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Abstract

QARMA is a family of lightweight tweakable block ciphers, which is used to support a software protection
feature in the ARMv8 architecture. In this paper, we study the security of QARMA family against the
impossible differential attack. First, we generalize the concept of truncated difference. Then, based on
the generalized truncated difference, we construct the first 6-round impossible differential dinstinguisher of
QARMA. Using the 6-round distinguisher and the time-and-memory trade-off technique, we present 10-
round impossible differential attack on QARMA. This attack requires 2119.3 (resp. 2237.3) encryption units,
261 (resp. 2122) chosen plaintext and 272 72-bit (resp. 2144 144-bit) space for QARMA-64 (resp. QARMA-
128). Further, if allowed with higher memory complexity (about 2116 120-bit and 2232 240-bit space for
QARMA-64 and QARMA-128, respectively), our attack can break up 11 rounds of QARMA. To the best
of our knowledge, these results are currently the best results with respect to attacked rounds.
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1. Introduction

As the number of low-end devices grows, the security of these devices becomes increasing important.
The lightweight block cipher, which is target to provide security solutions to low-end devices, has attracted
much attention. Many lightweight primitives, such as PRESENT [1], LBlock [2], SIMON/SPECK [3] and
Midori [4] et al, have been proposed. Since the widely use of lightweight block ciphers, one problem when
using a block cipher should come into notice. That is when the same message is encrypted by the same key
in different cases, one will get the same ciphertext. It means that the same ciphertext indicates the same
message in different cases. Thus, once the message is obtained by the attacker, it can be detected in other
cases. Fortunately, Moses Liskov, Ronald L. Rivest and David Wagner introduced the concept of tweakable
block cipher [5], which can provide a solution to the above problem. Unlike the usual block ciphers with only
the plaintext and key as inputs, the tweakable block cipher accept a third input called the tweak. Together
with the key, the tweak can select round functions of a block cipher.

QARMA [6] is a family of lightweight tweakable block ciphers, which is designed for very specific uses,
such as memory encryption, generation of very short tags by truncation. The QARMA family adopts the
similar structure of PRINCE [7] and contains two versions of block ciphers: 64-bit block version (QARMA-
64) and 128-bit block version (QARMA-128). It aims to provide a proposal with conservative security
margins while still achieving best-in-class latency. In 2016, QARMA is chosen by ARMv8-A architecture to
provide a software protection [8]. The designer analyzed the security of QARMA against differential/linear

IThis work is supported by NSF of China under Grant Nos. (61272042, 61402524, 61602510), and the National 863 Program
of China under Grant No. 2015AA01A708

∗Corresponding author.
Email addresses: yangdong sky@126.com (Dong Yang), wenfeng.qi@263.net (Wenfeng Qi ), huajin chen@126.com

(Huajin Chen)

Preprint submitted to Information Processing Letters April 5, 2017



[9, 10], impossible differential (ID) [11, 12] and zero-correlation linear attacks [13] et al. Based on mixed
integer linear programming, they counted the number of active S-boxes of QARMA, and claimed that
QARMA is powerful to resist differential/linear attack. With the characteristic matrix technique [14], the
designer showed that three rounds of QARMA achieve a full diffusion. Thus, they claimed that 8-round
QARMA is sufficient to resist impossible differential and zero-correlation linear attacks. In [15], Zong
and Dong presented a 10-round meet-in-the-middle (MITM) attack on QARMA based on the differential
enumeration [16] and key-dependent sieve [17] techniques. It is the first attack on QARMA and analyzes
the security of QARMA against MITM attack.

Though the security of QARMA against impossible differential attack has been analyzed by the designer,
it is not very specific. To more specificly identify the security of QARMA against impossible differential
attack, we continue studying the impossible differential attack on QARMA in this paper. First, we generalize
the concept of truncated difference inspired by the generalized δ-set [18]. Then, based on the generalized
truncated difference, the first 6-round impossible differential distinguisher is constructed. By the 6-round
distinguisher and the time-and-memory trade-off technique, we present 10-round impossible differential
attack on QARMA. Our attack requires 2119.3 (resp. 2237.3) encryption units, 261 (resp. 2122) chosen
plaintext and 272 72-bit (resp. 2144 144-bit) space for QARMA-64 (resp. QARMA-128). Further, if allowed
with higher memory complexity (about 2116 120-bit and 2232 240-bit space for QARMA-64 and QARMA-
128, respectively), our attack can break up 11 rounds of QARMA. To the best of our knowledge, these
results are currently the best results with respect to attacked rounds. Summaries of our attacks and other
attacks on QARMA are listed in Table 1.

