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Abstract. One of the most efficient post-quantum signature schemes is
Rainbow whose harness is based on the multivariate quadratic polyno-
mial (MQ) problem. ELSA, a new multivariate signature scheme pro-
posed at Asiacrypt 2017, has a similar construction to Rainbow. Its ad-
vantages, compared to Rainbow, are its smaller secret key and faster
signature generation. In addition, its existential unforgeability against
an adaptive chosen-message attack has been proven under the hardness
of the MQ-problem induced by a public key of ELSA with a specific
parameter set in the random oracle model. The high efficiency of ELSA
is derived from a set of hidden quadratic equations used in the process
of signature generation. However, the hidden quadratic equations yield
a vulnerability. In fact, a piece of information of these equations can be
recovered by using valid signatures and an equivalent secret key can be
partially recovered from it. In this paper, we describe how to recover an
equivalent secret key of ELSA by a chosen message attack. Our experi-
ments show that we can recover an equivalent secret key for the claimed
128-bit security parameter of ELSA on a standard PC in 177 seconds
with 1326 valid signatures.

Keywords: post-quantum cryptography, multivariate public-key cryp-
tography, chosen message attack, Rainbow, ELSA.

1 Introduction

P. Shor [12] proposed quantum algorithms to factor large integers and to solve
discrete logarithms in polynomial time. If large-scale quantum computers are
built, most currently used public key cryptosystems, such as RSA, DSA and
ECC, will be insecure. The aim of Post-Quantum Cryptography (PQC) is to de-
velop cryptosystems that are secure against attacks by future quantum comput-
ers [2]. At PQCrypto 2016, the National Institute of Standards and Technology
(NIST) started the standardization process of post-quantum cryptography, and
there are currently 69 proposals of post-quantum cryptography [9].

Multivariate public key cryptosystems (MPKCs) [4] are considered to be
some of the most promising candidates for PQC. A lot of MPKCs have been
proposed starting with the Matsumoto-Imai scheme [8]. Among them, the UOV
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[6] and HFEv− [10, 11] signature schemes have in particular remained sound for
around two decades, and their signature sizes are relatively small compared with
other post-quantum signature schemes. Moreover, there are many submissions
of MPKCs to the NIST PQC standardization. Even amongst those, Rainbow [5],
a multi-layered version of the UOV scheme, has drawn a lot of attention because
of its efficiency, modest computational cost, high security and simplicity.

The ELSA [13] signature scheme, studied in this paper, is a variant of Rain-
bow; it was proposed at Asiacrypt 2017 by Shim et al. An advantage of ELSA
over Rainbow is its higher efficiency; that is, its secret key is smaller and its
signature generation is faster. Shim et al. actually succeeded to reduce the com-
plexity of signature generation from O(n3) for Rainbow to O(n2), where n is
the number of variables, without weakening the security against known attacks.
The trick to reducing the complexity is choosing the secret keys sparsely and
attaching several hidden quadratic equations in the process of signature genera-
tion. Another advantage is that ELSA has existential unforgeability against an
adaptive chosen-message attack. This was proven under the hardness of the MQ
problem induced by the public key of ELSA with a specific parameter set in the
random oracle model.

In this paper, we propose a chosen message attack on ELSA, with which
we can obtain valid signatures by repeatedly accessing a signing oracle. Recall
that ELSA possesses hidden quadratic equations for accelerating the signature
generation; these are not used in Rainbow. Once the hidden quadratic equations
are recovered, an attacker can obtain an equivalent secret key of ELSA and
forge all signatures of ELSA by using the equivalent secret key. In fact, we show
that a piece of information associated with the hidden quadratic equations can
be recovered from at most n2 valid signatures obtained in the chosen message
attack. Our attack is very efficient, and we prove that its complexity is O(n2ω),
where n is the number of variables and 2 ≤ ω < 3 is the linear algebra constant.
In our experiments using Magma, we succeeded in recovering an equivalent secret
key with 1326 valid signatures in 177 seconds for the parameters selected in [13]
as 128-bit security.

Our paper is organized as follows: in §2, we briefly summarize the ELSA
scheme and its previous security analysis given in [13]. §3 discusses our new
attack and give a detailed algorithm to obtain an equivalent secret key of the
ELSA scheme. In §4, we preform the complexity analysis of our new attack and
present a Magma implementation of our algorithm. We conclude our paper in
§5.

2 The ELSA Signature Scheme

Here, we briefly explain the basic concept of multivariate signature schemes
and summarize the construction of the ELSA scheme and its previous security
analysis following [13].
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2.1 Multivariate Signature Scheme

Let n,m ≥ 1 be integers, q a power of prime, and Fq a finite field of order q.
In a multivariate signature scheme, the public key P : Fn

q → Fm
q is a quadratic

map, namely P(x1, . . . , xn) =
t(P1(x1, . . . , xn), . . . ,Pm(x1, . . . , xn)) given by

Pl(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(l)
ij xixj +

∑
1≤i≤n

β
(l)
i xi + γ(l)

for 1 ≤ l ≤ m, where α
(l)
ij , β

(l)
i , γ(l) ∈ Fq. For such a signature scheme, the public

key P is generated by P = T ◦ F ◦ S with invertible affine maps T : Fm
q → Fm

q ,
S : Fn

q → Fn
q and a quadratic map F : Fn

q → Fm
q that can be feasibly inverted.

