
c© IACR 2018. This is a revision of the article Towards Bidirectional Ratcheted Key Exchange published
by Springer-Verlag in the proceedings of CRYPTO 2018. This is the full version. It is accessible as article
2018/296 in the IACR eprint archive.

Asynchronous ratcheted key exchange

Bertram Poettering1 and Paul Rösler2

1 Information Security Group, Royal Holloway, University of London
bertram.poettering@rhul.ac.uk

2 Horst-Görtz Institute for IT Security,
Chair for Network and Data Security, Ruhr-University Bochum

paul.roesler@rub.de

June 8, 2018

Abstract. Ratcheted key exchange (RKE) is a cryptographic technique used in instant messaging
systems like Signal and the WhatsApp messenger for attaining strong security in the face of state
exposure attacks. RKE received academic attention in the recent works of Cohn-Gordon et al. (Eu-
roS&P 2017) and Bellare et al. (CRYPTO 2017). While the former is analytical in the sense that
it aims primarily at assessing the security that one particular protocol does achieve (which might
be weaker than the notion that it should achieve), the authors of the latter develop and instantiate
a notion of security from scratch, independently of existing implementations. Unfortunately, how-
ever, their model is quite restricted, e.g. for considering only unidirectional communication and the
exposure of only one of the two parties.

In this article we resolve the limitations of prior work by developing alternative security defini-
tions, for unidirectional RKE as well as for RKE where both parties contribute. We follow a purist
approach, aiming at finding strong yet convincing notions that cover a realistic communication
model with fully concurrent operation of both participants. We further propose secure instantia-
tions (as the protocols analyzed or proposed by Cohn-Gordon et al. and Bellare et al. turn out to
be weak in our models). While our scheme for the unidirectional case builds on a generic KEM
as the main building block (differently to prior work that requires explicitly Diffie–Hellman), our
schemes for bidirectional RKE require a stronger, HIBE-like component.
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1 Introduction

Asynchronous two-party communication. Assume an online chat situation where two
parties, Alice and Bob, communicate by exchanging messages over the Internet (e.g., using a
TCP/IP based protocol). Their communication shall follow the structure of a human conversa-
tion in the sense that participants send messages when they feel they want to contribute to the
discussion, as opposed to in lockstep, i.e., when it is ‘their turn’. In particular, in the considered
asynchronous setting, Alice and Bob may send messages concurrently, and they also may re-
ceive them concurrently after a small delay introduced by the network. With other words, their
messages may ‘cross’ on the wire.

As Alice and Bob are concerned with adversaries attacking their conversation, they deploy
cryptographic methods. Standard security goals in this setting are the preservation of confiden-
tiality and integrity of exchanged messages. These can be achieved, for instance, by combining
an encryption primitive, a message authentication code, and transmission counters, where the
latter serve for identifying replay and reordering attacks [1,18]. As the mentioned cryptographic
primitives are based on symmetric keys, Alice and Bob typically engage in an interactive key
agreement protocol prior to starting their conversation.

Forward secrecy. In this classic first-key-agreement-then-symmetric-protocol setup for two-
party chats, the advantage of investing in an interactive key agreement session goes beyond
fulfilling the basic need of the symmetric protocol (the allocation of shared key material):
If the key agreement involves a Diffie–Hellman key exchange (DHKE), and this is nowadays
the default, then the communication between Alice and Bob may be protected with forward
secrecy. The latter means that even if the adversary finds a way, at a point in time after Alice
and Bob finish their conversation, to obtain a copy of the long-term secrets they used during
key establishment (signature keys, passwords, etc.), then this cannot be exploited to reveal
their communication contents. Most current designs of cryptographic chat protocols consider
forward secrecy an indispensable design goal [26]. The reason is that inadvertently disclosing
long-term secrets is often more likely to happen than expected: system intruders might steal
the keys, thieves might extract them from stolen Smartphones, law enforcement agencies might
lawfully coerce users to reveal their keys, backup software might unmindfully upload a copy
onto network storage, and so on.

Security with exposed state. Modern chat protocols also aim at protecting users in case
of a different kind of attack: the skimming of the session state of an ongoing conversation [26].1
Note that the session state information is orthogonal to the long-term secrets discussed above
and, intuitively, an artifact of exclusively the second (symmetric) phase of communication. The
necessity of being able to recover from session state leakage is usually motivated with two
observations: messaging sessions are often long-lived, e.g., kept alive for weeks or months once
established, so that state exposures are more damaging, more easily provoked, and more likely
to happen by accident; and leaking state information is sometimes impossible to defend against
(state information held in computer memory might eventually be swapped to disk and stolen
from there, and in cloud computing it is standard to move virtual machine memory images
around the world from one host to the other).

Ratcheting. Modern messaging protocols are designed with the goal of providing security even
in the face of adversaries that perform the two types of attack discussed above (compromise of
long-term secrets and/or session states) [26]. One technique used towards achieving this is via

1 In this article, we consider the terms state reveal, state compromise, state corruption, and state exposure
synonyms.
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‘hash chains’ where the symmetric key material contained in the session state is replaced, after
each use, by a new value derived from the old value by applying some one-way function. This
method mainly targets forward security and has a long tradition in cryptography (e.g., is used
in [25] in the context of secure logging). A second technique is to let participants routinely redo
a DHKE and mix the newly established keys into the session state: As part of every outgoing
message, a fresh gx value is combined with prior and later values gy contributed by the peer,
with the goal of refreshing the session state as often as possible. This was introduced with the
off-the-record (OTR) messaging protocol from [20,4] and promises auto-healing after a state
compromise, at least if the DHKE exponents are derived from fresh randomness gathered from
an uncorrupted source after the state reveal took place. Of course the two methods are not
mutually exclusive but can be combined. We say that a messaging protocol employs a ‘key
ratchet’ (this name can be traced back to [15]) if it uses the described or similar techniques for
achieving forward secrecy and security under state exposure attacks.

Ratcheting as a primitive. While many authors associate the word ratcheting with a set
of techniques deployed with the aim of achieving certain (typically not formally defined) se-
curity goals, Bellare et al. recently pursued a different approach by proposing ratcheted key
exchange (RKE) as a cryptographic primitive with clearly defined syntax, functionality, and
security properties [2]. This primitive establishes a sequence of session keys that allows for the
construction of higher-level protocols, where instant messaging is just one example.2 Building a
messaging protocol on top of RKE offers clear advantages over using ad-hoc designs (as all mes-
saging apps we are aware of do): the modularity allows for easier cryptanalysis, the substitution
of constructions by alternatives, etc. We note, however, that the RKE formalization considered
in [2] is too limited to serve directly as a building block for secure messaging. In particular,
the syntactical framework requires all communication to be unidirectional (in the Alice-to-Bob
direction), and the security model counterintuitively assumes that exclusively Alice’s state can
be exposed.

We give more details on the results of [2]. In the proposed protocol, Alice’s state has the
form (i,K, Y ), where integer i counts her send operations, K is a key for a PRF F, and Y = gy

is a public key of Bob. Bob’s state has the form (i,K, y). When Alice performs a send operation,
she samples a fresh randomness x, computes µ← F(K, gx) and (k,K ′)← H(i, µ, gx, Y x) where
F is a PRF and H is a random oracle, and outputs k as the established session key and (gx, µ)
as a ciphertext that is sent to Bob. (Value µ serves as a message authentication code for gx.)
The next round’s PRF key is K ′, i.e., Alice’s new state is (i+1,K ′, Y ). In this protocol, observe
that F and H together implement a ‘hash chain’ and lead to forward secrecy, while the gx, Y x

inputs to the random oracle can be seen as implementing one DHKE per transmission (where one
exponent is static). Turning to the proposed RKE security model, while the corresponding game
offers an oracle for compromising Alice’s state, there is no option for similarly exposing Bob.
If the model had a corresponding oracle, the protocol would actually not be secure. Indeed,
the following (fully passive) attack exploits that Alice ‘encrypts’ to always the same key Y
of Bob: The adversary first reveals Alice’s session state, learning (i,K, Y ); it then makes Alice
invoke her send routine a couple of times and delivers the respective ciphertexts to Bob’s receive
routine in unmodified form; in the final step the adversary exposes Bob and recovers his past
session keys using the revealed exponent y. Note that in a pure RKE sense these session keys

2 Note that RKE, despite its name, is a tool to be used in the ‘symmetric phase’ that follows the preliminary
key agreement. In [2], and also in this article, the latter is abstracted away into a dedicated state initialization
algorithm (or: protocol).
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should remain unknown to the adversary: Alice should have recovered from the state exposure,
and forward secrecy should have made revealing Bob’s state useless.3

Contributions. We follow in the footsteps of [2] and study RKE as a general cryptographic
primitive. However, we significantly improve on their results, in three independent directions:

Firstly, we extend the strictly unidirectional RKE concept of Bellare et al. towards bidirec-
tional communication. In more detail, if we refer to the setting of [2] as URKE (unidirectional
RKE), we introduce SRKE (sesquidirectional4 RKE) and BRKE (bidirectional RKE). In SRKE,
while both Alice and Bob can send ciphertexts to the respective peer, only the ciphertexts sent
from Alice to Bob establish session keys. Those sent by Bob have no direct functionality but
may help him healing from state exposure. Also in BRKE both parties send ciphertexts, but
here the situation is symmetric in that all ciphertexts establish keys (plus allow for healing
from state exposure). As fully bidirectional RKE is the ultimate goal, URKE and SRKE intro-
duce the necessary building blocks—both regarding the security model and the instantiation.
Consequently we introduce them one after another.

Secondly, we propose an improved security model for URKE, and introduce security models
for SRKE and BRKE. Our bidirectional models assume the likely only practical communication
setting for messaging protocols, namely the one in which the operations of both parties can
happen concurrently (in contrast to, say, according to a ping-pong pattern). We develop our
models following a purist approach: We start with giving the adversary the full set of options
to undertake its attack (including state exposures of both parties), and then exclude, one by
one, those configurations that unavoidably lead to a ‘trivial win’ (an example for the latter
is if the adversary first compromises Bob’s state and then correctly ‘guesses’ the next session
key he recovers from an incoming ciphertext). This approach leads to strong and convincing
security models (and it becomes quite challenging to actually meet them). We note that the (as
we argued) insecure protocol from [2] is considered secure in the model of [2] because the latter
was not designed with our strategy in mind, ultimately missing some attacks.

Thirdly, we give provably secure constructions of URKE, SRKE, and BRKE. While all
prior RKE protocol proposals, including the one from [2], are explicitly based on DHKE as a
low-level tool, our constructions use generic primitives like KEMs, MACs, one-time signatures,
and random oracles. The increased level of abstraction not only clarifies on the role that these
components play in the constructions, it also increases the freedom when picking acceptable
hardness assumptions.

Further details on our URKE construction. In brief, our (unidirectional) URKE scheme
combines a hash chain and KEM encapsulations to achieve both forward secrecy and recover-
ability from state exposures. The crucial difference to the protocol from [2] is that in our scheme
the public key of Bob is changed after each use. Concretely, but omitting many details, the state
information of Alice is (i,K, Y ) as in [2] (but where Y is the current public key of Bob), for
sending Alice freshly encapsulates a key k∗ to Y , then computes (k,K ′, k′) ← H(i,K, Y, k∗)
using a random oracle H, and finally uses auxiliary key k′ to update the old public key Y to a
new public key Y that is to be used in her next sending operation. Bob does correspondingly,
updating his secret key with each incoming ciphertext. Note that the attack against [2] that
we sketched above does not work against this protocol (the adversary would obtain a useless
decryption key when revealing Bob’s state).

3 A protocol that achieves security in the described setting is developed in this paper; the central idea behind
our construction is that Bob’s key pair (y, Y ) does not stay fixed but is updated each time a ciphertext is
processed.

4 Recall that ‘sesqui’ is Latin for one-and-a-half.
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Further details on our SRKE construction. Recall that, in SRKE, Bob can send update
ciphertexts to Alice with the idea that this will help him to recover from state exposures. Our
protocol algorithms can handle fully concurrent operation of the two participants (in particular,
ciphertexts may ‘cross’ on the wire). This unfortunately adds, as the algorithms need to handle
multiple ‘epochs’ at the same time, considerably to their complexity. Interestingly, the more
involved communication setting is also reflected in stronger primitives that we require for our
construction: Our SRKE construction builds on a special KEM type that supports so-called key
updates (also the latter primitive is constructed in this paper, from HIBE).

In a nutshell, in our SRKE construction, Bob heals from state exposures by generating a
fresh (updatable) KEM key pair every now and then, and communicating the public key to
Alice. Alice uses the key update functionality to ‘fast-forward’ these keys into a current state
by making them aware of ciphertexts that were exchanged after the keys were sent (by Bob),
but before they were received (by Alice). In her following sending operation, Alice encapsulates
to a mix of old and new public keys.

Further details on our BRKE construction. We have two BRKE constructions. The
first works via the amalgamation of two generic SRKE instances, deployed in reverse directions.
To reach full security, the instances need to be carefully tied together, which we do via one-time
signatures (akin to the CHK transform [16,5]). The second construction is less generic, namely
by combining and interleaving the building blocks of our SRKE scheme in the right way. The
advantage of the second scheme is that its ciphertexts are shorter (it saves precisely the one-time
signatures).

Introducing SKRE as a natural building block for BRKE is consequently of particular value.

Further related work. The idea of using ‘hash chains’ for achieving forward security of
symmetric cryptographic primitives has been around for quite some time. For instance, [24,25]
use this technique to protect the integrity of audit logs. See the overview paper [13] for further
constructions and applications.The first formal treatment we are aware of is [3]. A messaging
protocol that uses this technique is the (original) Silent Circle Instant Messaging Protocol [19].

The idea of mixing into the user state of messaging protocols additional key material that is
continuously established with asymmetric techniques (in particular: DHKE) first appeared in the
off-the-record (OTR) messaging protocol from [20,4]. Subsequently, the technique appeared in
many communication protocols specifically designed to be privacy-friendly, including the ZRTP
telephony protocol [27] and the messaging protocol Double Ratchet Algorithm [17] (formerly
known as Axolotl). The latter, or close variants thereof, are used by WhatsApp, the Facebook
Messenger, and Signal. In Appendix G we study these protocols more closely, proposing for each
of them an attack that shows that it is not secure in our models.

Widely used messaging protocols were recently analyzed by Cohn-Gordon et al. [6] and
Rösler et al. [23]. In particular, [6] contributes an analysis of the Signal messaging protocol [17] by
developing a “model with adversarial queries and freshness conditions that capture the security
properties intended by Signal”. While the work does propose a formal security model, for being
geared towards confirming the security of one particular protocol, it may not necessarily serve
as a reference notion for RKE.5

Academic work in a related field was conducted by [7] who study post-compromise security
in (classic) key exchange. Here, security shall be achieved even for sessions established after a
full compromise of user secrets. This necessarily requires mixing user state information with
key material that is newly established via asymmetric techniques, and is thus related to RKE.

5 In fact it defines weaker security than would be natural for RKE. We elaborate on this in Appendix G.
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However, we note the functionalities and models of (classic) key exchange and RKE are fun-
damentally different: The former generally considers multiple participants who have long-term
keys and who can run multiple sessions, with the same or different peers, in parallel, while par-
ticipants of the latter have no long-term keys at all, and thus any two sessions are completely
independent. One can finally compare our work with that of [10] who consider (classic) key
exchange that outputs not one but a series of keys. While also their model assumes users with
long-term keys (and thus dependent sessions), a common denominator with our work is that
keys established in a single session are required to be pairwise independent.

Organization. In Section 2 we fix notation and describe the building blocks of our RKE con-
structions: MACs, KEMs (but with a non-standard syntax), one-time signatures. In Section 3
we develop the URKE syntax and a suitable security model, and present a corresponding con-
struction in Section 4. In Section 5 and 6 we do the same for SRKE and in Sections 7 and 8 for
BRKE respectively.

2 Preliminaries

2.1 Notation

If A is a (deterministic or randomized) algorithm we write A(x) for an invocation of A on
input x. If A is randomized, we write A(x) ⇒ y for the event that an invocation results in
value y being the output. We further write [A(x)] := {y : Pr[A(x) ⇒ y] > 0} for the effective
range of A(x).

If a ≤ b are integers, we write [a .. b] for the set {a, . . . , b} and we write [ a, ... ] for the set
{x ∈ N : a ≤ x}. We also give symbolic names to intervals and their boundaries (smallest
and largest elements): For an interval I = [a .. b] we write I ` for a and I a for b. We denote
the Boolean constants True and False with T and F, respectively. We use Iverson brackets to
convert Boolean values into bit values: [T] = 1 and [F] = 0. To compactly write if-then-else
expressions we use the ternary operator known from the C programming language: If C is a
Boolean condition and e1, e2 are arbitrary expressions, the composed expression “C ? e1 : e2”
evaluates to e1 if C = T and to e2 if C = F.

When we refer to a list or sequence we mean a (row) vector that can hold arbitrary elements,
where the empty list is denoted with ε and lists that hold precisely one element are notationally
identified with the element itself. A list can be appended to another list with the (associative)
concatenation operator ‖, and we denote the is-prefix-of relation with �. For instance, for lists
L1 = ε and L2 = a and L3 = b ‖ c we have L1 ‖L2 ‖L3 = a ‖ b ‖ c and L1 � L2 � L3. Note that
if the elements held by two lists are strings (over some alphabet) then the concatenation of the
lists does not result in the strings being concatenated; in particular, "ab" ‖ "c" 6= "abc". (We
do not use string concatenation in this paper, so ambiguities are naturally avoided.)

Program code. We describe algorithms and security experiments using (pseudo-)code. In such
code we distinguish the following operators for assigning values to variables: We use symbol
‘←’ when the assigned value results from a constant expression (including the output of a
deterministic algorithm), and we write ‘←$’ when the value is either sampled uniformly at
random from a finite set or is the output of a randomized algorithm. If we assign a value that
is a tuple but we are actually not interested in some of its components, we use symbol ‘ ’
to mark positions that shall be ignored. For instance, ( , b, ) ← (A,B,C) is equivalent to
b ← B. If X,Y are sets we write X ∪← Y shorthand for X ← X ∪ Y , and if L1, L2 are lists
we write L1

q← L2 shorthand for L1 ← L1 ‖L2. We use bracket notation to denote associative
arrays (a data structure that implements a dictionary). Associative arrays can be indexed with
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elements from arbitrary sets. For instance, for an associative array A the instruction A[7]← 3
assigns value 3 to index 7, and the expression A[abc] = 5 tests whether the value at index abc
is equal to 5. We write A[·] ← x to initialize the associative array A by assigning the default
value x to all possible indices. For an integer a we write A[..., a] ← x as a shortcut for ‘For all
a′ ≤ a: A[a′]← x ’.

Games. Our security definitions are based on games played between a challenger and an ad-
versary. Such games are expressed using program code and terminate when the special ‘Stop’
instruction is executed; the argument of the latter is the outcome of the game. For instance, we
write Pr[G ⇒ 1] for the probability that game G terminates by running into a ‘Stop with 1’
instruction. For a Boolean condition C, in games we write ‘Require C’ shorthand for ‘If ¬C:
Stop with 0’ and we write ‘Reward C’ shorthand for ‘If C: Stop with 1’. The two instructions
are used for appraising the actions of the adversary: Intuitively, if the adversary behaves such
that a required condition is violated then the adversary definitely ‘loses’ the game, and if it
behaves such that a rewarded condition is met then it definitely ‘wins’.

We note there are different established ways to define security games related to key exchange.
Some works give very compact definitions (in [2] a ratcheting security notion is compressed,
without losing detail, into a single figure), while other works specify game families, parameterized
for instance with separate freshnesh predicates (in [6], security notions for ratcheting are divided
into the game description and a description of the freshness predicate). We follow the former
approach and give a discussion on the modeling of ratcheting in Appendix F.

Scheme specifications. We also describe the algorithms of cryptographic schemes using pro-
gram code. Some algorithms may abort or fail, indicating this by outputting the special sym-
bol ⊥. This is implicitly assumed to happen whenever an encoded data structure provided by
the adversary is to be parsed into components but the encoding turns out to be invalid. A more
explicit way of aborting is via the ‘Require C’ shortcut which, in algorithm specifications, stands
for ‘If ¬C: Return ⊥’. Also this instruction is typically used to assert that certain conditions
hold for user-provided input.

2.2 Cryptographic primitives

Our RKE constructions use MACs, one-time signature schemes, and KEMs as building blocks.
As the requirements on the MACs and one-time signatures are absolutely standard, we provide
only very reduced definitions here and defer the full specifications to Appendix E.1 and E.3.
For KEMs, however, we assume a specific non-standard syntax, functionality, and notion of
security; the details can be found below.

MACs and One-Time Signatures. We denote the key space of a MAC M with K, and assume
that the tag and verification algorithms are called tag and vfyM, respectively. Their syntax will
always be clear from the context. As a security notion we define strong unforgeability, and
the corresponding advantage of an adversary A we denote with Advsuf

M (A). For a one-time
signature scheme S we assume that the key generation algorithm, the signing algorithm, and
the verification algorithm are called genS and sgn and vfyS, respectively. We assume that vfyS
outputs values T or F to indicate its decision, and that the remaining syntax will again be clear
from the context. As a security notion we define strong unforgeability, and the corresponding
advantage of an adversary A we denote with Advsuf

S (A).

Key encapsulation mechanisms. We consider a type of KEM where key pairs are generated
by first randomly sampling the secret key and then deterministically deriving the public key from
it. While this syntax is non-standard, note that it can be assumed without loss of generality:
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One can always understand the coins used for (randomized) key generation of a classic KEM
as the secret key in our sense.

A key encapsulation mechanism (KEM) for a finite session-key space K is a triple K =
(genK, enc, dec) of algorithms together with a samplable secret-key space SK, a public-key
space PK, and a ciphertext space C. In its regular form the public-key generation algorithm genK
is deterministic, takes a secret key sk ∈ SK, and outputs a public key pk ∈ PK. We also use
a shorthand form, writing genK for the randomized procedure of first picking sk ←$ SK, then
deriving pk ← genK(sk), and finally outputting the pair (sk, pk). Two shortcut notations for key
generation are thus

SK → genK →$ PK genK → SK × PK .

The randomized encapsulation algorithm enc takes a public key pk ∈ PK and outputs a session
key k ∈ K and a ciphertext c ∈ C, and the deterministic decapsulation algorithm dec takes a
secret key sk ∈ SK and a ciphertext c ∈ C, and outputs either a session key k ∈ K or the special
symbol ⊥ /∈ K to indicate rejection. Shortcut notations for encapsulation and decapsulation are
thus

PK → enc→$ K × C SK × C → dec→ K / ⊥ .

For correctness we require that for all (sk, pk) ∈ [genK] and (k, c) ∈ [enc(pk)] we have dec(sk, c) =
k.

As a security property for KEMs we formalize a multi-receiver6/multi-challenge version of
one-way security. In this notion, the adversary obtains challenge ciphertexts and has to recover
any of the encapsulated keys. The adversary is supported by a key-checking oracle that, for a
provided pair of ciphertext and (candidate) session key, tells whether the ciphertext decapsulates
to the indicated key. The adversary is also allowed to establish new receivers, or to expose them,
meaning to learn their secret keys. The details of this notion are in game OW in Figure 21 (in
Appendix E.2, where we also give further details on the notion). For a KEM K, we associate
with any adversary A its one-way advantage Advow

K (A) := Pr[OW(A) ⇒ 1]. Intuitively, the
KEM is secure if all practical adversaries have a negligible advantage.