The paper is organized as follows. Section 2 introduces some necessary preliminaries. Section 3 and 4
present 10-round and 11-round impossible differential attacks on QARMA, respectively. Finally, conclusions
are drawn in Section 5.

Table 1: The attacks on QARMA.

Version Attack Round Data Time Memory Ref.

QARMA-64
MITM
ID
ID

10
10
11

253

261

261

270.1

2119.3

2120.4

2116

272

2116

[15]
Section 3
Section 4

QARMA-128
MITM
ID
ID

10
10
11

2105

2122

2122

2141.7

2237.3

2241.8

2232

2144

2232

[15]
Section 3
Section 4

2. Preliminaries

In this section, we briefly introduce the family of QARMA block ciphers, and define some notations.

2.1. A Brief Description of QARMA Family

QARMA is a lightweight tweable block cipher proposed by Roberto Avanzi in 2016. The over scheme
of QARMA adopts the three-round Even-Mansour construction (Figure 1.a) where the permutations are
parameterized by a core key, and all the subkeys are deduced from a whitening key. In Figure 1, permutations
F and F are functionally the inverse of each other, which are parameterized by a tweak. There, throughout
this paper, a bar over a function denotes its inverse.

The details of QARMA are shown in Figure 1.b. It can be seen that QARMA is a bricklayer SPN. The
internal state of QARMA is divided into 16 m-bit nibbles that are represented by a 4 × 4 array matrix as
follows

IS =


0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

 ,
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Figure 1: Details of QARMA.

where m = 4 for QARMA-64 and m = 8 for QARMA-128. The encryption procedure iteratives 16 rounds
for QARMA-64, and 24 rounds for QARMA-128. Next, we introduce operations used in each round.

• KeyAddition: The i-th round key is bit-wise XORed to the internal state with the round tweak t
and round constant ci.

• ShuffleCell (τ): It applies a permutation PT to the nibble positions of the internal state, where

PT = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

• MixColumn (M): It multiplies each column of the internal state by a matrix Ma. The matrix Ma
is defined as follows:

Ma = circ(0, ρa, ρb, ρc) =


0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ,

where ρi is just a simple left circular rotation of the element by i bits. For QARMA-64, a = c = 1 and
b = 1, and the matrix is involutory. For QARMA-128, a = 1, b = 2 and c = 5, and the inverse of ma
is circ(0, ρ5, ρ6, ρ1). The Q in Figure 2 is also a MixColumn operation. It use the same matrix of M
for QARMA-64, and use circ(0, ρ1, ρ4, ρ1) for QARMA-128.

• SubCell (S): It simply applies non-linear S-box to each nibble of the internal state. Details of the
S-boxes please refer to [6].

The keys k0, k1, w0 and w1 in Figure 1.b are derived from the master key k as follows: w0||k0 = k,w1 =
(w0 ≫ 1)⊕ (w0 ≫ (16m− 1)) and k1 = k0. The tweak is represented by T in Figure 1.b.
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2.2. Notations

The following notations will be used throughout this paper.

• xi : the internal state just after the S or S operation of the i-th round.

• yi : the internal state just after the τ or τ operation of the i-th round.

• zi : the internal state just after the M or M operation of the i-th round.

• wi : the internal state just after KeyAddition operation of the i-th round.

• X[j] : the j-th cell of X, where X is an array of 4× 4 cells.

• ∆X[j] : the difference of X[j] and X
′
[j].

• X[j0, j1, ..., jl] : the abbreviation of X[j0], X[j1], ..., X[jl].

• X[i..j] : the abbreviation of X[i], X[i+ 1], ..., X[j].

3. 10-Round Impossible Differential Attack on QARMA

In this section, we first generalize the concept of truncated difference. Then, based on the generalized
truncated difference, a 6-round impossible differential characteristic is constructed. Exploiting the 6-round
impossible differential characteristic, 10-round impossible differential attack on QARMA is presented.

3.1. Impossible Differential Characteristic of QARMA

In [18], Derbez et al. introduced the generalized δ-set in the MITM attack of AES. With the generalized
δ-set, the diffusion of active S-boxes can be controlled during the construction of MITM distinguisher.
Inspired by this idea, we introduce the generalized truncated differential.