Thus the secret key consists of T ,F and S.
To generate a signature of a message m ∈ Fm

q , one recursively computes
z = T −1(m),y = F−1(z),w = S−1(y). Thus a signature for m is given by w.
Here, y means an element of the preimage of z under the central map F . The
verification involves checking whether P(w) = m.

2.2 Key Generation of ELSA

The ELSA [13] signature scheme is basically constructed in the manner described
in §2.1.

Let l, k, u, r be positive integers and set n = l + k + u + r and m = k + u.
Denote the sets of l, k, u, r and n variables by

xL := (xL,1, . . . , xL,l), xK := (xK,1, . . . , xK,k),

xU := (xU,1, . . . , xU,u), xR := (xR,1, . . . , xR,r),

x := t(xL,xK ,xU ,xR) =
t(xL,1, . . . , xR,r).

First, we explain the construction of the central map of ELSA consisting of
two layers. Let Li(x) = Li(xL,xK ,xR), Rij(x) = Rij(xL,xK) (1 ≤ i ≤ r, 1 ≤
j ≤ k) be linear polynomials and Φj(x) = Φj(xL) (1 ≤ j ≤ k) quadratic
polynomials. The first layer (F1, . . . ,Fk) of the central map of ELSA is

Fj(x) :=
∑

1≤i≤r

Li(xL,xK ,xR)Rij(xL,xK) + Φj(xL), (1 ≤ j ≤ k).

To construct the second layer, let Ri,k+j(x) (1 ≤ i ≤ r, 1 ≤ j ≤ u), L′
j(x) =

L′
j(xL,xK ,xR) (1 ≤ j ≤ u) be linear polynomials and Φk+j(x) = Φk+j(xL,xK)

(1 ≤ j ≤ u) quadratic polynomials. The second layer (Fk+1, . . . ,Fm) is

Fk+j(x) :=
∑

1≤i≤r

Li(xL,xK ,xR)Ri,k+j(x) + Φk+j(xL,xK) + L′
j(xL,xK ,xR),

for 1 ≤ j ≤ u. The central map of ELSA is given by

F := t(F1, . . . ,Fk,Fk+1, . . . ,Fm) : Fn
q → Fn

q .
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Next let us explain the secret and public keys of ELSA. Randomly choose two
invertible affine maps T : Fm

q → Fm
q and S : Fn

q → Fn
q and fix a linear polynomial

L(x) = L(xL) and r elements ξ1, . . . , ξr ∈ F×
q to generate a signature in ELSA

efficiently (see §2.3).
Secret key. The invertible affine maps T ,S, the quadratic map F , the linear
polynomial L, and the constants ξ1, . . . , ξr ∈ F×

q .

Public key. The quadratic map P = t(P1, . . . ,Pm) := T ◦ F ◦ S : Fn
q → Fm

q .

2.3 Signature Generation and Verification of ELSA

Here, we describe signature generation and signature verification of ELSA.

Signature generation. For a message m ∈ Fm
q , compute z = t(z1, . . . , zm) =

T −1(m). Next, find y ∈ Fn
q with F(y) = z and L(y)Li(y) = ξi (1 ≤ i ≤ r).

Finally, compute w = S−1(y) ∈ Fn
q . The signature for m is w.

Signature verification. Check whether P(w) = m or not.

In the process of the signature generation, y ∈ Fn
q is found as follows.

How to find y ∈ Fn
q .

First, randomly choose yL ∈ Fl
q with L(yL) ̸= 0 and find a solution yK to the

system of k linear equations in xK :∑
1≤i≤r

ξiRij(yL,xK) = L(yL)(zj − Φj(yL)), (1 ≤ j ≤ k). (1)

Next, find a solution yR to the system of r linear equations in xR:

Li(yL,yK ,xR) = L(yL)
−1ξi, (1 ≤ i ≤ r). (2)

Finally, find a solution yU ∈ Fu
q to the system of u linear equations in xU :∑

1≤i≤r

ξiRi,k+j(yL,yK ,xU ,yR) = L(yL)(zj − Φk+j(yL,yK)− L′
j(yL,yK ,yR))

(3)

for 1 ≤ j ≤ u. In this way, we find y = t(yL,yK ,yU ,yR) ∈ Fn
q such that

F(y) = z.
Note that equations (1)-(3) are derived from

L(xL)Fj(x) = L(xL)zj , L(xL)Li(xL,xK ,xR) = ξi. (4)

