the Weil pairing is that it satisfies

a compatibility condition with isogenies: if ϕ : E → E ′ is an isogeny

and P ,Q ∈ E[m], then em (ϕ(P),ϕ(Q)) = em (P ,Q)degϕ , where the
first pairing is on the curve E ′. Since these pairings are efficiently

computable, they can allow us to recover information about the

degree of ϕ from the pairings of basis points. For instance, we have

the following Lemma.

Lemma 2.5. Suppose that there is an isogeny ϕ : E → E ′ and
the points P ,Q ∈ E[m] form a basis. Suppose additionally thatm is
smooth. Then if we know the image points ϕ(P) and ϕ(Q), we can
recover the degree of ϕ modulom.

Proof. Using Miller’s algorithm for computing the Weil pair-

ing [14], we compute em (P ,Q) and em (ϕ(P),ϕ(Q)) = em (P ,Q)degϕ .
It is a standard fact that applying em to a basis produces a primitive



mth root of unity, and so em (P ,Q)degϕ is determined exactly by the

value of degϕ modulom. Becausem is smooth, we can compute the

discrete logarithm of em (P ,Q)degϕ with respect to em (P ,Q) (using
for example Pohlig-Hellman [16]) and hence recover the degree of

ϕ modulom. □

3 EQUIVALENCE OF ISOGENY PROBLEMS
Throughout this section, we fix ℓ = ℓi and e = ei for some i ∈ {1, 2},
and n = ℓe1

1
ℓe2
2
. Recalling that these primes and their exponents are

chosen such that log(ℓe1
1
) ≈ log(ℓe2

2
), we formalize this property

precisely by supposing that

| log(ℓe1
1
) − log(ℓe2

2
)| < κ,

where κ = O(1) is constant. We note that for the most widely-used

parameters, which were first suggested by Costello et al. [4], κ is

less than 5. For technical reasons, we also assume that ℓe1
1
, ℓe2

2
>

4 exp(κ). For realistic parameters, both ℓe1
1

and ℓe2
2

are exponentially

sized, so this assumption presents no issue.

We define three natural problems of interest in isogeny-based

cryptography. We will see that the other three problems which com-

prise the promised six-way equivalence are in some sense “dual” to

these problems. The problems we consider all involve the evalua-

tion of isogenies on then/ℓe -torsion subgroup E[n/ℓe ] of an elliptic
curve E. Since there are exponentially many points in this subgroup,

such an evaluation is represented in practice by the values of an

isogeny ϕ on a basis for E[n/ℓe ]. For ease of terminology, we say

that P ,Q ∈ E[n/ℓe ] form a basis pair if together they generate

E[n/ℓe ]. We will often use the fact that if η : E → E ′ is any isogeny

of degree relatively prime to n/ℓe , and P ,Q ∈ E[n/ℓe ] is a basis pair
for E[n/ℓe ], then η(P),η(Q) ∈ E ′[n/ℓe ] is a basis pair for E ′[n/ℓe ].
Note that this statement applies even if E ′ = E and η is a scalar

multiplication map. Hence, for fixed E, we have the following three
problems of interest:

(1) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], and a basis

pair R, S ∈ E ′[n/ℓe ], either
(i) return an isogeny ϕ : E → E ′ of degree dividing ℓe such

that ϕ(P) = R and ϕ(Q) = S , or
(ii) report that one doesn’t exist.

(2) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], a basis pair
R, S ∈ E ′[n/ℓe ], and an additional mapψ : E → X , either

(i) return “Yes" if there exists an isogeny ϕ : E → E ′ of degree
dividing ℓe which factors throughψ , and such that ϕ(P) =
R and ϕ(Q) = S , or

(ii) return “No" otherwise.

We say that ϕ factors throughψ if there is aψ ′
: X → E ′ such

that ϕ = ψ ′ ◦ψ .
(3) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], and a basis pair

R, S ∈ E ′[n/ℓe ], return the set of all isogenies ϕ : E → E ′ of
degree dividing ℓe such that ϕ(P) = R and ϕ(Q) = S .

