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Abstract

Ring signature is a useful cryptographic primitive for many anonymous applications, which makes a

signer sign any message anonymously. Namely ring signature allows that ring member signs any message

without revealing his/her specific identity. Also, compared with group signature, ring signature provides

more flexibility: no group manager, no group setup, and the dynamics of group (ring) update. However,

ring signature may make the irresponsible signers abuse their signing rights if there are no measures

of keeping them from abusing signing rights. Thus, practical ring signature must be able to trace or

reveal the identity of the signer by the signature when the result of the signature needs to be arbitrated.

Traceable ring signature is a ring signature that restricts abusing anonymity. Traceable ring signature has

a tag that consists of a list of ring members and an event that refers to. In this model, if a ring member

generates two linkable ring signatures in the same event, the identity of the ring member is immediately

revealed.

Currently several traceable (or linkable) identity-based ring signature schemes have been proposed.

However, most of them are constructed in the random oracle model. In this paper, we present a fully

traceable ring signature (TRS) scheme without random oracles, which has the constant size signature

and a security reduction to the computational Diffie-Hellman (CDH) assumption. Also, we give a formal

security model for traceable ring signature and prove that the proposed scheme has the properties of

traceability and anonymity.
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I. INTRODUCTION

A. Background

Ring signature [1,2,3,4,5,6,7] allows ring member to hide his identifying information to a ring when

ring member signs any message, thus ring signature only reveals the fact that a message was signed

by possible one of ring members (a list of possible signers). Ring signature is also called as a special

group signature [8]. However, compared with group signature, ring signature has more advantages: the

group (ring) must not be constructed by a group manager, who can revoke the anonymity of any signer

or identify the real group signer; additionally, because a list of possible signers must be constructed to

form a group, some intricate problems need to be solved in a group signature scheme, such as joining the

new members and the revocation of group members. Although ring signature can provide more flexibility

and full anonymity, it is vulnerable to keep the signers from abusing their signing rights. Namely, it is

infeasible for the verifier to determine whether the signatures are generated by the same signer on the

same event. Thus, in a practical ring signature scheme, the third trusted authority or the verifier must be

able to know who signs the messages on the same event many times and the verifier can not accept the

signatures generated by the same signer on the same event [9,10,11,12,13,14].

Traceable ring signature1 [18] is a ring signature that restricts abusing anonymity. Unlike group

signature has too strong a traceability characteristic and ring signature has too strong an anonymity

characteristic, traceable ring signature has the balance characteristic of anonymity and traceability. Name-

ly, traceable ring signature provides restricted anonymity and traceability. In a traceable ring signature

scheme, traceable ring signature can provide full anonymity for the responsible or honest signer when

the singer signs any message, and provide traceability for the verifier (or the third trusted authority)

to determine whether the signatures are generated by the same signer on the same event when the

irresponsible signer abuses anonymity in some applications. In order to achieve this requirement of

traceable ring signature, we need to consider the two notions ”one-more unforgeability” and ”double-

spending traceability” [18,19,20] in the context of ring signature, which originate from blind signature.

First, any user can not generate a ”one-more” new signature after he obtained a signature from the

original signer. Second, if an irresponsible user signs any message twice on the same event, the signatures

generated by the user can be traced to reveal the identity of the signer [21,22]. In the second notion,

a responsible user can be anonymously protected. Obviously, traceable ring signature can provide more

practicality because of its restricted anonymity in many no full anonymous applications.

1This notion is closely related to linkable ring signature in [12,15,16,17].
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Currently ring signatures are used in many different applications, such as whistle blowing [1], anony-

mous authentication for ad-hoc network [12], e-voting [23] and e-cash [24], non-interactive deniable

authentication [25] and multi designated verifiers signature [26], etc. Because ring signature is not linkable,

no one can determine whether two ring signatures are generated by the same signer. Thus, it exists high

risk that ring signatures are used in e-voting and e-cash. For example, if a user signs a message twice

for double votes in anonymous e-voting, no one can find the two signatures are linkable so as to detect

the irregularity. Obviously, traceable ring signature is suitable for the kind of applications, because it

can find the two signatures are linkable. There also are other applications for traceable ring signature.

In the ”off-line” anonymous e-cash systems, a user is permitted to anonymously signs a message once

during one cash transaction, thus traceable ring signature is a natural choice for this application [18].

Damgard et al. [27] proposed an unclonable group identification without the group manager, traceable

ring signature is also suitable for this application because of not employing the group manager and its

balance of anonymity and traceability.

B. Our Contributions

In this paper, we present a traceable ring signature scheme without random oracles. Also, we give the

formal security model for traceable ring signature. Under our security model, the proposed scheme is

proved to have the properties of anonymity and traceability with enough security. In this paper, our

contributions are as follows:

• We present a fully traceable ring signature scheme without random oracles, which has the constant

size signature. No poly-time adversary can produce a valid TRS signature on any messages when

the adversary may adaptively be permitted to choose messages after executing signature oracle.

• We present a framework for TRS and show a detailed security model for TRS. Compared with the

security models of TRS [15,18], we integrate the Fujisaki et al.’s frame and the Au et al.’s frame

to our security model. In our security model, we consider four situations for the security of TRS

and further strengthen our security model on public key cryptography, where we still consider the

trusted authority is fully trusted2. Under our security model, the proposed TRS scheme is proved to

be secure without random oracles, and has a security reduction to the simple standard assumption

(computational Diffie-Hellman assumption).

2In the Au et al.’s frame [15], they consider the PKG system is partially trusted.
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• Compared with other traceable (or linkable) ring signature schemes proposed by [15,16,18, 28,29],

the proposed TRS scheme has some advantages (the comparisons of the schemes are given in

Appendix A).

C. Outline

The rest of this paper is organized as follows. In Section 2, we discuss the related work about TRS. In

Section 3, we review the bilinear pairings and complexity assumptions on which we build. In Section

4, we show a framework for TRS. In Section 5, we set up the security model for TRS. In Section 6,

we propose a traceable ring signature scheme without random oracles under our framework for TRS. In

Section 7, we analyze the correctness, efficiency and security of the proposed scheme. Finally, we draw

our conclusions in Section 8.

II. RELATED WORK

Liu et al. [12] first proposed the notion of linkable ring signature. In their scheme, if an irresponsible user

anonymously signs any message twice on the same event, the two signatures generated by the user can

be linked. Base on this notion, some similar schemes were proposed in [12,16,17,24,30,31]. In [12,16],

the proposed schemes cannot resist the attack that an irresponsible signer forges the signature of a honest

signer so as to make the honest signer accused of ”double-signing”. In [30,31], the proposed schemes

overcome this weakness, but the security conditions are more complicated. In [24], Tsang et al. proposed

a short linkable ring signature scheme, which is based on the group identification scheme from [32].

Their scheme provides weak traceability, namely it can only detect the linkable ring signatures. In [30],

Tsang et al. proposed a separable linkable threshold ring signature scheme, where the threshold setting is

to restrict abusing signing. However, their scheme is complicated. In [33], Liu et al. proposed a revocable

ring signature scheme, which supports that any ring member may revoke the anonymity of the real signer

when the ring signature is proved to be argumentative. Their scheme provides that all the ring members

can reveal the identity of the real signer of any ring signature generated on behalf of their ring.

In 2007 and 2011, Fujisaki et al. [18,29] proposed two traceable ring signature schemes based on

public key cryptography, and a security model of traceable ring signature was formally proposed. In their

scheme, if two signatures are linked, the identity of this signer will be revealed. In other words, the

anonymity of the signer will be revoked if and only if the signer generates two ring signatures on the

same event. Compared with revocable ring signature [33], traceable ring signature needs the condition

of revoking anonymity that the same signer generates two ring signatures on the same event. Although
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the scheme proposed by [29] is constructed without random oracles, the signature size of the scheme is

sub-linear with O(
√
n), where n is the number of users in the ring. In 2013, Yuen et al. [50] proposed an

efficient linkable and/or threshold ring signature scheme without random oracles. However, the signature

size of their scheme is still sub-linear with O(d ·
√
n), where d is the threshold value and n is the number

of users in the ring. In 2014, Liu et al. [51] proposed a linkable ring signature scheme with unconditional

anonymity. However, their scheme is still constructed in the random oracle model.

With the rapid development of identity-based cryptography [34,35,36,37], many researchers proposed

many identity-based signature (IBS) schemes in the random oracle model or standard model [36,38,39,40].