Thus we see that y computed above satisfies F(y) = z and L(yL)Li(yL,yK ,yR) =
ξi for i = 1, . . . , r. Since w = S−1(y) ∈ Fn

q , the signature w obtained above sat-
isfies

L(S(w)) · Li(S(w)) = ξi

for i = 1, . . . , r. We also have L(S(w)) ̸= 0.
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Equations (1) for 1 ≤ j ≤ k can be written as

xKA+ c = L(yL) [zK − b(yL)] , (5)

where A is a k× k matrix over Fq, c is an element of Fk
q , zK := (z1, . . . , zk) and

b(yL) = (Φ1(yL), . . . , Φk(yL)) ∈ Fk
q . Since the entries of A do not depend on

yK , the process of finding yK of (5) can be implemented as

yK = L(yL) [zK − b(yL)]A1 − cA1,

where A1 := A−1. This means that, if we have A1 as a part of the secret key and
l is small enough, yK can be computed in O(k2) = O(n2) time. We can easily
check that equations (2) and (3) are similar. Then, by choosing Φk+j sparsely
as in [13], one can find yR,yU in O(n2) time. As a result, the complexity O(n2)
of the signature generation of ELSA is smaller than that the O(n3) complexity
of Rainbow (see [13, §5]).

2.4 Previous security analysis and parameter selection

In this subsection, we give a short survey of the security analysis of ELSA dis-
cussed in [13] and recall the 128-bit security parameter based on that security
analysis.

Direct attack. The direct attack generates a dummy signature of a given mes-
sage by directly solving a system of quadratic equations P(x) = m. It is known
that, if the polynomial system P(x)−m is semi-regular, the complexity of the
hybrid method [1] between the Gröbner basis attack and the exhaustive attack
is

≪ min
k≥0

qk ·
(
m

(
n− k + dreg − 1

dreg

))w

, (6)

where dreg is the degree of regularity given as the first non-positive coefficient
of (1 − t)m/(1 − t)m−k, and 2 ≤ w < 3 is the linear algebra constant. In [13],
the authors chose (6) with w = 2 as a lower bound of security against the direct
attack.
Rainbow band separation (RBS). Let φ : Fn

q → Fn
q be the affine map such

that φ(x) = (xL,xK ,xU , L1(x), . . . , Lr(x)) and put F ′ := F ◦ φ−1. A similar
argument to the one in [13, §3.2] shows that the coefficient matrices F ′

1, . . . , F
′
m

of F ′
1(x), . . . ,F ′

m(x), i.e. F ′
j(x) = txF ′

jx + (linear polynomial), can be written
as follows:

F ′
j =


∗l 0 0 ∗
0 0k 0 ∗
0 0 0u 0
∗ ∗ 0 0r

 (1 ≤ j ≤ k), and F ′
j =


∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

 (k + 1 ≤ j ≤ m).

(7)
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Due to these, we see that there exist vectors t = t(t1, . . . , tm) ∈ Fm−1
q and

s = t(s1, . . . , sn) ∈ Fn
q such that

∑
1≤i≤m

siPi

((
In−1 t
0 1

)
x

)
= tx

∗l+k+u−2 0 ∗
0 01 0
∗ 0 ∗r+1

x+ (linear polyn.).

Such (t, s) is part of an equivalent secret key. To recover (t, s), the attacker has
to solve a system of cubic polynomial equations of t, s. Though it is not easy
to estimate its complexity in general, the author of [13] concluded that ELSA is
secure enough against RBS attack under a suitable parameter selection.

Rank attacks. Let P1, . . . , Pm be the coefficient matrices of P1(x), . . . ,Pm(x);
that is, each Pi is the symmetric matrix of size n such that Pi(x) = txPix +
(linear polynomial in x). The rank attack recovers an equivalent secret key by
finding α1, . . . , αm ∈ Fq such that the rank of α1P1 + · · · + αmPm is small. By
carefully checking the coefficient matrices F ′

1, . . . , F
′
m of F ′

1(x), . . . ,F ′
m(x) given

in (7), the authors of [13] estimated the complexities of the rank attacks as
follows:

Min-Rank attack: O(qmin{l+k+1,l+2r−k+1,l+2r+1,2l+k+1} · (polyn.)).
High-Rank attack: O(qu · n3

6 ).

Kipnis-Shamir’s (UOV) attack. Kipnis and Shamir [7] proposed a poly-
nomial time attack to recover an equivalent secret key of the oil and vinegar
signature scheme, and Kipnis, Patarin and Goubin [6] generalized it to the un-
balanced oil and vinegar signature scheme (UOV). It is known that this attack

is also possible when the coefficient matrices are in the form

(
0o ∗
∗ ∗v

)
and its

complexity is O(qmax{v−o,0} · (polyn.)). The authors of [13] concluded that the
complexity of Kipnis-Shamir’s attack on ELSA is

O(qmin{r−u,k+u,l+r,n−2u−1} · (polyn.))

by carefully studying the structure of the coefficient matrices F ′
1, . . . , F

′
m of

F ′
1(x), . . . ,F ′

m(x) given in (7) and the process of this attack.