2.3 Key-updatable key encapsulation mechanisms

We introduce a type of KEM that we refer to as key-updatable. Like a regular KEM the new
primitive establishes secure session keys, but in addition a dedicated key-update algorithm
derives new (‘updated’) keys from old ones: Also taking an auxiliary input into account that we
call the associated data, a secret key is updated to a new secret key, or a public key is updated
to a new public key. A KEM key pair remains functional under such updates, meaning that
session keys encapsulated for the public key can be recovered using the secret key if both keys
are updated compatibly, i.e., with matching associated data. Concerning security we require a
kind of forward secrecy: Briefly, session keys encapsulated to a (potentially updated) public key
shall remain secure even if the adversary gets hold of any incompatibly updated version of the
secret key.

A key-updatable key encapsulation mechanism (kuKEM) for a finite session-key space K is a
quadruple K = (genK, enc,dec,up) of algorithms together with a samplable secret-key space SK,
a public-key space PK, a ciphertext space C, and an associated-data space AD. Algorithms
genK, enc,dec are as for regular KEMs. The key-update algorithm up is deterministic and comes
in two shapes: either it takes a secret key sk ∈ SK and associated data ad ∈ AD and outputs an
updated secret key sk ′ ∈ SK, or it takes a public key pk ∈ PK and associated data ad ∈ AD and

6 Other works refer to the same entity as a user, i.e., consider multi-user security.
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outputs an updated public key pk ′ ∈ PK. Shortcut notations for the key update algorithm(s)
are thus

SK ×AD → up→ SK PK ×AD → up→ PK .

For correctness we require that for all (sk0, pk0) ∈ [genK] and ad1, . . . , adn ∈ AD, if we let
ski = up(ski−1, adi) and pki = up(pki−1, adi) for all i, then for all (k, c) ∈ [enc(pkn)] we have
dec(skn, c) = k.

As a security property for kuKEMs we formalize a multi-receiver/multi-challenge version of
one-way security that also reflects forward security in case of secret-key updates. The details
of the notion are in game KUOW in Figure 1. For a key-updatable KEM K, we associate with
any adversary A its one-way advantage Advkuow

K (A) := Pr[KUOW(A) ⇒ 1]. Intuitively, the
kuKEM is secure if all practical adversaries have a negligible advantage.

We extend our definition for regular KEMs by allowing the adversary to also update the
public keys held by senders (encryptors) and the secret keys held by receivers, such that if
a sender performs s-many updates using associated data from the list AS = ad1 ‖ . . . ‖ ads, a
receiver performs r-many updates using associated data from the list AR = ad ′1 ‖ . . . ‖ ad ′r, and
the receiver is then exposed, then session keys encapsulated by the sender for the receiver remain
hidden from the adversary if keys were updated inconsistently (with conflicting associated data,
or too often on the receiver side), i.e., technically, if AR � AS (AR is a not a prefix of AS).

Game KUOW(A)
00 n← 0
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (skn, pkn)←$ genK
05 CKn[·]← ⊥; XPn ← ∅
06 ASn ← ε; ARn ← ε
07 SKn[·]← ⊥
08 SKn[ARn]← skn

09 Return pkn

Oracle UpS(i, ad)
10 Require 1 ≤ i ≤ n
11 pki ← up(pki, ad)
12 ASi

q← ad
13 Return pki

Oracle Enc(i)
14 Require 1 ≤ i ≤ n
15 (k, c)←$ enc(pki)
16 CKi[ASi, c]← k
17 Return c

Oracle Solve(i, A, c, k)
18 Require 1 ≤ i ≤ n
19 Require A /∈ XPi

20 Require CKi[A, c] 6= ⊥
21 Reward k = CKi[A, c]
22 Return

Oracle UpR(i, ad)
23 Require 1 ≤ i ≤ n
24 ski ← up(ski, ad)
25 ARi

q← ad
26 SK i[ARi]← ski

27 Return

Oracle Check(i, A, c, k)
28 Require 1 ≤ i ≤ n
29 Require SK i[A] 6= ⊥
30 k′ ← dec(SK i[A], c)
31 Return [k′ = k]

Oracle Expose(i)
32 Require 1 ≤ i ≤ n
33 XPi

∪← {A ∈ AD∗ : ARi � A}
34 Return ski

Fig. 1: Security experiment KUOW, modeling the one-way security of a key-updatable KEM in a multi-
receiver/multi-challenge setting. Oracles UpS and UpR update senders and receivers, respectively, and for each
receiver i the lists ASi and ARi record the associated data used for updating the corresponding sender and
receiver keys, respectively. See Figure 21 for an explanation of the other game variables. The instruction in
line 33 adjoins to set XPi the set of all ARi-prefixed sequences of associated data.

Constructing key-updatable KEMs. Observe that kuKEMs are related to hierarchical
identity-based encryption (HIBE, [11]): Intuitively, updating a secret key using associated
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data ad in the kuKEM world corresponds in the HIBE world with extracting the decryp-
tion/delegation key for the next-lower hierarchy level, using partial identity ad. Indeed, a
kuKEM scheme is immediately constructed from a generic HIBE, with only cosmetic changes
necessary when annotating the algorithms; a construction is provided in Figure 2. Also the
security reduction from kuKEM to HIBE is immediate. For concreteness, in Figure 3 we fur-
ther detail the algorithm specifications for the case when our generic kuKEM construction is
instantiated with the (pairing-based) Gentry–Silverberg HIBE [11]. Other HIBE designs, e.g.,
lattice-based ones, can be used to instantiate our construction as easily.

Proc genK
00 (sk, pk)←$ ID.gen
01 ad0 ← ""
02 sk ←$ ID.extract(sk, ad0)
03 A← ad0; pk ← (pk, A)
04 Return (sk, pk)

Proc up(pk, ad)
05 (pk′, A)← pk
06 pk ← (pk′, A ‖ ad)
07 Return pk

Proc enc(pk)
08 (pk′, A)← pk
09 (k, c)←$ ID.enc(pk′, A)
10 Return (k, c)

Proc dec(sk, c)
11 k ← ID.dec(sk, c)
12 Return k

Proc up(sk, ad)
13 sk ← ID.extract(sk, ad)
14 Return sk

Fig. 2: Construction of a key-updatable KEM from a generic HIBE. The extraction operation during key gen-
eration in line 02 is necessary as some HIBEs (for instance the Gentry–Silverberg scheme [11]) do not support
encapsulating to the root node of the hierarchy; our construction thus does the first descent during key setup.

While HIBE schemes generically imply kuKEMs, it is unclear whether the same holds in the
reverse direction, i.e., whether HIBEs can be constructed from kuKEMs. The crucial observation
is that kuKEMs support only one strand of secret-key updates (recall our KUOW notion says
nothing about what happens when a receiver duplicates its secret key and updates it twice,
with different associated data), while HIBE schemes support at least two subidentities per node.
Indeed, a (separating) example of a secure kuKEM that results in a weak HIBE when converted
in the intuitive way is easily found.7 Our conclusion is that while all kuKEM constructions
we are aware of require HIBE and thus practically undesirable building blocks like pairings
or lattices, kuKEMs seem to be a strictly weaker primitive than HIBE, so it is more likely
to find constructions in the bare DLP setting. We leave it as an open problem to find such a
construction.

3 Unidirectionally ratcheted key exchange (URKE)

We give a definition of unidirectional RKE and its security. While, in principle, our syntac-
tical definition is in line with the one from [2], our naming convention deviates significantly
from the latter for the sake of a more clear distinction between (session) keys, (session) states,
and ciphertexts8 and we stress that, looking ahead, our security notion for URKE is strictly
stronger than the one of [2]. A speciality of our formalization is that we let the sending and

7 For instance, conceptually, when updating a secret key to a new one, the kuKEM could secret-share the old
key using a two-out-of-two threshold scheme, randomly pick one of the shares and include it in the new key,
discarding the other share. While this would not hurt kuKEM security, a naively derived HIBE would be trivial
to break.

8 The mapping between our names (on the left of the equality sign) and the ones of [2] (on the right) is as
follows: ‘(session) key’ = ‘output key’, ‘(session) state’ = ‘session key plus sender/receiver key’, ‘ciphertext’ =
‘update information’.
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Proc genK
00 P0, P1 ←$ G1
01 P ← (P0, P1)
02 s0 ←$ Zq

03 S1 ← s0P1
04 Q0 ← s0P0
05 sk ← (P0, ε, ε, 1, S1)
06 pk ← (Q0, ε, 1, P )
07 Return (sk, pk)

Proc up(pk, ad)
08 (Q0, A, l, P )← pk
09 A

q← ad; Pl+1 ← H(A)
10 P

q← Pl+1
11 pk ← (Q0, A, l + 1, P )
12 Return pk

Proc up(sk, ad)
13 (P0, Q,A, l, Sl)← sk
14 A

q← ad; Pl+1 ← H(A)
15 sl ←$ Zq

16 Ql ← slP0; Q q← Ql

17 Sl+1 ← Sl + slPl+1
18 sk ← (P0, Q,A, l + 1, Sl+1)
19 Return sk

Proc enc(pk)
20 (Q0, , l, P )← pk
21 (P0, . . . , Pl)← P
22 r ←$ Zq

23 K ← r〈Q0, P1〉
24 For i ∈ {0, 2, . . . , l}:
25 Ci ← rPi

26 C ← (C0, C2, . . . , Cl)
27 Return (K,C)

Proc dec(sk, C)
28 ( , Q, , l, Sl)← sk
29 (Q1, . . . , Ql−1)← Q
30 (C0, C2, . . . , Cl)← C
31 K ← 〈C0, S〉
32 For i ∈ {2, . . . , l}:
33 K ← K − 〈Qi−1, Ci〉
34 Return K

Fig. 3: Direct construction of a key-updatable KEM, inspired by the Gentry–Silverberg HIBE [11]. We assume
(additively written) groups G1, G2 of prime order q, a pairing 〈·, ·〉 : G1 × G1 → G2, and a random oracle
H : {0, 1}∗ → G1. To see the scheme’s correctness, observe for instance that after two updates we have l = 3
and in line 31 obtain K = 〈C0, S〉 = rs0〈P0, P1〉+ rs1〈P0, P2〉+ rs2〈P0, P3〉, from which in line 33 we substract
s1r〈P0, P2〉 and s2r〈P0, P3〉, so that the overall result is rs0〈P0, P1〉, which matches the assignment in line 23.
Note that the update procedure for secret keys is randomized, conflicting with our syntactical definition of a
kuKEM; however, derandomizing it using a PRF, with the corresponding key stored as a further element of sk,
is straight-forward.

receiving algorithms of Alice and Bob accept and process an associated data string [22] that,
for functionality, has to match on both sides.

A unidirectionally ratcheted key exchange (URKE) for a finite key space K and an associated-
data space AD is a triple R = (init, snd, rcv) of algorithms together with a sender state space SA,
a receiver state space SB, and a ciphertext space C. The randomized initialization algorithm init
returns a sender state SA ∈ SA and a receiver state SB ∈ SB. The randomized sending algo-
rithm snd takes a state SA ∈ SA and an associated-data string ad ∈ AD, and produces an
updated state S′A ∈ SA, a key k ∈ K, and a ciphertext c ∈ C. Finally, the deterministic receiving
algorithm rcv takes a state SB ∈ SB, an associated-data string ad ∈ AD, and a ciphertext c ∈ C,
and either outputs an updated state S′B ∈ SB and a key k ∈ K, or the special symbol ⊥ to
indicate rejection. A shortcut notation for these syntactical definitions and a visual illustration
of the URKE communication setup is

init →$ SA × SB

SA ×AD → snd →$ SA ×K × C
SB ×AD × C → rcv → SB ×K / ⊥

snd
stateA

ad →
k ←

stateA

→ c→ rcv
stateB

← ad
→ k

stateB

Correctness of URKE. Assume a sender and a receiver that were jointly initialized with init.
Then, intuitively, the URKE scheme is correct if for all sequences (adi) of associated-data strings,
if (ki) and (ci) are sequences of keys and ciphertexts successively produced by the sender on
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input the strings in (adi), and if (k′i) is the sequence of keys output by the receiver on input the
(same) strings in (adi) and the ciphertexts in (ci), then the keys of the sender and the receiver
match, i.e., it holds that ki = k′i for all i.

We formalize this requirement via the FUNC game in Figure 4.9 Concretely, we say scheme R
is correct if Pr[FUNCR(A) ⇒ 1] = 0 for all adversaries A. In the game, the adversary lets the
sender and the receiver process associated-data strings and ciphertexts of its choosing, and its
goal is to let the two parties compute keys that do not match when they should. Variables
sA and rB count the send and receive operations, associative array adcA jointly records the
associated-data strings considered by and the ciphertexts produced by the sender, flag isB is
an indicator that tracks whether the receiver is still ‘in-sync’ (in contrast to: was exposed to
non-matching associated-data strings or ciphertexts; note how the transition between in-sync
and out-of-sync is detected and recorded in lines 12,13), and associative array keyA records the
keys established by the sender to allow for a comparison with the keys recovered (or not) by
the receiver. The correctness requirement boils down to declaring the adversary successful (in
line 16) if the sender and the receiver compute different keys while still being in-sync. Note
finally that lines 11,15 ensure that once the rcv algorithm rejects, the adversary is notified of
this and further queries to the RcvB oracle are not accepted.

Game FUNCR(A)
00 sA ← 0; rB ← 0
01 adcA[·]← ⊥; isB ← T
02 keyA[·]← ⊥
03 (SA, SB)←$ init
04 Invoke A
05 Stop with 0

Oracle SndA(ad)
06 (SA, k, c)←$ snd(SA, ad)
07 adcA[sA]← (ad, c)
08 keyA[sA]← k
09 sA ← sA + 1
10 Return c

Oracle RcvB(ad, c)
11 Require SB 6= ⊥
12 If isB ∧ adcA[rB ] 6= (ad, c):
13 isB ← F
14 (SB , k)← rcv(SB , ad, c)
15 If SB = ⊥: Return ⊥
16 Reward isB ∧ k 6= keyA[rB ]
17 rB ← rB + 1
18 Return

Fig. 4: Game FUNC for URKE scheme R.

Security of URKE. We formalize a key indistinguishability notion for URKE. In a nutshell,
from the point of view of the adversary, keys established by the sender and recovered by the
receiver shall look uniformly distributed in the key space. In our model, the adversary, in
addition to scheduling the regular URKE operations via the SndA and RcvB oracles, has to its
disposal the four oracles ExposeA, ExposeB, Reveal, and Challenge, used for exposing users by
obtaining copies of their current state, for learning established keys, and for requesting real-or-
random challenges on established keys, respectively. For an URKE scheme R, in Figure 5 we
specify corresponding key indistinguishability games KINDb

R, where b ∈ {0, 1} is the challenge
bit, and we associate with any adversary A its key distinguishing advantage Advkind

R (A) :=
|Pr[KIND1

R(A) ⇒ 1] − Pr[KIND0
R(A) ⇒ 1]|. Intuitively, R offers key indistinguishability if all

practical adversaries have a negligible key distinguishing advantage.
Most lines of code in the KINDb games are tagged with a ‘ · ’ right after the line number;

to the subset of lines marked in this way we refer to as the games’ core. Conceptually, the
9 Formalizing correctness of URKE via a game might at first seem overkill. However, for SRKE and BRKE, which
allow for interleaved interaction in two directions, game-based definitions seem to be natural and notationally
superior to any other approach. For consistency we use a game-based definition also for URKE.
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Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · adcA[·]← ⊥; isB ← T
02 · keyA[·]← ⊥; keyB [·]← ⊥
03 XPA ← ∅
04 TRA ← ∅; TRB ← ∅
05 CHA ← ∅; CHB ← ∅
06 · (SA, SB)←$ init
07 · b′ ←$ A
08 Require TRA ∩ CHA = ∅
09 Require TRB ∩ CHB = ∅
10 · Stop with b′

Oracle SndA(ad)
11 · (SA, k, c)←$ snd(SA, ad)
12 · adcA[sA]← (ad, c)
13 · keyA[sA]← k
14 · sA ← sA + 1
15 · Return c

Oracle ExposeA
16 XPA

∪← {sA}
17 · Return SA

Oracle Reveal(u, i)
18 · Require keyu[i] ∈ K
19 · k ← keyu[i]
20 keyu[i]← �
21 · Return k

Oracle RcvB(ad, c)
22 · Require SB 6= ⊥
23 · If isB ∧ adcA[rB ] 6= (ad, c):
24 · isB ← F
25 If rB ∈ XPA:
26 TRB

∪← [ rB , ... ]
27 · (SB , k)← rcv(SB , ad, c)
28 · If SB = ⊥: Return ⊥
29 If isB : k ← �
30 · keyB [rB ]← k
31 · rB ← rB + 1
32 · Return

Oracle ExposeB
33 TRB

∪← [ rB , ... ]
34 If isB :
35 TRA

∪← [ rB , ... ]
36 · Return SB

Oracle Challenge(u, i)
37 · Require keyu[i] ∈ K
38 · k ← b ? keyu[i] : $(K)
39 keyu[i]← �
40 CHu

∪← {i}
41 · Return k

Fig. 5: Games KINDb, b ∈ {0, 1}, for URKE scheme R. We require � /∈ K, and in Reveal and Challenge queries
we require u ∈ {A,B}. If the notation in lines 26 or 38 is unclear, please consult Section 2.

cores contain all relevant game logic (participant initialization, specifications of how queries are
answered, etc.); the code lines available only in the full game, i.e., the untagged ones, introduce
certain restrictions on the adversary that are necessary to exclude trivial attacks (see below).
The games’ cores should be self-explanatory, in particular when comparing them to the FUNC
game, with the understanding that lines 18,37 (in Figure 5) ensure that only keys can be revealed
or challenged that actually have been established before, and that line 38 assigns to variable k,
depending on bit b, either the real key or a freshly sampled element from the key space.

Note that, in the pure core code, the adversary can use the four new oracles to bring itself
into the position to distinguish real and random keys in a trivial way. In the following we
discuss five different strategies to do so. We illustrate each strategy by specifying an example
adversary in pseudocode and we explain what measures the full games take for disregarding the
respective class of attack. (That is, the example adversaries would gain high advantage if the
games consisted of just their cores, but in the full games their advantage is zero.)

The first two strategies leverage on the interplay of Reveal and Challenge queries; they do
not involve exposing participants.

(a) The adversary requests a challenge on a key that it also reveals, it requests two challenges on
the same key, or similar. Example: fix some ad; c← SndA(ad); k ← Reveal(A, 0); k′ ← Challenge(A, 0);
b′ ← [k = k′]; output b′. The full games, in lines 20,39, overwrite keys that are revealed or
challenged with the special symbol � /∈ K. Because of lines 18,37, this prevents any second
Reveal or Challenge query involving the same key.

(b) The adversary combines an attack from (a) with the correctness guarantee, i.e., that in-
sync receivers recover the keys established by senders. For instance, the adversary reveals a
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sender key and requests a challenge on the corresponding receiver key. Example: fix some ad;
c ← SndA(ad); k ← Reveal(A, 0); RcvB(ad, c); k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. The full
games, in line 29, overwrite in-sync receiver keys, as they are known (by correctness) to be
the same on the sender side, with the special symbol � /∈ K. By lines 18,37, this rules out
the attack.

The remaining three strategies involve exposing participants and using their state to either
trace their computations or impersonate them to their peer. In the full games, the set variables
XPA,TRA,TRB,CHA,CHB (lines 03–05) help identifying when such attacks occur. Concretely,
set XPA tracks the points in time the sender is exposed (the unit of time being the number
of past sending operations; see line 16), sets TRA,TRB track the indices of keys that are
‘traceable’ (in particular: recoverable by the adversary) using an exposed state (see below), and
sets CHA,CHB record the indices of keys for which a challenge was requested (see line 40).
Lines 08,09 ensure that any adversary that requests to be challenged on a traceable key has
advantage zero. Strategies (c) and (d) are state tracing attacks, while strategy (e) is based on
impersonation.

(c) The adversary exposes the receiver and uses the obtained state to trace its computations:
By iteratively applying the rcv algorithm to all later inputs of the receiver, and updating the
exposed state correspondingly, the adversary implicitly obtains a copy of all later receiver
keys. Example: fix some ad; c ← SndA(ad); S∗B ← ExposeB(); (S∗B , k) ← rcv(S∗B , ad, c); RcvB(ad, c);
k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. When an exposure of the receiver happens, the full
games, in line 33, mark all future receiver keys as traceable.

(d) The adversary combines the attack from (c) with the correctness guarantee, i.e., that in-
sync receivers recover the keys established by senders: After exposing an in-sync receiver,
by iteratively applying the rcv algorithm to all later outputs of the sender, the adversary
implicitly obtains a copy of all later sender keys. Example: fix some ad; c ← SndA(ad); S∗B ←
ExposeB(); (S∗B , k) ← rcv(S∗B , ad, c); k′ ← Challenge(A, 0); b′ ← [k = k′]; output b′. When an exposure
of an in-sync receiver happens, the full games, in lines 34,35, mark all future sender keys as
traceable.

(e) Exposing the sender allows for impersonating it: The adversary obtains a copy of the sender’s
state and invokes the snd algorithm with it, obtaining a key and a ciphertext. The latter is
provided to an in-sync receiver (rendering the latter out-of-sync), who recovers a key that is
already known to the adversary. Example: fix some ad; S∗A ← ExposeA(); (S∗A, k, c) ←$ snd(S∗A, ad);
RcvB(ad, c); k′ ← Challenge(B, 0); b′ ← [k = k′]; output b′. The full games, in lines 25,26, detect the
described type of impersonation and mark all future receiver keys as traceable.

We conclude with some notes on our URKE model. First, the model excludes the (anyway
unavoidable) trivial attack conditions we identified, but nothing else. This establishes confidence
in the model, as no attacks can be missed. Further, observe that it is not possible to recover from
an attack based on state exposure (i.e., of the (c)–(e) types): If one key of a participant becomes
weak as a consequence of a state exposure, then necessarily all later keys of that participant
become weak as well. On the other hand, exposing the sender and not bringing the receiver
out-of-sync does not affect security at all.10 Finally, exposing an out-of-sync receiver does not
harm later sender keys. In later sections we consider ratcheting primitives (SRKE, BRKE) that
resume safe operation after state exposure attacks.

10 This is precisely the distinguishing auto-recovery property of ratcheted key exchange.
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4 Constructing URKE

We construct an URKE scheme that is provably secure in the model presented in the previous
section. The ingredients are a KEM (with deterministic public-key generation, see Section 2), a
strongly unforgeable MAC, and a random oracle H. The algorithms of our scheme are specified
in Figure 6.

We describe protocol states and algorithms in more detail. The state of Alice consists of
(Bob’s) KEM public key pk, a chaining key K, a MAC key k.m, and a transcript variable t that
accumulates the associated data strings and ciphertexts that Alice processed so far. The state
of Bob is almost the same, but instead of the KEM public key he holds the corresponding secret
key sk. Initially, sk and pk are freshly generated, random values are assigned to K and k.m, and
the transcript accumulator t is set to the empty string. A sending operation of Alice consists of
invoking the KEM encapsulation routine with Bob’s current public key, computing a MAC tag
over the ciphertext and the associated data, updating the transcript accumulator, and jointly
processing the session key established by the KEM, the chaining key, and the current transcript
with the random oracle H. The output of H is split into the URKE session key k.o, an updated
chaining key, an updated MAC key, and, indirectly, the updated public key (of Bob) to which
Alice encapsulates in the next round. The receiving operation of Bob is analogue to these
instructions. While our scheme has some similarity with the one of [2], a considerable difference
is that the public and secret keys held by Alice and Bob, respectively, are constantly changed.
This rules out the attack described in the introduction.