Also, with these identity-based signature schemes, a lot of variants, such as the identity-based proxy

signature schemes [41,42,43], the identity-based ring signature schemes [15,43,44,46], the identity-based

group signature schemes [47,48], etc, have also been proposed. In 2006, Au et al. [46] proposed a constant

size identity-based linkable and revocable-iff-linked ring signature. However, their scheme was later

proved to be insecure [49]. In 2012, Au et al. [15] proposed a new identity-based event-oriented linkable

ring signature scheme with an option as revocable-iff-linked. With this option, if a user generates two

linkable ring signatures in the same event, everyone can compute his identity from these two signatures.

However, their scheme is constructed in the random oracle model.

III. PRELIMINARIES

A. Bilinear Maps

Let G1 and G2 be groups of prime order q and g be a generator of G1. We say G2 has an admissible

bilinear map, e : G1 ×G1 → G2 if the following two conditions hold. The map is bilinear; for all a, b,

we have e
(
ga, gb

)
= e(g, g)a·b. The map is non-degenerate; we must have that e (g, g) 6= 1.

B. Computational Diffie-Hellman Assumption

Definition 3.1 Computational Diffie-Hellman (CDH) Problem: Let G1 be a group of prime order q and

g be a generator of G1; for all (g, ga, gb) ∈ G1, with a, b ∈ Zq, the CDH problem is to compute ga·b.

Definition 3.2 The (~, ε)-CDH assumption holds if no ~-time algorithm can solve the CDH problem with

probability at least ε.

IV. A FRAMEWORK FOR TRS

Definition 4.1 Traceable Ring Signature Scheme: Let TRS=(System-Setup, Generate-Key, Sign, Verify,

Trace-User) be a traceable ring signature scheme. In TRS, all algorithms are described as follows:
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1) System-Setup: The randomized algorithm run by the trusted authority inputs a security pa-

rameter 1k, and then outputs all system parameters TRK and a ring key spk on the security

parameter 1k.

2) Generate-Key: The randomized algorithm run by a ring member inputs TRK, and then the

following steps are finished:

• The algorithm run by the trusted authority outputs a user’s partial private key pski to the

ring member according to the ring key spk, where i ∈ {1, 2......n} (n is the number of the

ring members in the ring).

• The algorithm run by the ring member outputs the corresponding signing (private) key ski

according to pski.

• The algorithm run by the ring member outputs and publishes the corresponding public key

pki.

3) Sign: The randomized algorithm is a standard traceable ring signature algorithm. A ring

member needs to sign a message M ∈ {0, 1}∗ on an event identifier E ∈ {0, 1}∗. The algorithm

run by the ring member inputs (TRK, ski, RL PK, M, E), and then outputs a signature σ,

where RL PK is a public key list including all public keys of the ring members belong to this

ring, σ ∈ {0, 1}∗ ∪ {⊥}, ski is the private key of the ring member with i ∈ {1, 2......n}.

4) Verify: The signature verifiers verify a standard traceable ring signature σ. The deterministic

algorithm run by a signature verifier inputs (TRK, RL PK, M, E, σ), and then outputs the

boolean value, accept or reject.

5) Trace-User: The trusted authority traces a real ring member (signer) by two traceable ring

signatures σ1 on M1 and σ2 on M2. The deterministic algorithm run by the trusted authority

inputs (TRK, RL PK, {M1, σ1}, {M2, σ2}, E), and then outputs one of the following results:

”the public key pk of the real signer”, or ”Independent” or ”Linked”, where pk ∈ RL PK.

The correctness of TRS requires that for any (TRK, spk)←System-Setup(1k), (ski, pki)← Generate-

key(TRK) for all i with i ∈ {1, 2......n}, M ∈ {0, 1}∗ and E ∈ {0, 1}∗, then:

Pr[Verify(TRK, RL PK, M, E, Sign(TRK, ski, RL PK, M, E))=1]=1.

The traceability of TRS requires that for any (TRK, spk)←System-Setup(1k), (ski, pki)← Generate-

key(TRK) for all i with i ∈ {1, 2......n}, M1,M2 ∈ {0, 1}∗ and E ∈ {0, 1}∗, if σ1 ←Sign(TRK, ski,

RL PK, M1, E) with i ∈ {1, 2......n} and σ2 ←Sign(TRK, skj , RL PK, M2, E) with j ∈ {1, 2......n},



MANUSCRIPT, ET AL. 7

then:

”Independent”; if i 6= j

Trace-User(TRK, RL PK, {M1, σ1}, {M2, σ2}, E)= ”Linked”; else if M1 = M2

”the public key pk of the real signer”; otherwise.

V. SECURITY MODEL

In a secure TRS scheme, we need to consider the two notions ”one-more unforgeability” and ”double-

spending traceability”. First, any user cannot forge a new signature. Second, the anonymity of the signer

will be revoked if and only if the signer generates two ring signatures on the same event. Thus, we

consider that a fully secure TRS scheme must meet the following security requirements according to

[15,18]:

1) Unforgeability: A valid TRS signature must be signed by a valid ring member (signer). Therefore,

no poly-time adversary can produce a valid TRS signature on any messages when the adversary

may adaptively be permitted to choose messages after executing signature oracle. Then we split

the requirement to the following two small security notions3:

a) the first one is called security against linkability attacks4, which requires that every two

signatures generated by the same signer with respect to the same tag of event are linked

− namely the total number of signatures with respect to the same tag cannot exceed the

total number of ring members in the tag if every any two signatures are not linked.

b) the second one is called security against exculpability attacks, which requires that an honest

ring member cannot be accused of signing twice with respect to the same tag − namely

an adversary cannot produce a traceable ring signature such that, along with one signature

generated by the target member (the attacked member), it can designate the target member

in the presence of the public traceable method. This should be infeasible even after the

adversary has corrupted all ring members but the target member.

3The two security notions should be more detailedly expanded from the correctness of unforgeability.
4In this paper, we also call the notion Traceability: anyone who creates two signatures for different messages with respect

to the same tag of event can be traced, where the trace can be done only with pairs of message/signature pairs and tag.



MANUSCRIPT, ET AL. 8

2) Anonymity: As long as a signer does not sign two different messages with respect to the same tag,

the identity of the signer is indistinguishable from any of the possible ring members. In addition,

any two signatures generated with respect to two distinct tags are always unlinkable, namely it is

infeasible for anyone to determine whether they are generated by the same signer.

Then, based on the above situations, we propose a complete security model for traceable ring signature.

To make our security model easier to understand, we construct several algorithms interacting with

adversary, which may make attack experiments to the traceable ring signature schemes in the above

situations. In our security model, we maximize adversary’s advantage, and assume that all attacking

conditions needed by adversary hold and adversary may forge signatures after limitedly querying oracles.

In our security model, we assume there are n+ 1 users in a traceable ring signature scheme (n ∈ N is

a maximal number of ring members in a ring), and at least one user u∗ of n+ 1 users is not corrupted

by adversary.

Definition 5.1 Unforgeability of A Traceable Ring Signature Scheme: Let TRS=( System-Setup, Generate-

Key, Sign, Verify, Trace-User) be a traceable ring signature scheme. Additionally, we set that k is a

secure parameter, and Pr(BU TRS(k,A)=1) is the probability that the algorithm BU TRS returns 1. Then

the advantage that the adversary A breaks TRS is defined as follows:

Advu trs−uf
TRS (k, qg, qs, ~)=Pr(BU TRS(k,A)=1),

where qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries and ~ is the running time of B. If the advantage that the adversary breaks TRS

is negligible, then the scheme TRS is secure.

According to the Definition 5.1, the algorithm BU TRS is described as follows:

1.Setup: Running System-Setup, (TRK, spk)←System-Setup(1k), and then TRK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Generate-Public Key(): Given the public parameters TRK, the oracle outputs the public key pk

with respect to the corresponding private key.

• Sign(): Given the public parameters TRK, the public key list RL PK, the message M and the

event identifier E, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

3.Forgery: A outputs its forgery, (M∗, E∗, σ∗) for RL PK∗, where RL PK∗ is a public key list

including all public keys of the ring members belong to this ring. It succeeds if

(a) 1←Verify(TRK, RL PK∗, M∗, E∗, σ∗);
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(b) A did not query Sign on inputs RL PK∗, M∗ and E∗.

The following two definitions are expanded from unforgeability (see [15,18] for more details).

An adversary cannot generate two signatures in the same event without being linked. We generalize

the notion that an adversary with t user (ring member) private keys cannot create t+ 1 signatures in the

same event without being linked.