128-bit security parameter recommended by ELSA [13]. On the basis of
the above security analysis, the authors of [13] proposed the following 128-bit
security parameter

ELSA-128 : (q, l, k, u, r, n,m) = (28, 6, 28, 15, 30, 79, 43).

See [13, Table 4] for a performance comparison with other signature schemes.

3 Our Attack on ELSA

In this section, we describe a chosen message attack on ELSA. Indeed, we show
how to recover an equivalent secret key from the information associated with
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equations (4) by launching a chosen message attack. We also explain the con-
struction of the equivalent secret key and a method for forging a signature from
it.

3.1 Chosen Massage Attack

A chosen message attack is a standard security notion in signature schemes. Let
O be a signing oracle which computes the signature w ∈ Fn

q from a message
m ∈ Fm

q using the secret key of ELSA. The chosen message attack tries to gen-
erate a valid pair of a message m′ and signature w′ by repeatedly accessing the
signing oracle O, where P(w′) = m′ for the public key P. The authors of ELSA
[13] proved that ELSA is existentially unforgeable against the chosen-message
attack. However, we show that there is a way to recover an equivalent secret
key by launching a chosen message attack. Recall that the signature generation
of ELSA uses equations (4) in order to accelerate the signature generation. We
also propose an attack that recovers the information associated with equations
(4) from the signatures w given in the chosen message attack.

In a weaker setting, the attacker is not allowed to choose the message m
before asking the signing oracle, which is sometimes called the known message
attack. We show that our attack is also feasible in this setting.

3.2 How to Recover the Information Associated with Equations (4)

As shown in §2.2, in ELSA, we use the hidden quadratic equations L(x)Li(x) =
ξi in (4) to generate a signature. By using the existence of the hidden quadratic
equations, we explain to be able to recover the r-dimensional subspace

LS := SpanFq
{L1(S(x)), . . . , Lr(S(x))} ⊂ Fq[x] (8)

from N valid signatures, where N := max{n+ 1, 1
2 (n− r + 2)(n− r + 3)}.

Let W ⊂ Fn
q be the set of signatures generated by the ELSA scheme given

in §2.2. From §2.3, for any signature w ∈ W , we have L(S(w)) · Li(S(w)) = ξi
and L(S(w)) ̸= 0. They imply that for 1 ≤ i, j ≤ r,

ξiLj(S(w))− ξjLi(S(w)) = 0, (w ∈ W ). (9)

Defining Lij(x) := ξiLj(S(x)) − ξjLi(S(x)) and L0
S := SpanFq

{Lij(x)}i,j , then
it is easy to show that L0

S ⊂ LS and L12(x), . . . , L1r(x) form a basis of L0
S ,

which implies dimFq
L0
S = r − 1.

To recover the space LS , we first explain how to recover the subspace L0
S .

By (9), it is clear that L0
S is contained in the space of linear polynomials which

vanish at any w ∈ W . Since a linear polynomial in n-variables x is determined
by (n + 1)-tuple of a point of Fn

q and its value, in the following experiment,
we confirm that the subspace L0

S is equal to the space of linear polynomials in
n-variables x which vanish at n+ 1 valid signatures.
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Experiment 1. For n+1 valid signatures w1, . . . ,wn+1 ∈ W , we experimented
whether

L0
S = {f(x) ∈ Fq[x] | deg f ≤ 1, f(wi) = 0, 1 ≤ i ≤ n+ 1} . (10)

We performed the experiment with three parameters: Example-1 and Example-2
defined below, and ELSA-128 in §2.4.

Example-1 : (q, l, k, u, r, n,m) = (28, 4, 15, 5, 20, 44, 20),

Example-2 : (q, l, k, u, r, n,m) = (28, 5, 20, 10, 25, 60, 30),

ELSA-128 : (q, l, k, u, r, n,m) = (28, 6, 28, 15, 30, 79, 43).

We confirmed that the equality (10) holds in all of 100 experiments for each
parameter. The results of Experiment 1 lead to the following lemma:

Lemma 1. L0
S is equal to the space of linear polynomials in n-variables x which

vanish at n+1 valid signatures w1, . . . ,wn+1 ∈ W . Namely, we can recover L0
S

from n+ 1 valid signatures.

Next, we explain how to recover the space LS from the subspace L0
S . In the

following, for a polynomial f(x) in variables x, the polynomial f(xL,xK) means
f(xL,xK , 0, . . . , 0) and f(xL,xK ,xU , xR,r) := f(xL,xK ,xU , 0, . . . , 0, xR,r).