Proc init
00 (sk, pk)←$ genK
01 K ←$ K; k.m ←$ K
02 t← ε
03 SA ← (pk,K, k.m, t)
04 SB ← (sk,K, k.m, t)
05 Return (SA, SB)

Proc snd(SA, ad)
06 (pk,K, k.m, t)← SA

07 (k, c)←$ enc(pk)
08 τ ←$ tag(k.m, ad ‖ c)
09 C ← c ‖ τ
10 t

q← ad ‖C
11 k.o ‖K ‖ k.m ‖ sk ←

H(K, k, t)
12 pk ← genK(sk)
13 SA ← (pk,K, k.m, t)
14 Return (SA, k.o, C)

Proc rcv(SB , ad, C)
15 (sk,K, k.m, t)← SB

16 c ‖ τ ← C
17 Require vfyM(k.m, ad ‖ c, τ)
18 k ← dec(sk, c)
19 Require k 6= ⊥
20 t

q← ad ‖C
21 k.o ‖K ‖ k.m ‖ sk ←

H(K, k, t)
22 SB ← (sk,K, k.m, t)
23 Return (SB , k.o)

Fig. 6: Construction of an URKE scheme from a key-encapsulation mechanism K = (genK, enc,dec), a message
authentication code M = (tag, vfyM), and a random oracle H. For simplicity we denote the key space of the MAC
and the space of chaining keys with the same symbol K.

Note that our scheme is specified such that participants accumulate in their state the full
past communication history. While this eases the security analysis (random oracle evaluations
of Alice and Bob are guaranteed to be on different inputs once the in-sync bit is cleared), it
also seems to impose a severe implementation obstacle. However, as current hash functions
like SHA2 and SHA3 process inputs in an online fashion (i.e., left-to-right with a small state
overhead), they can process append-only inputs like transcripts such that computations are
efficiently shared with prior invocations. In particular, with such a hash function our URKE
scheme can be implemented with constant-size state. (This requires, though, rearranging the
input of H such that t comes first).11

11 A different approach to achieve a constant-size state is to replace lines 10 and 20 by the (non-accumulating)
assignments t ← (ad, C). We believe our scheme would also be secure in this case as, intuitively, chaining
key K reflects the full past communication.
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Theorem 1. The URKE protocol R from Figure 6 offers key indistinguishability. More pre-
cisely, if function H is modeled as a random oracle, for every adversary A for games KINDb

R
from Figure 5 there exists an adversary B for game OW from Figure 21 and an adversary C for
game SUF from Figure 20 such that Advkind

R (A) ≤ Advow
K (B) + Advsuf

M (C) + qSqF
|KK| , where KK is

the session-key space of the KEM, the running time of B is about that of A plus qF key checking
and solve operations, the running time of C is about that of A, and qF , qS are the numbers of
A’s random oracle and SndA queries, respectively.

The proof of Theorem 1 is in Appendix A. Briefly, it first shows that none of Alice’s es-
tablished session keys can be derived by the adversary without breaking the security of the
KEM as long as no previous secret key of Alice’s public keys was exposed. Then we show that
Bob will only establish session keys out of sync if Alice was impersonated towards him, his
state was exposed before, or a MAC forgery was conducted by the adversary. The latter will
be reduced to the security of the MAC. Consequently the adversary either breaks one of the
employed primitives’ security or has information-theoretically small advantage in winning the
KIND game.

5 Sesquidirectionally ratcheted key exchange (SRKE)

We introduce sesquidirectionally ratcheted key exchange (SRKE)4 as a generalization of URKE.
The basic functionality of the two primitives is the same: Sessions involve two parties, A and B,
whereA can establish keys and safely share them withB by providing the latter with ciphertexts.
In contrast to the URKE case, in SRKE also party B can generate and send ciphertexts (to A);
however, B’s invocations of the sending routine do not establish keys. Rather, the idea behind
B communicating ciphertexts to A is that this may increase the security of the keys established
by A. Indeed, as we will see, in SRKE it is possible for B to recover from attacks involving state
exposure. We proceed with formalizing syntax and correctness of SRKE.

Formally, a SRKE scheme for a finite key space K and an associated-data space AD is a
tuple R = (init, sndA, rcvB, sndB, rcvA) of algorithms together with a state space SA, a state
space SB, and a ciphertext space C. The randomized initialization algorithm init returns a state
SA ∈ SA and a state SB ∈ SB. The randomized sending algorithm sndA takes a state SA ∈ SA

and an associated-data string ad ∈ AD, and produces an updated state S′A ∈ SA, a key k ∈ K,
and a ciphertext c ∈ C. The deterministic receiving algorithm rcvB takes a state SB ∈ SB, an
associated-data string ad ∈ AD, and a ciphertext c ∈ C, and outputs either an updated state
S′B ∈ SB and a key k ∈ K, or the special symbol ⊥ to indicate rejection. The randomized
sending algorithm sndB takes a state SB ∈ SB and an associated-data string ad ∈ AD, and
produces an updated state S′B ∈ SB and a ciphertext c ∈ C. Finally, the deterministic receiving
algorithm rcvA takes a state SA ∈ SA, an associated-data string ad ∈ AD, and a ciphertext
c ∈ C, and outputs either an updated state S′A ∈ SA or the special symbol ⊥ to indicate
rejection. A shortcut notation for these syntactical definitions is

init →$ SA × SB

SA ×AD → sndA →$ SA ×K × C
SB ×AD × C → rcvB → SB ×K / ⊥
SB ×AD → sndB →$ SB × C

SA ×AD × C → rcvA → SA / ⊥ . rcvA

stateA

ad →

stateA

← c← sndB

stateB

← ad

stateB

. . .. . .

sndA

stateA

ad →
k ←

stateA

→ c→ rcvB

stateB

← ad
→ k

stateB

Correctness of SRKE. Our definition of SRKE functionality is via game FUNC in Figure 7.
We say scheme R is correct if Pr[FUNCR(A) ⇒ 1] = 0 for all adversaries A. In the figure, the
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lines of code tagged with a ‘ · ’ right after the line number also appear in the URKE FUNC
game (Figure 4). In comparison with that game, there are two more oracles, SndB and RcvA,
and four new game variables, sB, rA, adcB, isA, that control and monitor the communication in
the B-to-A direction akin to how SndA,RcvB, sA, rB, adcA, isB do (like in the URKE case) for
the A-to-B direction. In particular, the isA flag is the in-sync indicator of party A that tracks
whether the latter was exposed to non-matching associated-data strings or ciphertexts (the
transition between in-sync and out-of-sync is detected and recorded in lines 35,36). Given that
the specifications of oracles SndA and RcvB of Figures 4 and 7 coincide (with one exception:
lines 13,21 are guarded by in-sync checks (in lines 12,20) so that parties go out-of-sync not
only when processing unauthentic associated data or ciphertexts, but also when they process
ciphertexts that were generated by an out-of-sync peer12), and that also the specifications
of oracles SndB and RcvA of Figures 7 are quite similar to them (besides the reversion of
the direction of communication, the difference is that all session-key related components were
stripped off), the logics of the FUNC game in Figure 7 should be clear. Overall, like in the
URKE case, the correctness requirement boils down to declaring the adversary successful, in
line 31, if A and B compute different keys while still being in-sync.

Game FUNCR(A)
00 · sA ← 0; rB ← 0
01 sB ← 0; rA ← 0
02 eA ← 0; EPA[·]← ⊥
03 E`B ← 0; EaB ← 0
04 · adcA[·]← ⊥; isB ← T
05 adcB [·]← ⊥; isA ← T
06 · keyA[·]← ⊥
07 · (SA, SB)←$ init
08 · Invoke A
09 · Stop with 0

Oracle SndA(ad)
10 Require SA 6= ⊥
11 · (SA, k, c)←$ sndA(SA, ad)
12 If isA:
13 · adcA[sA]← (ad, c)
14 EPA[sA]← eA

15 · keyA[sA]← k
16 · sA ← sA + 1
17 · Return c

Oracle SndB(ad)
18 Require SB 6= ⊥
19 (SB , c)←$ sndB(SB , ad)
20 If isB :
21 adcB [sB ]← (ad, c)
22 EaB ← EaB + 1
23 sB ← sB + 1
24 Return c

Oracle RcvB(ad, c)
25 · Require SB 6= ⊥
26 · If isB ∧ adcA[rB ] 6= (ad, c):
27 · isB ← F
28 If isB : E`B ← EPA[rB ]
29 · (SB , k)← rcvB(SB , ad, c)
30 · If SB = ⊥: Return ⊥
31 · Reward isB ∧ k 6= keyA[rB ]
32 · rB ← rB + 1
33 · Return

Oracle RcvA(ad, c)
34 Require SA 6= ⊥
35 If isA ∧ adcB [rA] 6= (ad, c):
36 isA ← F
37 If isA: eA ← eA + 1
38 SA ← rcvA(SA, ad, c)
39 If SA = ⊥: Return ⊥
40 rA ← rA + 1
41 Return

Fig. 7: Game FUNC for SRKE scheme R. The lines of code tagged with a ‘ · ’ also appear in the URKE FUNC
game. Note that the variables eA,EPA,E`B ,EaB do not influence the game outcome.

12 This approach is borrowed from [18,9].
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Epochs. The intuition behind having the B-to-A direction of communication in SRKE is that
it allows B to refresh his state every now and then, and to inform A about this. The goal is to
let B recover from state exposure.

Imagine, for example, a SRKE session where B has the following view on the communica-
tion: first he sends four refresh ciphertexts (to A) in a row; then he receives a key-establishing
ciphertext (from A). As we assume a fully concurrent setting and do not impose timing con-
straints on the network delivery, the incoming ciphertext can have been crafted by A after her
having received (from B) between zero and four ciphertexts. That is, even though B refreshed
his state a couple of times, to achieve correctness he has to remain prepared for recovering keys
from ciphertexts that were generated by A before she recognized any of the refreshs. However,
after processing A’s ciphertext, if A created it after receiving some of B’s ciphertexts (say, the
first three), then the situation changes in that B is no longer required to process ciphertexts
that refer to refreshs older than the one to which A’s current answer is responding to (in the
example: the first two).

These ideas turn out to be pivotal in the definition of SRKE security. We formalize them
by introducing the notion of an epoch. Epochs start when the sndB algorithm is invoked (each
invocation starts one epoch), they are sequentially numbered, and the first epoch (with number
zero) is implicitly started by the init algorithm. Each rcvA invocation makes A aware of one
new epoch, and subsequent sndA invocations can be seen as occurring in its context. Finally, on
B’s side multiple epochs may be active at the same time, reflecting that B has to be ready to
process ciphertexts that were generated by A in the context of one of potentially many possible
epochs. Intuitively, epochs end (on B’s side) if a ciphertext is received (from A) that was sent
in the context of a later epoch.

We represent the span of epochs supported by B with the interval variable EB (see Sec-
tion 2.1): its boundaries E`B and EaB reflect at any time the earliest and the latest such epoch.
Further, we use variable eA to track the latest epoch started by B that party A is aware of,
and associative array EPA to register for each of A’s sending operations the context, i.e., the
epoch number that A is (implicitly) referring to. In more detail, the invocation of init is accom-
panied by setting E`B,EaB, eA to zero (in lines 02,03), each sending operation of B introduces
one more supported epoch (line 22), each receiving operation of A increases the latter’s aware-
ness of epochs supported by B (line 37), the context of each sending operation of A is recorded
in EPA (line 14), and each receiving operation of B potentially reduces the number of supported
epochs by dropping obsolete ones (line 28). Observe that tracking epochs is not meaningful after
participants get out-of-sync; we thus guard lines 37,28 with corresponding tests.

Security of SRKE. Our SRKE security model lifts the one for URKE to the bidirectional (more
precisely: sesquidirectional) setting. The goal of the adversary is again to distinguish established
keys from random. For a SRKE scheme R, the corresponding key indistinguishability games
KINDb

R, for challenge bit b ∈ {0, 1}, are specified in Figure 8. With any adversary A we associate
its key distinguishing advantage Advkind

R (A) := |Pr[KIND1
R(A) ⇒ 1] − Pr[KIND0

R(A) ⇒ 1]|.
Intuitively, R offers key indistinguishability if all practical adversaries have a negligible key
distinguishing advantage.

The new KIND games are the natural amalgamation of the (URKE) KIND games of Figure 5
with the (SRKE) FUNC game of Figure 7 (with the exceptions discussed below). Concerning
the trivial attack conditions on URKE that we identified in Section 3, we note that conditions
(a) and (b) remain valid for SRKE without modification, conditions (c) and (d) (that consider
attacks on participants by tracing their computations) need a slight adaptation to reflect that
updating epochs repairs the damage of state exposures, and condition (e) (that considers imper-
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Game KINDb
R(A)

00 · sA ← 0; rB ← 0
01 · sB ← 0; rA ← 0
02 · eA ← 0; EPA[·]← ⊥
03 · E`B ← 0; EaB ← 0
04 · adcA[·]← ⊥; isB ← T
05 · adcB [·]← ⊥; isA ← T
06 keyA[·]← ⊥; keyB [·]← ⊥
07 XPA ← ∅; XPB ← ∅
08 TRA ← ∅; TRB ← ∅
09 CHA ← ∅; CHB ← ∅
10 · (SA, SB)←$ init
11 · b′ ←$ A
12 Require TRA ∩ CHA = ∅
13 Require TRB ∩ CHB = ∅
14 · Stop with b′

Oracle SndA(ad)
15 · Require SA 6= ⊥
16 · (SA, k, c)←$ sndA(SA, ad)
17 · If isA:
18 · adcA[sA]← (ad, c)
19 · EPA[sA]← eA

20 keyA[eA, sA]← k
21 · sA ← sA + 1
22 · Return c

Oracle RcvA(ad, c)
23 · Require SA 6= ⊥
24 · If isA ∧ adcB [rA] 6= (ad, c):
25 · isA ← F
26 If rA ∈ XPB :
27 TRA

∪← N× [ sA, ... ]
28 · If isA: eA ← eA + 1
29 · SA ← rcvA(SA, ad, c)
30 · If SA = ⊥: Return ⊥
31 · rA ← rA + 1
32 · Return

Oracle RcvB(ad, c)
33 · Require SB 6= ⊥
34 · If isB ∧ adcA[rB ] 6= (ad, c):
35 · isB ← F
36 If rB ∈ XPA:
37 TRB

∪← N× [ rB , ... ]
38 · If isB : E`B ← EPA[rB ]
39 · (SB , k)← rcvB(SB , ad, c)
40 · If SB = ⊥: Return ⊥
41 If isB : k ← �
42 keyB [E`B , rB ]← k
43 · rB ← rB + 1
44 · Return

Oracle SndB(ad)
45 · Require SB 6= ⊥
46 · (SB , c)←$ sndB(SB , ad)
47 · If isB :
48 · adcB [sB ]← (ad, c)
49 · EaB ← EaB + 1
50 · sB ← sB + 1
51 · Return c

Oracle ExposeA
52 If isA: XPA

∪← {sA}
53 Return SA

Oracle ExposeB
54 TRB

∪← [E`B ..EaB ]× [ rB , ... ]
55 If isB :
56 XPB

∪← {sB}
57 TRA

∪← [E`B ..EaB ]× [ rB , ... ]
58 Return SB

Oracle Reveal(u, i)
as in URKE (Fig. 5)

Oracle Challenge(u, i)
as in URKE (Fig. 5)

Fig. 8: Games KINDb, b ∈ {0, 1}, for SRKE scheme R. Lines of code tagged with a ‘ · ’ similarly appear in the
SRKE FUNC game in Figure 7.

sonation of exposed A to B), besides needing a slight adaptation, requires to be complemented
by a new condition that considers that exposing B allows for impersonating him to A.

When comparing the KIND games from Figures 5 and 8, note that a crucial difference is
that the keyA, keyB arrays in the URKE model are indexed with simple counters, while in the
SRKE model they are indexed with pairs where the one element is the same counter as in
the URKE case and the other element indicates the epoch for which the corresponding key
was established13. The new indexing mechanism allows, when B is exposed, for marking as
traceable only those future keys of A and B that belong to the epochs managed by B at the
time of exposure (lines 54,57). This already implements the necessary adaptation of conditions
(c) and (d) to the SRKE setting. The announced adaptation of condition (e) is executing line 52
only if isA = T; the change is due as the motivation given in Section 3 is valid only if A is in-sync

13 The adversary always knows the epoch numbers associated with keys, so it can pose meaningful Reveal and
Challenge queries just as before.
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(which is always the case in URKE, but not in SRKE). Finally, complementing condition (e),
we identify the following new trivial attack condition:

(f) Exposing party B allows for impersonating it: Assume parties A and B are in-sync. The
adversary obtains a copy of B’s state and invokes the sndB algorithm with it, obtaining
a ciphertext which it provides to party A (rendering the latter out-of-sync). If then A
generates a new key using the sndA algorithm, the adversary can feed the resulting cipher-
text into the rcvB algorithm, recovering the key. Example: fix some ad, ad ′; S∗B ← ExposeB();
(S∗B , c) ←$ sndB(S∗B , ad); RcvA(ad, c); c′ ← SndA(ad ′); (S∗B , k) ← rcvB(S∗B , ad ′, c′); k′ ← Challenge(A, 0);
b′ ← [k = k′]; output b′. Lines 26,27 (in conjunction with lines 07,56) detect the described type
of impersonation and mark all future keys of A as traceable.

This completes the description of our SRKE security model. As in URKE, it excludes the
minimal set of attacks, indicating that it gives strong security guarantees.

6 Constructing SRKE

We present a SRKE construction that generalizes our URKE scheme to the sesquidirectional
setting. The core intuition is as follows: Like in the URKE scheme, A-to-B ciphertexts corre-
spond with KEM ciphertexts where the corresponding public and secret keys are held by A
and B, respectively, and the two keys are evolved to new keys after each use. In addition to
this, with the goal of letting B heal from state exposures, our SRKE construction gives him
the option to sanitize his state by generating a fresh KEM key pair and communicating the
corresponding public key to A (using the B-to-A link specific to SRKE). The algorithms of
our protocol are specified in Figure 9. Although the sketched approach might sound simple
and natural, the algorithms, quite surprisingly, are involved and require strong cryptographic
building blocks (a key-updatable KEM and a one-time signature scheme, see Section 2). Their
complexity is a result of SRKE protocols having to simultaneously offer solutions to multiple
inherent challenges. We discuss these in the following.

Epoch management. Recall that we assume a concurrent setting for SRKE and that, thus,
if B refreshes his state via the sndB algorithm, then he still has to keep copies of the secret
keys maintained for prior epochs (so that the rcvB algorithm can properly process incoming
ciphertexts created for them). Our protocol algorithms implement this by including in B’s state
the array SK [·] in which sndB stores all keys it generates (line 27; obsolete keys of expired epochs
are deleted by rcvB in line 47). Beyond that, both A and B maintain an interval variable E in
their state: its boundaries E` and Ea are used by B to reflect the earliest and latest supported
epoch, and by A to keep track of epoch updates that occur in direct succession (i.e., that are
still waiting for their ‘activation’ by sndA). Note finally that the sndA algorithm communicates
to rcvB in every outgoing ciphertext the epoch in which A is operating (line 12).

Secure state update. Assume A executes once the sndA algorithm, then twice the rcvA

algorithm, and then again once the sndA algorithm. That is, following the above sketch of
our protocol, as part of her first sndA invocation she will encapsulate to a public key that
she subsequently updates (akin to how she would do in our URKE solution, see lines 07,12
of Figure 6), then she will receive two fresh public keys from B, and finally she will again
encapsulate to a public key that she subsequently updates. The question is: Which public
key shall she use in the last step? The one resulting from the update during her first sndA

invocation, the one obtained in her first rcvA invocation, or the one obtained in her second rcvA

invocation? We found that only one configuration is safe against key distinguishing attacks: Our
SRKE protocol is such that she encapsulates to all three, combining the established session keys
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Proc init
00 (sgk, vfk)←$ genS
01 · (sk, pk)←$ genK
02 · K ←$ K; k.m ←$ K; t← ε
03 E` ← 0; Ea ← 0
04 s← 0; r ← 0
05 PK [·]← ⊥; PK [0]← pk
06 SK [·]← ⊥; SK [0]← sk
07 LA[·]← ⊥; LB [·]← ⊥; LA[0]← �
08 SA ← (PK , E, s, LA, vfk,K, k.m, t)
09 SB ← (SK , E, r, LB , sgk,K, k.m, t)
10 Return (SA, SB)

Proc sndA(SA, ad)
11 (PK , E, s, L, vfk,K, k.m, t)← SA

12 k∗ ← ε; C ← Ea
13 For e′ ← E` to Ea:
14 · (k, c)←$ enc(PK [e′])
15 k∗

q← k; C q← c
16 · τ ←$ tag(k.m, ad ‖C)
17 · C q← τ ; t q← . ‖ ad ‖C
18 · k.o ‖K ‖ k.m ‖ sk ← H(K, k∗, t)
19 · pk ← genK(sk)
20 PK [..., (Ea − 1)]← ⊥; PK [Ea]← pk
21 E` ← Ea; s← s+ 1; L[s]← ad ‖C
22 SA ← (PK , E, s, L, vfk,K, k.m, t)
23 Return (S, k.o, C)

Proc sndB(SB , ad)
24 (SK , E, r, L, sgk,K, k.m, t)← SB

25 (sk∗, pk∗)←$ genK
26 (sgk∗, vfk∗)←$ genS
27 Ea ← Ea + 1; SK [Ea]← sk∗
28 C ← r ‖ pk∗ ‖ vfk∗
29 σ ←$ sgn(sgk, ad ‖C)
30 C

q← σ; L[Ea]← / ‖ ad ‖C
31 SB ← (SK , E, r, L, sgk∗,K, k.m, t)
32 Return (SB , C)

Proc rcvB(SB , ad, C)
33 (SK , E, r, L, sgk,K, k.m, t)← SB

34 t∗ ← ad ‖C; C ‖ τ ← C
35 · Require vfyM(k.m, ad ‖C, τ)
36 k∗ ← ε; e ‖C ← C
37 Require E` ≤ e ≤ Ea

38 t
q← L[E` + 1] ‖ . . . ‖L[e]

39 L[..., e]← ⊥
40 For e′ ← E` to e:
41 c ‖C ← C
42 · k ← dec(SK [e′], c)
43 · Require k 6= ⊥
44 k∗

q← k
45 t

q← . ‖ t∗
46 · k.o ‖K ‖ k.m ‖ sk ← H(K, k∗, t)
47 SK [..., (e− 1)]← ⊥; SK [e]← sk
48 For e′ ← e+ 1 to Ea:
49 SK [e′]← up(SK [e′], t∗)
50 E` ← e; r ← r + 1
51 SB ← (SK , E, r, L, sgk,K, k.m, t)
52 Return (SB , k.o)

Proc rcvA(SA, ad, C)
53 (PK , E, s, L, vfk,K, k.m, t)← SA

54 t
q← / ‖ ad ‖C; C ‖σ ← C

55 Require vfyS(vfk, ad ‖C, σ)
56 r ‖ pk∗ ‖ vfk ← C
57 Require L[r] 6= ⊥
58 L[..., (r − 1)]← ⊥; L[r]← �
59 For s′ ← r + 1 to s:
60 pk∗ ← up(pk∗, L[s′])
61 Ea ← Ea + 1; PK [Ea]← pk∗
62 SA ← (PK , E, s, L, vfk,K, k.m, t)
63 Return SA

Fig. 9: Construction of a SRKE scheme from a key-updatable KEM K = (genK, enc, dec), a message authen-
tication code M = (tag, vfyM), a one-time signature scheme S = (genS, sgn, vfyS), and a random oracle H. For
simplicity we denote the key space of the MAC and the space of chaining keys with the same symbol K.
Notation: Lines 07,58: If an entry of an array is expected to contain a ciphertext, but clearly the value of the
ciphertext will not any more matter, we instead store the placeholder symbol �. Line 38: If E` = e then no value
shall be concatenated to t. Line 41: The last iteration of the loop is meant to clear C; a more precise version of
the line would say “If e′ < e then c ‖C ← C else c← C”. Lines 17,54,45,30: We use labels . and / in transcript
fragments to distinguish whether they emerged in the A-to-B or B-to-A direction. Lines of code tagged with a ‘ · ’
depict the URKE construction’s core.

into one via concatenation.14 15 The algorithms implement this by including in A’s state the
array PK [·] in which rcvA stores incoming public keys (line 61) and which sndA consults when
establishing outgoing ciphertexts (lines 13–15; the counterpart on B’s side is in lines 40–44).
Once the switch to the new epoch is completed, the obsolete public keys are removed from A’s
state (line 20). If A executes sndA many times in succession, then all but the first invocation

14 We discuss why it is unsafe to encapsulate to only a subset of the keys in Appendix B.3.
15 The concatenation of keys of an OW secure KEM can be seen as the implementation of a secure combiner in

the spirit of [12].
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will, akin to the URKE case, just encapsulate to the (one) evolved public key from the preceding
invocation.