Generalized Truncated Differential. The traditional truncated difference usually focus on a set of
differences that some bits are active and the others are constant. In the generalized truncated difference,
we can focus on a set of differences that some linear combinations of state bits are constant.

Let Γ0 be a set of differences such that ∆z1[1..11, 13..15] = 0 and ∆z1[12] ̸= 0. And let Γ1 be a set of
differences such that ∆y6[1..3, 5..15] = 0, ∆z6[1..3, 5..15] = 0, ∆z6[0] ̸= 0 and ∆z6[4] ̸= 0. By the property
of M operation, it can be verified that |Γ0| = 24 − 1 and |Γ1| = 22 − 1 for QARMA-64, |Γ0| = 28 − 1 and
|Γ1| = 22 − 1 for QARMA-128, where |Γ0| and |Γ1| denotes the number of elements contained in Γ0 and Γ1,
respectively. Then, we have the following proposition.

Proposition 1. Let Γ0 and Γ1 be truncated differentials defined above. Then, the truncated differential

characteristic Γ0
6R−→ Γ1 as shown in Figure 2 is an impossible differential characteristic.

Proof 1. Since ∆z1[1..11, 13..15] = 0 and ∆z1[12] ̸= 0, it can be verified that ∆y4[1, 7, 10, 12] = 0 by going
forward three rounds. From the backward, it can be verified that ∆y4[7] and ∆y4[10] are non-zero, which

contradicts with ∆y4[7, 10] = 0. Thus, the truncated differential Γ0
6R−→ Γ1 is impossible.

Next, we present the 10-round impossible differential attack on QARMA.
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3.2. Details of the 10-Round attack

By appending two rounds on the top and bottom of the 6-round impossible differential characteristic,
we get the 10-round attack on QARMA as shown in Figure 3. The uk0 in Figure 3 is equivalent subkey
computed from k0, namely uk0 = M ◦ τ(k0). The kw0 and kw1 in Figure 3 represent k0 ⊕ w0 and k0 ⊕ w1,
respectively. The details of the 10-round attack are describled as follows.

1. Take 2n structures of plaintext with the following form:

P (C0, C1, C2, C3, C4, X0, X1, X2, X3, C5, X4, X5, X6, X7, X8, C6),

where Ci (0 ≤ i ≤ 6) are fixed constants, and Xi (0 ≤ i ≤ 8) take all the m-bit values. Thus, each

structure contains 29m plaintexts, which can provide about
(
2m−1
2m

)9 × 218m plaintext pairs with the
following difference form:

(0, 0, 0, 0, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, 0)

where ”∗” represents non-zero difference.

2. Obtain the corresponding ciphertext of each plaintext. Choose only the pairs by birthday paradox
such that

∆x10 = [0, 0, 0, 0, 0, ∗, ∗, 0, ∗, 0, 0, ∗, 0, ∗, ∗, 0].

Thus, there are
(
2m−1
2m

)15 × 2n+8m left.

3. For each of the remaining pairs do:

3.1. For the 2m − 1 differences in Γ0 do:

3.1.1 Guess the value of x2[0, 11, 13], obtain the difference ∆x1[5..8, 9..14]. With the input and
output differences of S-boxes in the 1-th round, deduce the value of kw0[5..8, 10..14].

3.1.2 With values of x2[0, 11, 13] and kw0[5..8, 10..14], deduce the value of uk0[0, 11, 13]. Store the
value of kw0[5..8, 10..14]||uk0[0, 11, 13] in a hash table T0.

3.2. For the 22 − 1 differences in Γ1 do:

3.2.1 Guess the value of w8[0, 13], obtain the difference ∆y9[5, 6, 8, 11, 13, 14]. With input and
output differences of S-boxes in the 10-th round, deduce the value of kw1[5, 6, 8, 11, 13, 14].

3.2.2 With values of kw1[5, 6, 8, 11, 13, 14] and w8[0, 13], deduce the value of uk0[0, 11]. Store the
value of kw1[5, 6, 8, 11, 13, 14]||uk0[0, 11] in a hash table T1.