Choose a basis L1, . . . ,Lr−1 of L0
S . Let S1 : Fn

q → Fn
q be an invertible affine

map such that

(Li ◦ S1)(x) = xR,i, (1 ≤ i ≤ r − 1). (11)

Set w′ := S−1
1 (w) ∈ Fn

q . Since (Li ◦ S1)(w
′) = Li(w) = 0 by (9), the xR,i-

component of w′ is zero for 1 ≤ i ≤ r − 1. Namely, we can write w′ =
(w′

L,w
′
K ,w′

U , 0, . . . , 0, w
′
R,r). Thus, if we define the quadratic polynomial in

(n− r + 1)-variables xL,xK ,xU , xR,r:

Q(x) := (L ◦ S ◦ S1)(xL,xK ,xU , xR,r) · (L1 ◦ S ◦ S1)(xL,xK ,xU , xR,r)− ξ1,

then we have

Q(w′) =(L ◦ S ◦ S1)(w
′
L,w

′
K ,w′

U , w
′
R,r) · (L1 ◦ S ◦ S1)(w

′
L,w

′
K ,w′

U , w
′
R,r)− ξ1

=(L ◦ S ◦ S1)(w
′) · (L1 ◦ S ◦ S1)(w

′)− ξ1

=(L ◦ S)(w) · (L1 ◦ S)(w)− ξ1

=0.

Namely, the quadratic polynomial Q(x) = Q(xL,xK ,xU , xR,r) in (n − r + 1)-
variables xL,xK ,xU , xR,r has the property vanishing at S−1

1 (w) for any w ∈
W . Since a quadratic polynomial in (n − r + 1)-variables xL,xK ,xU , xR,r is
determined by N ′ := 1

2 (n− r+2)(n− r+3)-tuple of a point of Fn
q and its value,

in the following experiment, we confirm that, up to a constant factor, Q(x) can
be recover from the property vanishing at each S−1

1 (wi) for N
′ valid signatures

w1, . . . ,wN ′ ∈ W .
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Experiment 2. Set N ′ := 1
2 (n − r + 2)(n − r + 3). For N ′ valid signatures

w1, . . . ,wN ′ ∈ W , we experimented whether

FqQ(x) = {f ∈ Fq[xL,xK ,xU , xR,r] | deg f ≤ 2, f(S−1
1 (wi)) = 0, 1 ≤ i ≤ N ′}.

Here, FqQ(x) stands for the vector space generated by Q(x). We performed the
experiment on the same three parameters in Experiment 1, and confirmed that
the equality holds in all of 100 experiments for each parameter. The Experiment
2 lead us to the following lemma:

Lemma 2. Up to a constant factor, we can recover Q(x) by computing a quadratic
polynomial in xL,xK ,xU , xR,r such that it vanishes at S−1

1 (w1), . . . ,S−1
1 (wN ′).

Namely, Q(x) (up to a constant factor) can be recovered from N ′ valid signa-
tures.

Lemmas 1 and 2 imply the following:

Proposition 1. Set N := max{n+1, 1
2 (n− r+2)(n− r+3)}. We can recover

the following subspaces (a) and (b) of Fq[x] from N valid signatures:

(a) LS , (b) L0
S + Fq(L ◦ S)(x).

Proof. From Lemmas 1 and 2, we can recover L0
S and Q(x) (up to a constant

factor) fromN valid signatures. We can decompose the recoveredQ(x) as follows:

Q(x) = D1(x)D2(x) + c,

where D1, D2 are linear polynomials in x and c ∈ Fq. By the definition of Q(x),
we know that

{D1, D2} = {(L ◦ S ◦ S1)(xL,xK ,xU , xR,r), (L1 ◦ S ◦ S1)(xL,xK ,xU , xR,r)}.

Since LS = L0
S + Fq(L1 ◦ S)(x), we have{

LS ,L0
S + Fq(L ◦ S)(x)

}
=

{
L0
S + Fq(D1 ◦ S−1

1 )(x),L0
S + Fq(D2 ◦ S−1

1 )(x)
}
.

Thus we can recover two subspaces (a) and (b) from N valid signatures. □

From Proposition 1, we have two subspaces, i.e., LS and L0
S + Fq(L ◦ S)(x).

At this stage, we cannot determine which one is LS . However, it is not hard to
construct an attack on ELSA.

3.3 Equivalent Secret Key of ELSA and Forging a Signature

We construct an equivalent secret key of ELSA by deforming the central map F
as follows. Let φ : Fn

q → Fn
q be the invertible affine map such that

φ(x) = t (xL,xK ,xU , L1(x), . . . , Lr(x)) . (12)
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Put F ′ := F ◦ φ−1. Thus we have

P = T ◦ F ◦ S = T ◦ F ′ ◦ (φ ◦ S).

By a similar argument as [13, §3.2], it is easy to see that F ′(x) = t(F ′
1(x), . . . ,F ′

m(x))
can be written as

F ′
j(x) =

∑
1≤i≤r

xR,iR
′
ij(xL,xK) + Φ′

j(xL)

= tx


∗l 0 0 ∗
0 0k 0 ∗
0 0 0u 0
∗ ∗ 0 0r

x+ (linear polyn.), (1 ≤ j ≤ k), (13)

F ′
j(x) =

∑
1≤i≤r

xR,iR
′
ij(x) + Φ′

j(xL,xK)

= tx


∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

x+ (linear polyn.), (k + 1 ≤ j ≤ m), (14)

for linear polynomials R′
ij and quadratic polynomials Φ′

j .
We define an equivalent secret key of ELSA:

Definition 1. If two invertible affine maps T̄ : Fm
q → Fm

q and S̄ : Fn
q → Fn

q

satisfy the following conditions, then the pair (T̄ , S̄) is called an equivalent secret
key of the ELSA scheme.