Definition 5.2 Linkability (or Traceability) of A Traceable Ring Signature Scheme: Let TRS= (System-

Setup, Generate-Key, Sign, Verify, Trace-User) be a traceable ring signature scheme. Additionally, we

set that k is a secure parameter, and Pr(BL TRS(k,A)=1) is the probability that the algorithm BL TRS

returns 1. Then the advantage that the adversary A breaks TRS is defined as follows:

Advl trs−ufTRS (k, qg, qs, t, ~)=Pr(BL TRS(k,A)=1),

where qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries, t is the number of user (ring member) private keys possessed by A and ~ is the

running time of B. If the advantage that the adversary breaks TRS is negligible, then the scheme TRS

is secure.

According to the Definition 5.2, the algorithm BL TRS is described as follows:

1.Setup: Running System-Setup, (TRK, spk)←System-Setup(1k), and then TRK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Generate-Public Key(): Given the public parameters TRK, the oracle outputs the public key pk

with respect to the corresponding private key.

• Sign(): Given the public parameters TRK, the public key list RL PK, the message M and the

event identifier E, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

3.Forgery: A outputs its forgery, a set of tuples (M∗i , E∗, σ∗i , RL PK∗i ) with i ∈ {1......t + 1}. It

succeeds if

(a) 1←Verify(TRK, RL PK∗i , M∗i , E
∗, σ∗i ) for all i ∈ {1......t+ 1};

(b) A did not query Sign on inputs RL PK∗i , M∗i and E∗ for all i ∈ {1......t+ 1};

(c) ”Independent”←Trace-User(TRK, RL PK∗i ∪RL PK∗j , {M∗i , σ∗i }, {M∗j , σ∗j }, E∗) for all

i, j ∈ {1......t+ 1} with i 6= j;

(d) A has no more than t user private keys, where the public keys of the t users are included in

RL PK∗1 ∪RL PK∗2 ....... ∪RL PK∗t+1.
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Definition 5.3 Exculpability of A Traceable Ring Signature Scheme: Let TRS=(System-Setup, Generate-

Key, Sign, Verify, Trace-User) be a traceable ring signature scheme. Additionally, we set that k is a

secure parameter, and Pr(BE TRS(k,A)=1) is the probability that the algorithm BE TRS returns 1. Then

the advantage that the adversary A breaks TRS is defined as follows:

Adve trs−uf
TRS (k, qg, qs, ~)=Pr(BE TRS(k,A)=1),

where qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries and ~ is the running time of B. If the advantage that the adversary breaks TRS

is negligible, then the scheme TRS is secure.

According to the Definition 5.3, the algorithm BE TRS is described as follows:

1.Setup: Running System-Setup, (TRK, spk)←System-Setup(1k), and then TRK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Generate-Public Key(): Given the public parameters TRK, the oracle outputs the public key pk

with respect to the corresponding private key.

• Sign(): Given the public parameters TRK, the public key list RL PK, the message M and the

event identifier E, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

3.Forgery: A outputs its forgery, (M∗, E∗, σ∗) for RL PK∗. It succeeds if

(a) 1←Verify(TRK, RL PK∗, M∗, E∗, σ∗);

(b) A did not query Sign on inputs RL PK∗, M∗ and E∗;

(c) ”Linked”←Trace-User(TRK, RL PK∗, {M∗, σ∗}, {M′, σ′}, E∗), where σ′ is any signature

outputted from Sign on inputs RL PK∗, M′ and E∗.

Definition 5.4 Anonymity of A Traceable Ring Signature Scheme: Let TRS=(System-Setup, Generate-

Key, Sign, Verify, Trace-User) be a traceable ring signature scheme. Additionally, we set that k is a

secure parameter, and Pr(BA TRS(k,A)=1) is the probability that the algorithm BA TRS returns 1. Then

the advantage that the adversary A breaks TRS is defined as follows:

Adva trs−uf
TRS (k, qg, qs, ~)=Pr(BA TRS(k,A)=1),
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where qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries and ~ is the running time of B. If the advantage that the adversary breaks TRS

is negligible, then the scheme TRS is secure.

According to the Definition 5.4, the algorithm BA TRS is described as follows:

1.Setup: Running System-Setup, (TRK, spk)←System-Setup(1k), and then TRK is passed to A.

2.Queries Phase 1: A makes queries to the following oracles for polynomially many times:

• Generate-Public Key(): Given the public parameters TRK, the oracle outputs the public key pk

with respect to the corresponding private key.

• Sign(): Given the public parameters TRK, the public key list RL PK, the message M and the

event identifier E, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

3.Challenge: A sends to the challenger its forgeries, the public keys pk∗0 and pk∗1 of the two ring members

and the tuple (M∗, E∗, RL PK∗ ∪ {pk∗0} ∪ {pk∗1}). The forgeries satisfy the condition that A did not

query Sign on input pk∗0 (and pk∗1).

The challenger picks a random bit x ∈ {0, 1}, and then runs and outputs σ∗ ←Sign(TRK, ∗,

RL PK∗ ∪ {pk∗0} ∪ {pk∗1}, M∗, E∗) to A.

4.Queries Phase 2: A makes queries to the following oracles for polynomially many times:

• Generate-Public Key(): Given the public parameters TRK, the oracle outputs the public key pk

with respect to the corresponding private key.

• Sign(): Given the public parameters TRK, the public key list RL PK, the message M and the

event identifier E, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}, and A did not

query Sign on inputs pk∗0 and E∗ (and pk∗1 and E∗).

5.Guess: A outputs a bit x′ ∈ {0, 1} and succeeds if x′ = x.

VI. TRACEABLE RING SIGNATURE SCHEME

In the section, we show a traceable ring signature scheme without random oracles under our framework

for TRS. Let TRS=(System-Setup, Generate-Key, Sign, Verify, Trace-User) be a traceable ring signature

scheme. In TRS, all algorithms are described as follows:

1) TRS.System-Setup: The algorithm run by the trusted authority inputs a security parameter 1k.

Additionally, let G1 and G2 be groups of prime order q and g be a generator of G1, and

let e : G1 ×G1 → G2 denote the bilinear map. The size of the group is determined by the

security parameter, and we set A ⊆ Zq as the universe of identities. And one hash function,
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H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q (where 1k

represents the corresponding decimal number).

Then the system parameters are generated as follows for a ring system setup. The algorithm

chooses a random a ∈ Zq, and then sets g1 = ga. Eight group elements g2, ϑ, ψ, $, µ, τ , χ and

κ ∈ G1 are randomly chosen. Finally, the algorithm outputs the public parameters TRK=(G1,

G2, e, g, g1, g2, ϑ, ψ, $, µ, τ , χ, κ), where spk = ga2 is seen as a ring key5.

2) TRS.Generate-Key: The algorithm run by a ring member generates the private key of the ring

member with respect to the public key when the ring member joins a ring. The algorithm inputs

TRK, and then the following steps are finished:

• The algorithm run by the trusted authority randomly chooses r1 ∈ Zq, computes x0 =

ga2 · $r1 , sL = gr1 , and then outputs a partial private key psk = {x0, sL} to the ring

member, where sL is used to trace the real signer.

Remark: Every ring member may verify his partial private key by the following equation:

e(x0, g) = e(g1, g2) · e($, sL).

• The algorithm run by the corresponding ring member chooses r2 ∈ Zq, computes the public

key pk = gr2 , and x1 = x0 ·ϑr2·H(pk) ·ψr2 = ga2 ·$r1 ·ϑr2·H(pk) ·ψr2 , and then outputs the

private key sk = {x1, sL}.

• The algorithm run by the corresponding ring member outputs and publishes the public key

pk = gr2 , which is added to the public key ring RL PK, where RL PK is a public key

list including all public keys of the ring members belong to this ring and pk ∈ RL PK.

3) TRS.Sign: A ring member with the private key sk needs to sign a message M ∈ {0, 1}∗ on an

event identifier E ∈ {0, 1}∗. The algorithm run by the ring member inputs (TRK, sk, RL PK,

M, E), and then randomly chooses r3, r4, r5 ∈ Zq, computes

σ0 = x1 · ϑr3·H(pk) · ψr3 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5

= ga2 · ϑ(r2+r3)·H(pk) · ψr2+r3 ·$r1+r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ1 = e(ϑH(pk) · ψ, pk) · e(ϑr3·H(pk) · ψr3 , g)

= e(ϑH(pk) · ψ, gr2) · e(ϑr3·H(pk) · ψr3 , g)

= e(ϑ(r2+r3)·H(pk) · ψr2+r3 , g),

σ2 = sL · gr3 = gr1+r3 ,

5For the different ring, the ring key spk is different. Namely when a new ring system setup is initialized, the new public

parameters are published with respect to the new ring.
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σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a signature Φ = {σ0, σ1, σ2, σ3, σ4}.