We discuss a second issue related to state updates. Assume B executes three times the sndB

algorithm and then once the rcvB algorithm, the latter on input a well-formed but non-authentic
ciphertext (e.g., the adversary could have created the ciphertext, after exposing A’s state, using
the sndA algorithm). In the terms of our security model the latter action brings B out-of-sync,
which means that if he is subsequently exposed then this should not affect the security of
further session keys established by A. On the other hand, according to the description provided
so far, exposing B’s state means obtaining a copy of array SK [·], i.e., of the decapsulation
keys of all epochs still supported by B. We found that this easily leads to key distinguishing
attacks,16 so in order to protect the elements of SK [·] they are evolved by the rcvB algorithm
whenever an incoming ciphertext is processed. We implement the latter via the dedicated update
procedure up provided by the key-updatable KEM. The corresponding lines are 48–49 (note that
t∗ is the current transcript fragment, see line 34). Of course A has to synchronize on B’s key
updates, which she does in lines 59–60, where array L[·] is the state variable that keeps track of
the corresponding past A-to-B transcript fragments. (Outgoing ciphertexts are stored in L[·] in
line 21, and obsolete ones are removed from it in line 58.) Note that A, for staying synchronized
with B, also needs to keep track of the ciphertexts that he received (from her) so far; for this
reason, B indicates in every outgoing ciphertext the number r of incoming ciphertexts he has
been exposed to (lines 56,28).

Transcript management. Recall that one element of the participants’ state in our URKE
scheme (in Figure 6) is the variable t that accumulates transcript information (associated data
and ciphertexts) of prior communication so that it can be input to key derivation. This is
a common technique to ensure that the keys established on the two sides start diverging in
the moment an active attack occurs. Also our SRKE construction follows this approach, but
accumulating transcripts is more involved if communication is concurrent: If both A and B
would add outgoing ciphertexts to their transcript accumulator directly after creating them,
then concurrent sending would immediately desynchronize the two parties. This issue is resolved
in our construction as follows: In the B-to-A direction, while A appends incoming ciphertexts
(from B) to her transcript variable in the moment she receives them (line 54), when creating
the ciphertexts, B will just record them in his state variable L[·] (line 30), and postpone adding
them to his transcript variable to the point when he is able to deduce (from A’s ciphertexts) the
position of when she did (line 38; obsolete entries are removed in line 39). The A-to-B direction
is simpler17 and handled as in our URKE protocol: A updates her transcript when sending
a ciphertext (line 17), and B updates his transcript when receiving it (lines 34,45). Note we
tag transcript fragments with labels . or / to indicate whether they emerged in the A-to-B or
B-to-A direction of communication (e.g., in lines 17,30).

Authentication. To reach security against active adversaries we protect the SRKE ciphertexts
against manipulation. Recall that in our URKE scheme a MAC was sufficient for this. In SRKE,
a MAC is still sufficient for the A-to-B direction (lines 16,35), but for the B-to-A direction, to
defend against attacks where the adversary first exposes A’s state and then uses the obtained
MAC key to impersonate B to her,18 we need to employ a one-time signature scheme: Each
ciphertext created by B includes a freshly generated verification key that is used to authenticate
the next B-to-A ciphertext (lines 26,28,29,55,56; note how this rules out the described attack).
16 We discuss this further in Appendix B.2.
17 Intuitively the disbalance comes from the fact that keys are only established by A-to-B ciphertexts and that

transcripts are only used for key derivation.
18 Note this is not an issue in the A-to-B direction: Exposing B and impersonating A to him leads to marking

all future keys of B as traceable anyway, without any option to recover. We expand on this in Appendix B.1.
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The only lines we did not comment on are 18,19,46,25—those that also form the core of our
URKE protocol and which are discussed extensively in Section 4.

Practicality of our construction We remark that the number of updates per kuKEM key pair
is bounded by the number of ciphertexts sent by A during one round-trip time (RTT) on the
network between A and B (intuitively by the number of ciphertexts sent by A that cross the
wire with one epoch update ciphertext from B). Ciphertexts that B did not know of when
proposing an epoch (1/2 RTT) and ciphertexts A sent until she received the epoch proposal
(1/2 RTT) are regarded for an update of a key pair. As a result, the hierarchy of an HIBE can
be bounded by this number of ciphertexts when used for building a kuKEM for SRKE.

Theorem 2. The SRKE protocol R from Figure 9 offers key indistinguishability. More pre-
cisely, if function H is modeled as a random oracle, for every adversary A for games KINDb

R
from Figure 8 there exists an adversary B for game KUOW from Figure 1, an adversary CS
for game SUF from Figure 22, and an adversary CM for game SUF from Figure 20 such that
Advkind

R (A) ≤ 3Advkuow
K (B) + qRAdvsuf

S (CS) + Advsuf
M (CM) + qSqF

|KK| , where KK is the session-key
space of the kuKEM, the running time of B is about that of A plus qF key checking and solve
operations, the running time of CS and CM is about that of A, and qF , qS , qR are the numbers of
A’s random oracle, SndA, and RcvA queries, respectively.

The proof of Theorem 2 is in Appendix C. The approach is the same as in our URKE proof
but with small yet important differences: 1) the proof reduces signature forgeries to the SUF
security of the signature scheme to show that communication from B to A is authentic, 2) the
security of session keys established by A is reduced to the KUOW security of the kuKEM. The
reduction to the KUOW game is split into three cases: a) session keys established by A in sync,
b) the first session key established by A out of sync, and c) all remaining session keys established
by A out of sync. This distinction is made as in each of these cases a different encapsulated
key—as part of the random oracle input—is assumed to be unknown to the adversary. Finally
the SRKE proof—as in the URKE proof—makes use of the MAC’s SUF security to show that B
will never establish challengeable keys out of sync.

7 Bidirectionally ratcheted key exchange (BRKE)

The URKE and SRKE primitives are unbalanced in that they allow only one of the two par-
ticipants to actively establish new keys. As the ratcheting notion first appeared in the context
of (bidirectional) instant messaging [15,4,17] it is natural to ask for a fully balanced primitive
where both participants have the capability of establishing fresh keys independently of each
other. In this section we correspondingly study bidirectional ratcheted key exchange (BRKE) by
first defining its syntax, functionality, and security, and then proposing two constructions. We
note that the BRKE notions are natural extensions of those of URKE and SRKE, effectively du-
plicating specific parts of the security model and constructions so that they are available in both
directions of communication. The main challenge is to properly interweave the communication
in the two directions.

Formally, a BRKE scheme for a finite key space K and an associated-data space AD is a
triple R = (init, snd, rcv) of algorithms together with a state space S and a ciphertext space C.
The randomized initialization algorithm init returns a pair of states (SA, SB) ∈ S × S. The
randomized sending algorithm snd takes a state S ∈ S and an associated-data string ad ∈ AD,
and produces an updated state S′ ∈ S, a key k ∈ K, and a ciphertext c ∈ C. Finally, the
deterministic receiving algorithm rcv takes a state S ∈ S, an associated-data string ad ∈ AD,
and a ciphertext c ∈ C, and either outputs an updated state S′ ∈ S and a key k ∈ K or outputs
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the special symbol ⊥ to indicate rejection. A shortcut notation for these syntactical definitions
is

init →$ S × S
S ×AD → snd →$ S × K × C

S ×AD × C → rcv → S ×K / ⊥ .
rcv
state

ad →
k ←

state
← c← snd

state
← ad
→ k

state

. . .. . .

snd
state

ad →
k ←

state
→ c→ rcv

state
← ad
→ k

state

Correctness of BRKE. We formalize the correctness of BRKE via the FUNC game in Figure 10.
Concretely, we say scheme R is correct if Pr[FUNCR(A) ⇒ 1] = 0 for all adversaries A. The
game is best understood by comparing it with the functionality game of SRKE (in Figure 7): As
in BRKE the roles of the participants are symmetric, the Snd and Rcv oracles in Figure 10 are
effectively the amalgamation of the SndA and SndB oracles, respectively, the RcvA and RcvB
oracles, from Figure 7. Observe that, as in BRKE the snd invocations of both participants create
fresh keys and start new epochs, in the FUNC game each participant has its individual copy of
the game variables key,EP, e,E`,Ea; this is in contrast with the SRKE case where variables
key,EP, e were specific to one party, and variables E`,Ea were specific to the other.

Game FUNCR(A)
00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E`u ← 0; Eau ← 0
04 adcu[·]← ⊥; isu ← T
05 keyu[·]← ⊥
06 (SA, SB)←$ init
07 Invoke A
08 Stop with 0

Oracle Snd(u, ad)
09 Require Su 6= ⊥
10 (Su, k, c)←$ snd(Su, ad)
11 If isu:
12 adcu[su]← (ad, c)
13 EPu[su]← eu

14 Eau ← Eau + 1
15 keyu[su]← k
16 su ← su + 1
17 Return c

Oracle Rcv(u, ad, c)
18 Require Su 6= ⊥
19 If isu ∧ adcū[ru] 6= (ad, c):
20 isu ← F
21 If isu:
22 E`u ← EPū[ru]
23 eu ← eu + 1
24 (Su, k)← rcv(Su, ad, c)
25 If Su = ⊥: Return ⊥
26 Reward isu ∧ k 6= keyū[ru]
27 ru ← ru + 1
28 Return

Fig. 10: Game FUNC for BRKE scheme R. For a user u ∈ {A,B} we write ū for its peer; that is, we always have
{u, ū} = {A,B}.

Security of BRKE. Our BRKE security model is derived by lifting the indistinguishability
notion from SRKE from Figure 8 to the fully bidirectional case, again amalgamating SndA
and SndB oracles and RcvA and RcvB oracles to single Snd and Rcv oracles, respectively, and
using the notation of the BRKE functionality game from Figure 10. The result are the key
indistinguishability games KINDb

R, for challenge bit b ∈ {0, 1}, specified in Figure 11. The only
noteable novelty, required as in BRKE keys can be established by both participants, is that the
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game manages two copies of the key array per user: We represent keys that user u establishes
with the role of a sender as keyu[S, . . .], and we represent keys that u recovers as a receiver as
keyu[R, . . .]. For a BRKE scheme R, with any adversary A we associate its key distinguishing
advantage Advkind

R (A) := |Pr[KIND1
R(A) ⇒ 1] − Pr[KIND0

R(A) ⇒ 1]|. Intuitively, R offers key
indistinguishability if all practical adversaries have a negligible key distinguishing advantage.

Game KINDb
R(A)

00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E`u ← 0; Eau ← 0
04 adcu[·]← ⊥; isu ← T
05 keyu[·]← ⊥; XPu ← ∅
06 TRu ← ∅; CHu ← ∅
07 (SA, SB)←$ init
08 b′ ←$ A
09 For u ∈ {A,B}:
10 Require TRu ∩ CHu = ∅
11 Stop with b′

Oracle Snd(u, ad)
12 Require Su 6= ⊥
13 (Su, k, c)←$ snd(Su, ad)
14 If isu:
15 adcu[su]← (ad, c)
16 EPu[su]← eu

17 Eau ← Eau + 1
18 keyu[S, eu, su]← k
19 su ← su + 1
20 Return c

Oracle Reveal(u, i)
as in URKE/SRKE (Fig. 5)

Oracle Rcv(u, ad, c)
21 Require Su 6= ⊥
22 If isu ∧ adcū[ru] 6= (ad, c):
23 isu ← F
24 If ru ∈ XPū:
25 TRu

∪← {S} × N× [ su, ... ]
26 TRu

∪← {R} × N× [ ru, ... ]
27 If isu:
28 E`u ← EPū[ru]
29 eu ← eu + 1
30 (Su, k)← rcv(Su, ad, c)
31 If Su = ⊥: Return ⊥
32 If isu: k ← �
33 keyu[R,E`u , ru]← k
34 ru ← ru + 1
35 Return

Oracle Expose(u)
36 TRu

∪← {R} × [E`u ..Eau ]× [ ru, ... ]
37 If isu:
38 XPu

∪← {su}
39 TRū

∪← {S} × [E`u ..Eau ]× [ ru, ... ]
40 Return Su

Oracle Challenge(u, i)
as in URKE/SRKE (Fig. 5)

Fig. 11: Games KINDb, b ∈ {0, 1}, for BRKE scheme R. Symbols S and R are labels that distinguish whether
keys were established in a sending or a receiving operation.

8 Constructing BRKE

We propose two constructions of the BRKE primitive. Their common denominator is that they
internally use two instances of a SRKE protocol—one in the Alice-to-Bob direction and one
in the Bob-to-Alice direction. The challenge is to properly interweave their operations such
that, overall, BRKE security is reached. (For instance, attacking one of the instances needs
to automatically escalate to an attack on the second as otherwise attacks on KIND security
become feasible). Our first solution achieves this via strongly unforgeable one-time signatures.
Our second solution is slightly more efficient but ad-hoc; it is derived from the specific SRKE
protocol from Figure 9 and carefully interleaves the use of its inner building blocks.
Generic construction with one-time signatures. Let SR denote a SRKE protocol, and
assume a strongly unforgeable one-time signature scheme as an auxiliary building block. The
snd and rcv algorithms of our first BRKE construction are in Figure 12. (The init algorithm is
not in the figure; it just performs two invocations of initSR, and the initial states of users consist
of one sending and one receiving state.) Concretely, our snd algorithm performs internally two
snd invocations of the underlying SRKE scheme (in lines 02,03), which results in a key k.o and
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two ciphertexts c1, c2. These ciphertexts are protected by a one-time signature before being
sent to the peer: a fresh signature key pair is generated per snd invocation (in line 01), and
the pair c1, c2 signed with it (in line 04). Note that the signature verification key is included in
the associated-data field of both internal snd invocations (see line 01). To allow for signature
verification on the side of the peer, the verification key is sent along with the ciphertexts. The
peer processes the ciphertext in the obvious way.

We describe the rationale behind our construction. The goal is to bind the two ciphertext
components c1, c2 together such that any manipulation of the pair will be detected by both
underlying SRKE instances. One could try to implement this directly via the associated-data
fields on the SRKE, that is, by including c1 in ad when producing c2 or by including c2 in ad
when producing c1. It turns out that both these options are too weak and allow for attacks on
key indistinguishability of the composed BRKE scheme. By using the one-time signature scheme
we side-step this one-before-the-other dependency. The security argument for our construction
in Figure 12 is as follows: Note first that each verification key recovered in line 09 is either
authentic or not. If it is, then also c1, c2, σ are authentic (otherwise the adversary would have
broken the strong unforgeability of the one-time signature scheme). If it is not, then this will
be reflected in the changed associated-data field ad line 09, i.e., both SRKE instances will be
notified of this.

Proc snd(S, ad)
00 (S1, S2)← S

01 (sgk, vfk)←$ genS; ad q← vfk
02 (S1, k.o, c1)←$ sndA(S1, ad)
03 (S2, c2)←$ sndB(S2, ad)
04 σ ←$ sgn(sgk, c1 ‖ c2)
05 c← vfk ‖ c1 ‖ c2 ‖σ
06 S ← (S1, S2)
07 Return (S, k.o, c)

Proc rcv(S, ad, c)
08 (S1, S2)← S

09 vfk ‖ c1 ‖ c2 ‖σ ← c; ad q← vfk
10 Require vfyS(vfk, c1 ‖ c2, σ)
11 S1 ← rcvA(S1, ad, c2)
12 Require S1 6= ⊥
13 (S2, k.o)← rcvB(S2, ad, c1)
14 Require S2 6= ⊥
15 S ← (S1, S2)
16 Return (S, k.o)

Fig. 12: Generic construction of BRKE scheme BR from a SRKE scheme SR = (initSR, sndA, sndB , rcvA, rcvB)
and a one-time signature scheme S = (genS, sgn, vfyS).

Theorem 3. The BRKE protocol BR from Figure 12 offers key indistinguishability. More pre-
cisely, for every adversary A for games KINDb

BR from Figure 11 (BRKE) there exists an ad-
versary B for game KINDSR from Figure 8 (SRKE) and an adversary C for game SUF from
Figure 22 such that Advkind

BR (A) ≤ 2Advkind
SR (B) + qRAdvsuf

S (C), where the running times of B
and C are about that of A, and qR is the number of A’s RcvA queries.

We prove Theorem 3 in Appendix D.

Ad-hoc construction. Our ad-hoc construction in Figure 13 directly adopts the SRKE
construction and combines both sending algorithms and both receiving algorithms. To derive
the necessary binding that was described in the previous paragraph, the sending algorithms
intertwine by signing both ciphertext parts together and then feeding the whole ciphertext—
including the signature—into the random oracle. As such, a manipulation of parts of the ci-
phertext directly affects both SRKE states.

We split the blocks taken from a different algorithm of the SRKE construction respectively
by leaving blank lines in Figure 13. All lines not marked with a ‘·’ at the left margin are directly
copied from the SRKE construction. In line 20 instead of setting the ciphertext to the newest
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Proc init
00 For u ∈ {A,B}:
01 (sgku, vfku)←$ genS
02 (sku, pku)←$ genK
03 Ku ←$ K; t← ε
04 E` ← 0; Ea ← 0
05 s← 0; r ← 0
06 PKu[·]← ⊥; PKu[0]← pk
07 SKu[·]← ⊥; SKu[0]← sk
08 LS [·]← ⊥; LR[·]← ⊥; LS [0]← �
09 Su ← (PK ū, E, s, LS , vfkū,Kū, t)
10 Ru ← (SKu, E, r, LR, sgku,Ku, t)
11 STu ← (Ru, Su)
12 Return (STA, STB)

Proc snd(ST, ad)
13 (R,S)← ST
14 (SK , ER, r, LR, sgk,KR, tR)← R
15 (sk∗, pk∗)←$ genK
16 (sgk∗, vfk∗)←$ genS
17 EaR ← EaR + 1; SK [EaR ]← sk∗
18 C ← r ‖ pk∗ ‖ vfk∗

19 (PK , ES , s, LS , vfk,KS , tS)← S

20 · k∗ ← ε; C q← EaS
21 For e′ ← E`S to EaS :
22 (k, c)←$ enc(PK [e′])
23 k∗

q← k; C q← c

24 σ ←$ sgn(sgk, ad ‖C)
25 · C q← σ; LR[EaR ]← .u ‖ ad ‖C
26 R← (SK , ER, r, LR, sgk∗,KR, tR)

27 tS
q← .u ‖ ad ‖C

28 k.o ‖KS ‖ k.m ‖ sk ← H(KS , k
∗, tS)

29 pk ← genK(sk)
30 PK [..., (EaS − 1)]← ⊥; PK [EaS ]← pk
31 E`S ← EaS ; s← s+ 1; LS [s]← ad ‖C
32 S ← (PK , ES , s, LS , vfk,KS , tS)
33 ST ← (R,S)
34 Return (ST, k.o, C)

Proc rcv(ST, ad, C)
35 (R,S)← ST
36 (PK , ES , s, LS , vfk,KS , tS)← S

37 · t∗ ← ad ‖C; tS q← .ū ‖ t∗; C ‖σ ← C
38 Require vfyS(vfk, ad ‖C, σ)
39 · r ‖ pk∗ ‖ vfk ‖C ← C
40 Require LS [r] 6= ⊥
41 LS [..., (r − 1)]← ⊥; LS [r]← �
42 For s′ ← r + 1 to s:
43 pk∗ ← up(pk∗, LS [s′])
44 EaS ← EaS + 1; PK [EaS ]← pk∗
45 S ← (PK , ES , s, LS , vfk,KS , tS)

46 (SK , ER, r, LR, sgk,KR, tR)← R
47 k∗ ← ε; e ‖C ← C
48 Require E`R ≤ e ≤ EaR
49 tR

q← LR[E`R + 1] ‖ . . . ‖LR[e]
50 LR[..., e]← ⊥
51 For e′ ← E`R to e:
52 c ‖C ← C
53 k ← dec(SK [e′], c)
54 Require k 6= ⊥
55 k∗

q← k
56 · tR

q← .ū ‖ t∗
57 k.o ‖KR ‖ k.m ‖ sk ← H(KR, k

∗, tR)
58 SK [..., (e− 1)]← ⊥; SK [e]← sk
59 For e′ ← e+ 1 to EaR :
60 SK [e′]← up(SK [e′], t∗)
61 E`R ← e; r ← r + 1
62 R← (SK , ER, r, LR, sgk,KR, tR)
63 ST ← (R,S)
64 Return (ST, k.o)

Fig. 13: Construction of BRKE from our SRKE construction in Figure 9 by intertwining the respective algo-
rithms.

epoch number, the ciphertext is appended by this number. As a result, both ciphertexts of the
sending algorithms of SRKE are concatenated. In line 25 we index the encoding by the user
identifier of the sending party. While in SRKE, each algorithm can only be used by one of the
two communicating parties, in BRKE a unique encoding for each party becomes necessary to
separate the parts of the transcript with respect to their origin. Similarly the encoding in the
receive algorithm is equipped with user indexed encoding (see lines 37,56). In order to input
the whole just received ciphertext and associated data string to the random oracle, in line 37 a
copy of it is stored in t∗ (in line 56 this string is appended to the current transcript). Finally in
line 39 the ciphertexts of both SRKE instantiations are split again to process them at receipt.
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Please note that the whole ciphertext is thereby signed at sending and fed into the random
oracle. As such, the ciphertexts of SRKE are authenticated in this ad-hoc BRKE construction
without employing an additional one-time signature.
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A Proof of URKE

Overview In order to prove the construction’s security, we proceed in a sequence of games
that pursues two targets: on the one hand the simulation is to be conducted without the usage
of secret keys that belong to A’s public keys, and on the other hand the adversary’s random
oracle requests and its forged MAC tags are used to solve the underlying hardness assumptions.
While games G2, G3 and G4 answer the former purpose, G3 and G5 (and in SRKE G1) entail
abortions of the game for events that are assumed to occur with negligible probability.

To unify the proof description for URKE and SRKE, we harmonize the numbering of the
games. Thereby the abortion of signature forgeries in SRKE is conducted in game G1. Since
the URKE construction makes no use of signatures, G1 in URKE equals the original game and
is thereby a placeholder.