1. P ′ = t(P ′
1, . . . ,P ′

m) := T̄ ◦ P ◦ S̄.

2. For 1 ≤ j ≤ k,

P ′
j(x) = P ′

j(xL,xK ,xR) =
∑

1≤i≤r

xR,i · (linear polyn. in xL,xK ,xR)

+ (quadratic polyn. in xL,xR).

3. For k + 1 ≤ j ≤ m,

P ′
j(x) =

∑
1≤i≤r

xR,i · (linear polyn. in x) + (quadratic polyn. in xL,xK ,xR).

From (13) and (14), it is enough to find a pair (T̄ , S̄) such that

(φ ◦ S ◦ S̄)(x) =


∗l 0 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

x, (T̄ ◦ T )(y) =

(
∗k 0
∗ ∗u

)
y,

where y = t(y1, . . . , ym).
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We can forge a signature w for each message m ∈ Fm
q in the complexity

O(n3) from the equivalent secret key (T̄ , S̄). First compute

m̄ = t(m̄1, . . . , m̄m) := T̄ (m).

Then, randomly choose yL ∈ Fl
q and yR ∈ Fr

q. After that, find a solution yK ∈ Fk
q

of the system of k linear equations in xK :

m̄j = P ′
j(yL,xK ,yR), (1 ≤ i ≤ k).

Next, find a solution yU ∈ Fu
q of the system of u linear equations in xU :

m̄j = P ′
j(yL,yK ,xU ,xR), (k + 1 ≤ j ≤ m)

and compute w = S̄(yL,yK ,yU ,yR), which is a signature of the message m.

3.4 How to Recover an Equivalent Secret Key

In §3.2 we showed how to recover the space LS in (8) from N valid signatures.
Here, we explain how to recover an equivalent secret key of the ELSA scheme
from the space LS .

In this subsection, we choose one subspace from (a) or (b) in Proposition
1, and assume the subspace is equal to LS in (8). Then we choose a basis
(L1, . . . ,Lr) of the space LS . We also assume the following, since the argu-
ment in this subsection needs only the quadratic part of the polynomials of the
central map F and public key P.

• All linear and quadratic polynomials Li, Rij , Φj in §2.2 are homogeneous,

• the linear polynomials L′
j(xL,xK ,xR) (1 ≤ j ≤ u) in §2.2 are zero, and

• the secret key T ,S are linear maps.

Now we explain how to recover an equivalent secret key from the basis
(L1, . . . ,Lr) of the space LS in (8).

Choose an invertible linear map S ′ : Fn
q → Fn

q such that

(Li ◦ S ′)(x) = xR,i, (1 ≤ i ≤ r). (15)

Since Li(x) is a linear combination of L1(S(x)), . . . , Lr(S(x)), we have

(φ ◦ S ◦ S ′)(x) =


∗l ∗ ∗ ∗
∗ ∗k ∗ ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

x.

We now denote the matrix above in the right-hand-side by

(
A B
0 C

)
with matrices

A,B,C of the sizes (l + k + u)× (l + k + u), (l + k + u)× r, r × r, respectively.
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Due to (13) and (14), we can easily check that P ′ = t(P ′
1, . . . ,P ′

m) := P ◦ S ′ =
T ◦ F ′ ◦ (φ ◦ S ◦ S ′) is given by

P ′
j(x) =

tx

 tA

∗l ∗ 0
∗ ∗k 0
0 0 0u

A
∗
∗
∗

∗ ∗ ∗ ∗r

x, (1 ≤ j ≤ m).

Thus, there exists an invertible (l + k + u)× (l + k + u) matrix S2 such that

P ′
j(

(
S2 0
0 Ir

)
x) = tx


∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

x, (1 ≤ j ≤ m) (16)

and it holds AS2 =

∗l ∗ 0
∗ ∗k 0
∗ ∗ ∗u

. This means that the linear map S ′′ : Fn
q → Fn

q

defined by S ′′(x) =

(
S2 0
0 Ir

)
x satisfies

(φ ◦ S ◦ S ′ ◦ S ′′)(x) =

(
AS2 B
0 C

)
x =


∗l ∗ 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

x. (17)

The following lemma follows immediately from this, (13) and (14).

Lemma 3. Set S̃ := S ◦ S ′ ◦ S ′′. We obtain

Fj(S̃(x)) = F ′
j(φ ◦ S̃(x)) =



tx


∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u 0

∗ ∗ 0 ∗r

x, (1 ≤ j ≤ k)

tx


∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

x, (k + 1 ≤ j ≤ m).