4) TRS.Verify: The signature verifiers verify a standard traceable ring signature Φ. The algorithm

run by a signature verifier inputs (TRK, RL PK, M, E, Φ), and then the following computation

is finished:

e(σ0, g) = e(g1, g2) · σ1 · e($,σ2) · e(µH(RL PK) · τ, σ3) · e(χH(M‖E) · κ, σ4).

If the above equation is correct, then the algorithm outputs the boolean value accept, otherwise

the algorithm outputs the boolean value reject.

5) TRS.Trace-User: The trusted authority traces a ring member (signer) by two traceable ring

signatures Φ1 on M1 and Φ2 on M2 when the signatures need to be arbitrated. The algorithm

run by the trusted authority inputs (TRK, RL PK, {M1, Φ1}, {M2, Φ2}, E), and then the

following steps are finished:

a) For any potential public key pk1 ∈ RL PK and the tuple {M1, Φ1}, the algorithm

computes the equation:

e(ϑH(pk1) · ψ, pk1 · σ2

sL
) = e(σ0,g)

e(g1,g2)·e($,σ2)·e(µH(RL PK)·τ,σ3)·e(χH(M1‖E)·κ,σ4)
.

If the above equation is correct, then the algorithm securely records the public key pk1

of the real signer, otherwise if the algorithm does not find the corresponding public

key, the algorithm aborts; similarly, the same computation is finished for any potential

identity pk2 ∈ RL PK and the tuple {M2, Φ2}, and then the algorithm securely

records the public key pk2 of the real signer, otherwise the algorithm aborts.

b) The algorithm outputs the following results according to the comparisons:

• Result=”Independent”, if pk1 6= pk2;

• Result=”Linked”, else if M1 = M2;

• Result=”pk1”, otherwise.

VII. ANALYSIS OF THE PROPOSED SCHEME

A. Correctness

In the proposed scheme, the traceable ring signature is Φ = {σ0, σ1, σ2, σ3, σ4}, where

σ0 = x1 · ϑr3·H(pk) · ψr3 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5

= ga2 · ϑ(r2+r3)·H(pk) · ψr2+r3 ·$r1+r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,
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σ1 = e(ϑH(pk) · ψ, pk) · e(ϑr3·H(pk) · ψr3 , g)

= e(ϑH(pk) · ψ, gr2) · e(ϑr3·H(pk) · ψr3 , g)

= e(ϑ(r2+r3)·H(pk) · ψr2+r3 , g),

σ2 = sL · gr3 = gr1+r3 ,

σ3 = gr4 ,

σ4 = gr5 .

So, we have that

e(σ0, g) = e(ga2 · ϑ(r2+r3)·H(pk) · ψr2+r3 ·$r1+r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 , g)

= e(ga2 , g) · e(ϑ(r2+r3)·H(pk) · ψr2+r3 , g) · e($r1+r3 , g) · e(µr4·H(RL PK) · τ r4 , g) · e(χr5·H(M‖E) · κr5 , g)

= e(g1, g2) · σ1 · e($,σ2) · e(µH(RL PK) · τ, σ3) · e(χH(M‖E) · κ, σ4).

B. Efficiency

In the proposed scheme, Φ = {σ0, σ1, σ2, σ3, σ4}, where

σ0 = x1 · ϑr3·H(pk) · ψr3 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ1 = e(ϑH(pk) · ψ, pk) · e(ϑr3·H(pk) · ψr3 , g),

σ2 = sL · gr3 , σ3 = gr4 , σ4 = gr5 .

Thus, the length of signature is 4 · |G1|+ |G2|, where |G1| is the size of element in G1 and |G2| is the size

of element in G2. Additionally, because x1 ·ϑr3·H(pk) ·ψr3 ·$r3 ·µr4·H(RL PK) ·τ r4 ·κr5 , χr5 in χr5·H(M‖E),

σ1, σ2, σ3 and σ4 may be precomputed, and we assume that the time for integer multiplication and hash

computation can be ignored, signing a message for a traceable ring signature only needs to compute at

most 1 exponentiation in G1 and 1 multiplication in G1. Also, in the following equation

e(σ0, g) = e(g1, g2) · σ1 · e($,σ2) · e(µH(RL PK) · τ, σ3) · e(χH(M‖E) · κ, σ4),

because the value e(g1, g2) can be precomputed and cached, verification requires 4 pairing computations,

2 exponentiations in G1, 2 multiplications in G1 and 4 multiplications in G2.

In this paper, we compare the proposed scheme (the scheme of Section 6) with other traceable (or

linkable) ring signature schemes proposed by [15,16,18,28,29]. In Appendix A, we show the comparisons

of the six schemes.

C. Security

In the section, we show the proposed scheme (the scheme of Section 6) has a security reduction to the

CDH assumption and the TRS unforgeability (against linkability attacks and exculpability attacks) under
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the adaptive chosen message attacks, and has the TRS anonymity. Our proofs for the following theorems

are based on the security model of Section 5 (We defer the proofs to Appendix B). In addition, although

the unforgeability may be proved by jointing the Theorem 7.2 and the Theorem 7.3 (see [15,18] for more

details), we still show the proof of Theorem 7.1.

Theorem 7.1 The scheme of Section 6 is (~, ε, qg, qs)-unforgeable (according to the Definition 5.1),

assuming that the (~′, ε′)-CDH assumption holds in G1, where

ε′ = (1− qg
q ) · (1− qs

q )2 · ε,

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)),

and qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries, Cmul and Cexp are respectively the time for a multiplication and an exponentiation

in G1.

Theorem 7.2 The scheme of Section 6 is a linkable (traceable) TRS scheme when it satisfies the following

condition (according to the Definition 5.2)—the scheme of Section 6 is (~, ε, qg, qs)-secure, assuming

that the (~′, ε′)-CDH assumption holds in G1, where

ε′ = (1− qg
q ) · (1− qs

q )2 · ε,

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)),

and qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries, Cmul and Cexp are respectively the time for a multiplication and an exponentiation

in G1, t = 1 is the number of user (ring member) private keys possessed by adversary.

Theorem 7.3 The scheme of Section 6 is exculpable when it satisfies the following condition (according

to the Definition 5.3)—the scheme of Section 6 is (~, ε, qg, qs)-secure, assuming that the (~′, ε′)-CDH

assumption holds in G1, where

ε′ = (1− qg
q ) · (1− qs

q )2 · ε,

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)),

and qg is the maximal number of ”Generate-Public Key” oracle queries, qs is the maximal number of

”Sign” oracle queries, Cmul and Cexp are respectively the time for a multiplication and an exponentiation

in G1.
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Theorem 7.4 The scheme of Section 6 is (~, ε, qg, qs)-anonymous (according to the Definition 5.4),

assuming that the (~′, ε′)-CDH assumption holds in G1, where

ε′ = (1− qg1
q ) · (1− qs1

q )2 · (1− qg2
q ) · (1− qs2

q )2 · ε,

~′ = ~ +O ((qg1 + qg2) · (5 · Cexp + 3 · Cmul) + (qs1 + qs2) · (12 · Cexp + 7 · Cmul)),

qg1 and qg2 are respectively the maximal numbers of ”Generate-Public Key” oracle queries in the Queries

Phase 1 and 2, qs1 and qs2 are respectively the maximal numbers of ”Sign” oracle queries in the Queries

Phase 1 and 2, Cmul and Cexp are respectively the time for a multiplication and an exponentiation in G1.

VIII. CONCLUSIONS

In this paper, we present a fully traceable ring signature scheme, which has a security reduction to

the computational Diffie-Hellman assumption. Also, we give a formal security model for traceable ring

signature. Under our security model, the proposed scheme is proved to have the properties of anonymity

and traceability with enough security. Compared with other traceable ring signature schemes, the proposed

scheme is efficient. However, because the proposed scheme is not enough efficient in computing linking

of signatures, the work about TRS still needs to be further progressed.
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APPENDIX A

COMPARISONS OF TRACEABLE OR LINKABLE RING SIGNATURE SCHEMES

Table 1 shows the comparisons of the traceable or linkable ring signature schemes. Compared with other

schemes, our scheme is constructed without random oracles, and has the constant signature size in the

comparison of the performance.

