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Abstract

It is known that correlation-immune (CI) Boolean functions used
in the framework of side channel attacks need to have low Hamming
weights. In 2013, Bhasin et al. studied the minimum Hamming weight
of d-CI Boolean functions, and presented an open problem: the mini-
mal weight of a d-CI function in n variables might not increase with n.
Very recently, Carlet and Chen proposed some constructions of low-
weight CI functions, and gave a conjecture on the minimum Hamming
weight of 3-CI functions in n variables.

In this paper, we determine the values of the minimum Hamming
weights of d-CI Boolean functions in n variables for infinitely many
n’s and give a negative answer to the open problem proposed by B-
hasin et al. We then present a method to construct minimum-weight
2-CI functions through Hadamard matrices, which can provide al-
l minimum-weight 2-CI functions in 4k − 1 variables. Furthermore,
we prove that the Carlet-Chen conjecture is equivalent to the famous
Hadamard conjecture. Most notably, we propose an efficient method
to construct low-weight n-variable CI functions through d-linearly in-
dependent sets, which can provide numerous minimum-weight d-CI
functions. Particularly, we obtain some new values of the minimum
Hamming weights of d-CI functions in n variables for n ≤ 13. We
conjecture that the functions constructed by us are of the minimum
Hamming weights if the sets are of absolute maximum d-linearly inde-
pendent. If our conjecture holds, then all the values for n ≤ 13 and
most values for general n are determined.
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1 Introduction

Side-channel analysis is a very powerful technique which target implemen-
tations of block ciphers [11, 12, 15, 16]. To resist side channel attacks, many
possible countermeasures have been proposed, and correlation-immune (CI)
Boolean functions with low Hamming weights can be used in the framework
[5, 13, 14, 19]. To reduce the cost overhead of countermeasures, one needs to
construct d-CI functions with the weight as small as possible, or maximizing
d for a given weight [2, 5].

In [2], Bhasin et al. studied the minimum Hamming weight of d-CI
Boolean functions, and presented an open problem: the minimal weight of
a d-CI function in n variables might not increase with n. In [4], Carlet and
Chen proposed some constructions of low-weight CI functions, and conjec-
tured that the minimum Hamming weight of 3-CI functions in n variables
is 8dn4 e.

In this paper, we prove that the minimum Hamming weight of 3-CI
n-variable Boolean functions is lower bounded by 8dn4 e, and then present
a method to construct minimum-weight 2-CI functions through Hadamard
matrices, which can provide all minimum-weight 2-CI Boolean functions
in 4k − 1 variables. We thus determine the values of the minimum Ham-
ming weights for infinitely many n’s and give a negative answer to the open
problem proposed by Bhasin et al. Furthermore, we prove that the Carlet-
Chen conjecture is equivalent to the famous Hadamard conjecture. Most
notably, we propose an efficient method to construct low-weight n-variable
CI functions through d-linearly independent sets, which can provide nu-
merous minimum-weight d-CI functions. Particularly, we obtain some new
values of the minimum Hamming weights of d-CI functions in n variables
for n ≤ 13. We conjecture that the functions constructed by us are of the
minimum Hamming weights if the sets are of absolute maximum d-linearly
independent. If our conjecture holds, then all the values for n ≤ 13 and
most values for general n are determined.

The paper is organized as follows. In Section 2, the necessary background
is established. We then study the relationship between Hadamard matrices
and minimum-weight d-CI functions in Section 3. In Section 4, we study
the relationship between d-linearly independent sets and low-weight d-CI
functions. We end in Section 5 with conclusions.
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2 Preliminaries

Let Fn
2 be the n-dimensional vector space over the finite field F2. We denote

by Bn the set of all n-variable Boolean functions, from Fn
2 into F2.

Any Boolean function f ∈ Bn can be represented by its truth table

[f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), f(1, 1, . . . , 0), . . . , f(1, 1, . . . , 1)].

Let a = (a1, . . . , an) ∈ Fn
2 . The Hamming weight of a, denoted by wH(a),

is the cardinality of the set {1 ≤ i ≤ n|ai = 1}.
Let Supp(f) = {x ∈ Fn

2 |f(x) = 1} be the support of a Boolean function
f ∈ Bn, whose cardinality |Supp(f)| is called the Hamming weight of f , and
will be denoted by wH(f). Clearly, f is determined by Supp(f) uniquely.
We say that f is balanced if wH(f) = 2n−1.