The description of the game hops for the SRKE proof consequently mainly focuses on the
differences and peculiarities.

Notation Figures 14 and 15 depict the proof, split into the KINDR game containing the URKE
construction and the random oracle. The modifications by the game hops are included into the
figures and denoted as follows:

The symbol at the right margin of a line annotates for which games a manipulation due to
the game hop is valid. A line marked with a symbol G≥3 is valid for game G3 and all subsequent
games. If a line is not valid for the final game, this line is struck through. Thereby either only
the game is denoted in which a line becomes invalid by G<y or an interval of games for which
a line is valid is marked by Gx−y where Gx is the game in which a line is introduced and Gy is
the first game in which the line is disregarded.

Procedures introduced by a game hop are denoted by the symbol described above only in
the first line of the procedure to reduce redundancy (e.g., see the procedures in Figure 15).

Game 2 – Synchronous simulation of B From correctness, we can conclude that B will
compute the same values as A after processing the ciphertext from A under the condition that
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Game KINDb
R(A)

00 R[·]← ⊥ G≥0
01 sA ← 0; rB ← 0
02 adcA[·]← ⊥; isB ← T
03 keyA[·]← ⊥; keyB [·]← ⊥
04 XPA ← ∅
05 TRA ← ∅; TRB ← ∅
06 CHA ← ∅; CHB ← ∅
07 SK?[·]← ⊥; KT?[·]← ⊥ G≥2
08 CK [·]← ⊥; XSK ← ∅ G≥2
09 sk ←$ SK
10 pk ← genK(sk)
11 (K, k.m)←$ K2; t← ε
12 SA ← (pk,K, k.m, t)
13 SB ← (sk,K, k.m, t) G<2
14 KT?[sA, S]← (K, k.m, t) G≥2
15 SK?[sA, S]← sk G≥2
16 b′ ←$ A
17 Require TRA ∩ CHA = ∅
18 Require TRB ∩ CHB = ∅
19 Stop with b′

Oracle SndA(ad)
20 i← (sA, S) G≥2
21 (pk,K, k.m, t)← SA

22 (k, c)←$ enc(pk)
23 CK [c, i]← k G≥2
24 τ ← tag(k.m, ad ‖ c)
25 C ← c ‖ τ
26 t

q← ad ‖C
27 k.o ‖K∗ ‖ k.m ‖ sk ← H(K, k, t) G<3
28 k.o ‖K∗ ‖ ← G(K, t, i, T) G≥3
29 k.m ←$ K; sk ←$ SK G≥3
30 SetO(K, t, i, k.m, sk) G3−4
31 pk ← genK(sk)
32 SA ← (pk,K∗, k.m, t)
33 adcA[sA]← (ad, C)
34 keyA[sA]← k.o
35 sA ← sA + 1
36 i← (sA, S) G≥2
37 KT?[i]← (K∗, k.m, t) G≥2
38 SK?[i]← sk G≥2
39 Return C

Oracle ExposeA
As in KIND

Oracle Reveal(u, j)
As in KIND

Oracle RcvB(ad, C)
40 Require SB 6= ⊥
41 If isB ∧ adcA[rB ] 6= (ad, C):
42 SK?[rB , R]← SK?[rB , S] G≥2
43 KT?[rB , R]← KT?[rB , S] G≥2
44 isB ← F
45 If rB ∈ XPA:
46 TRB

∪← [ rB , ... ]
47 Else if (rB , S) /∈ XSK : G≥5
48 forge ← T G≥5
49 If not isB : G≥2
50 i← (rB , R) G≥2
51 (sk,K, k.m, t)← SB G<2
52 (K, k.m, t)← KT?[i] G≥2
53 sk ← SK?[i] G2−4
54 c ‖ τ ← C
55 Require vfyM(k.m, ad ‖ c, τ)
56 If forge: Abort G≥5.2
57 k ← dec(sk, c) G<3
58 Require k 6= ⊥ G<3
59 Require dec(SK?[i], c) 6= ⊥ G≥3

60 t
q← ad ‖C

61 k.o ‖K∗ ‖ k.m ‖ sk ← H(K, k, t) G<3
62 k.o ‖K∗ ‖ k.m ‖ sk ← G(K, t, i, F) G≥3
63 SB ← (sk,K∗, k.m, t) G<2
64 If isB : k ← �
65 keyB [rB ]← k
66 rB ← rB + 1
67 If not isB : G≥2
68 i← (rB , R) G≥2
69 KT?[i]← (K∗, k.m, t) G≥2
70 SK?[i]← sk G≥2
71 Return

Oracle ExposeB
72 TRB

∪← [ rB , ... ]
73 If isB :
74 TRA

∪← [ rB , ... ]
75 U← S G≥2

76 XSK ∪← [ rB , ... ]×[S] G≥2
77 Else: U← R G≥2
78 (K, k.m, t)← KT?[rB , U] G≥2
79 sk ← SK?[rB , U] G≥2
80 SB ← (sk,K, k.m, t) G≥2
81 Return SB

Oracle Challenge(u, j)
As in KIND

Fig. 14: Proof of URKE.

the ciphertext was not manipulated in transmission (A further generates the public key from the
secret key and removes the secret key afterwards). Therefore we do not simulate the receiving
of B if synchronicity was not disrupted. In order to simulate the exposure of B correctly, we
introduce two arrays SK?,KT? that track A’s internal outputs (secret key and symmetric keys
with transcript) after sending.

As soon as B receives a manipulated ciphertext, his state is established from these arrays
and then the simulation is further computed according to the construction. The index of the
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arrays SK?,KT? ends with [R] for stored values of only B and for the last common values among
A and B. We denote incrementing of index i+1 = (s, U)+1 = (s+1, U) such that the counter s is
incremented. To shorten and clarify the description, we merge the index parameters in variable
i which is thereby different from the usage of j in the Reveal and Challenge oracles.

Additionally we introduce the array CK and the set XSK . XSK is used to track which secret
keys of A’s public keys are (potentially) exposed. Thereby the indexes of both, the secret key
that is actually exposed and all subsequent secret keys that are derived from it are unified in
XSK . Deriving one secret key from another one means that the earlier secret key (in combination
with the simultaneously exposed chaining key K) can be used to obtain all information (the
encapsulated key k) to request the random oracle outputting the next secret key. Array CK
stores the encapsulated KEM keys k of A for ciphertexts c under the public key with secret
key i. The proof makes thereby use of this array as CK is used in the OW game (see Figure 21).

Random oracle We construct our random oracle by defining several procedures that program
the simulated function and that can request the output on a provided input. Procedures G and
SetO are defined only for the simulation’s internal requests and oracle H is provided to the
adversary.

The public oracle is initially defined as a function that randomly samples an output value
on the first request of the input value and outputs it on all further requests of this input. In
addition to the output, consisting of three symmetric keys and the secret key, a flag sen to trace
the requests’ origin is stored for every entry (i.e., whether A’s simulation—the sender—initially
requested the random oracle for that entry or not).

Figure 15 as the description of the random oracle follows the same principle as the one for
the proof of SRKE (see Figure 18).

Oracle H(K, k, t) G≥0
00 Require k ∈ K
01 t′ ‖ ad ‖ c ‖ τ ← t
02 (k.o,K∗, k.m)←$ K3; sk ←$ SK
03 i← ε; sen ← F
04 If ∃i : R[K, t, k, i] 6= ⊥:
05 (k.o,K∗, k.m, sk, sen)← R[K, t, k, i]
06 Else if ∃i : R[K, t, ε, i] 6= ⊥ G≥3

∧i ∈ N× [R] G≥3
∧dec(sk, c) = k, sk ← SK?[i]: G≥3

07 (k.o,K∗, k.m, sk, sen)← R[K, t, ε, i] G≥3
08 Else if ∃i : R[K, t, ε, i] 6= ⊥ G≥3

∧i ∈ N× [S] ∧ CK [c, i] = k: G≥3
09 (k.o,K∗, k.m, sk, sen)← R[K, t, ε, i] G≥3
10 If i /∈ XSK : Abort G≥5.1
11 sk ← SK?[i+ 1] G≥4
12 ( , k.m, )← KT?[i+ 1] G≥4
13 R[K, t, k, i]← (k.o,K∗, k.m, sk, sen)
14 Return k.o ‖K∗ ‖ k.m ‖ sk

Proc G(K, t, i, sen) G≥3
15 t′ ‖ ad ‖ c ‖ τ ← t
16 k ← ε
17 If sen ∧ ∃k : R[K, t, k, ε] 6= ⊥:
18 Abort
19 Else if ¬sen ∧ ∃k : R[K, t, k, ε] 6= ⊥ :

dec(sk, c) = k, sk ← SK?[i]:
20 (k.o,K∗, k.m, sk, sen′)← R[K, t, k, ε]
21 Else:
22 (k.o,K∗)←$ K2; k.m ← ε; sk ← ε
23 If ¬sen: k.m ←$ K; sk ←$ SK
24 R[K, t, k, i]← (k.o,K∗, k.m, sk, sen)
25 Return k.o ‖K∗ ‖ k.m ‖ sk

Proc SetO(K, t, i, k.m, sk) G≥3
26 (k.o,K∗, k.m′, sk′, sen)← R[K, t, ε, i]
27 R[K, t, ε, i]← (k.o,K∗, k.m, sk, sen)
28 Return

Fig. 15: Random oracle description for proof of URKE.

Game 3 – Internal access to random oracle We introduce the internal procedures to
request the random oracle. These procedures provide the simulation the opportunity to request
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the random oracle output on an undefined input key k. The index for the array is thereby defined
by chaining key K, transcript t—hence implicitly by the last ciphertext c—, and the index of
the key pair for which the ciphertext is encapsulated. For internally requested ciphertexts c, the
correct but unknown key k is implicitly programmed as input into the random oracle.

By requesting the random oracle without providing the decapsulated key, the decapsulation
and hence the previous secret key of B are not necessary for the simulation of receiving anymore
and thereby are removed. In order to correctly simulate, the output of the decapsulation still
needs to be compared to the ⊥ symbol. When reducing the security to the OW game, this
comparison can be conducted by requesting the game’s Check oracle without using the respective
secret key explicitly (see Figure 21).

External queries to the random oracle H are stored in entries of the simulation’s array R,
indexed by input tuples (K, k, t) and ε implying that the entries are not associated to a secret
key that is used by the simulation. The output values are sampled uniformly at random for an
initial request and afterwards reaccessed from the described array entry. Initial internal queries
are stored with an empty string ε at the index parameter position of the input KEM key k.
Additionally the index of the secret key i of the previous KEM operation is set as array index
parameter (for A’s simulation: index of secret key for public key with which encapsulation of
the last c in t was executed; for B’s simulation: index of secret key with which decapsulation
would have been called). For initial internal queries of A’s simulation, only the output session
key k.o and the output chaining key K∗ are sampled and set within G. The remaining outputs
are sampled independently and set by the procedure SetO. This makes no difference regarding
the simulation but will be important for lazy sampling in game G4. For the simulation of B’s
internal queries, all outputs values are sampled at once.

In order to show how correctness and output distribution of the random oracle are preserved,
we first describe how the sequence of 1) an external request before 2) an internal request to the
same entry is processed and then vice versa. Note that equality of the queries cannot be verified
by input values (K, k, t) since k is not specified for internal requests directly.

Two successive external requests are still processed as before: if the respective entry does not
exist yet, it is generated, otherwise it is accessed and returned. Two successive internal requests
cannot occur and therefore do not need to be considered. Since the inputs to the random oracle
include the transcript, two successive requests with the same transcript cannot be made by A
nor B respectively nor first by one of them and then by the other one (note that B’s simulation
only request the random oracle out of sync).

An internal random oracle request of A’s simulation is marked by the last parameter of G
set true. For requests of this form, an abortion is conducted if there already exists any random
oracle entry with the same transcript and chaining key (independent of the KEM key input k).
Since the last ciphertext c in the transcript t is the result of an encapsulation, performed right
before the internal random oracle request—and thereby not known to the adversary—, the
probability of the abortion can be bounded by the birthday bound. We can use the key space
as set over which the birthday bound is drawn since we can assume that encapsulated keys
are sampled uniformly at random (and thereby use this distribution instead of the resulting
ciphertexts’ distribution).

For internal requests of B’s simulation, previous random oracle entries with the same tran-
script and chaining key are validated with respect to the tuple (c, i, k) where c is the last cipher-
text in t, k is the input KEM key of an existing random oracle entry queried externally, and i is
the index of the secret key with which G is invoked. If k can be decapsulated from c with SK?[i],
then the existing random oracle entry equals the one that was intended to be queried by the
simulation of B. Consequently all output values are taken from the found external entry and
returned by G.
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If there exists an entry made internally (and hence without specified k) for an external
random oracle request, a validation with respect to the tuple (c, i, k) is conducted as well.
Thereby external request and internal entry are equal if the ciphertext of both inputs can be
decapsulated by secret key with index i from the internal entry’s index parameters to the input
key k of the external request. This validation is split into entries made by B and entries made
by the A with secret key i (tracked by array CK ).

The array CK represents the Solve oracle of the OW game (see Figure 21). As such, it may
only be queried for unexposed secret keys. However, for the reduction we assume that the CK
array is manually filled for exposed secret keys and the Solve oracle is requested for unexposed
secret keys respectively. Therefore we can assume that for all ciphertext-secret key pairs of A
an entry exists in CK .

Due to the abortion in the random oracle in line 18, a random oracle entry that is internally
requested by A was not requested by the adversary before. As argued before, the probability of
an abortion in game G3 can be upper bounded by the birthday bound, where qS is the number
of invocations of the SndA oracle and KK is the key space of the KEM19.

AdvG2,G3(D) ≤ qF qS

|KK|

Game 4 – Random oracle with lazy sampling In game G4 we stop to set secret key and
MAC key as part of the output values of the internal random oracle requests of A’s sending.
Instead the actual output of the external random oracle is instantly set as soon as the adversary
requests it.

Random oracle entries, defined by the internal requests of B, are still equipped with all
output values as before. As we will show in the next game, these outputs will not be challengeable
anymore.

Game 5 – Abortion In game G5 we finally abort if the adversary queries the random oracle
for entries that reveal a challengeable key.

At first game G5.1 is aborted if the adversary externally queries an entry that was made by
A with a ciphertext (encoded in t) that is designated for an unexposed secret key (see Figure 15
line 10). Since only entries made by A result in this abortion, it only occurs if the adversary
was able to derive a key k from a ciphertext c sent by A to correctly request the random oracle.

To reduce the probability of this abortion event to the OW security of the KEM, the secret
key with which the key k can be decapsulated from the ciphertext c must not have been used
by the simulation. This holds because on the one hand, the secret key was not exposed (by the
abortion condition) and on the other hand, the random oracle entry that would have contained
this secret key as the output was not requested before, because otherwise the simulation would
have been aborted before.

It is now important to observe that the exposed keys in XSK correspond to the traceable
established keys in TRA (i.e., TRA = XSK ). Hence for the game to be aborted, the random
oracle must be requested for any challengeable established key of A. Consequently either the ad-
versary did not request the random oracle for an entry with which it would know an established
key of A or the game aborted and thereby the OW game can be won.

AdvG5,G5.1(D) ≤ Advow
K (B)

After game G5.1, for gaining an advantage in winning the game, the adversary can only
gather information via requesting the random oracle for asynchronously established keys of B.
19 For simplification, we treat the KEM and MAC key spaces equally in the construction description. For accuracy,

we separate them in the advantage consideration.
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Therefore consider that at receiving the first manipulated ciphertext, the following conditions
need to hold for forge = T (see lines 45–48): 1) A was not exposed to be impersonated towards B
and 2) B’s current secret key was not marked to be exposed. In addition, these conditions imply
that 3) the last common random oracle query was not requested by the adversary. Condition 3
holds because condition 2 implies that A is challengeable and an external query to a random
oracle entry outputting a challengeable key would have resulted in an abortion of game G5.1.

As a result of these conditions, the simulation did not leak the MAC key in B’s state at
receiving the manipulated ciphertext—except that it was used to generate the MAC tag of a
potentially sent ciphertext of A—and the MAC key was sampled uniformly at random. Now
distinguishing between games G5.1 and G5.2 can be reduced to the SUF security of the MAC M
because G5.2 only aborts if the MAC tag was valid but the ciphertext was manipulated and, as
shown above, the MAC key was not provided to the adversary. Hence in order to distinguish
between these two games, a distinguisher needs to provide a forged MAC tag. Therefore a
distinguisher’s advantage can be bounded by:

AdvG5.1,G5.2(D) ≤ Advsuf
M (C)

If G5.2 did not abort, B cannot be challenged because either one of conditions 1 or 2 were
violated and therefore the remaining keys of B are set to be traceable (see lines 46 and 74), or
the state was erased due to an invalid MAC tag.

Finally the adversary can win game G5.2 with probability 1/2 because no information on a
challengeable key of either A or B can be gained by the adversary.

AdvG5.2(A) = 0

Proof result Taking the bounds drawn in the game hops above provides us the upper bound
of the advantage that an adversary has in the URKE KINDR game depending on the advantage
of the adversaries B and C:

Advkind
R (A) ≤ Advow

K (B) + Advsuf
M (C) + qSqF

|KK|

Please note that the URKE proof makes no use of the UpR oracle of the KUOW game
and therefore a generic CCA secure KEM suffices to reach URKE (with a loss factor of qS).
However, the update algorithm could be used instead of generating new key pairs after each
sending and receiving since it provides the same functionality and security but A would never
learn the secret key to her public key.

B Rationales for SRKE design

We sketched the reasons for employing sophisticated primitives as basic blocks for our design
of SRKE in the main body. In this section we develop more detailed arguments for our design
choices by providing attacks on constructions different from our design. At first it is described
why SRKE requires signatures for protecting the communication from B to A—in contrast to
employing a MAC from A to B. Then we will evaluate the requirements for the KEM key pair
update in the setting of concurrent sending of A and B.

B.1 Signatures from A to B

While a MAC suffices to protect authenticity for ciphertexts sent from A to B it does not suffice
to protect the authenticity in the counter direction. The reason for this lies within the conditions
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with which future session keys of A and B are marked traceable in the KINDR game of SRKE.
An impersonation of A towards B has the same effect on the traceability of B’s future session
keys as if the adversary exposes B’s state and then brings B out of sync. Either way all future
session keys of B are marked traceable (see Figure 8 lines 37 and 54,38). In the first scenario,
the adversary can compute the same session keys as B because the adversary initiates the
key establishment impersonating A. In the second scenario, the adversary can comprehend B’s
computations during the receipt of ciphertexts because it possesses the same state information
as B.

For computations of A, however, only the former scenario is applicable: if the adversary
impersonated B towards A, then again the adversary is in the position to trace the establishment
of session keys of A because it can simulate the respective counterpart’s receiver computations.
In contrast to this, when exposing A and bringing her out of sync, according to the KINDR
game, the adversary must not obtain information on her future session keys (see Figure 8 lines 52
et seqq.). As a result, the exposure of A’s state should not enable the adversary to impersonate
B towards A. Consequently the authentication of the communication from B to A cannot be
reached by a primitive with a symmetric secret but rather the protocol needs to ensure that B
needs to be exposed in order to impersonate him towards A.

The non-trivial attack that is defended by employing signatures consists of the following
adversary behavior: SA ← ExposeA; Extract authentication secrets from SA to derive S′B ; (C′, S′′B) ←$

sndB(S′B , ε); RcvA(C′, ε); CA1 ←$ SndA(ε); kb ←$ Challenge(A, 1). Thereby the adversary must not be
able to decide whether it obtained the real or random key for ciphertext CA1 from the challenge
oracle. Please note that this is related to key-compromise impersonation resilience (while in this
case ephemeral signing keys are compromised).

B.2 Key-updatable KEM for concurrent sending

There exist two crucial properties that are required from the key pair update of the KEM in
the setting in which A and B send concurrently. Firstly, the key update needs to be forward
secure which means that an updated secret key does not reveal information on encapsulations
to previous secret keys or to differently updated secret keys. Secondly, the update of the public
key must not reveal information on keys that will be encapsulated to its respective secret key.
We will explain the necessity of these requirements one after another.

The key pair update for concurrently sending only affects epochs that have been proposed
by B, but that have not been processed by A yet. These updates have to consider ciphertexts
that A sent during the transmission of the public key for a new epoch from B to A. Subsequently
we describe an example scenario in which these updates are necessary for defending a non-trivial
attack: In the worst case, all secrets among A and B have been exposed to the adversary before B
proposes a new epoch (SA ← ExposeA; SB ← ExposeB). Thereby only a public key sent by B after
the exposure will provide security for future session key establishments initiated by A. Now
consider a scenario in which B proposes this new public key to A (CB1 ←$ SndB(ε); RcvA(CB1, ε))
and A is simultaneously impersonated towards B ((S′A, k′, C′)←$ sndA(SA, ε); RcvB(C′, ε)). Since B
proposed the new public key within CB1 in sync and A received it in sync respectively—and B
was not exposed under the new state—, future established session keys of A are considered to be
indistinguishable from random key space elements again (CA1 ←$ SndA(ε); kb ←$ Challenge(A, 1)).
Due to the impersonation of A towards B, however, B became out of sync. Becoming out of
sync cannot be detected by B because the adversary can send a valid ciphertext C ′ under the
exposed state of A SA. Exposing B out of sync afterwards (S′B ← ExposeB), by definition, must
not have an impact on the security of session keys established by A (see Figure 8 line 55). As
a result, after the adversary performed these steps, the challenged session key is required to be
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indistinguishable from a random element from the key space. Consequently B must perform
an update of the secret key for the newest epoch when receiving C ′ such that the public key
transmitted in CB1 still provides its security guarantees when using it in A’s final send operation
(remember that all previous secrets among A and B were exposed before).

When accepting that an update of B’s future epoch’s secret keys is required at the receipt
of ciphertexts, another condition arises for the respective update of A’s public keys. For main-
taining correctness, A of course needs to compute updates of a received new public key with
respect to all previously sent ciphertexts that B was not aware of when sending the public key.
Suppose A’s and B’s secrets have all been exposed towards the adversary again (SA ← ExposeA;
SB ← ExposeB). Now A sends a new key establishing ciphertext and B proposes a new epoch
public key (CA1 ←$ SndA(ε); CB1 ←$ SndB(ε)). According to the previous paragraph, A needs to
update the received public key in CB1 with respect to CA1 after receiving CB1 (RcvA(CB1, ε)).
Since CB1 introduces a new epoch, the next send operation of A needs to establish a secure
session key again (CA2 ←$ SndA(ε); kb ←$ Challenge(A, 2)). Now observe that in order to update
the received public key, A can only use information from her state SA—which is known by the
adversary—, public information like the transmitted ciphertexts, and randomness. Essentially,
the update can hence only depend on information that the adversary knows plus random coins
which cannot be transmitted confidentially to B before performing the update (because there
exist no secrets apart from the key pair that first needs to be updated). Since B probably re-
ceived CA1 before A received CB1, A cannot influence the update performed by B on his secret
key. This means that the updates of A and B need to be conducted independently. As such, the
adversary is able to perform the update on the same information that A has (only randomness
of A and the adversary can differ). Nevertheless, both updates—the one performed by the ad-
versary and the one performed by A—need to be compatible to the secret key that B derives
from his update. As a result, the update of the public key must not reveal the respective secret
key (or any other information that can be used to obtain information on keys encapsulated to
this updated public key). Otherwise, the adversary would obtain this information as well (and
thereby the security of key (A, 2) would not be preserved).