TABLE I

COMPARISONS OF THE SIX SCHEMES

Signature Size Cryptography Traceability Linking Cost Model

Scheme [16] O(n) Public Key No O(1) random oracle

Scheme [28] O(n) Public Key No O(1) random oracle

Scheme [29] O(
√
n) Public Key Yes O(n · logn) without random oracle

Scheme [18] O(n) Public Key Yes O(n) random oracle

Scheme [15] O(1) Identity-Based Yes O(1) random oracle

Our Scheme O(1) Public Key Yes O(n) without random oracle

APPENDIX B

SECURITY PROOF

(Proof of Theorem 7.1).

Proof: Let TRS be a traceable ring signature scheme of Section 6. Additionally, let A be an (~, ε, qg,

qs)-adversary attacking TRS. From the adversary A, we construct an algorithm B, for (g, ga, gb)∈ G1,

the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the CDH

with probability at least ε′ and in time at most ~′, contradicting the (~′, ε′)-CDH assumption. Such a

simulation may be created in the following way:

Setup: The simulation system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of

prime order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size
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of the group is determined by the security parameter, and we set A ⊆ Zq as the universe of identities.

One hash function, H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q

(where 1k represents the corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses y ∈ Zq, and then sets

g1 = gy and g2 = gb with b ∈ Zq (B doesn’t know b). Also, the algorithm chooses `, ∂, ν, λ, η, α

and π ∈ Zq, and then sets ϑ = g`2 · g, ψ = g∂ , µ = gν , τ = gλ, χ = gα2 · g, κ = gπ and $ = gη. Finally,

the system outputs the public parameters TRK=(G1, G2, e, g, g1, g2, ϑ, ψ, µ, τ , χ, κ, $) to A.

Additionally, the user u∗ is a challenger whose public key is pk∗, we set that the public key of u∗,

pk∗ = ga (B doesn’t know a).

Queries: When running the adversary A, the relevant queries can occur according to the Definition 5.1.

The algorithm B answers these in the following way:

• Generate-Public Key Queries: Given the public parameters TRK, the algorithm B randomly

chooses r1, r2 ∈ Zq, computes the public key pk = gr2 of the ring member u and the corresponding

private key sk =
{
gy2 ·$r1 · ϑr2·H(pk) · ψr2 , gr1

}
, and then outputs the public key pk to A, which

is added to the public key ring RL PK, where RL PK is a public key list including all public

keys of the ring members belong to this ring. To finish the above computation, we assure that

H(pk) 6= 0 mod q.

• Sign Queries: Given the public parameters TRK, the public key list RL PK (pk ∈ RL PK

where pk is the public key of the ring member that belongs to this ring), the message M and the

event identifier E, the algorithm B chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = gy2 · ϑr2·H(pk) · ψr2 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ′1 = gr2 ,

σ2 = gr3 ,

σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a forgery Φ = {σ0, σ′1, σ2, σ3, σ4} to the adversary A, where we maxi-

mize the adversary’s advantage, σ′1 is passed to A. Thus, Φ′ = {σ0, σ1 = e(ϑH(pk)·ψ, σ′1), σ2, σ3, σ4}

is a valid signature, where we assure that H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary

A will, with probability at least ε, return its forgeries, (M∗, E∗, Φ∗, RL PK∗) for the challenger u∗,

with pk∗ ∈ RL PK∗, Φ∗ = {σ∗0, σ∗1, σ∗2, σ∗3, σ∗4, σ∗5, σ∗6}, where
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σ∗0 = gy2 · ϑ(r
∗
2+a)·H(pk∗) · ψr∗2+a ·$r∗3 · µr∗4 ·H(RL PK∗) · τ r∗4 · χr∗5 ·H(M∗1‖E∗) · κr∗5 ,

σ∗1 = gr
∗
2 ,

σ∗2 = gr
∗
3 ,

σ∗3 = gr
∗
4 ,

σ∗4 = gr
∗
5 ,

σ∗5 = g
r∗2
2 ,

σ∗6 = g
r∗5
2 .

Remark: In fact, σ∗1 should be equal to gr
∗
2 · pk∗. Additionally, because the adversary A can compute

σ∗1 = gr
∗
2 and σ∗4 = gr

∗
5 , A can easily convert these computations to σ∗5 = g

r∗2
2 and σ∗6 = g

r∗5
2 , where σ∗5

and σ∗6 return to the algorithm B so as to make B solve the CDH problem.

And the forgeries satisfy the following conditions:

(a) 1←Verify(TRK, RL PK∗, M∗, E∗, Φ∗)6;

(b) A did not query Sign on inputs RL PK∗, M∗ and E∗.

So, the algorithm B computes and outputs
σ∗0

g
y
2 ·g

r∗2 ·`·H(pk∗)
2 ·gr

∗
2 ·H(pk∗)·pk∗H(pk∗)·gr

∗
2 ·∂ ·pk∗∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗)·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

=
g
y
2 ·ϑ

(r∗2+a)·H(pk∗)·ψr
∗
2+a·$r

∗
3 ·µr

∗
4 ·H(RL PK∗)·τr

∗
4 ·χr

∗
5 ·H(M∗‖E∗)·κr

∗
5

g
y
2 ·g

r∗2 ·`·H(pk∗)
2 ·gr

∗
2 ·H(pk∗)·pk∗H(pk∗)·gr

∗
2 ·∂ ·pk∗∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗)·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

= g
`·a·H(pk∗)
2 .

Further, we can compute `·H(pk∗)
√
g
`·a·H(pk∗)
2 = ga2 = ga·b, which is the solution to the given CDH problem.

Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete

without aborting, we require that all Generate-Public Key queries will have H(pk) 6= 0 mod q, all Sign

queries will have H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q. If the algorithm B does not abort, then

the following conditions must hold:

(a) H(pki) 6= 0 mod q in Generate-Public Key queries, with i=1, 2......qg;

(b) H(pki) 6= 0 mod q and H(Mi ‖ Ei) 6= 0 mod q in Sign queries, with i=1, 2......qs.

To make the analysis simpler, we will define the events Ei, Fi, Ti as

Ei :H(pki) 6= 0 mod q, with i=1, 2......qg;

Fi :H(pki) 6= 0 mod q, with i=1, 2......qs;

Ti :H(Mi ‖ Ei) 6= 0 mod q, with i=1, 2......qs.

6σ∗5 and σ∗6 do not anticipate in this computation.
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Then the probability of B not aborting is

Pr(not abort) = Pr

(
qg⋂
i=1

Ei ∧
qs⋂
i=1

(Fi ∧ Ti)

)
.

It is easy to see that the events
qg⋂
i=1

Ei,
qs⋂
i=1

Fi,
qs⋂
i=1

Ti are independent. Then we may compute

Pr(

qg⋂
i=1

Ei) = 1− Pr(

qg⋃
i=1

¬Ei) = 1− qg ·
1k

1k · q
= 1− qg

q
;

Pr(

qs⋂
i=1

Fi) = 1− Pr(

qs⋃
i=1

¬Fi) = 1− qs ·
1k

1k · q
= 1− qs

q
;

Pr(

qs⋂
i=1

Ti) = 1− Pr(

qs⋃
i=1

¬Ti) = 1− qs ·
1k

1k · q
= 1− qs

q
;

Thus,

Pr(not abort) = Pr

(
qg⋂
i=1

Ei ∧
qs⋂
i=1

(Fi ∧ Ti)

)

= Pr(

qg⋂
i=1

Ei) · Pr(

qs⋂
i=1

Fi) · Pr(

qs⋂
i=1

Ti)

=

(
1− qg

q

)
·
(

1− qs
q

)2

.

We can get that ε′ = (1− qg
q ) · (1− qs

q )2 · ε.

If the simulation does not abort, the adversary A will create a valid forgery with probability at least

ε. The algorithm B can then compute ga·b from the forgery as shown above. The time complexity of

the algorithm B is dominated by the time for the exponentiations and multiplications in the queries. We

assume that the time for integer addition and integer multiplication, and the time for hash computation

can both be ignored, then the time complexity of the algorithm B is

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)).

Thus, Theorem 7.1 follows.

(Proof of Theorem 7.2).

Proof: Let TRS be a traceable ring signature scheme of Section 6. Additionally, let A be an (~, ε, qg,

qs)-adversary attacking TRS. From the adversary A, we construct an algorithm B, for (g, ga, gb)∈ G1,

the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the CDH
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with probability at least ε′ and in time at most ~′, contradicting the (~′, ε′)-CDH assumption. Such a

simulation may be created in the following way:

Setup: The simulation system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of

prime order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size

of the group is determined by the security parameter, and we set A ⊆ Zq as the universe of identities.