Let f ∈ Bn. f is called correlation-immune of order d (in brief, d-CI) if
and only if ∑

x∈Fn
2

(−1)f(x)⊕v·x = 0,

for any v = (v1, . . . , vn) ∈ Fn
2 satisfying 1 ≤ wH(v) ≤ d, where v · x =

v1x1 + · · ·+ vnxn is the usual inner product [3, 6, 18, 21].
Clearly, for 0 6= v ∈ Fn

2 , we have∑
x∈Fn

2

(−1)f(x)⊕v·x =
∑

x∈Supp(f)

(−1)1⊕v·x+
∑

x/∈Supp(f)

(−1)v·x = −2
∑

x∈Supp(f)

(−1)v·x.

Therefore, f is d-CI if and only if∑
x∈Supp(f)

(−1)v·x = 0,

for any v ∈ Fn
2 satisfying 1 ≤ wH(v) ≤ d.

A matrix H of order n is called a Hadamard matrix if HHT = nIn,
where In is the n× n identity matrix and HT is the transpose of H [9].

3 Hadamard matrices and minimum Hamming weight-
s of d-CI Boolean functions

3.1 On the minimum weight of 3-CI Boolean functions

Using the same notation as that of [4], we denote the minimum Hamming
weight of d-CI nonzero Boolean functions in n variables as wn,d.
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Lemma 3.1 (Proposition 2.6 of [4]). Let d be an even integer such that
n ≥ d ≥ 2. Then wn+1,d+1 = 2wn,d.

Theorem 3.2. Let n ≥ 3 be any integer. Then wn,3 ≥ 8dn4 e. That is,
wn,2 ≥ 4dn+1

4 e, for n ≥ 2.

Proof. By Lemma 3.1, it is sufficient to prove that wn,2 ≥ 4dn+1
4 e, for n ≥ 2.

Suppose there is an n ≥ 2 such that m = wn,2 < 4dn+1
4 e. Then there

exists a 2-CI f ∈ Bn with the Hamming weight m. It is well known that
deg(f) ≤ n−2 and m is a multiple of 4. Therefore, m ≤ 4dn+1

4 e−4 < n+1.
Let the support of f be {(ai1, ai2, . . . , ain)}, where 1 ≤ i ≤ m. Let M be
the matrix

M =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

 = [p1, . . . ,pn],

where pj = (a1j , a2j , . . . , amj)
T and 1 ≤ j ≤ n. Since f is 2-CI, we have

wH(pj) = m
2 and wH(pj1⊕pj2) = m

2 , where 1 ≤ j ≤ n and 1 ≤ j1 < j2 ≤ n.
Therefore,

pT
i1pi2 =

{
m
2 if i1 = i2,
m
4 otherwise.

We construct an m× (n + 1) matrix H as follows.

H =


1 (−1)a11 (−1)a12 · · · (−1)a1n

1 (−1)a21 (−1)a22 · · · (−1)a2n

· · · · · · · · · · · ·
1 (−1)am1 (−1)am2 · · · (−1)amn

 .

Then
HTH = mI,

where I is the identity (n + 1)× (n + 1) matrix. Therefore,

n + 1 = rank(HTH) ≤ rank(H) ≤ m < n + 1,

which is a contradiction, and the result follows.

By Theorem 3.2, if we can find a 2-CI n-variable Boolean function with
the weight 4dn+1

4 e, then the values of wn,2 and wn+1,3 are both determined.
We now give a method to construct minimum-weight 2-CI n-variable func-
tions through Hadamard matrices, for infinitely many n’s.
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Construction 1: Let H be any 4k×4k Hadamard matrix. By negating
columns of H, we can get a matrix whose first row is (1, 1, . . . , 1). We delete
this row and denote the induced (4k − 1)× 4k matrix as

H̃ =


(−1)a1,1 (−1)a1,2 · · · (−1)a1,4k

(−1)a2,1 (−1)a2,2 · · · (−1)a2,4k

· · · · · · · · ·
(−1)a4k−1,1 (−1)a4k−1,2 · · · (−1)a4k−1,4k

 ,

where ai,j ∈ F2, 1 ≤ i ≤ 4k− 1 and 1 ≤ j ≤ 4k. Let qj = (a1,j , . . . , a4k−1,j),
where 1 ≤ j ≤ 4k. Then we construct a function f ∈ B4k−1 whose support
is {q1,q2, . . . ,q4k}.