Both requirements are reflected in the security game of the kuKEM (see Figure 1).

B.3 Encapsulation to all public keys

Subsequently we describe a scenario in which A only maintains one public key in her state to
which she can securely encapsulate keys (while the state contains multiple useless public keys).
This scenario is crucial because A does not know, which of her public keys provides security,
and the SRKE protocol is required to output secure session keys in this scenario. Consequently
only encapsulating to all public keys in A’s state solves the underlying issue. The reasons for
encapsulating to all public keys in A’s state is closely related to the reasons for employing a
kuKEM in SRKE (see the previous subsection).

Assume the adversary exposes the states of both parties (SA ← ExposeA; SB ← ExposeB).
Consequently none of A’s public keys provides any security guarantees for the encapsulation
towards the adversary anymore. If the adversary lets B send a ciphertext and thereby propose
a new public key to A, A’s future session keys are required to be secure again (CB1 ←$ SndB(ε);
RcvA(CB1, ε)). Impersonating A towards B and then exposing B to obtain his state has—
according to the KINDR game—no influence on the traceability of A’s future session keys
((S′A, k′, C′)←$ sndA(SA, ε); RcvB(C′, ε); S′B ← ExposeB). However, our construction allows the adver-
sary to impersonate B towards A afterwards: the impersonation of A towards B only invalidates
the kuKEM secret key in B’s state via the key update in B’s receive algorithm. The signing key
in B’s state is still valid for the communication to A since it was not modified at the receipt
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of the impersonating ciphertext. As such, the adversary may use the signing key and then im-
plant further public keys in A’s state by sending these public keys to A ((S′′B , C′′)←$ sndB(S′B , ε);
RcvA(C′′, ε)). These public keys do not provide security with respect to A’s session keys since
the adversary can freely choose them. As a result, only the public key that B sent in sync
before A was impersonated towards B belongs to a secret key that the adversary does not know
(public key in CB1). Since A has no indication which public key’s secret key is not known by
the adversary (note that A and B were exposed at the beginning of the presented scenario and
the adversary planted own public keys in A’s state at the end of the scenario by sending valid
ciphertexts), A needs to encapsulate to all public keys in order to obtain at least one encap-
sulated key as secret input to the random oracle such that the session key also remains secure
(CA1 ←$ SndA(ε); kb ←$ Challenge(A, 1)).

Observe that the scenario, described above, lacks an argument why also the first public
key in A’s state needs to be used for the encapsulation if A received further public keys from
B afterwards. The reason for also using the first public key, that is always derived from the
previous random oracle output, lies within A’s sending after becoming out of sync. A became
out of sync by receiving C ′′ (see above). When sending CA1, A derived a new public key for
her state. The secret key to this public key was part of the same random oracle output as the
session key that is challenged afterwards (A, 1). As argued before, this session key is secure (for
all details we refer the reader to the proof in Appendix C). Consequently the public key in
A’s state after sending CA1 provides security against the adversary regrading encapsulations.
However, the adversary can still plant new public keys to A’s state ((S′′′B , C

′′′) ←$ sndB(S′′B , ε);
RcvA(C′′′, ε)). As such, only the first public key in A’s state provides security after A became
out of sync (and sent once afterwards). All remaining public keys may belong to secret keys
chosen by the adversary. Since A will not notice when she became out of sync, she also needs
to include the first public key in her state for encapsulating within her send algorithm in order
to compute secure session keys (CA2 ←$ SndA(ε); kb2 ←$ Challenge(A, 2)).

As a result, A always needs to encapsulate to all public keys in her state such that at least
one encapsulated key is a secret input to the random oracle (in case her future session keys were
not marked traceable by the KINDR game).

C Proof of SRKE

Model and construction of SRKE are very similar to the model and construction of URKE
respectively. Therefore the proof approaches by the same idea. The exact game hops are however
more complex because of the more sophisticated employed primitives in the SRKE construction
and the management of variables due to the extended communication setup (both parties can
send and receive anytime).

Even though the security of URKE is implied by the security of SRKE, for didactic reasons
we provide both proofs.

Overview In addition to the proof of URKE, SRKE employs an abortion rule in game G1 in
case of a signature forgery. All remaining game hops follow the same idea as the URKE proof: G2
limits B’s simulation to sending and out of sync receiving. Receiving in sync of B is simulated
by the computations of A’s sending—which by correctness of the construction has the same
result. G3 programs the random oracle with internal procedures for the simulation without the
knowledge of encapsulated kuKEM keys such that sent ciphertexts include embedded kuKEM
challenges. To reduce the adversary’s random oracle queries to the solution of the employed
hardness assumptions, G4 starts to lazy sample the random oracle outputs—including the next
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secret key and MAC key. Finally G5 aborts on bad events which are proven to only occur if the
adversary broke one of the hardness assumptions.

Figure 16 and Figure 17 depict the SRKE KINDR game (see Figure 8) including our SRKE
construction from Figure 9 and the game hops described below. Figure 16 includes the ini-
tialization of game and scheme, and the communication from B to A with a helper procedure
GetSK. The opposite communication direction is depicted in Figure 17 with the oracles for the
adversary to expose, reveal, and challenge. The description of the random oracle can be found
in Figure 18.

Game 1 – Excluding signature forgeries Game G1 aborts if the adversary successfully
forges a signature to drift the parties’ states out of sync. Thereby distinguishing between the
original game KINDR and G1 can be reduced to the SUF security of the one-time signature
scheme. In order to do so, the reduction guesses, when the adversary plants a signature forgery
(i.e., for which signature key pair a forgery is received by A). For this key pair the generation,
signing, and verification algorithms are replaced by the SUF game’s oracles. All other signature
operations are simulated by the reduction directly. The signer key sgk for which the adversary
provides a forgery—to distinguish within the first game hop—was not exposed because otherwise
either the receive counter rA is in the set of exposed counters XPB or the A was out of sync
earlier such that oosB ≤ rA holds and therefore forgeB would not be set (see lines 53–56).

Let qF be the number of RcvA queries by the adversary, then the advantage of an adversaryD
to distinguish between the original game and G1 can be upper bounded by:

Advkind,G1
R (D) ≤ qRAdvsuf

S (CS)

Game 2 – Synchronous simulation of B Using the correctness of our construction, we can
again simulate the receiving of unmodified ciphertexts by B with the simulation of A. Therefore
we remove B’s state in game G2 and trace the respective variables with global arrays and
counters.

To fully understand this game hop, we divide its description on the basis of the introduced
and used variables. At first the counters (E`? ,Ea? , esA, erB)—and thereby the indexing scheme
of the introduced arrays—are explained. Then the usage of the arrays, tracing secret keys (SK?)
and symmetric keys (KT?), are presented. The array SK in B’s state is not simulated directly
with one array but instead compiled from the array of all secret keys SK? as soon as it is needed.
Due to the complexity of the compilation, the simulation of array SK (under usage of arrays
SK?, Γ and procedure GetSK) is explained separately. Conclusively this game introduces an
array (XSK ) and a flag (ims) to comprehensively indicate which secret keys are exposed and
how this influences an impersonation towards the sender.

Defining global variables and counters The interval of epochs E, the array of sent ciphertext-
associated-data pairs LB, and the signature signer state sgk in B’s state are declared as global
variables to simulate exposures without maintaining B’s state as a whole. To highlight this
modification, the variable symbols are indexed with the ? symbol (E?, LB?, sgk?). The variable r
in B’s state is replaced by the already existing variable rB. These replacements are denoted
by a "?" at the right margin of the corresponding lines. We can use rB instead of r because
both variables are incremented equally. Additionally the counters esA, erB are introduced for
counting the send and receive operations within an epoch. Hence both counters are reset for
every new epoch.
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Game KINDb
R(A)

00 R[·]← ⊥ G≥0
01 sA ← 0; rB ← 0; isA ← T
02 sB ← 0; rA ← 0; isB ← T
03 eA ← 0; EPA[·]← ⊥
04 E`B ← 0; EaB ← 0
05 adcA[·]← ⊥; keyB [·]← ⊥
06 adcB [·]← ⊥; keyA[·]← ⊥
07 XPA ← ∅; TRA ← ∅; CHA ← ∅
08 XPB ← ∅; TRB ← ∅; CHB ← ∅
09 oosB ←∞; forgeB ← F G≥1
10 SK?[·]← ⊥; KT?[·]← ⊥ G≥2
11 esA ← 0; erB ← 0; ims ← F G≥2
12 XSK ← ∅; Γ [·]← 0; CK [·]← ⊥ G≥2
13 oosA ←∞; forgeA ← F G≥5
14 (sgk?, vfk)←$ genS G≥2 ?
15 (sk, pk)←$ genK
16 (K, k.m)←$ K2; t← ε
17 E` ← 0; Ea ← 0
18 s← 0; r ← 0 G<2 r
19 E`? ← 0; Ea? ← 0 G≥2 ?
20 PK [·]← ⊥; PK [0]← pk
21 SK [·]← ⊥; SK [0]← sk G<2
22 LA[·]← ⊥; LA[0]← �
23 LB?[·]← ⊥ G≥2 ?
24 SA ← (PK , E, s, LA, vfk,K, k.m, t)
25 SB ← (SK , E, r, LB , sgk,K, k.m, t)G<2
26 KT?[0, 0, 0, S]← (K, k.m, ε) G≥2
27 SK?[0, 0, 0, S]← (sk, 0) G≥2
28 b′ ←$ A
29 Require TRA ∩ CHA = ∅
30 Require TRB ∩ CHB = ∅
31 Stop with b′

Oracle SndB(ad)
32 Require SB 6= ⊥
33 (SK , E, r, L, sgk,K, k.m, t)← SB G<2
34 (sk∗, pk∗)←$ genK
35 (sgk∗, vfk∗)←$ genS
36 Ea? ← Ea? + 1; SK [Ea]← sk∗ G<2 ?
37 C ← rB ‖ pk∗ ‖ vfk∗ G≥2 ?
38 σ ←$ sgn(sgk?, ad ‖C) G≥2 ?
39 sgk? ← sgk∗ G≥2 ?
40 C ← C ‖σ; LB?[Ea? ]← / ‖ ad ‖C G≥2 ?
41 SB ← (SK , E, r, L, sgk,K, k.m, t) G<2
42 If isB :
43 adcB [sB ]← (ad, c)
44 EaB ← EaB + 1
45 sB ← sB + 1
46 If isB : SK?[Ea? , 0, 0, S]← (sk∗, sB) G≥2
47 Else: SK?[Ea? , 0, 0, R]← (sk∗, sB) G≥2
48 Return c

Oracle RcvA(ad, c)
49 Require SA 6= ⊥
50 If isA ∧ adcB [rA] 6= (ad, c):
51 isA ← F
52 oosA ← rA G≥5
53 If rA ∈ XPB :
54 TRA

∪← N× [ sA, ... ]
55 ims ← T G≥2
56 Else if oosB > rA: forgeB ← T G≥1
57 If isA: eA ← eA + 1
58 (PK , E, s, L, vfk,K, k.m, t)← SA

59 t
q← / ‖ ad ‖C; C ‖σ ← C

60 Require vfyS(vfk, ad ‖C, σ)
61 If forgeB : Abort G≥1
62 r ‖ pk∗ ‖ vfk ← C
63 Require L[r] 6= ⊥
64 L[..., (r − 1)]← ⊥; L[r]← �
65 For s′ ← r + 1 to s:
66 pk∗ ← up(pk∗, L[s′])
67 Γ [Ea + 1, S]← Γ [Ea + 1, S] + 1 G≥2
68 Ea ← Ea + 1; PK [Ea]← pk∗
69 SA ← (PK , E, s, L, vfk,K, k.m, t)
70 If SA = ⊥: Return ⊥
71 rA ← rA + 1
72 Return

Proc GetSK(U1, U2) G≥2
73 If U1 = S: ( , LA, )← SA; P ← LA

74 SK [·]← ⊥
75 (sk, s)← SK?[E`? , erB , 0, U1]
76 SK [E`? ]← sk; SK?[E`? , erB , 0, U2]← (sk, s)
77 For ε from E`? + 1 to Ea? :
78 l← max(` : SK?[ε, 0, `, U1] 6= ⊥)
79 (sk, s)← SK?[ε, 0, l, U1]
80 SK?[ε, 0, l, U2]← (sk, s)
81 For `← l + 1 to rB − s:
82 p← P [rB − s+ `]
83 sk ←$ up(sk, p)
84 SK?[ε, 0, `, U2]← (sk, s)
85 SK [ε]← sk
86 Γ [ε, R]← rB − s
87 Return SK

Fig. 16: Proof of SRKE containing initialization, communication from B to A, and two helper procedures. Note
that EB , E,E? refer to different epoch intervals: EB is the KINDR game’s interval for B which stops increasing
out of sync, E denotes the intervals in A’s and B’s states locally, and E? is the global substitution for the interval
in B’s state (for G≥2).

Indexing arrays The index of the arrays SK?,KT?, and the set XSK consists of four parameters:
1) the epoch counter, 2) within this epoch, the number of send or receive operations (specified
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Oracle SndA(ad)
00 Require SA 6= ⊥
01 (PK , E, s, L, vfk,K, k.m, t)← SA

02 i← (E`, esA, 0, S) G≥2
03 If E` 6= Ea: esA ← 0 G≥2
04 k∗ ← ε; C ← Ea
05 For e′ ← E` to Ea:
06 (k, c)←$ enc(PK [e′])
07 CK [c, i]← k G≥2

08 k∗
q← k; C q← c G<3 k

∗ q← k

09 I
q← i; i← (e′, 0, Γ [e′, S], S) G≥2

10 τ ← tag(k.m, ad ‖C)
11 C

q← τ ; t q← . ‖ ad ‖C
12 If ims: y ‖ k.m ‖ sk ← H(K, k∗, t) G≥3 If ims
13 Else: G≥3
14 y ‖ ← G(K, t, I, T) G≥3
15 k.m ←$ K; sk ←$ SK G≥3
16 SetO(K, t, I, k.m, sk) G3−4
17 k.o ‖K ← y
18 pk ← genK(sk)
19 PK [..., (Ea − 1)]← ⊥; PK [Ea]← pk
20 E` ← Ea; s← s+ 1; L[s]← ad ‖C
21 SA ← (PK , E, s, L, vfk,K, k.m, t)
22 If isA:
23 adcA[sA]← (ad, C)
24 EPA[sA]← eA

25 keyA[eA, sA]← k.o
26 sA ← sA + 1
27 esA ← esA + 1; i← (Ea, esA, 0, S) G≥2
28 If not ims: G≥2
29 KT?[i]← (K, k.m, t) G≥2
30 SK?[i]← (sk,⊥) G≥2
31 Return C

Oracle ExposeA
32 If isA: XPA

∪← {sA}
33 Return SA

Oracle ExposeB
34 TRB

∪← [E`B ..EaB ]× [ rB , ... ]
35 If isB :
36 XPB

∪← {sB}
37 TRA

∪← [E`B ..EaB ]× [ rB , ... ]
38 U← S G≥2

39 XSK ∪← [E`? ]× [ erB , ... ]×N× [S] G≥2

40 XSK ∪← [E`? + 1 ..Ea? ]× N2 × [S] G≥2
41 Else: U← R G≥2
42 (K, k.m, t)← KT?[E`? , erB , 0, U] G≥2
43 SK ← GetSK(U, U) G≥2
44 SB ← (SK , E?, rB , LB?, sgk?,K, k.m, t) G≥2
45 Return SB

Oracle Reveal(u, j)
as in URKE (Fig. 5)

Oracle Challenge(u, j)
as in URKE (Fig. 5)

Oracle RcvB(ad, C)
46 Require SB 6= ⊥
47 If isB ∧ adcA[rB ] 6= (ad, C):
48 isB ← F
49 oosB ← sB G≥1
50 GetSK(S, R) G≥2
51 KT?[E`? , erB , 0, R]← KT?[E`? , erB , 0, S] G≥2
52 If rB ∈ XPA:
53 TRB

∪← N× [ rB , ... ]
54 Else if (E`? , erB , 0, S) /∈ XSK : G≥5
55 forgeA ← T G≥5
56 If isB ∧ E`B 6= EPA[rB ]:
57 E`B ← EPA[rB ]
58 E`? ← EPA[rB ]; erB ← 0 G≥2
59 If not isB : G≥2
60 i← (E`? , erB , 0, R) G≥2
61 (SK , E, r, L, sgk,K, k.m, t)← SB G<2
62 (K, k.m, t)← KT?[i] G≥2
63 SK ← GetSK(R, R) G≥2
64 t∗ ← ad ‖C; C ‖ τ ← C
65 Require vfyM(k.m, ad ‖C, τ)
66 If forgeA: Abort G≥5.4
67 k∗ ← ε; e ‖C ← C
68 Require E`? ≤ e ≤ Ea? G≥2 ?
69 If E`? 6= e: erB ← 0 G≥2

70 t
q← LB?[E`? + 1] ‖ . . . ‖L[e] G≥2 ?

71 LB?[..., e]← ⊥ G≥2 ?
72 For e′ ← E`? to e: G≥2 ?
73 c ‖C ← C
74 k ← dec(SK [e′], c) G<3
75 Require k 6= ⊥ G<3
76 Require dec(SK?[i], c) 6= ⊥ G≥3

77 k∗
q← k G<3

78 I
q← i; i← (e′, 0, Γ [e′, R], R) G≥2

79 t
q← . ‖ t∗

80 k.o ‖K ‖ k.m ‖ sk ← H(K, k∗, t) G<3
81 k.o ‖K ‖ k.m ‖ sk ← G(K, t, I, F) G≥3
82 SK [..., (e− 1)]← ⊥; SK [e]← sk G<2
83 For e′ ← e+ 1 to Ea: G<2
84 SK [e′]← up(SK [e′], t∗) G<2
85 E` ← e; r ← r + 1 G<2 r
86 SB ← (SK , E, r, L, sgk,K, k.m, t) G<2
87 If SB = ⊥: Return ⊥
88 If isB : k.o ← �
89 keyB [E`B , rB ]← k.o
90 rB ← rB + 1
91 erB ← erB + 1 G≥2
92 If not isB : G≥2
93 i← (E`? , erB , 0, R) G≥2
94 KT?[i]← (K, k.m, t) G≥2
95 SK?[i]← (sk,⊥) G≥2
96 P [rB ]← t∗ G≥2
97 GetSK(R, R) G≥3
98 Return

Fig. 17: Proof of SRKE considering communication from A to B and the remaining oracles of KINDR.
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Variable of A Explanation Corresponding
Variable of B

Explanation

E` in SA Epoch to which A sent last
ciphertext

E`? Epoch for which B received
last ciphertext

Ea in SA Newest epoch that was pro-
posed to A

Ea? Newest epoch that B pro-
posed to A

esA Number of sent ciphertexts
to the current epoch E`

erB Number of received cipher-
texts for the oldest cached
epoch E`?

sA Total number of sent cipher-
texts

rB Total number of received ci-
phertexts

Table 1: Variables for indexing arrays in the simulation of games G≥2. The following conditions hold in presence
of a passive adversary: E`? ≤ E` ≤ Ea ≤ Ea? , E` = E`? ⇒ esA ≥ erB .

by esA or erB), 3) the number of updates (also called level) of the secret key via the kuKEM
up algorithm (set to 0 for array KT?), and 4) a tag that indicates whether the entry was used
by B’s simulation. In comparison to the former two index parameters of this scheme, the index
scheme of the key array key consists of the epoch counter and the number of total send or receive
operations (specified by sA or rB). It is easy to see that there exists a function for transferring
the indexing schemes among each other when disregarding the level and tag parameter. While
the indexing via total operation counters simplifies the phrasing of the adversary’s winning
conditions, indexing via counters within epochs is more natural for the simulation. Table 1
provides an intuitive explanation of the index parameters for the simulation.

The indexing scheme for the arrays is constructed to model the usage of secret keys in
SRKE—thereby it can also be used to index the symmetric key array KT?. The index for a
freshly generated secret key for a new epoch is obtained by increasing the epoch counter and
resetting all remaining index parameters (see Figure 16 lines 36, 46, 47 and Figure 17 lines 03,
58, 69). When deriving a secret key from the random oracle, the counter within the epoch is
increased and the level parameter to be explained hereafter is reset (see Figure 17 lines 27, 91,
93). Finally secret keys can be updated. Therefore the index includes the level parameter that
is increased with every update operation (see Figure 16 lines 81–84). In addition to the epoch
number, the counter within the epoch, and the level of a secret key, a tag U ∈ {S, R} indexes
SK?,KT?,XSK . As in the URKE proof, S denotes values that are used for simulation of A.
Entries marked with R are used by the explicit simulation of B—consequently these entries are
only used from the moment of receiving the ciphertext that causes B to become out of sync
onwards (see Figure 17 lines 50–51).

Usage and computation of arrays As in the URKE proof, the arrays SK?,KT? store the secret
keys and tuples of chaining key, MAC key, and transcript after each sending and receiving
operation respectively. Writing and reading the array KT? is conducted straight forward as it
is in the URKE proof.

Freshly generated secret keys and secret keys as output of the random oracle are directly
stored in SK?. To reassemble the construction’s array SK at exposures or for simulating the
receiving out of sync, we use the array of secret keys SK? in procedure GetSK (see Figure 16).
As for the original array SK , this procedure sets the current epoch’s secret key in the entry
for the current epoch, and all subsequent entries are filled with the first secret key within the
respective epoch. To derive the correct updated secret keys for cached epochs in SK (epoch
index greater than E`? ), updates in sync use the LA array of A’s state to obtain the correct
ciphertexts and associated data as update parameters. Out of sync the array P is first filled
with the entries of LA and then further filled by the simulation of B (see Figure 16 line 73,
Figure 17 line 96). To correctly simulate the updates, already defined secret keys are taken and
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further updates are based on the latest existing updated secret key20 (see Figure 16 lines 78
ff.). To adopt secret keys marked with S when B becomes out of sync, GetSK copies the most
often updated entry (highest level) of each secret key and potentially further updates these keys
accordingly. To track when a secret key was initially generated, the counter s is stored for each
secret key sent by B (see Figure 16 lines 46,47). The number of necessary updates can then be
derived by the difference between the number of received ciphertexts by Bob and the value of
the send counter attached to the secret key in SK?.

For the next game hop, the index of each key pair, used for the next encapsulation (when A
sends) or decapsulation (when B receives), needs to be known (see Figure 17 lines 09, 78). In
array I all key pair indexes i are concatenated for which a tuple (c, k) is input to the random
oracle query within the same send or receive operation. As described above, the third index
parameter indicates the level of the respective secret key (number of updates). The array Γ
stores the number of updates for each secret key. While for the simulation of A Γ is filled at
receiving a new public key (see Figure 16 line 67), the simulation of B can compute Γ along the
computation of the secret key in GetSK (see Figure 16 line 86). Note that only the first secret
key within an epoch needs to be tracked because later keys will not be updated in our SRKE
construction.

Exposure and impersonation For tracing exposed secret keys, we introduce the set XSK that is
filled with the indexes of A’s exposed secret keys (secret keys that belong to A’s public keys).
Secret keys are marked to be exposed if they are stored in the exposed array SK . Additionally
all subsequent secret keys that are directly derived from these secret keys (i.e., generated within
the same epoch) are marked to be exposed, since they can be obtained from the random oracle
with the exposed secret keys and the chaining key that is also exposed, or from the publicly
known update parameter (ciphertext and associated data). If A and B were out of sync, the
key update via kuKEM update or random oracle was computed with different values (ad ‖C of
A and B were per definition different). Hence none of A’s public keys’ secret keys are exposed
by B out of sync.