One hash function, H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q

(where 1k represents the corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses y ∈ Zq, and then sets

g1 = gy and g2 = gb with b ∈ Zq (B doesn’t know b). Also, the algorithm chooses `, ∂, ν, λ, η, α

and π ∈ Zq, and then sets ϑ = g`2 · g, ψ = g∂ , µ = gν , τ = gλ, χ = gα2 · g, κ = gπ and $ = gη. Finally,

the system outputs the public parameters TRK=(G1, G2, e, g, g1, g2, ϑ, ψ, µ, τ , χ, κ, $) to A.

Additionally, the user u∗ is a challenger whose public key is pk∗, we set that the public key of u∗,

pk∗ = ga (B doesn’t know a). To make our description easier to understand, we only set t = 1, namely

the adversary A gets the private key of one user.

Queries: When running the adversary A, the relevant queries can occur according to the Definition 5.2.

The algorithm B answers these in the following way:

• Generate-Public Key Queries: Given the public parameters TRK, the algorithm B randomly

chooses r1, r2 ∈ Zq, computes the public key pk = gr2 of the ring member u and the corresponding

private key sk =
{
gy2 ·$r1 · ϑr2·H(pk) · ψr2 , gr1

}
, and then outputs the public key pk to A, which

is added to the public key ring RL PK, where RL PK is a public key list including all public

keys of the ring members belong to this ring. To finish the above computation, we assure that

H(pk) 6= 0 mod q.

• Sign Queries: Given the public parameters TRK, the public key list RL PK (pk ∈ RL PK

where pk is the public key of the ring member that belongs to this ring), the message M and the

event identifier E, the algorithm B chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = gy2 · ϑr2·H(pk) · ψr2 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ′1 = gr2 ,

σ2 = gr3 ,

σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a forgery Φ = {σ0, σ′1, σ2, σ3, σ4} to the adversary A, where we maxi-
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mize the adversary’s advantage, σ′1 is passed to A. Thus, Φ′ = {σ0, σ1 = e(ϑH(pk)·ψ, σ′1), σ2, σ3, σ4}

is a valid signature, where we assure that H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary

A will, with probability at least ε, return its forgeries, (M∗1, E∗, Φ∗1, RL PK∗1 ) for the challenger

u∗ and (M∗2, E∗, Φ∗2, RL PK∗2 ), with pk∗ ∈ RL PK∗1 , Φ∗1 = {σ∗10, σ∗11, σ∗12, σ∗13, σ∗14, σ∗15, σ∗16} and

Φ∗2 = {σ∗20, σ∗21, σ∗22, σ∗23, σ∗24}, where

σ∗10 = gy2 · ϑ(r
∗
12+a)·H(pk∗) · ψr∗12+a ·$r∗13 · µr∗14·H(RL PK∗1 ) · τ r∗14 · χr∗15·H(M∗1‖E∗) · κr∗15 ,

σ∗11 = gr
∗
12 ,

σ∗12 = gr
∗
13 ,

σ∗13 = gr
∗
14 ,

σ∗14 = gr
∗
15 ,

σ∗15 = g
r∗12
2 ,

σ∗16 = g
r∗15
2 .

σ∗20 = gy2 · ϑr
∗
22·H(pk∗

′
) · ψr∗22 ·$r∗23 · µr∗24·H(RL PK∗2 ) · τ r∗24 · χr∗25·H(M∗2‖E∗) · κr∗25 ,

σ∗21 = gr
∗
22 ,

σ∗22 = gr
∗
23 ,

σ∗23 = gr
∗
24 ,

σ∗24 = gr
∗
25 .

Remark: σ∗11 should be equal to gr
∗
12 · pk∗. And pk∗

′
is the public key of the user corrupted by A,

where pk∗
′ ∈ RL PK∗2 . Similarly, because the adversary A can compute σ∗11 = gr

∗
12 and σ∗14 = gr

∗
15 ,

A can easily convert these computations to σ∗15 = g
r∗12
2 and σ∗16 = g

r∗15
2 , where σ∗15 and σ∗16 return to the

algorithm B so as to make B solve the CDH problem.

And the forgeries satisfy the following conditions7:

(a) 1←Verify(TRK, RL PK∗i , M∗i , E
∗, Φ∗i ) for all i ∈ {1, 2};

(b) A did not query Sign on inputs RL PK∗i , M∗i and E∗ for all i ∈ {1, 2};

(c) ”Independent”←Trace-User(TRK, RL PK∗1 ∪RL PK∗2 , {M∗1, Φ∗1}, {M∗2, Φ∗2}, E∗);

(d) A has no more than 1 user (ring member) private key, where the public key of the user is

included in RL PK∗1 ∪RL PK∗2 .

Thus, we have the followings:

7σ∗15 and σ∗16 do not anticipate in these following computations.
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σ∗10

g
y
2 ·g

r∗12·`·H(pk∗)
2 ·gr

∗
12·H(pk∗)·pk∗H(pk∗)·gr

∗
12·∂ ·pk∗∂ ·gr

∗
13·η·gr

∗
14·ν·H(RL PK∗1 )·gr

∗
14·λ·g

r∗15·α·H(M∗1‖E
∗)

2 ·gr
∗
15·H(M∗1‖E

∗)·gr
∗
15·π

=
g
y
2 ·ϑ

(r∗12+a)·H(pk∗)·ψr
∗
12+a·$r

∗
13 ·µr

∗
14·H(RL PK∗1 )·τr

∗
14 ·χr

∗
15·H(M∗1‖E

∗)·κr
∗
15

g
y
2 ·g

r∗12·`·H(pk∗)
2 ·gr

∗
12·H(pk∗)·pk∗H(pk∗)·gr

∗
12·∂ ·pk∗∂ ·gr

∗
13·η·gr

∗
14·ν·H(RL PK∗1 )·gr

∗
14·λ·g

r∗15·α·H(M∗1‖E
∗)

2 ·gr
∗
15·H(M∗1‖E

∗)·gr
∗
15·π

= g
`·a·H(pk∗)
2 .

Further, we can compute `·H(pk∗)
√
g
`·a·H(pk∗)
2 = ga2 = ga·b, which is the solution to the given CDH problem.

Similarly, we can get the probability of B not aborting,

Pr(not abort) =

(
1− qg

q

)
·
(

1− qs
q

)2

.

So, we can get that ε′ = (1− qg
q ) · (1− qs

q )2 · ε and the time complexity of the algorithm B,

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)).

Thus, Theorem 7.2 follows.

(Proof of Theorem 7.3).

Proof: Let TRS be a traceable ring signature scheme of Section 6. Additionally, let A be an (~, ε, qg,

qs)-adversary attacking TRS. From the adversary A, we construct an algorithm B, for (g, ga, gb)∈ G1,

the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can solve the CDH

with probability at least ε′ and in time at most ~′, contradicting the (~′, ε′)-CDH assumption. Such a

simulation may be created in the following way:

Setup: The simulation system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of

prime order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size

of the group is determined by the security parameter, and we set A ⊆ Zq as the universe of identities.

One hash function, H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q

(where 1k represents the corresponding decimal number).

Then the system parameters are generated as follows. The algorithm chooses y ∈ Zq, and then sets

g1 = gy and g2 = gb with b ∈ Zq (B doesn’t know b). Also, the algorithm chooses `, ∂, ν, λ, η, α

and π ∈ Zq, and then sets ϑ = g`2 · g, ψ = g∂ , µ = gν , τ = gλ, χ = gα2 · g, κ = gπ and $ = gη. Finally,

the system outputs the public parameters TRK=(G1, G2, e, g, g1, g2, ϑ, ψ, µ, τ , χ, κ, $) to A.

Additionally, the user u∗ is a challenger whose public key is pk∗, we set that the public key of u∗,

pk∗ = ga (B doesn’t know a).

Queries: When running the adversary A, the relevant queries can occur according to the Definition 5.3.

The algorithm B answers these in the following way:
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• Generate-Public Key Queries: Given the public parameters TRK, the algorithm B randomly

chooses r1, r2 ∈ Zq, computes the public key pk = gr2 of the ring member u and the corresponding

private key sk =
{
gy2 ·$r1 · ϑr2·H(pk) · ψr2 , gr1

}
, and then outputs the public key pk to A, which

is added to the public key ring RL PK, where RL PK is a public key list including all public

keys of the ring members belong to this ring. To finish the above computation, we assure that

H(pk) 6= 0 mod q.