For i = 1, 2, 3, let (OE,i )ℓe denote an oracle to solve Problem (i).
Before proving reduction theorems relating these problems, we

make some remarks on their naturality. In isogeny-based cryp-

tosystems, important private information is usually represented in

the form of either a secret isogeny or (equivalently by Lemma 2.4)

a secret kernel. The attacker is then given points R = ϕ(P) and

S = ϕ(Q), and is tasked with finding ϕ (equivalently, finding its ker-

nel). The above is the spirit of Problem (1), except in principle there

could possibly be more than one suchϕ, even though intuitively one
suspects such an outcome to be exceedingly unlikely. Hence to find

the secret isogeny
1
one could in principle need to find the “right”

ϕ, for which it suffices to solve Problem (3). Finally, Problem (2)

represents a natural attack strategy on these cryptosystems, in that

the fastest known attacks involve some variant of a breadth-first

search on the so-called ℓ-isogeny graph, and a non-trivial solution

to Problem (2) would allow one to optimize this search. We recall

that the ℓ-isogeny graph is the graph whose vertices are elliptic

curves and whose edges are ℓ-degree isogenies2.

Our first task will be to show that the oracles (OE,1)ℓe and

(OE,3)ℓe are equivalent; indeed, there is at most one such isogeny.

This is the content of the next two lemmas.

Lemma 3.1. Let ϕ,ϕ ′ : E1 → E2 be isogenies of degree at most d
from E1 to E2. If ϕ and ϕ ′ agree on N points, where N > 4d , then
they are equal.

Proof. To say that ϕ and ϕ ′ agree on N points is to say that the

isogeny ϕ − ϕ ′, where subtraction is defined pointwise, sends N
points to the identity element of E2. Combining Corollary III.6.3

and Lemma V.1.2 in Silverman’s book [17], one has the bound

| deg(ϕ − ϕ ′) − degϕ − degϕ ′ | ≤ 2

√
degϕ degϕ ′.

Simplifying, one finds that deg(ϕ − ϕ ′) ≤ 4d . Since the size of the
kernel of a non-zero isogeny is bounded by its degree, one has

either ϕ − ϕ ′ = 0 or N ≤ 4d . Since we are given that N > 4d , we
conclude that ϕ − ϕ ′ = 0, and so ϕ = ϕ ′. □

Lemma 3.2. The set returned by (OE,3)ℓe has exactly one isogeny.
Thus, the oracles (OE,1)ℓe and (OE,3)ℓe are equivalent.

Proof. Let ϕ,ϕ ′ : E → E ′ be isogenies returned by (OE,3)ℓe .
Then ϕ and ϕ ′ agree on the entirety of E[n/ℓe ], and so agree on

(n/ℓe )2 points. By assumption, we have that (n/ℓe ) > 4 exp(κ),
which gives

log(n/ℓe ) > log(4) + κ > log(4) + log(ℓe ) − log(n/ℓe ).
Rearranging, one finds that log((n/ℓe )2) > log(4ℓe ), or that

(n/ℓe )2 > 4ℓe . Applying Lemma 3.1 with N = (n/ℓe )2 we see

that ϕ = ϕ ′, which completes the proof. □

The preceding two Lemmas accomplish most of the work nec-

essary to show the equivalence between Problems (1), (2) and (3).

Indeed, we have just seen that problems (1) and (3) are equivalent —

in fact, there is only ever one desired isogeny in cases of interest. To

solve problem (2) given an oracle for (3), it simply suffices to check

if the map ψ given as input to (2) extends to the map ϕ returned

by the oracle for (3). This is the same as checking if the kernel of

ψ is contained in the kernel of ϕ, which can be done efficiently

using a combination of Lemmas 2.1 and 2.4 (simply evaluate ϕ on a

generator for the kernel ofψ and check if the result is the identity

element of the target curve).

1
For technical reasons even finding the “wrong” ϕ would typically suffice to break

isogeny-based schemes despite not necessarily recovering the secret isogeny.

2
There is a more sophisticated definition which considers curves and isogenies up to

isomorphism, but we will not need it.