If B is impersonated towards A—i.e., the in-sync state of B for computing the ciphertext
to A was exposed and the ciphertext-associated-data pair received by A was not sent by B—,
then ims is set (see Figure 16 line 55). Thereby all future computations by A are traceable by
the adversary. After the flag ims is set, we stop to store secret keys from the random oracle
outputs in A’s simulation. Secret keys generated by A after the impersonation are never used
by B (because from this moment on the parties are out of sync) and A only needs the respective
public keys anyway.

As in URKE, the array CK is introduced in game G2 to track the triple (c, k, i) after each
encapsulation.

Apart from preparations for subsequent games (e.g., setting up indexes, XSK , and ims), this
game hop substitutes B’s state by introducing global variables and counters. Thereby B is only
explicitly simulated for sending and for computations out of sync. All remaining computations
are either conducted by A’s simulation or by the helper procedure GetSK.

Game 3 – Internal access to random oracle Game G3 is also directly adapted from the
URKE proof: the simulation requests the random oracle without providing the input key k∗.
There are only two minor differences that do not affect the underlying principle. Firstly, the
input to the random oracle is a vector of keys k∗ = k1 ‖ .. ‖ kn. The input transcript t is
accordingly also composed of the concatenation of ciphertext vectors c1 ‖ .. ‖ cn and the index
20 Please note that the update algorithm is a one way function and regarding the reduction, the simulation has

to comply with the KUOW game’s update oracle which can only be called sequentially.

41



Oracle H(K, k∗, t) G≥0
00 k1 ‖ .. ‖ kn ← k∗

01 t′ ‖ ad ‖ e ‖ c1 ‖ .. ‖ cn ← t
02 (k.o,K∗, k.m)←$ K3; sk ←$ SK
03 I ← ε; sen ← F
04 If ∃I : R[K, t, k, I] 6= ⊥:
05 (k.o,K∗, k.m, sk, sen)← R[K, t, k, I]
06 Else if ∃I = i1 ‖ .. ‖ in : R[K, t, ε, I] 6= ⊥ G≥3

∧∀j, 1 ≤ j ≤ n : ij ∈ N3 × [R] G≥3
∧dec(skj , cj) = kj , (skj , s)← SK?[ij ]: G≥3

07 (k.o,K∗, k.m, sk, sen)← R[K, t, ε, I] G≥3
08 Else if ∃I = i1 ‖ .. ‖ in : R[K, t, ε, I] 6= ⊥ G≥3

∧∀j, 1 ≤ j ≤ n : ij ∈ N3 × [S]
∧CK [cj , ij ] = kj : G≥3

09 (k.o,K∗, k.m, sk, sen)← R[K, t, ε, I] G≥3
10 (ej , )← ij G≥5
11 If en < oosA ∧ in /∈ XSK : Abort G≥5.1
12 If e1 < oosA ∧ en ≥ oosA: Abort G≥5.2
13 If e1 ≥ oosA: Abort G≥5.3
14 (sk, )← SK?[in + 1] G≥4
15 ( , k.m, )← KT?[in + 1] G≥4
16 R[K, t, k, I]← (k.o,K∗, k.m, sk, sen)
17 Return k.o ‖K∗ ‖ k.m ‖ sk

Proc G(K, t, I, sen) G≥3
18 t′ ‖ ad ‖ e ‖ c1 ‖ .. ‖ cn ← t
19 i1 ‖ .. ‖ in ← I
20 k∗ ← ε
21 If sen ∧ ∃k∗ : R[K, t, k∗, ε] 6= ⊥:
22 Abort
23 Else if ¬sen ∧ ∃k∗ = k1 ‖ .. ‖ kn :

R[K, t, k∗, ε] 6= ⊥ ∧ ∀j, 1 ≤ j ≤ n :
dec(skj , cj) = kj , (skj , s)← SK?[ij ]:

24 (k.o,K∗, k.m, sk, sen′)← R[K, t, k∗, ε]
25 Else:
26 (k.o,K∗)←$ K2; k.m ← ε; sk ← ε
27 If ¬sen: k.m ←$ K; sk ←$ SK
28 R[K, t, k∗, I]← (k.o,K∗, k.m, sk, sen)
29 Return k.o ‖K∗ ‖ k.m ‖ sk

Proc SetO(K, t, I, k.m, sk) G≥3
30 (k.o,K∗, k.m′, sk′, sen)← R[K, t, ε, I]
31 R[K, t, ε, I]← (k.o,K∗, k.m, sk, sen)
32 Return

Fig. 18: Random oracle description for proof of SRKE.

provided to the internal procedure G consists of multiple secret key indexes I = i1 ‖ .. ‖ in.
Secondly, not all internal random oracle requests of A are issued via the internal procedure G.

In case an impersonation of B towards A was performed by the adversary such that ims is
set, the simulation of A strictly follows the construction description and no (kuKEM) challenges
are embedded by the simulation. This is valid since no future established session key will be
challengeable. Consequently the respective random oracle requests do not need to be issued
without the knowledge of the kuKEM keys in k∗ and, as such, can be computed by using H
instead of G.

As described in the previous game, the cumulative index I contains a vector of all indexes
to which the send or receive operations encapsulated or decapsulated right before the random
oracle invocation respectively. Thereby the tuple (C, I, k∗) = (c1 ‖ .. ‖ cn, i1 ‖ .. ‖ in, k1 ‖ .. ‖ kn)
is processed in SRKE instead of a tuple consisting of one value each in URKE. The validation
of the inputs to the random oracle for finding existing equal entries now works accordingly:
If there exist an entry created by an external query for the internal query by B’s simulation
with the same transcript t and each ciphertexts cj at the end of t can be decapsulated with the
respective secret key with index ij in I to the key kj of the external entry’s input k∗, then the
queries were equal and the output of the internal query is copied from the external one. For
queries of A’s simulation that collide with an entry made externally, the game aborts as in the
URKE proof.

If the adversary externally requests the random oracle, the validation is again split (in order
to comply with the KUOW game’s oracles). The vector of ciphertexts in the transcript and the
vector of keys in the input key k∗ are validated with respect to the existing internally made
entries and their vectors of secret key indexes. If there exists an entry made internally (marked
with ε at the index position of k∗) such that 1) either each secret key ij from the cumulative
index I of this entry can be used to decapsulate the respective ciphertext to the respective key
in k∗ (see line 06) or 2) all tuples (cj , ij , kj) were stored in the array CK (see line 08), then the
external query and internal entry are equal. In this case the output of the external random oracle
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query is copied from this internal entry. To ensure that all secret keys are updated according to
the construction of the receive algorithm, such that validation in the random oracle is correct,
GetSK is invoked a second time at the end of B’s receive operation.

Splitting the validation is done to prepare the reduction to the KUOW game. The decryption
for entries made by B’s simulation can be conducted by using the Check oracle. The Solve oracle
is modeled by array CK . As in URKE, the reduction will fill CK for exposed secret keys explicitly
because the Solve oracle can only be used for unexposed secret keys. In addition to that, the
reduction will fill CK also directly for public keys for which the simulation never has access to
the respective secret keys. This is the case for all public keys received by A after becoming out
of sync without an impersonation (ims was not set). The adversary can instead impersonate B
delayed: if first A is impersonated towards B and then B is exposed, B’s signing key is still valid
such that the adversary can use it to send valid own ciphertexts to A. Thereby the adversary
can send public keys to A for which the adversary (but not the simulation) knows the secret
keys. In this case, CK is filled instantly after the encapsulation.

As in the URKE proof, the output MAC key and secret key are sampled independently of
the random oracle for internal queries by A.

The probability of the abortion for predefined random oracle entries colliding with internal
queries by A can again be bounded by the birthday bound. Let qF be the number of random
oracle requests and qS be the number of queries to the SndA oracle then distinguishing between
games G2 and G3 can be bounded as:

AdvG2,G3(D) ≤ qF qS

|KK|

Note that this is an upper bound for the advantage. In case the ciphertext consists of a
vector of kuKEM ciphertexts—and thereby the key, as input to the random oracle, is a vector
of kuKEM keys—the probability for a collision is lower (because the size of the key space in
which a collision occurs is larger respectively).

Requesting the random oracle without providing the cumulated key k∗ allows to disregard
the decapsulation and hence the usage of secret keys for the simulation of B. For comparing
the decapsulation output with the ⊥ symbol, the KUOW’s Check oracle will be used such
that the secret key of B does not need to be used explicitly. To emphasize this, the input to
the decapsulation in line 76 is the respective element from the global secret key array SK?,
disregarding its second value s.

Game 4 – Random oracle with lazy sampling In game G4 we stop to set the output MAC
keys and secret keys for random oracle queries by A’s simulation if ims is not set. Thereby the
explicit usage of these keys is shifted to the validation in the random oracle, providing the output
for external random oracle requests, and to exposures of B. We will show that the former and
letter use cases can be simulated by the reduction to the KUOW or SUF game respectively. The
second use case will either not occur without breaking the underlying hardness assumption, or
it can also be simulated by using the oracles of the respective games in the reduction.

Please note that we denote incrementing of index i such that the counter es within the epoch
is incremented and the level parameter is reset: i+ 1 = (e, es, l, U) + 1 = (e, es+ 1, 0, U).

Game 5 – Abortions Our abortion conditions for SRKE split the key establishment in four
cases: 1) keys established by A in sync, 2) the first key established by A out of sync, 3) all
remaining keys established by A out of sync, and 4) keys established out of sync by B.

We first want to provide an intuition for the regarded cases: At the beginning of the com-
munication, the parties are in sync. Thereby only an abortion according to case 1) can occur.
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Manipulating a ciphertext from A to B now introduces cases 4) and, with a delay until the next
ciphertext in the opposite direction, also cases 2) and 3). It is necessary to understand that
for provoking an abortion in games G5.2 and G5.3, a ciphertext to A can only be manipulated
after B was already out of sync. The reason for this lies in the abortion of game G1. If G1 does
not abort, for ciphertexts to A either an impersonation occurred, or an invalid ciphertext was
received by A, or the ciphertext of B was correctly delivered to A. The former case prevents
the simulation from embedding challenges to the random oracle, the latter case does not drift
A’s state out of sync, and the second case provokes the state of A to be erased because the
signature verification will fail.

We split the first three abortion rules for didactic reasons. Therefore the reduction loses the
factor 3 with respect to the advantage in winning the KUOW game. It will become obvious that
all three abortions can be summarized to one condition that can be reduced to one instance
of the KUOW game such that the reduction would be tight with respect to the employed
assumptions.

In the subsequent paragraphs it is called explicit use of a value, if the simulation provides this
value to the adversary. If the value was only used for a computation—which can be simulated
by the underlying game’s oracles in the reduction—it was not explicitly used.

Game 5.1 – Keys established by A in sync Aborting in game G5.1 depends on two conditions
for the external random oracle query for which an internally defined entry of A exists: A was in
sync when requesting the random oracle for the entry that is externally requested and the secret
key skn with index in, that can be used to decapsulate the last key kn from the last cn in t,
as input to the random oracle, was not exposed. The public key to the initial secret key of the
same epoch as skn—secret key with the same value in the epoch index parameter but send and
level parameter set to 0—was originally sent by B in sync and correctly delivered to A because
otherwise A would have been out of sync already (which would violate the first condition). By
condition two, the secret key skn was not exposed. This condition can be fulfilled in two ways:
either B derived the same secret key skn as A, or B became out of sync before an exposure
and thereby derived different secret keys in this epoch. In the first case, the condition simply
holds because otherwise the secret key would be marked to be exposed. In the second case, the
secret keys of B are differently updated or freshly generated in the random oracle such that the
exposure of B’s secret keys has no influence on A’s established keys. Thereby the reduction can
make use of the KUOW game’s oracles UpR and Gen—and if needed Expose—for simulating
B’s updates and outputs of the random oracle for the differently derived secret keys.

Apart from obtaining the secret key via an exposure of B, the adversary can obtain it
from the output of the random oracle if n = 1 holds (i.e., skn = sk1 was derived from the
random oracle). This, however, can be excluded for the following reason: for this previous
internal random oracle entry, outputting secret key with index i1, there exists a secret key with
index i′n. Both indexes have the same epoch parameters since i′n was the last secret key index
of the random oracle entry outputting secret key with index i1. As a consequence, the same
conditions regarding an abortion in this game for an external query of the random oracle hold.
If the adversary requested the random oracle for this entry, outputting the secret key with
index i1, the game would have been aborted before.

Since with providing the correct kn for cn and secret key with index in, the adversary solves
the challenge of the KUOW game, and, as described above, the secret key with in was not
explicitly used by the simulation, the advantage in distinguishing between G5 and G5.1 can be
bounded by the advantage of winning the KUOW game:

AdvG5,G5.1(D) ≤ Advkuow
K (B)
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Game 5.2 – First key established by A out of sync Game G5.2 aborts if the adversary queries
the random oracle for the entry that was created by the internal request of A directly after
becoming out of sync (with G). Thereby at most three types of public keys are used by A for
the encapsulations before the random oracle request: 1) The public key derived from the last
random oracle query’s output secret key sk1, 2) public keys that were sent by B in sync and
correctly delivered to A, and 3) public keys received by A that caused her to become out of
sync or that were received thereafter. While there exist at least one public key of type 1 and
one of type 3, it is not necessary that A also encapsulated to a new received public key that
was sent in sync by B.

As described earlier, A only becomes out of sync because B drifted out of sync before.
Letting A drift out of sync solely would cause the ims flag to be set, or G1 to abort, or the
state of A being erased. According to this, B must not have been exposed before drifting out
of sync because otherwise the ciphertext, that causes A to become out of sync, is considered
as an impersonation such that ims is set. As a consequence, the newest public key used by A
before querying the random oracle, that results from a public key sent by B in sync, was not
exposed21. This is either the public key to the secret key sk1 with index i1 and hence of type 1,
or the public key to a secret key skj with index ij , 1 < j < n of type 2. Either way the respective
secret key (sk1 or skj) was not exposed before B became out of sync and was updated or derived
differently from A when B became out of sync afterwards. If this public key is of type 2, its
secret key skj can only be obtained by an exposure of B because it was freshly generated. Secret
key sk1 of public key of type 1 can also be obtained by the random oracle. The random oracle
query that outputs this secret key sk1 is associated to the previous secret key sk ′n in the same
epoch since i′n was the last secret key index for this previous random oracle entry. If no public
key of type 2 exists, this previous secret sk ′n must not have been exposed because otherwise the
whole epoch would be marked as exposed which would cause the ciphertext drifting A out of
sync to be considered as an impersonation. As such, the random oracle entry outputting the
secret key sk1 fulfills the conditions for an abortion of game G5.1 and can thereby be excluded
for game G5.2.

Conclusively, if there exists a public key of type 2 with secret key index ij , then this secret
key was not explicitly used by the simulation and thereby the adversary’s external random
oracle with input kj and cj can be used to solve the KUOW challenge. Similarly, if only two
kuKEM keys are fed into the internal random oracle query of A, then the secret key with index
i1 was not explicitly used by the simulation and (k1, c1) solve the KUOW challenge. Therefore
distinguishing between G5.1 and G5.2 can be reduced to the KUOW security of the kuKEM:

AdvG5.1,G5.2(D) ≤ Advkuow
K (B)

Game 5.3 – Further keys established by A out of sync In game G5.3 for an internally created
random oracle entry that causes an abortion, A and B were out of sync when A requested the
random oracle for this entry. The first public key, used for the encapsulation before the request,
is the result of A’s distinct previous random oracle request. The previous random oracle request
was distinct because by the condition (e1≥oosA) A requested the random oracle out of sync at
least once before since i1 has always the same epoch as i′n from the last random oracle request.
Since A and B are out of sync—and thereby their random oracle requests are independent—,
the secret key to each first public key for the encapsulation can only be obtained by the random
oracle. Requesting the random oracle for one of these entries externally would cause the game to
abort—either according to game G5.2 for the first random oracle query out of sync, or according
21 Results from means that the public key sent in sync by B and received in sync by A was possibly updated and

possibly used to feed the random oracle to obtain the public key that was actually used by A in the considered
abortion—hence both keys (pk used by A and pk sent by B) are in the same epoch.
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to this game for all subsequent queries of A. Therefore by the conditions of the abortion, the
secret key to the first public key of each sending operation of A out of sync was not explicitly used
and hence not known to the adversary such that the tuple (k1, c1) solves the KUOW challenge
of the kuKEM. Please note that impersonations of B towards A are implicitly excluded since
A’s simulation invokes G only if ims was not set. Hence we can bound the probability of an
abortion in G5.3 by the advantage of winning the KUOW game22:

AdvG5.2,G5.3(D) ≤ Advkuow
K (B)

Game 5.4 – Keys established by B out of sync The abortion rule of game G5.4 of SRKE can
be reduced to the one of game G5.2 of URKE. For aborting the game, A must not be exposed
for the last state in sync between A and B, and B’s oldest cached secret key at receiving the
ciphertext drifting him out of sync must not have been exposed. These conditions imply that an
external random oracle query to the entry, that defines the last common state values (e.g., k.m),
causes an abortion of G5.1. Consequently the MAC key was neither exposed by A, nor by B,
nor provided to the adversary via an external random oracle query. Manipulating a ciphertext
and delivering it to B without erasing B’s state implies that the adversary forged the MAC tag.
Consequently the abortion of G5.4 is equivalent to winning the SUF game with respect to the
MAC:

AdvG5.3,G5.4(D) ≤ Advsuf
M (CM)

To conclude the proof, it is necessary to show that the abortions reduce all random ora-
cle queries by the adversary that output challengeable keys to one of the employed hardness
assumptions. Equivalently we show that the game aborts for the queries that do not output
traceable keys.

According to the transformability between the index scheme of the KINDR game and the
index scheme for the simulation, the union of A’s traceable keys TRA and the union of exposed
secret key indexes XSK at an exposure of B are equivalent (see Figure 17 lines 37, 39, 40). Since
G5.1 aborts for all keys established by A in sync for which in is not exposed, no challengeable
key of A in sync can be obtained from the random oracle. Please note that if in ∈ XSK holds,
it is implied that ∀1 ≤ j ≤ n : ij ∈ XSK because all secret keys are stored in the same state
of B.

When drifting out of sync, the KINDR game does not increase epochs of the respective party
anymore. Consequently impersonations cause all future keys to be traceable. Equivalently the
proof does not embed challenges into the random oracle if B was impersonated towards A and
does not consider a valid MAC for a manipulated ciphertext to B as a forgery if A was exposed
right before. A forgery is not regarded as such if the oldest epoch in B’s state was exposed,
either—which is equivalent to the absence of epoch increasing when drifting out of sync.

Since the abortions of games G5.1 − G5.3 cover all possible internal random oracle queries
of A and G5.4 excludes the establishment of challengeable keys by B, the adversary cannot
derive a challengeable key without letting the game abort. Hence the advantage in winning the
game G5.4 is 0.

AdvG5.4(A) = 0

Proof result Summing up the loss due to the game hops described above, provides us with
the advantage of an adversary in winning the SRKE KINDR game depending on the advantages
22 Please note that the abortion event of this game hop can be reduced to the OW security of the KEM solely

because the first public key in A’s state is only freshly generated as output of the random oracle but never
updated.
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of adversaries B, CS, and CM:

Advkind
R (A) ≤ 3Advkuow

K (B) + qRAdvsuf
S (CS) + Advsuf

M (CM) + qSqF

|KK|

D Proof of BRKE

We give proof for the security of our generic BRKE construction in Figure 12. This proof is
described below and depicted in Figure 19. Our proof first reduces the creation of signature
forgeries to the security of the used signature scheme. Then we show that the adversary cannot
win the BRKE KINDBR game without breaking the underlying SRKE scheme’s security.

Game 1 – Excluding signature forgeries Similarly to the SRKE proof, game G1 aborts on
signature forgeries that drift the parties’ states out of sync. The probability of this event can
be reduced to the advantage in winning the SUF game against the one-time signature scheme.

The major difference between game G1 in SRKE and BRKE lies within the abortion con-
ditions: In SRKE, impersonations cannot entail forgeries by definition because the respective
signing key is leaked to the adversary during the exposure of the impersonated party. The sign-
ing key in BRKE can never be exposed to the adversary because it is only used temporarily
during the computations of the send algorithm. As such, in BRKE also a ciphertext received as
impersonation can contain a signature forgery.

If the adversary injects a manipulated ciphertext that causes the receiving party to drift
out of sync, that contains the original verification key, and that is valid with respect to the
signature verification, game G1 aborts. If the respective sender was out of sync before (i.e., if
the adversary already injected a manipulated ciphertext in the other communication direction
before), then this ciphertext does not cause the parties to drift out of sync, but only propagates
the asynchrony. This latter case is not considered in the detection of signature forgeries because
the underlying SRKE schemes already handle the receipt of manipulated SRKE ciphertexts and
the propagation of out-of-sync states.

An adversary distinguishing between the original KINDBR game and game G1 can be used
to win the SUF game against the signature scheme. The reduction replaces the singing and
verification algorithms with the SUF game’s oracles for the ciphertext that entails the first
forgery. Thereby the reduction needs to guess, which ciphertext is the first one that contains
the forgery, such that the advantage in distinguishing between KINDBR and G1 can be bounded
by:

Advkind,G1
BR (D) ≤ qRAdvsuf

S (C)

where qR is the number of invocations of the Rcv oracle.
After game G1 the following invariant holds: If a manipulated ciphertext is received by one of

the parties, then either this party’s state is erased (due to an invalid signature), or both SRKE
receiver states are affected by the manipulation (due to an impersonation). The latter case is
true because the adversary must use an own signing key pair for the ciphertext’s signature of
which the verification key is used as associated data for both SRKE receive algorithms.

Game 2,3 – Key indistinguishability of SRKE In games G2, G3 we use the key indistin-
guishability of the underlying SRKE schemes to show that the adversary, breaking BRKE, can
be used to break one of the employed SRKE instances.

We replace the BRKE challenge keys by random elements from the key space. In game G2 we
do this for keys established from A to B, then in game G3 for the counter direction respectively.
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By matching the winning conditions of an adversary in game G2 (and G3) with the winning
conditions in the SRKE KINDSR game, one can see that these conditions are identical. Please
note that, due to the first game hop to game G1, manipulations of ciphertexts always affect
both SRKE ciphertexts.

As a result, the advantage of an adversary, distinguishing between G1 and G2 and between
G2 and G3 respectively, can be bounded by:

AdvG1,G2
BR (D) ≤ Advkind

SR (B), AdvG2,G3
BR (D) ≤ Advkind

SR (B)

Since all challenged keys are sampled uniformly at random from the key space in game
G3, the adversary cannot derive information on bit b and consequently the advantage of an
adversary is 0:

AdvG3
BR(A) = 0

Proof result Summing up the loss due to the game hops described above, provides us with the
advantage of an adversary in winning the BRKE KINDBR game depending on the advantages
of adversaries B and C:

Advkind
BR (A) ≤ 2Advkind

SR (B) + qRAdvsuf
S (C)

E Extended preliminaries

We give the exact security games of the primitives presented in Section 2.

E.1 Message authentication codes

A message authentication code (MAC) for a message space M is a pair M = (tag, vfyM) of
algorithms together with a samplable key space K and a tag space T . The tag-generation
algorithm tag may be randomized and takes a key k ∈ K and a message m ∈ M, and outputs
a tag τ ∈ T . The deterministic tag-verification algorithm vfyM takes a key k ∈ K, a message
m ∈ M, and a tag τ ∈ T , and outputs a Boolean value: either T (for accept) or F (for reject).
Shortcut notations for tag generation and verification are thus

K ×M→ tag→ T K ×M× T → vfyM → {T, F} .