4. Check keys in T0 and T1 by table look-up. If the value of kw0[5..8, 10..14]||uk0[0, 11, 13] in T0 and the
value of kw1[5, 6, 8, 11, 13, 14]||uk0[0, 11] in T1 match on the value of uk0[0, 11], then discard the value
of kw0[5..8, 10..14]||uk0[0, 11, 13]||kw1[5, 6, 8, 11, 13, 14] from the candidate key. Recover the right key
by exhaustively searching the remaining keys.

3.3. Complexities of the 10-Round Attack

Let ∆in be the set of all possible input differences, and ∆out be the set of all possible output differences.
It can be seen that |∆in| = (2m − 1)

9
and |∆out| = (2m − 1)

6
. Let Pin and Pout denote the probability of

the truncated differentials ∆in −→ Γ0 and ∆out −→ Γ1, respectively. Then we have

Pin =
|Γ0|
|∆in|

, Pout =
|Γ1|
|∆out|

.

According to [19], the probability that a trivial key is kept in the remaining key candidate is

P = (1− Pin × Pout)
Nd ,
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where Nd is the number of remaining pairs left in Step 2, namely Nd =
(
2m−1
2m

)15 × 2n+8m. Thus, there are
P × 232m keys required to exhaustively search in Step 4. The time complexity of Step 3 is about

2×
(
2m − 1

2m

)15

× 2n+8m ×
(
2m − 1

2m
× 23m + 3× 22m

)
≈ (2m − 1)

16 × 2n−5m+1

2-round encryptions. The time complexity of Step 1 and 2 is 2n+9m 10-round encryptions and 2n+9m memory
access, respectively. Thus, the total time complexity of this attack is about

Tcomp =
1

5
× (2m − 1)

16 × 2n−5m+1 + 2× 2n+9m + P × 232m (1)

10-round encryptions.
To achieve a trade-off between the data and time complexities, we choose n = 25 for QARMA-64.

Thus, 261 chosen plaintexts are required in this attack, which implies Nd ≈ 255.6. Since Pin = 15−8 and
Pout = 3 · 15−6 for QARMA-64, we can compute that P ≈ e−22.6 ≈ 2−8.7, where e is the Euler’s constant.
According to (1), the total time complexity of the 10-round attack on QARMA-64 is about 2119.3 10-round
encryptions. The memory complexity is dominated by T0 × T1, which requires 272 72-bit space.

For QARMA-128, we choose n = 50. Thus, the data complexity is 2122 chosen plaintexts and Nd ≈ 2114.
As Pin = 255−8 and Pout = 3 · 255−6 for QARMA-128, we have P ≈ e−23.7 ≈ 2−18.7. According to 1, the
total time complexity of the 10-round attack on QARMA-128 is about 2237.3. The memory complexity is
also dominated by T0 × T1, which requires 2144 144-bit space.

4. 11-Round Impossible Differential Attack on QARMA

By appending one round on the bottom of the 10-round attack, we get the 11-round attack on QARMA
(shown in Figure 4).

It can be seen that kw0[5..8, 10..14], uk0[0, 5, 6, 8, 11, 13, 14], kw0[0, 2..10, 12..15] are keys involved in the
11-round attack, which contain 30m bits. Since the key schedule of QARMA is linear, we have the following
observation by analyzing the key schedule.

Observation 1. There are m-bit linear independent relations between the above keys for QARMA.
Observation 1 implies that the above keys of QARMA-64 and QARMA-128 will assume 2116 and 2232

values, respectively. Based on this observation, the memory complexity of the 11-round attack can be reduce
by a factor of 24 for QARMA-64, and 28 for QARMA-128.

4.1. Details of the 11-Round Attack

1. The similar with the 10-round attack, take 2n structures of plaintext with the form

P (C0, C1, C2, C3, C4, X0, X1, X2, X3, C5, X4, X5, X6, X7, X8, C6),

which will provide
(
2m−1
2m

)9 × 2n+18m plaintext pairs with the difference form

(0, 0, 0, 0, 0, ∗, ∗, ∗, ∗, 0, ∗, ∗, ∗, ∗, ∗, ∗, 0).

2. Obtain the corresponding ciphertext of each plaintext. Choose only the pairs by birthday paradox
such that

∆x10 = [∗, 0, ∗, ∗, ?, ?, ∗, ∗, ∗, ∗, ∗, 0, ∗, ∗, ?, ?],

where ”?” represents the difference that can be zero or non-zero. Thus, there are
(
2m−1
2m

)19 × 2n+16m

left.