So all that remains in order to show that the three problems are

equivalent is to show that given an oracle for (2) wemay solve either

(1) or (3). This result follows straightforwardly from our earlier

observation about the importance of Problem (2) in optimizing

search algorithms for isogeny problems. Indeed, we may attempt to

find the required isogeny from E to E ′ by considering a breadth-first
search on the ℓ-isogeny graph starting from E. At each stage, we

wish to “prune” the search tree by determining which ℓ-isogeny

pathsψ : E → X do not extend to an isogeny ϕ : E → E ′ mapping P
to R and Q to S . But this question is exactly the question answered

by (2), and so we may easily compute the appropriate graph. This

discussion completes the proof of Theorem 3.3.

Theorem 3.3. The oracles (OE,1)ℓe , (OE,2)ℓe , and (OE,3)ℓe are
equivalent under randomized polynomial-time reductions.

Each of the above problems has a corresponding “dual" problem

which is obtained from Problems (1), (2) and (3) by effectively “re-

versing the arrows", which can be done efficiently using Lemma

2.4. These problems are as follows.

(̂1) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], and a basis

pair R, S ∈ E ′[n/ℓe ], either
(i) return an isogeny ϕ ′ : E ′ → E of degree dividing ℓe such

that ϕ ′(R) = P and ϕ ′(S) = Q , or
(ii) report that one doesn’t exist.

(̂2) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], a basis pair
R, S ∈ E ′[n/ℓe ], and an additional mapψ ′

: E ′ → X , either

(i) return “Yes" if there exists an isogeny ϕ ′ : E ′ → E of

degree dividing ℓe which factors through ψ ′
, and such

that ϕ ′(R) = P and ϕ ′(S) = Q , or
(ii) return “No" otherwise.

(̂3) Given a curve E ′, a basis pair P ,Q ∈ E[n/ℓe ], and a basis pair
R, S ∈ E ′[n/ℓe ], return the set of all isogenies ϕ ′ : E ′ → E of

degree dividing ℓe such that ϕ ′(R) = P and ϕ ′(S) = Q .

For i = 1, 2, 3, let �(OE,i
)
ℓe denote an oracle to solve Problem (̂i).

The equivalences between problems (̂1), (̂2) and (̂3) follow from

the same arguments used to prove the equivalence between (̂1), (̂2)
and (̂3); indeed, this process simply amounts to a change of notation.

Furthermore, by Lemma 2.4, each problem is actually equivalent

to its dual. However, the dual problems can still be useful. One

reason is that the fastest known algorithm for finding isogenies

between supersingular elliptic curves at present involves perform-

ing a breadth-first search outwards from both the base curve E and
the target curve E ′, and so finding non-trivial optimizations to this

search is also important when searching outwards from E ′. Prob-
lem (̂2) is also often easier to use when proving reductions, since

the strategy of working backwards from the curve E ′ corresponds
most naturally to the backtracking strategy of Thormarker [19] and

Galbraith and Vercauteren [9]. As an example of this, we consider

the following decisional isogeny problem, which we call the Key
Validation Problem in anticipation of its role in the next section, and

which we show is equivalent to the problem (̂2).

Problem 3.4 (Key Validation). Given E ′, a basis pair P ,Q ∈
E[n/ℓe ], and a basis pair R, S ∈ E ′[n/ℓe ], determine whether there

exists an isogeny ϕ : E → E ′ of degree dividing ℓe such that ϕ(P) = R
and ϕ(Q) = S .

Theorem 3.5. The Key Validation Problem is equivalent to Prob-
lem (̂2) under randomized polynomial-time reductions, and the reduc-
tion from Problem (̂2) to the Key Validation Problem succeeds with
overwhelming probability.

Proof. We begin by showing that an oracle for the Key Valida-

tion Problem suffices to solve Problem (̂2). Suppose we are given
E ′, a basis pair P ,Q ∈ E[n/ℓe ], a basis pair R, S ∈ E ′[n/ℓe ], and an

additional mapψ ′
: E ′ → X . Let ℓk = degψ ′

. We are interested in

determining whether there is a map ϕ ′ : E ′ → E of degree dividing

ℓe which factors throughψ ′
, for which it suffices to decide if there

is a map ψ : X → E of degree dividing ℓe−k that sends the basis

pair ψ ′(R),ψ ′(S) ∈ X [n/ℓe ] to the basis pair P ,Q ∈ E[n/ℓe ] (note
that degree is multiplicative over composition).