• Sign Queries: Given the public parameters TRK, the public key list RL PK (pk ∈ RL PK

where pk is the public key of the ring member that belongs to this ring), the message M and the

event identifier E, the algorithm B chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = gy2 · ϑr2·H(pk) · ψr2 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ′1 = gr2 ,

σ2 = gr3 ,

σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a forgery Φ = {σ0, σ′1, σ2, σ3, σ4} to the adversary A, where we maxi-

mize the adversary’s advantage, σ′1 is passed to A. Thus, Φ′ = {σ0, σ1 = e(ϑH(pk)·ψ, σ′1), σ2, σ3, σ4}

is a valid signature, where we assure that H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the adversary

A will, with probability at least ε, return its forgeries, (M∗, E∗, Φ∗, RL PK∗) for the challenger u∗,

with pk∗ ∈ RL PK∗, Φ∗ = {σ∗0, σ∗1, σ∗2, σ∗3, σ∗4, σ∗5, σ∗6}, where

σ∗0 = gy2 · ϑ(r
∗
2+a)·H(pk∗) · ψr∗2+a ·$r∗3 · µr∗4 ·H(RL PK∗) · τ r∗4 · χr∗5 ·H(M∗1‖E∗) · κr∗5 ,

σ∗1 = gr
∗
2 ,

σ∗2 = gr
∗
3 ,

σ∗3 = gr
∗
4 ,

σ∗4 = gr
∗
5 ,

σ∗5 = g
r∗2
2 ,

σ∗6 = g
r∗5
2 .

Remark: In fact, σ∗1 should be equal to gr
∗
2 · pk∗. Similarly, because the adversary A can compute

σ∗1 = gr
∗
2 and σ∗4 = gr

∗
5 , A can easily convert these computations to σ∗5 = g

r∗2
2 and σ∗6 = g

r∗5
2 , where σ∗5

and σ∗6 return to the algorithm B so as to make B solve the CDH problem.
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And the forgeries satisfy the following conditions8:

(a) 1←Verify(TRK, RL PK∗, M∗, E∗, Φ∗);

(b) A did not query Sign on inputs RL PK∗, M∗ and E∗;

(c) ”Linked”←Trace-User(TRK, RL PK∗, {M∗, Φ∗}, {M′, Φ′}, E∗), where Φ′ is any signature

outputted from Sign on inputs RL PK∗, M′ and E∗.

So, the algorithm B computes and outputs
σ∗0

g
y
2 ·g

r∗2 ·`·H(pk∗)
2 ·gr

∗
2 ·H(pk∗)·pk∗H(pk∗)·gr

∗
2 ·∂ ·pk∗∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗)·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

=
g
y
2 ·ϑ

(r∗2+a)·H(pk∗)·ψr
∗
2+a·$r

∗
3 ·µr

∗
4 ·H(RL PK∗)·τr

∗
4 ·χr

∗
5 ·H(M∗‖E∗)·κr

∗
5

g
y
2 ·g

r∗2 ·`·H(pk∗)
2 ·gr

∗
2 ·H(pk∗)·pk∗H(pk∗)·gr

∗
2 ·∂ ·pk∗∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗)·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

= g
`·a·H(pk∗)
2 .

Further, we can compute `·H(pk∗)
√
g
`·a·H(pk∗)
2 = ga2 = ga·b, which is the solution to the given CDH problem.

Similarly, we can get the probability of B not aborting,

Pr(not abort) =

(
1− qg

q

)
·
(

1− qs
q

)2

.

So, we can get that ε′ = (1− qg
q ) · (1− qs

q )2 · ε and the time complexity of the algorithm B,

~′ = ~ +O(qg · (5 · Cexp + 3 · Cmul) + qs · (12 · Cexp + 7 · Cmul)).

Thus, Theorem 7.3 follows.

(Proof of Theorem 7.4).

Proof: Let TRS be a traceable ring signature scheme of Section 6. Additionally, let A be an (~, ε, qg,

qs)-adversary attacking TRS. From the adversary A, we construct an algorithm B, for (g, ga1 , gb)∈ G1

or (g, ga2 , gb)∈ G1, the algorithm B is able to use A to compute ga1·b or ga2·b. Thus, we assume the

algorithm B can solve the CDH with probability at least ε′ and in time at most ~′, contradicting the (~′,

ε′)-CDH assumption. Such a simulation may be created in the following way:

Setup: The simulation system inputs a security parameter 1k. Additionally, let G1 and G2 be groups of

prime order q and g be a generator of G1, and let e : G1 ×G1 → G2 denote the bilinear map. The size

of the group is determined by the security parameter, and we set A ⊆ Zq as the universe of identities.

One hash function, H : {0, 1}∗ → Z1k·q can be defined and used to generate any integer value in Z1k·q

(where 1k represents the corresponding decimal number).

8σ∗5 and σ∗6 do not anticipate in these following computations.
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Then the system parameters are generated as follows. The algorithm chooses y ∈ Zq, and then sets

g1 = gy and g2 = gb with b ∈ Zq (B doesn’t know b). Also, the algorithm chooses `, ∂, ν, λ, η, α

and π ∈ Zq, and then sets ϑ = g`2 · g, ψ = g∂ , µ = gν , τ = gλ, χ = gα2 · g, κ = gπ and $ = gη. Finally,

the system outputs the public parameters TRK=(G1, G2, e, g, g1, g2, ϑ, ψ, µ, τ , χ, κ, $) to A.

Additionally, we assume the users u∗1 and u∗2 are two challengers, whose public keys respectively are

pk∗1 , and pk∗2 . We set that the public key of u∗1, pk∗1 = ga1 (B doesn’t know a1), and that the public key

of u∗2, pk∗2 = ga2 (B doesn’t know a2).

Queries Phase 1: When running the adversary A, the relevant queries can occur according to the

Definition 5.4. The algorithm B answers these in the following way:

• Generate-Public Key Queries: Given the public parameters TRK, the algorithm B randomly

chooses r1, r2 ∈ Zq, computes the public key pk = gr2 of the ring member u and the corresponding

private key sk =
{
gy2 ·$r1 · ϑr2·H(pk) · ψr2 , gr1

}
, and then outputs the public key pk to A, which

is added to the public key ring RL PK, where RL PK is a public key list including all public

keys of the ring members belong to this ring. To finish the above computation, we assure that

H(pk) 6= 0 mod q.

• Sign Queries: Given the public parameters TRK, the public key list RL PK (pk ∈ RL PK

where pk is the public key of the ring member that belongs to this ring), the message M and the

event identifier E, the algorithm B chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = gy2 · ϑr2·H(pk) · ψr2 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ′1 = gr2 ,

σ2 = gr3 ,

σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a forgery Φ = {σ0, σ′1, σ2, σ3, σ4} to the adversary A, where we maxi-

mize the adversary’s advantage, σ′1 is passed to A. Thus, Φ′ = {σ0, σ1 = e(ϑH(pk)·ψ, σ′1), σ2, σ3, σ4}

is a valid signature, where we assure that H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q.

Challenge: A sends to the challengers its forgeries, the public keys pk∗1 and pk∗2 and the tuple (M∗, E∗,

RL PK∗ ∪ {pk∗1} ∪ {pk∗2}). The forgeries satisfy the condition that A did not query Sign on input pk∗1

(and pk∗2).

The challengers pick a random x ∈ {1, 2}, and then run Φ∗
′

= {σ∗0, σ∗
′

1 , σ
∗
2, σ
∗
3, σ
∗
4} ← Sign Queries(TRK,

RL PK∗
′
, M∗, E∗), where RL PK∗

′
= RL PK∗ ∪ {pk∗1} ∪ {pk∗2} and
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σ∗0 = gy2 · ϑ(r
∗
2+ax)·H(pk∗x) · ψr∗2+ax ·$r∗3 · µr∗4 ·H(RL PK∗

′
) · τ r∗4 · χr∗5 ·H(M∗‖E∗) · κr∗5 ,

σ∗
′

1 = gr
∗
2 ,

σ∗2 = gr
∗
3 ,

σ∗3 = gr
∗
4 ,

σ∗4 = gr
∗
5 .

And then the challengers output Φ∗ = {σ∗0, σ∗1 = e(ϑH(pk∗x) · ψ, σ∗′1 · pk∗x), σ∗2, σ
∗
3, σ
∗
4} to A.