For correctness we require that for all k ∈ K and m ∈ M and τ ∈ [tag(k,m)] we have
vfyM(k,m, τ) = T.

As a security property for MACs we formalize a multi-instance version of (strong) unforge-
ability. In this notion the adversary has to produce, for a message of its choosing, a fresh but
valid tag (for any out of a set of independent instances, each initialized with a uniformly picked
key). The adversary is supported by tag generation and verification oracles. The adversary is
also allowed to create new instances, or to expose them, meaning to learn their keys. The details
of this notion are in game SUF in Figure 20. For a MAC M, we associate with any adversary A
its strong unforgeability advantage Advsuf

M (A) := Pr[SUF(A) ⇒ 1]. Intuitively, the MAC is
secure if all practical adversaries have a negligible advantage.

Our variant of unforgeability is equivalent to the standard notion with only one instance
and no exposure. However, the corresponding reduction loses a factor of n, where n is the total
number of instances: The instance for which the adversary successfully forges a tag is guessed,
and the n− 1 remaining instances are simulated with knowledge of the corresponding key.
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Game KINDb
BR(A)

00 For u ∈ {A,B}:
01 su ← 0; ru ← 0
02 eu ← 0; EPu[·]← ⊥
03 E`u ← 0; Eau ← 0
04 adcu[·]← ⊥; isu ← T
05 keyu[·]← ⊥; XPu ← ∅
06 TRu ← ∅; CHu ← ∅
07 oosu ←∞; forgeu ← F G1
08 VKu[·]← ⊥ G1
09 (SA,S , SB,R)←$ initSR
10 (SB,S , SA,R)←$ initSR
11 SA ← (SA,S , SA,R)
12 SB ← (SB,S , SB,R)
13 b′ ←$ A
14 For u ∈ {A,B}:
15 Require TRu ∩ CHu = ∅
16 Stop with b′

Oracle Snd(u, ad)
17 Require Su 6= ⊥
18 (S1, S2)← Su

19 (sgk, vfk)←$ genS; ad q← vfk
20 VKu[su]← vfk G1
21 (S1, k.o, c1)←$ sndA(S1, ad)
22 (S2, c2)←$ sndB(S2, ad)
23 σ ←$ sgn(sgk, c1 ‖ c2)
24 c← vfk ‖ c1 ‖ c2 ‖σ
25 Su ← (S1, S2)
26 If isu:
27 adcu[su]← (ad, c)
28 EPu[su]← eu

29 Eau ← Eau + 1
30 keyu[S, eu, su]← k.o
31 su ← su + 1
32 Return c

Oracle Reveal(u, i)
as in URKE/SRKE (Fig. 5)

Oracle Rcv(u, ad, c)
33 Require Su 6= ⊥
34 If isu ∧ adcū[ru] 6= (ad, c):
35 isu ← F
36 oosu ← su G1
37 If oosū > ru: forgeu ← T G1
38 If ru ∈ XPū:
39 TRu

∪← {S} × N× [ su, ... ]
40 TRu

∪← {R} × N× [ ru, ... ]
41 If isu:
42 E`u ← EPū[ru]
43 eu ← eu + 1
44 (S1, S2)← Su

45 vfk ‖ c1 ‖ c2 ‖σ ← c; ad q← vfk
46 Require vfyS(vfk, c1 ‖ c2, σ)
47 If forgeu ∧ vfk = VK ū[ru]: Abort G1
48 S1 ← rcvA(S1, ad, c2)
49 Require S1 6= ⊥
50 (S2, k.o)← rcvB(S2, ad, c1)
51 Require S2 6= ⊥
52 Su ← (S1, S2)
53 If Su = ⊥: Return ⊥
54 If isu: k.o ← �
55 keyu[R,E`u , ru]← k.o
56 ru ← ru + 1
57 Return

Oracle Expose(u)
58 TRu

∪← {R} × [E`u ..Eau ]× [ ru, ... ]
59 If isu:
60 XPu

∪← {su}
61 TRū

∪← {S} × [E`u ..Eau ]× [ ru, ... ]
62 Return Su

Oracle Challenge(u, i)
63 Require keyu[i] ∈ K
64 k ← b ? keyu[i] : $(K)
65 If u = A ∧ i ∈ {S} × N2 G2

∨u = B ∧ i ∈ {R} × N2: G2
66 k ←$ K G2
67 If u = B ∧ i ∈ {S} × N2 G3

∨u = A ∧ i ∈ {R} × N2: G3
68 k ←$ K G3
69 keyu[i]← �
70 CHu

∪← {i}
71 Return k

Fig. 19: Proof of BRKE scheme from Figure 12 in BRKE KINDBR game from Figure 11.

E.2 Key encapsulation mechanisms

Figure 21 formalizes the security game OW for one-way security of a KEM K = (genK, enc,dec)
in a multi-receiver/multi-challenge setting allowing exposures.

Our variant of one-wayness is equivalent to the standard notion with only one receiver,
one challenge encapsulation, and no exposure. However, the corresponding reduction loses a
factor of nm,23 where n is the total number of receivers and m is the total number of challenge
23 For all KEM applications in this paper we actually have m = 1, i.e., the security loss is effectively only by a

factor of n.
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Game SUF(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 kn ←$ K
05 MTn[·]← ∅
06 Return

Oracle Expose(i)
07 Require 1 ≤ i ≤ n
08 XP ∪← {i}
09 Return ki

Oracle Mac(i,m)
10 Require 1 ≤ i ≤ n
11 τ ←$ tag(ki,m)
12 MTi[m] ∪← {τ}
13 Return τ

Oracle Vfy(i,m, τ)
14 Require 1 ≤ i ≤ n
15 v ← vfyM(ki,m, τ)
16 If i /∈ XP ∧ τ /∈ MTi[m]:
17 Reward v
18 Return v

Fig. 20: Security experiment SUF, modeling the (strong) unforgeability of a MAC in a multi-instance setting.
Variable n indicates the number of established instances, set XP keeps track of the instances that are exposed,
and for each instance i the associative array MTi keeps track of the messages and corresponding tags that are
processed in Mac queries.

Game OW(A)
00 n← 0; XP← ∅
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n+ 1
04 (skn, pkn)←$ genK
05 CKn[·]← ⊥
06 Return pkn

Oracle Enc(i)
07 Require 1 ≤ i ≤ n
08 (k, c)←$ enc(pki)
09 CK i[c]← k
10 Return c

Oracle Solve(i, c, k)
11 Require 1 ≤ i ≤ n
12 Require i /∈ XP
13 Require CK i[c] 6= ⊥
14 Reward k = CK i[c]
15 Return

Oracle Check(i, c, k)
16 Require 1 ≤ i ≤ n
17 k′ ← dec(ski, c)
18 Return [k′ = k]

Oracle Expose(i)
19 Require 1 ≤ i ≤ n
20 XP ∪← {i}
21 Return ski

Fig. 21: Security experiment OW, modeling the one-way security of a KEM in a multi-receiver/multi-challenge
setting. Variable n indicates the number of established receivers, set XP keeps track of the receivers that are
exposed, and for each receiver i the associative array CK i keeps track of the ciphertexts and session keys that
are processed in Enc queries.

encapsulations per receiver: The receiver for which the adversary successfully recovers the session
key is guessed, and the n− 1 remaining receivers are simulated with knowledge of their secret
key; further, the later-broken encapsulation query of the identified user is guessed, and the
remaining encapsulation queries simulated using the regular encapsulation algorithm.

E.3 One-time signature schemes

A one-time signature scheme for a message spaceM is a triple S = (genS, sgn, vfyS) of algorithms
together with a signer key-space SK, a verifier key-space VK, and a signature space Σ. The
randomized key-generation algorithm genS outputs a signer key sgk ∈ SK and a verifier key
vfk ∈ VK. The signing algorithm sgn may be randomized and takes a signer key sgk ∈ SK and
a message m ∈ M, and outputs a signature σ ∈ Σ. The deterministic verification algorithm
vfyS takes a verifier key vfk ∈ VK, a message m ∈ M, and a (candidate) signature σ ∈ Σ, and
outputs a bit b ∈ {T, F}, indicating acceptance and rejection, respectively. Shortcut notations
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for the three algorithms are thus

genS → SK × VK SK ×M→ sgn→ Σ VK ×M×Σ → vfyS → {T, F} .

For correctness we require that for all (sgk, vfk) ∈ [genS] and m ∈ M and σ ∈ [sgn(sgk,m)] we
have T = vfyS(vfk,m, σ).

We formalize a security notion of (strong) unforgeability for one-time signatures. Concretely,
the adversary controls the message processed by the signer, it sees the resulting signature, and
its goal is to make the verifier accept a message-signature pair that was not processed by the
signer. The details of this notion are in game SUF in Figure 22. For a one-time signature
scheme S, we associate with any adversary A its strong unforgeability advantage Advsuf

S (A) :=
Pr[SUF(A)⇒ 1]. Intuitively, the one-time signature scheme is secure if all practical adversaries
have a negligible advantage.

Game SUF(A)
00 ms ← ⊥; s← F
01 (vfk, sgk)←$ genS
02 Invoke A(vfk)
03 Stop with 0

Oracle Sgn(m)
04 Require s = F
05 σ ←$ sgn(sgk,m)
06 ms ← (m,σ); s← T
07 Return σ

Oracle Vfy(m,σ)
08 If not vfyS(vfk,m, σ):
09 Return F
10 Reward ms 6= (m,σ):
11 Return T

Fig. 22: Security experiment SUF, modeling the (strong) unforgeability of a one-time signature scheme. Variable s
counts the signing operations and variable ms records the message-signature combination processed by the signer.

F Modeling ratcheted key exchange

A common criticism in the key exchange community is that many constructions are proposed
with an own model for defining their security. Different models for schemes of a similar nature
hamper comparability and comprehensibility. We anticipate this by comparing our approach to
model security of ratcheted key exchange with prior work on ratcheting and on key agreement
in general. Essentially we conclude that our model is in line with prior strategies and with prior
notation. However, ratcheted key exchange is only loosely related to classic key agreement.

A security model (for key exchange) mainly consists of three components: 1) communica-
tion model with partnering definition, 2) the adversary’s ability to obtain information on the
communicating parties’ secrets, and 3) a winning condition for the security game defined by
excluding trivial attacks.

In our definitions (see Figures 5,8,11) we depict all three parts of the model in one figure
respectively. The communication model is implicitly given by the oracles Snd,Rcv. The partner-
ing is defined via the is bit (please note that the definition is related to matching conversations).
The remaining oracles (Reveal,Expose) define the adversary’s ability to obtain secrets from the
communicating parties. Finally, the challenge oracle together with the described excluded triv-
ial attacks define the winning conditions for the adversary. Note that excluding trivial attacks
within the oracles is comparable to defining a freshness condition separately. By combining all
components of the model in a single compact game definition, the dependencies among them
become visible. This especially plays a role in our model since, in contrast to classic key agree-
ment models, our model allows and is based on concurrency in the communication (which e.g.,
influences the trivial attacks).

Please note that there is an important difference between ratcheted key exchange and classic
key agreement: while key agreement protocols aim to provide the initialization of a communi-
cation, ratcheted key exchange serves as a primitive that provides an already initialized session
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with continuously updated session keys. One can imagine that both worlds (classic key agree-
ment for initialization and ratcheted key exchange for protecting an initialized session) can be
composed by using the key, derived from the classic key agreement, to initialize the states for
the ratcheted key exchange. As such, our model does not need to consider an environment with
multiple users (and multiple sessions each). Consequently users and long-term keys do not play
a role in ratcheted key exchange24.

Both, by defining the security model within one compact game definition, and by disregard-
ing the explicit communication initialization, we are in line with the approach of Bellare et
al. [2]. In contrast, for example Cohn-Gordon et al. [6] provide a model that presents the three
previously named components one after another. We believe that the choice of notation is a
matter of taste and in our case, one compact game description is more appropriate.

As described before, our technique for deriving a model for ratcheted key exchange dif-
fers from previous work on ratcheting significantly, resulting in a comprehensible and naturally
strong security definition. One could derive weaker notions of security by restricting the com-
munication model or the adversary’s access to the exposure oracles. These weaker notions could
be comparable to earlier modeling approaches and would allow for more efficient protocols.
However, they would not comply with our idea of ratcheted key exchange.

G Related schemes

In this section we introduce schemes from the related literature that reach certain types of
security for keys in the presence of exposing adversaries. For clarity, we focus on schemes that
also reach security after an exposure and leave out schemes that only provide forward secrecy.

We briefly summarize the schemes’ approaches to satisfy the defined requirements for a
URKE, SRKE, or a BRKE respectively. Thereby we classify the schemes in one of these three
categories. For schemes that employ the BRKE functionality, we consider only one communica-
tion direction and thereby describe their guarantees in the SRKE setting to reduce complexity.

ZRTP. ZRTP is a protocol for “establishing unicast Secure Real-time Transport Protocol
(SRTP) sessions for Voice over IP (VoIP) applications” [27]. Thereby it holds a state between
establishing two sessions with the same partner. Symmetric information of the previous state
and a fresh Diffie-Hellman key exchange are mixed to derive a session secret and to update the
symmetric state. Consequently an exposure can only be used to attack the next session because
the Diffie-Hellman key exchange refreshes the state on both sides untraceably for the attacker.

Epoch update Since ZRTP is synchronous, it does not match our use-case. However, one can
classify each session between two communicating users as an epoch. Thereby the initiator is the
receiver of a SRKE scheme and the responder is sender.

Authenticated key exchange. Cohn-Gordon et al. provide the first notable scientific work
on security of authenticated key exchange protocols considering the security guarantees after
a compromise of one communicating party [7]. They first define security guarantees for this
purpose based on existing models. In order to provide a strong security notion that covers
security guarantees after a compromise, they use the security model eCKw [8] that is related
to the extended Canetti-Krawczyk security model [14] and modify it accordingly to derive a
security model named eCKw-PCS.
24 Please note that the construction of Bellare et al. [2] does not suffice our model because it employs a long-term

key for Bob.
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Security model This defined model focuses on sessions that are executed successively between
communicating parties. Thereby an adversary can be successful in the eCKw model if it can
challenge a key but:

1. none of the communicating parties revealed the challenged key,
2. none of the communicating parties exposed both the whole state and the randomness that

was used to generate the challenged session key, and
3. if the challenged user initiated the challenged session, her partner did not expose her state.

Instead of the last requirement, the eCKw-PCS model requires:

3. if the challenged user initiated the challenged session and her partner exposed her state,
then there was a session executed between the communicating parties after the partner’s
exposure but before the challenged session.

Contrary to our model, their paper deals with the robustness of the communication. Thereby
they require explicit authentication in order to prevent denial-of-service attacks.

Epoch update Subsequently they propose a generic transformation that uses an authenticated
key exchange (AKE) secure according to eCKw , a MAC, and a KDF to derive a protocol that
is eCKw-PCS secure.

This resulting protocol is a three-way protocol that establishes a key after the three messages
and updates the parties’ state after every received message. Consequently it is necessary to
interactively communicate in order to derive a key. Thereby the protocol can be seen as a
protocol for epoch updates while there is no key establishment within an epoch.

The model covers whole sessions instead of single ciphertexts. Consequently a whole session
needs to be executed after an exposure to recover from it, while our model requires that the
states are recovered as soon as a single ciphertext is sent and received after an exposure.

Their properties result from the fact that they consider a different environment and investi-
gate a different primitive. One may derive a comparable model by restricting the communication
model of our BRKE definition respectively.

OTR, Signal, Pond. OTR [4,21], Signal [17,6], and Pond [15] are implementations of key
exchange protocols that recover after an exposure. Their main use case is instant messaging.
Pond implements the Signal protocol now and therefore is not further considered. OTR, which is
mainly used in a synchronous environment, can be seen as Signal’s predecessor, that is designed
for an asynchronous setting.

OTR, like the previously described synchronous schemes, updates only epochs. Keys are
static within an epoch. Signal in addition also updates the keys within every epoch. Since the
epoch update of OTR and Signal are slightly different, we describe them separately.

We omit the protocols’ initial key exchange from our considerations since our syntax sum-
marizes it in a non-interactive algorithm.

Notation The summarized protocol descriptions below follow this notation:

A(initial state of A);B(initial state of B)

i. Message direction(Random value) : State update at sending Transmitted ciphertext

By writing (k3..i−1, ck)←2..i−2 H(ck), we denote multiple invocations of the same procedure
with multiple assignments such that each key kx is set once. Thereby the value of ck is updated
at every call and used for the next call respectively.
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Epoch update: OTR With every ciphertext that is sent in response to an epoch update from
the partner, an epoch update to the partner is performed. Thereby a new Diffie-Hellman share
is generated and sent. The receiving partner uses this Diffie-Hellman share and computes a key
with its own established private Diffie-Hellman exponent for sending new ciphertext afterwards.
The authenticity of each ciphertext is preserved by attaching a MAC tag of the Diffie-Hellman
share under the previous hashed key:

A(ga0 , a0, g
b0);B(gb0 , b0, g

a0)

1. A(a1)→ B : k1 ← ga0b0 C1 ← ga1 ‖F (H(k1), ga1)
2, . . . , i− 1. A()→ B : k2..i−1 ← k1

i. B(b1)→ A : ki ← ga1b0 Ci ← gb1 ‖F (H(ki), gb1)
i+ 1, . . . , j − 1. B()→ A : ki+1..j−1 ← ki

j. A(a2)→ B : kj ← ga1b1 Cj ← ga2 ‖F (H(kj), ga2)

The transmitted ciphertext of the payload data, that is encrypted under the respective key
kx, is always MACed under the hashed key H(kx); so in case of an epoch update, the new
Diffie-Hellman share and the ciphertext are concatenated.

Epoch update: Signal Signal also only updates an epoch if the previously received ciphertexts
was an epoch update. However, their key computation is more complex. To maintain clarity, we
only describe the SRKE setting and indicate how the BRKE scheme is derived from it.

A(rk, ga0 , a0, g
b0);B(rk, gb0 , b0, g

a0)

1. B(b1)→ A :(rk, ck)← H(rk, ga0b1); (ck,k1)← H(ck)
C1 ← gb1 ‖F (H(k1), gb1)

2. A(a1)→ B :(rk, ck)← H(rk, ga1b1); (ck,k2)← H(ck)
C2 ← ga1 ‖F (H(k2), ga1)

3, . . . , i− 1. A()→ B : (k3..i−1, ck)←2..i−2 H(ck)
i. B(b2)→ A :(rk, ck)← H(rk, ga1b2); (ck,ki)← H(ck)

Ci ← gb2 ‖F (H(ki), gb2)
i+ 1. A(a2)→ B :(rk, ck)← H(rk, ga2b2); (ck,ki+1)← H(ck)

Ci+1 ← ga2 ‖F (H(ck), ga2)
i+ 2, . . . , j − 1. A()→ B : (ki+2..j−1, ck)←i+1..j−2 H(ck)

The epoch update only takes place in ciphertexts 1, 2, i, i + 1. Thereby the root key rk is
updated with the new Diffie-Hellman key exchange, and a new chaining key ck is computed.
This chaining key is used to derive the output key kx. The remaining two steps build the key
derivation for the communication within the epochs.

Communication within epoch The design of the key establishment in an epoch consist of a KDF
that uses the chaining key ck from the previous ciphertext and produces a new chaining key ck
and the output session key kx. Since this computation is deterministic, no information needs to
be transmitted to the partner.
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Shortcomings Since OTR provides no security measures within an epoch (the key stays static
therein), previous keys can be challenged by a later exposure during the same epoch. Example:
1. c← SndA; (. . . , k, . . . )← ExposeA; k′ ← Challenge(A, 1); b′ ← [k = k′]; output b′.

The key derivation of Signal within an epoch prevents this attack. Exposing the sender before
sending and thereby deriving a key – which is allowed in our model – however reveals all secrets,
since the key derivation is deterministic. Exposing the sender, sending and receiving and then
challenging the receiver within an epoch is possible the same way. Example: (. . . , ck, . . . )← ExposeA;
1. SndA; k′ ← Challenge(A, 1); (k, ck∗)← H(ck); b′ ← [k = k′]; output b′.

Due to the delay of an epoch update until the partner sent an epoch update, another attack
which is allowed in our model, is possible against OTR and Signal. Sending twice and exposing
after the first sent ciphertext, receiving both ciphertexts at the partner’s side, and then sending
at the partner’s side is challengeable because the sent ciphertext after the exposure does not
propose a new epoch. Example: 1. c1 ← SndB; (. . . , ck1, . . . ) ← ExposeB; 2. c2 ← SndB; 1. RcvA(c1); 2.
RcvA(c2); 3. SndA; k′ ← Challenge(A, 3); (k2, ck2)← H(ck1); (k, ck3)← H(ck2); b′ ← [k = k′]; output b′.

Ratcheted key exchange. Bellare et al. define the first URKE model [2]. They additionally
provide a scheme that they prove secure in their model. Their model requires a scheme to be
less resilient to attacks and their scheme provides less security accordingly in comparison to our
model and scheme.

Security model Similar to our URKE model, their model provides the adversary with oracles
SndA, RcvB, Challenge, and Expose. While the adversary in their model is able to challenge
both parties as well, they only permit to expose the sender (Alice). As a consequence their
model requires no forward secrecy at the receiver side.

As a side effect, also implicit authentication is not required because if sender and receiver
are out of sync, the receiver’s state is not exposable. Consequently the receiver’s state does not
need to change on a manipulated ciphertext.

Communication within epoch Basically their URKE scheme consists of an ElGamal KEM, a
KDF (modeled by a random oracle), and a PRF (used as a MAC).

A(0, Y,K);B(0,K, y)

1. A(x1)→ B : µ← F (K, gx1); (k1,K)← H(1, µ, gx1 , Y x1) C1 ← gx1 ‖µ
2. A(x2)→ B : µ← F (K, gx2); (k2,K)← H(2, µ, gx2 , Y x2) C2 ← gx2 ‖µ

The receiver’s secret key y is static while the symmetric secret K is updated with every
ciphertext and used for the authenticity of the next ciphertext. This symmetric secret is derived
by the key derivation of the last symmetric secret and the Diffie-Hellman key exchange between
the receiver’s static value and the sender’s fresh Diffie-Hellman share. The output key is derived
from the same values. For simplicity, we restrict the description to the most relevant values.

Shortcomings In contrast to epochs in Signal, that are deterministically computed, the URKE
scheme of Bellare et al. includes randomness in the computation of every key. However, the
receiver’s secret key is static and thereby every key can be computed by exposing the receiver
after the key establishment. While their model does not enable the adversary to perform this
attack, our model permits it and our scheme prevents the attack to be successful. Example:
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1. X ‖µ ← SndA; 1. RcvB(X ‖µ); (. . . , y, . . . ) ← ExposeB; k′ ← Challenge(A, 1); (k,K) ← H(1, µ,X,Xy);
b′ ← [k = k′]; output b′.

In addition to that, a more sophisticated attack, similar to the previous one, is possible. To
achieve the security required by our model, the scheme must diverge the parties’ states after the
adversary actively attacked the communication such that the receiver’s state cannot be used
to derive the same keys as the sender anymore. This is not provided by the described URKE
scheme as well. Example: (. . . ,K, . . . )← ExposeA; x←$; 1. RcvB(gx ‖F (K, gx)); (. . . , y, . . . )← ExposeB; 1.
X ′ ‖µ← SndA; k′ ← Challenge(A, 1); (k,K)← H(1, µ,X ′, X ′y); b′ ← [k = k′]; output b′.
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