To decide whether the map ψ exists, we first use Lemma 2.5

on the basis pairs ψ ′(R),ψ ′(S) ∈ X [n/ℓe ] and P ,Q ∈ E[n/ℓe ] to
determine the value of degψ (if it exists) modulo n/ℓe . Since we
know that degψ must divide ℓe−k , and hence must divide ℓe , we

may check to see if the computed value for degψ agrees with the

value of some divisor of ℓe modulo n/ℓe .
We claim that with overwhelming probability, all divisors of ℓe

have distinct residues modulo n/ℓe . Note that ℓ is a unit modulo

n/ℓe , and so if two divisors of ℓe are congruent modulo n/ℓe then

the order of ℓ modulo n/ℓe must be less than e . Recall that n/ℓe =
mf

wherem is a prime relatively prime to ℓ, and so the unit group

of (Z/(n/ℓe )Z) is either cyclic of ordermf −1(m − 1) (ifm , 2) or

isomorphic to (Z/2Z) × (Z/2f −2Z) if m = 2. In either case, the

number of elements with order less than e is an exponentially

small fraction of the total number of units, so with overwhelming

probability ℓ is not one of them.

But if the divisors of ℓe are distinct modulo n/ℓe , then the value

we computed for degψ modulo n/ℓe tells us that either there is no

such isogeny (if degψ is not congruent to a divisor of ℓe−k mod-

ulo n/ℓe ) or we have isolated a single possible value for degψ ,

and hence degψ̂ . Since determining whether ψ exists is equiv-

alent to determining whether there exists a dual map ψ̂ : E →
X which maps the basis pair P ,Q ∈ E[n/ℓe ] to the basis pair

[degψ ]ψ ′(R), [degψ ]ψ ′(S) ∈ X [n/ℓe ], it then suffices to call the

Key Validation Problem oracle on this input. The Key Validation

oracle will tell us whether ψ̂ exists with degree dividing ℓe , but

since we already know that any such ψ̂ must have degree dividing

ℓe−k , we may simply return the evaluation of the Key Validation

oracle. This completes one direction of the reduction.

For the other direction, it suffices to note that the Key Validation

problem is exactly the same as Problem (2) when the map given as

input is the identity map on E, and so the proof follows from the

equivalence between Problems (2) and (̂2). □

The above argument shows that the Key Validation problem

is equivalent to the preceding six isogeny problems. In the next

section, we will give a formulation of SIDH in which Problem (1)

is the hard problem securing Alice and Bob’s private keys, and

the Key Validation problem is the problem that must be solved to

validate them. If the keys are not validated, it is possible to perform



an active attack [7] on static-static or non-interactive variants of

the scheme, and due to the absence of good validation techniques,

SIDH has thus far been limited to ephemeral exchanges. The above

theorem explains why: validating the keys seems to be just as hard

as breaking the scheme itself.

4 EQUIVALENT ORACLES FOR SIDH
In this section, we give a formulation of the SIDH cryptosystem

and apply the results of Section 3 to show an equivalence between

the problems we discussed and the computational and decisional

SIDH problems.

Recall that, in our setup so far, p = ℓe1
1
ℓe2
2

± 1 is a prime, and E
is a supersingular elliptic curve defined over Fp2 . Recall also that

E[n] � (Z/nZ) × (Z/nZ), where n = p ∓ 1 = ℓe1
1
ℓe2
2
, and that E[ℓe1

1
]

and E[ℓe2
2
] are both defined over Fp2 . We assume that there are fixed

basis pairs P1,Q1 ∈ E[ℓe1
1
] and P2,Q2 ∈ E[ℓe2

2
] which are known to

all parties. The SIDH protocol proceeds as follows.

1. Alice chooses a cyclic subgroup A ⊂ E[ℓe1
1
], computes ϕA : E →

E/A, and sends her public key (E/A,ϕA(P2),ϕA(Q2)) to Bob.