Queries Phase 2: When running the adversary A, the relevant queries can occur according to the

Definition 5.4. The algorithm B answers these in the following way:

• Generate-Public Key Queries: Given the public parameters TRK, the algorithm B randomly

chooses r1, r2 ∈ Zq, computes the public key pk = gr2 of the ring member u and the corresponding

private key sk =
{
gy2 ·$r1 · ϑr2·H(pk) · ψr2 , gr1

}
, and then outputs the public key pk to A, which

is added to the public key ring RL PK, where RL PK is a public key list including all public

keys of the ring members belong to this ring. To finish the above computation, we assure that

H(pk) 6= 0 mod q.

• Sign Queries: Given the public parameters TRK, the public key list RL PK (pk ∈ RL PK

where pk is the public key of the ring member that belongs to this ring), the message M and the

event identifier E, the algorithm B chooses random r2, r3, r4, r5 ∈ Zq and computes

σ0 = gy2 · ϑr2·H(pk) · ψr2 ·$r3 · µr4·H(RL PK) · τ r4 · χr5·H(M‖E) · κr5 ,

σ′1 = gr2 ,

σ2 = gr3 ,

σ3 = gr4 ,

σ4 = gr5 .

Finally, the algorithm outputs a forgery Φ = {σ0, σ′1, σ2, σ3, σ4} to the adversary A, where we

maximize the adversary’s advantage, σ′1 is passed to A and A did not query Sign on inputs pk∗1

and E∗ (and pk∗2 and E∗). Thus, Φ′ = {σ0, σ1 = e(ϑH(pk) · ψ, σ′1), σ2, σ3, σ4} is a valid signature,

where we assure that H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q.

Guess: If the algorithm B does not abort as a consequence of one of the queries above, the adversary

A will, with probability at least ε (ε ≥ 1
2 ), output x′ ∈ {1, 2} and succeed (x′ = x). We assume that

Φ∗
′

= {σ∗′0 , σ∗
′′

1 , σ∗
′

2 , σ
∗′
3 , σ

∗′
4 , σ

∗′
5 , σ

∗′
6 }, where RL PK∗

′
= RL PK∗ ∪ {pk∗1} ∪ {pk∗2} and

σ∗
′

0 = gy2 · ϑ(r
∗
2+ax′ )·H(pk∗

x′ ) · ψr∗2+ax′ ·$r∗3 · µr∗4 ·H(RL PK∗
′
) · τ r∗4 · χr∗5 ·H(M∗‖E∗) · κr∗5 ,

σ∗
′′

1 = gr
∗
2 ,
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σ∗
′

2 = gr
∗
3 ,

σ∗
′

3 = gr
∗
4 ,

σ∗
′

4 = gr
∗
5 ,

σ∗
′

5 = g
r∗2
2 ,

σ∗
′

6 = g
r∗5
2 .

Similarly, if x′ = x, we can get the followings:
σ∗
′

0

g
y
2 ·g

r∗2 ·`·H(pk∗
x′

)

2 ·g
r∗2 ·H(pk∗

x′
)
·pk∗

x′
H(pk∗

x′
)
·gr
∗
2 ·∂ ·pk∗

x′
∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗′ )·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

=
g
y
2 ·ϑ

(r∗2+a
x′ )·H(pk∗

x′ )·ψr
∗
2+a

x′ ·$r
∗
3 ·µr

∗
4 ·H(RL PK∗

′
)·τr
∗
4 ·χr

∗
5 ·H(M∗‖E∗)·κr

∗
5

g
y
2 ·g

r∗2 ·`·H(pk∗
x′

)

2 ·g
r∗2 ·H(pk∗

x′
)
·pk∗

x′
H(pk∗

x′
)
·gr
∗
2 ·∂ ·pk∗

x′
∂ ·gr

∗
3 ·η·gr

∗
4 ·ν·H(RL PK∗′ )·gr

∗
4 ·λ·g

r∗5 ·α·H(M∗‖E∗)
2 ·gr

∗
5 ·H(M∗‖E∗)·gr

∗
5 ·π

= g
`·ax′ ·H(pk∗

x′ )
2 .

Further, we can compute `·H(pk∗
x′ )
√
g
`·ax′ ·H(pk∗

x′ )
2 = gax′2 = gax′ ·b, which is the solution to the given CDH

problem.

Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete

without aborting, we require that all Generate-Public Key queries will have H(pk) 6= 0 mod q, all Sign

queries will have H(pk) 6= 0 mod q and H(M ‖ E) 6= 0 mod q in the Queries Phase 1 and 2. If the

algorithm B does not abort, then the following conditions must hold:

(a) H(pki) 6= 0 mod q in Generate-Public Key queries, with i=1, 2......qg1 ;

(b) H(pki) 6= 0 mod q and H(Mi ‖ Ei) 6= 0 mod q in Sign queries, with i=1, 2......qs1 ;

(c) H(pki) 6= 0 mod q in Generate-Public Key queries, with i=1, 2......qg2 ;

(d) H(pki) 6= 0 mod q and H(Mi ‖ Ei) 6= 0 mod q in Sign queries, with i=1, 2......qs2 .

To make the analysis simpler, we will define the events E1i , F1i , T1i E2i , F2i , T2i as

E1i :` ·H(pki) 6= 0 mod q, with i=1, 2......qg1 ;

F1i :` ·H(pki) 6= 0 mod q, with i=1, 2......qs1 ;

T1i :α ·H(Mi ‖ Ei) 6= 0 mod q, with i=1, 2......qs1 ;

E2i :` ·H(pki) 6= 0 mod q, with i=1, 2......qg2 ;

F2i :` ·H(pki) 6= 0 mod q, with i=1, 2......qs2 ;

T2i :α ·H(Mi ‖ Ei) 6= 0 mod q, with i=1, 2......qs2 .

Then the probability of B not aborting is

Pr(not abort) = Pr

(qg1⋂
i=1

E1i ∧
qs1⋂
i=1

(F1i ∧ T1i) ∧
qg2⋂
i=1

E2i ∧
qs2⋂
i=1

(F2i ∧ T2i)

)
.

It is easy to see that the events
qg1⋂
i=1

E1i ,
qs1⋂
i=1

F1i ,
qs1⋂
i=1

T1i ,
qg2⋂
i=1

E2i ,
qs2⋂
i=1

F2i ,
qs2⋂
i=1

T2i are independent. Then
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we may compute

Pr(

qg1⋂
i=1

E1i) = 1− Pr(

qg1⋃
i=1

¬E1i) = 1− qg1 ·
1k

1k · q
= 1− qg1

q
;

Pr(

qs1⋂
i=1

F1i) = 1− Pr(

qs1⋃
i=1

¬F1i) = 1− qs1 ·
1k

1k · q
= 1− qs1

q
;

Pr(

qs1⋂
i=1

T1i) = 1− Pr(

qs1⋃
i=1

¬T1i) = 1− qs1 ·
1k

1k · q
= 1− qs1

q
;

Pr(

qg2⋂
i=1

E2i) = 1− Pr(

qg2⋃
i=1

¬E2i) = 1− qg2 ·
1k

1k · q
= 1− qg2

q
;

Pr(

qs2⋂
i=1

F2i) = 1− Pr(

qs2⋃
i=1

¬F2i) = 1− qs2 ·
1k

1k · q
= 1− qs2

q
;

Pr(

qs2⋂
i=1

T2i) = 1− Pr(

qs2⋃
i=1

¬T2i) = 1− qs2 ·
1k

1k · q
= 1− qs2

q
.

So,

Pr(not abort) = Pr

(qg1⋂
i=1

E1i ∧
qs1⋂
i=1

(F1i ∧ T1i) ∧
qg2⋂
i=1

E2i ∧
qs2⋂
i=1

(F2i ∧ T2i)

)

= Pr(

qg1⋂
i=1

E1i) · Pr(

qs1⋂
i=1

F1i) · Pr(

qs1⋂
i=1

T1i) · Pr(

qg2⋂
i=1

E2i) · Pr(

qs2⋂
i=1

F2i) · Pr(

qs2⋂
i=1

T2i)

=

(
1− qg1

q

)
·
(

1− qs1
q

)2

·
(

1− qg2
q

)
·
(

1− qs2
q

)2

.

We can get that ε′ = (1 − qg1
q ) · (1 − qs1

q )2 · (1 − qg2
q ) · (1 − qs2

q )2 · ε and the time complexity of the

algorithm B,

~′ = ~ +O ((qg1 + qg2) · (5 · Cexp + 3 · Cmul) + (qs1 + qs2) · (12 · Cexp + 7 · Cmul)).

Thus, Theorem 7.4 follows.