3. For each of the remaining pairs do:

3.1. For the 2m − 1 differences in Γ0 do:
7
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3.1.1 Guess the value of x2[0, 11, 13], obtain the difference ∆x1[5..8, 9..14]. With the input and
output differences of S-boxes in the 1-th round, deduce the value of kw0[5..8, 10..14].

3.1.2 With values of x2[0, 11, 13] and kw0[5..8, 10..14], deduce the value of uk0[0, 11, 13]. Store the
value of kw0[5..8, 10..14]||uk0[0, 11, 13] in a hash table T0.

3.2. For the 22 − 1 differences in Γ1 do:

3.2.1 Guess the value of w8[0, 13] and w9[5, 6, 8, 11, 13, 14], obtain the difference ∆y10[0, 2..10, 12..15].
With the input and output differences of S-boxes of the 11-th round, deduce the key kw1[0, 2..10, 12..15].

3.2.2 With values of kw1[0, 2..10, 12..15], w8[0, 13] and w9[5, 6, 8, 11, 13, 14], we can further deduce
the key uk0[0, 4, 5, 8, 11, 13, 14]. Store the value of kw1[0, 2..10, 12..15]||uk0[0, 4, 5, 8, 11, 13, 14]
in a hash table T1.

4. Check keys in T0 and T1 by table look-up. If the value of kw0[5..8, 10..14]||uk0[0, 11, 13] in T0 and the
value of kw1[5, 6, 8, 11, 13, 14]||uk0[0, 11] in T1 match on the value of uk0[0, 11] and the m-bit relation
between them, then discard the value of kw0[5..8, 10..14]||uk0[0, 11, 13]||kw1[5, 6, 8, 11, 13, 14] from the
candidate key. Recover the right key by exhaustively searching the remaining keys.

4.2. Complexities of the 11-Round Attack

For QARMA-64, we have |∆in| = 159 and |∆out| = 1510 · 216, which implies that Pin = 15−8 and
Pout = 3 · 15−10 · 2−16. We choose n = 25, and thus 261 chosen plaintexts are required in this attack.

Then, we can compute that Nd =
(
2m−1
2m

)19 × 2n+16m ≈ 287.2 and P ≈ e−22.5 ≈ 2−8.2. Thus, there are
P · 2128 = 2119.8 remaining keys required to search in Step 4. The time complexity of Step 3 is about
2 × 287.2 × (2 × 15 × 212 + 3 × 232)/11 ≈ 2119.9 11-round encryptions. For Step 1 and 2, 261 11-round
encryptions and 261 memory access are required, respectively. Thus, the total time complexity of this attack
is 2119.8+2119.9+2 · 261 ≈ 2120.9 11-round encryptions. The memory complexity of this attack is dominated
by storing the values of kw0[5..8, 10..14]||uk0[0, 4, 5, 8, 11, 13, 14]||kw1[0, 2..10, 12..15], which is 2116 120-bit
space by observation 1.

For QARMA-128, we have |∆in| = 2559 and |∆out| = 25510 · 232, which implies that Pin = 255−8 and
Pout = 3 ·255−10 ·2−32. We choose n = 50, and thus 2122 chosen plaintexts are required. It can compute that
Nd ≈ 2178 and P ≈ e−23.7 ≈ 2−18.7. Thus, the time complexity of Step 4 is about P · 2256 = 2237.3 11-round
encryptions. The time complexity of Step 1, 2 and 3 can be computed like that of QARMA-64, which is about
2×2178×(2×255×224+3×3×264)/11+2×2122 ≈ 2242.7 11-round encryptions. Thus, the total time complexity
of this attack is about 2237.3+2242.7 ≈ 2242.8 11-round encryptions. The memory complexity of this attack is
also dominated by storing the values of kw0[5..8, 10..14]||uk0[0, 4, 5, 8, 11, 13, 14]||kw1[0, 2..10, 12..15], which
is 2232 240-bit space by observation 1.

5. Conclusion

In this paper, we present impossible differential attacks on QARMA. Based on the generalized truncated
differential, a 6-round impossible differential charactersitic of QARMA is constructed. Exploiting the 6-
round impossible differential characteristic and the time-memory trade-off technique, we present 10-round
and 11-round impossible differential attacks on QARMA. To the best of our knowledge, this is the first
11-round attack on QARMA, which also imply that 8-round QARMA is not secure against impossible
differential attack. Further analyzing QARMA with other attacks will be our future work.
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