2. Bob chooses a cyclic subgroup B ⊂ E[ℓe2
2
], computes ϕB : E →

E/B, and sends his public key (E/B,ϕB (P1),ϕB (Q1)) to Alice.

3. Alice finds ϕB (A) using her knowledge of P1,Q1,ϕB (P1),ϕB (Q1)
and A.

4. Bob finds ϕA(B) using his knowledge of P2,Q2,ϕA(P2),ϕA(Q2)
and B.

5. They both compute the shared secret, namely, the common j-
invariant of (E/B)/ϕB (A) � (E/A)/ϕA(B).
We make a few observations. First, the only non-public piece

of information needed for Alice’s computations in steps 3 and 5 is

Alice’s secret A, so a natural candidate problem is to find A from

the public information related to A. Similarly, we have a candidate

problem of finding B from the public information related to B. By
Lemma 2.4, findingA and B is equivalent to finding ϕA and ϕB , and
we will prefer this formulation in terms of isogenies for consistency

with our results in Section 3. We state these problems as follows.

Problem 4.1 (A-Isogeny Problem). Given the curve E/A, a basis
pair P2,Q2 ∈ E[ℓe2

2
], and a basis pair ϕA(P2),ϕA(Q2) ∈ E/A[ℓe2

2
],

find ϕA : E → E/A.

Problem 4.2 (B-Isogeny Problem). Given the curve E/B, a basis
pair P1,Q1 ∈ E[ℓe1

1
], and a basis pair ϕB (P1),ϕB (Q1) ∈ E/B[ℓe1

1
],

find ϕB : E → E/B.

It is not difficult to see these are instances of the same problems

we studied in Section 3. But although these problems are natural,

this formulation is not the formulation usually given in the litera-

ture. The reason is that the typical description of the SIDH protocol

requires that Alice and Bob choose cyclic subgroups of order ℓe1
1

and ℓe2
2

respectively, rather than simply any cyclic subgroup in

their respective torsion groups. Consequently, the isogeny prob-

lems of interest are ones where one is also told that the degree

of the isogeny is ℓe1
1

or ℓe2
2
, which is a slight difference from our

formulation and the formulations given in Section 3, where one is

simply required to find isogenies of degree dividing ℓe .

However, the decision to formulate these problems as one where

the isogenies have fixed degree ℓe is not universal. We have already

mentioned the reduction of Thormarker [19] and Galbraith and Ver-

cauteren [9], which considers isogenies of varying degrees. Another

example is Petit’s paper [15], which discusses attack strategies on

torsion-point isogeny problems. Petit considers a more general class

of problems where ℓe1
1

and ℓe2
2

are replaced by arbitrary coprime

integers N1 and N2.

We also note that there is no harm to the security of the protocol

if A and B are allowed to be arbitrary cyclic kernels, provided that

Alice and Bob choose their generating point uniformly at random.

Indeed, the event that a random point in E[ℓe ] � (Z/ℓeZ)×(Z/ℓeZ)
generates the kernel of an isogeny of small degree dividing ℓk is

exponentially unlikely, since this outcome requires that both coef-

ficients under such an isomorphism are divisible by ℓe−k , which
happens with probability

1

(ℓe−k )2 . This observation is analogous

to how one does not typically exclude small private exponents in

ordinary Diffie-Hellman, despite the fact that finding the exponent

a given (д,дa ) is easy when a is sufficiently small, because the prob-

ability of Alice choosing a small private exponent a is low enough

that the attacker gains no appreciable advantage if the protocol

permits this possibility. Consequently, we also permit arbitrary

cyclic kernels in our formulation of SIDH, as this relaxation allows

us to apply the results of the previous section, and leads to a more

natural and cohesive framework for studying the underlying hard

problems.

Our next task is to give formulations of the decisional and com-

putational SIDH problems. The computational SIDH problem is

simply the core problem required to break our formulation of the

SIDH cryptosystem. With the notation as above, it is defined as

follows.