From this lemma, it is clear that if 1 ≤ j ≤ k, then the variables xU do not
appear in F ′

j(φ ◦ S̃(x)). Also if k+ 1 ≤ j ≤ m, then xU appear in F ′
j(φ ◦ S̃(x)).

From this fact, we have the following corollary:

Corollary 1. Let T̄ : Fm
q → Fm

q be an invertible linear map and define P ′′ =

(P ′′
1 , . . . ,P ′′

m) := T̄ ◦ P ◦ (S ′ ◦S ′′) = (T̄ ◦ T ) ◦F ′ ◦ (φ ◦ S̃). If the variables xU do
not appear in P ′′

j (x) for any 1 ≤ j ≤ k, then each P ′′
j (x) is a linear combination

of F ′
1(φ ◦ S̃(x)), . . . ,F ′

k(φ ◦ S̃(x)). Thus we have

T̄ ◦ T (y) =

(
∗k 0
∗ ∗u

)
y.



13

In (17), we now write φ ◦ S̃(x) = (φ ◦ S ◦ S ′ ◦ S ′′)(x) =

 A′ 0 ∗
0 ∗

∗ ∗
0 0

∗u ∗
0 ∗r

x with

the matrix A′ of the sizes (l + k) × (l + k). Since P ′′
j (x) (1 ≤ j ≤ k) is a linear

combination of F ′
1(φ ◦ S̃(x)), . . . ,F ′

k(φ ◦ S̃(x)), from (13), we can easily check
that

P ′′
j (x) =

tx


tA′

(
∗l 0
0 0k

)
A′ 0 ∗

0 ∗
0 0
∗ ∗

0u 0
0 ∗r

x, (1 ≤ j ≤ k).

Thus, there exists an invertible (l + k)× (l + k) matrix S3 such that

tS3
tA′

(
∗l 0
0 0k

)
A′S3 =

(
∗l 0
0 0k

)

and it holds A′S3 =

(
∗l 0
∗ ∗k

)
. If we define the linear map S ′′′ : Fn

q → Fn
q by

S ′′′(x) =

(
S3 0
0 Iu+r

)
x and S̄ := S ′ ◦ S ′′ ◦ S ′′′, then we have

(φ◦S◦S̄)(x) =

 A′ 0 ∗
0 ∗

∗ ∗
0 0

∗u ∗
0 ∗r

(
S3 0
0 Iu+r

)
x =

 A′S3
0 ∗
0 ∗

∗ ∗
0 0

∗u ∗
0 ∗r

 =


∗l 0 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

x.

From this and Corollary 1, the pair (T̄ , S̄) satisfy Definition 1 in §3.3. Thus we
recovered an equivalent secret key from the space LS in (8).

In Algorithm 1, we describe the detailed algorithm of our proposed attack in
this section. Note that our attack needs N = max{n, 1

2 (n − r + 2)(n − r + 3)}
valid signatures for ELSA with parameter (q, l, k, u, r, n,m).

4 Complexity Analysis and Experimental Results

This section analyzes the complexity of our attack on ELSA and describes an
experiment on it.

4.1 Complexity Analysis for Our Proposed Attack

We will use Algorithm 1 to analyze the complexity of our attack described in §3,

Proposition 2. The complexity of our proposed attack (Algorithm 1) is O(n2ω),
where 2 ≤ ω < 3 is the linear algebra constant.
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Algorithm 1 The detailed algorithm of our proposed attack in §3
Input: The public key P(x) = t(P1(x), . . . ,Pm(x)) ∈ Fq[x]

m of ELSA with pa-
rameter (q, l, k, u, r, n,m) and N valid signatures w1, . . . ,wN ∈ Fn

q , where N :=
max

{
n+ 1, 1

2
(n− r + 2)(n− r + 3)

}
.

Output: An equivalent secret key (T̄ , S̄) of Definition 1 in §3.3.
1: Compute a basis (L1(x), . . . ,Lr−1(x)) of the r − 1 dimensional vector space over

Fq:
{f(x) ∈ Fq[x] | deg f ≤ 1, f(wi) = 0, i = 1, . . . , n+ 1} .

Choose an invertible affine map S1 : Fn
q → Fn

q such that

(Li ◦ S1)(x) = xR,i, (1 ≤ i ≤ r − 1).

2: Choose a non-zero polynomial Q(x) of the one-dimensional vector space:{
f ∈ Fq[xL,xK ,xU , xR,r]

∣∣ deg f ≤ 2, f(S−1
1 (wi)) = 0, 1 ≤ i ≤ N

}
.

Decompose Q(x) as follows:

Q(x) = D1(xL,xK ,xU , xR,r)D2(xL,xK ,xU , xR,r) + c,

where D1 and D2 are linear polynomials in xL,xK ,xU , and xR,r and c ∈ Fq. Set

D(x) := D1(xL,xK ,xU , xR,r). (18)

Choose an invertible affine map S ′ : Fn
q → Fn

q such that

(Li ◦ S ′)(x) = xR,i, (1 ≤ i ≤ r − 1), (D ◦ S−1
1 ◦ S ′)(x) = xR,r.