Problem 4.3 (CSIDH Problem). Given
• the curves E,E/A and E/B,
• a basis pair P1,Q1 ∈ E[ℓe1

1
],

• a basis pair P2,Q2 ∈ E[ℓe2
2
],

• a basis pair ϕA(P2),ϕA(Q2) ∈ (E/A)[ℓe2
2
], and

• a basis pair ϕB (P1),ϕB (Q1) ∈ (E/B)[ℓe1
1
],

find the isomorphism class of E/⟨A,B⟩.

The CSIDH problem also has decisional variants. In ordinary

Diffie-Hellman on a cyclic group G generated by д, the decisional
Diffie-Hellman problem is to determine whether a triple (x ,y, z) ∈
G ×G ×G satisfies logд(x) logд(y) = logд(z) modulo the order of

G . To continue with the analogy, one could imagine being given su-

persingular curves (X ,Y ,Z ), and being asked to determine whether

the kernels of the mapsψX : E → X ,ψY : E → Y , andψZ : E → Z
satisfy ⟨kerψX , kerψY ⟩ = kerψZ .

An issue with this formulation is that it doesn’t respect the

inherent asymmetry in the hard problems underlying the SIDH

cryptosystem. In ordinary Diffie-Hellman, Alice and Bob’s private

exponent are both secured under the same discrete logarithm prob-

lem. But in SIDH, the problems securing Alice and Bob’s private

subgroups are in fact different, because Alice’s isogenies have de-

gree equal to a power of ℓ1 and Bob’s isogenies have degree equal to

a power of ℓ2. There does not seem to be any way to show that these

two problems are equivalent. Consequently, one cannot expect to

prove a theorem that, say, the A-Isogeny Problem is equivalent to a

“symmetric" formulation of the computational and decisional SIDH



problems, since a symmetric argument would say the same thing

for the B-Isogeny Problem, and necessarily imply the equivalence of

theA-Isogeny and B-Isogeny Problems. This observation motivates

the asymmetry in our formulation of the decisional SIDH problems

and the theorem that follows.

Problem 4.4 (A-DSIDH Problem). Suppose that E/B, and the
image of the A-basis pair ϕB (P1),ϕB (Q1) ∈ (E/B)[ℓe1

1
] is known.

Then given
• a curve X ,
• a basis pair R, S ∈ X [ℓe2

2
],

• and a curve Z ,
determine whether the tuple (X ,E/B,Z ) is a valid SIDH tuple, in the
sense that there is a mapψX : E → X of degree dividing ℓe1

1
, which

sends P2 to R, Q2 to S , and such that Z � E/⟨kerψX ,B⟩.

Problem 4.5 (B-DSIDH Problem). Suppose that E/A, and the
image of the B-basis pair ϕA(P2),ϕA(Q2) ∈ (E/A)[ℓe2

2
] is known.

Then given
• a curve Y ,
• a basis pair R, S ∈ Y [ℓe1

1
],

• and a curve Z ,
determine whether the tuple (E/A,Y ,Z ) is a valid SIDH tuple, in the
sense that there is a map ψY : E → Y of degree dividing ℓe2

2
, which

sends P1 to R, Q1 to S , and such that Z � E/⟨A, kerψY ⟩.

We now prove the main theorem of this section.

Theorem 4.6. An oracle for the A-Isogeny problem is equivalent
under randomized polynomial time reductions to an oracle which
solves both the CSIDH Problem and the A-DSIDH Problem. Anal-
ogously, an oracle for the B-Isogeny problem is equivalent under
randomized polynomial time reductions to an oracle which solves
both the CSIDH Problem and the B-DSIDH Problem.

Remark 4.7. The hypotheses of the A-DSIDH Problem specify that
the information of Bob’s public key is known. What this means in
this context is that the equivalence between the A-Isogeny problem
and the union of the CSIDH and A-DSIDH Problems is relative to a
particular fixed public key for Bob that the A-SIDH oracle works with.
The analogous fact is true for the other equivalence.