3: Compute the coefficient matrix P̃j of size l + k + u associated with the quadratic
polynomial (Pj ◦ S′)(xL,xK ,xU ) for 1 ≤ j ≤ m. Find an invertible matrix S2 of

size l + k + u such that tS2P̃jS2 =

(
∗l+k 0
0 0u

)
for 1 ≤ j ≤ m. If there is no such

matrix, then return to Step 2 and reset (18)

D(x) := D2(xL,xK ,xU , xR,r).

Let S ′′ : Fn
q → Fn

q be the invertible linear map such that S ′′(x) =

(
S2 0
0 Ir

)
x.

4: Compute an invertible linear map T̄ : Fm
q → Fm

q such that the variables xU do not
appear in P ′′

j (x) for any 1 ≤ j ≤ k, where P ′′ = (P ′′
1 , . . . ,P ′′

m) := T̄ ◦ P ◦ (S ′ ◦ S ′′).
Namely, P ′′

j (x) = P ′′
j (xL,xK ,xR) for 1 ≤ j ≤ k.

5: Compute the coefficient matrix P̃ ′′
j of size l + k associated with P ′′

j (xL,xK) for
1 ≤ j ≤ k. Find an invertible matrix S3 of size l + k such that for 1 ≤ j ≤ m,

tS3P̃
′′
j S3 =

(
∗l 0
0 0k

)
. Let S ′′′ : Fn

q → Fn
q be the invertible linear map such that

S ′′′(x) =

(
S3 0
0 Iu+r

)
x. Finally compute S̄ := S ′ ◦ S ′′ ◦ S ′′′.
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Proof. In Step 1, we solve a linear system of size n+ 1 to compute

{f(x) ∈ Fq[x] | deg f ≤ 1, f(wi) = 0, i = 1, . . . , n+ 1} .

This complexity is O(nω). Similarly, in Step 2, we solve a linear system of size
N . Thus the complexity is O(Nω) = O(n2ω). In Step 3, we must compute the
intersection of the kernel of P̃i (1 ≤ i ≤ m) of size l + k + u. This complexity is
O((l+k+u)ω+1) = O(nω+1). In Step 4, we solve a linear system of size m (< n).
In Step 5, we compute the intersection of the kernel of P̃ ′

i (1 ≤ i ≤ m) of size l+k.
This complexity is O((l + k)ω+1) = O(nω+1). Therefore, the complexity of our
attack is O(n2ω). □

4.2 Experimental Results of Our Proposed Attack

The experimental results of Algorithm 1 in §3 are presented in Table 1. All the
experiments were performed using Magma V2.21-6 [3] running on a 1.6 GHz

Intel
R⃝

CoreTM i5 processor with 8GB of memory.
We experimented with three different parameters: Example-1, Example-2,

and ELSA-128. ELSA-128 is the 128-bit security parameter in §2.4. For each
parameter, we measured the time taken to generate an equivalent secret key
with our algorithm and to forge a signature using the equivalent secret key.
Table 1 presents the average times of 100 experiments for each parameter. Here,
N := max{n+1, 1

2 (n−r+2)(n−r+3)} is the number of valid signatures needed
to recover an equivalent secret key of ELSA with parameter (q, l, k, u, r, n,m).

Table 1. Experimental results (second) of our attack against ELSA with parameter
(q, l, k, u, r, n,m) and N = max{n+ 1, 1

2
(n− r + 2)(n− r + 3)} is the number of valid

signatures.

Parameters (q, l, k, u, r, n,m) N Algorithm 1 forging a signature

Example-1 (28, 4, 15, 5, 20, 44, 20) 351 7.928 0.021

Example-2 (28, 5, 20, 10, 25, 60, 30) 703 40.19 0.069

ELSA-128 (28, 6, 28, 15, 30, 79, 43) 1326 176.68 0.101

For example, the number of valid signatures in ELSA-128 needed for our
attack to succeed is 1326. It is possible to generate an equivalent secret key in
about 176.68 seconds and forge a signature in about 0.101 seconds.

5 Conclusion

We studied the security of the post-quantum signature scheme ELSA, which
is an efficient variant of Rainbow. In order to accelerate signature generation,
ELSA uses special hidden quadratic equations. We proved such hidden quadratic
equations can be recovered by using valid signatures, and obtained an equiva-
lent secret key of ELSA from the hidden quadratic equations. According to our
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experiments conducted using Magma on a standard personal computer, it takes
about 177 seconds to recover an equivalent secret key from 1326 valid signatures
for the claimed 128-bit security parameter of ELSA.

Finally, we stress that the original Rainbow has no hidden quadratic equa-
tions discussed in this paper, and thus it is infeasible to apply our attack to
Rainbow.
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