Proof. We start by assuming we have an oracle to solve the

A-Isogeny Problem. We have already seen that given such an oracle

one can solve the CSIDH problem, since onemay find Alice’s private

subgroup A, and then proceed as Alice does to compute the shared

secret. Hence, suppose we are given a curve X , a basis pair R, S ∈
X [ℓe2

2
], and a curve Z , and wish to determine whether (X ,E/B,Z )

is a valid SIDH tuple. To do this, we use the fact that the oracle for

the A-Isogeny problem is the same as the oracle (OE,1)ℓe1
1

to either

find an isogeny ψX : E → X with the correct torsion images, or

find that one doesn’t exist. If one doesn’t exist, then we know the

tuple (X ,E/B,Z ) is invalid. If one does exist, we may compute the

resulting secret curve and check that it is isomorphic to Z . Since
we know by Lemma 3.1 that there is only one possibility for ψX ,
we may return failure if the secret curve is not isomorphic to Z ,
and success otherwise.

Next, we assume that we have an oracle which solves both the

CSIDH Problem and the A-DSIDH Problem. We will show that

given such an oracle we may solve the Key Validation Problem for

ℓe1
1
, which gives the desired conclusion by the equivalence between

the A-Isogeny Problem and the problems in Section 3. We suppose

we are given a proposed public key (X ,R, S), where X purports to

be a curve connected by an isogenyψX : E → X of degree dividing

ℓe1
1

such thatψX (P2) = R andψX (Q2) = S . We begin by calling the

CSIDH oracle on the base curve, the base curve basis points, Bob’s

public key, and the proposed public key (X ,R, S). One of two things
may happen: the CSIDH oracle fails

3
, in which case we know that

(X ,R, S) is invalid, or it returns some curve Z .
The curve Z could either be a correct shared secret (if the public

key (X ,R, S) was valid), or an arbitrary curve (if the public key

(X ,R, S) was invalid). It suffices to distinguish between these two

cases. This is exactly the role of theA-DSIDH oracle, which we give

the input (X ,E/B,Z ) and the associated auxiliary information. If X
was a valid public key, then the CSIDH oracle must have generated

a valid Z , and the A-SIDH oracle will confirm this. Otherwise, the

tuple must be invalid, which the A-SIDH oracle will also confirm.

This completes the proof of the first statement. The proof of

the other statement involving B-type oracles proceeds in the same

way. □

5 CONCLUSION
The torsion-point isogeny problems underlying the security of

SIDH and several proposals for isogeny-based signatures [8, 12, 18,

21] have thus far undergone little study. One could argue this lack of

study is indicative of their difficulty: the same complexity-theoretic

obstructions which prevent problems from having efficient solu-

tions can also preclude the existence of non-trivial algorithms,

reductions, and security theorems. But it is nevertheless important,

especially for researchers not in the isogeny-based cryptography

community, that the relevant problems be formulated in a manner

that emphasizes their connections and relationships. Such a for-

mulation helps to guide both classical and quantum cryptanalysis,

informs choices made when designing variants, and sheds light on

which problems are likely to have tractable solutions.

In this article, we provide formulations and reductions that make

significant progress towards these goals. In particular, the formu-

lation we have given provides an explanation of why the Key Val-

idation Problem, which has been a topic of interest in several pa-

pers [4, 7, 13], is likely to be intractable, and suggests that one

should regard the computational and decisional SIDH problems as

being no easier than the hard isogeny problems which are usually

studied.

We believe that these results are important, not just because of

their intrinsic value (which is itself significant), but also because

they help theorists and practitioners alike understand the problem

3
Typically, one does not consider what happens when one gives an oracle invalid

input. But one can easily consider what the possibilities are for a real algorithm: either

the algorithm fails (produces an error, or runs longer than a worst-case bound on its

running time), or gives an answer that does not solve the problem (because no answer

solves the problem). Since the oracle formalism is really just a way of arguing about

algorithms, we see no reason not to assume this behaviour here. Note that this sort of

reasoning has appeared previously in the context of reducibility theorems in cryptology.

For instance, in the reduction of the security of the Goldwasser-Micali encryption

scheme [10] to the quadratic residuosity problem, one queries a cryptosystem-breaking

oracle on potentially invalid public keys, which is the same situation as what is being

described here.



landscape. Consequently, we hope that this article will help guide

and encourage further study in the field.
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