We give an example to illustrate the construction.
Example 1: Take the Hadamard matrix

H =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 .

Negate the last column and then delete the first row, we have

H →


1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1

→
 1 1 −1 −1

1 −1 1 −1
−1 1 1 −1

 .

That is,

H̃ =

 (−1)0 (−1)0 (−1)1 (−1)1

(−1)0 (−1)1 (−1)0 (−1)1

(−1)1 (−1)0 (−1)0 (−1)1

 .

Then the support of f ∈ B3 defined in Construction 1 is

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.

Proposition 3.3. Let H be any 4k × 4k Hadamard matrix, and f ∈ B4k−1
be the function defined in Construction 1. Then f is a 2-CI Boolean function
with the minimum Hamming weight.

Proof. Since H is a Hadamard matrix, the rows of the induced matrix
H̃ = [(−1)ai,j ] in Construction 1 are mutually orthogonal and they are all
orthogonal to the vector (1, 1, . . . , 1). Let pi = (ai,1, ai,2, . . . , ai,4k), where
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1 ≤ i ≤ 4k − 1. Then wH(pi) = 2k and wH(pi1 ⊕ pi2) = 2k, where
1 ≤ i ≤ 4k − 1 and 1 ≤ i1 < i2 ≤ 4k − 1. Therefore, f is 2-CI. Since
wH(f) = 4k = 4d4k−1+1

4 e, by Theorem 3.2, f is a 2-CI Boolean function
with the minimum Hamming weight.

Corollary 3.4. If there exists a Hadamard matrix H of order 4k, then
w4k,3 = 2k.

In [2], Bhasin et al. presented an open problem: the minimal weight of a
d-CI function in n variables might not increase with n. By Corollary 3.4, we
can give a negative answer to this problem, since there are infinitely many
Hadamard matrices.

3.2 Equivalence of the Hadamard and Carlet-Chen conjec-
tures

Hadamard conjectured that there exists a Hadamard matrix of order 4k for
every positive integer k. After more than one hundred years, this conjecture
still remains open.

Conjecture 3.5 (Hadamard Conjecture). A Hadamard matrix of order 4k
exists for every positive integer k.

There are many results on this conjecture (see e.g. [1, 7, 8, 10, 17, 20]).
The smallest order for which no Hadamard matrix has been known is 668.

In [4], based on the numerical results, Carlet and Chen proposed the
following conjecture.

Conjecture 3.6 (Carlet-Chen Conjecture). Let n ≥ 3 be any integer. Then
wn,3 = 8dn4 e.

We now prove that the above two conjectures are equivalent.

Theorem 3.7. The Carlet-Chen conjecture is equivalent to the Hadamard
conjecture.

Proof. If the Carlet-Chen conjecture holds, then for any positive integer
k, we have w4k,3 = 8k. Hence, w4k−1,2 = 4k. That is, there exists a
2-CI f ∈ B4k−1 with the Hamming weight 4k. Let the support of f be
{(ai,1, ai,2, . . . , ai,4k−1)}, where 1 ≤ i ≤ 4k. We construct a 4k × 4k matrix
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H as follows.

H =


1 (−1)a1,1 (−1)a1,2 · · · (−1)a1,4k−1

1 (−1)a2,1 (−1)a2,2 · · · (−1)a2,4k−1

· · · · · · · · · · · ·
1 (−1)a4k,1 (−1)a4k,2 · · · (−1)a4k,4k−1

 .

Then HTH = 4kI, where I is the identity 4k× 4k matrix. That is, HT is a
Hadamard matrix of order 4k.
Now suppose the Hadamard conjecture is correct. Then for any positive
integer k, there exists a Hadamard matrix H of order 4k. By Proposition 3.3,
the function defined in Construction 1 is a 2-CI Boolean function with the
Hamming weight 4k. Therefore, w4k−1,2 ≤ 4k. By Lemma 3.1 and Theorem
3.2, we have w4k,3 = 8k. For 1 ≤ t ≤ 3, we have w4k+t,3 ≤ w4k+4,3 = 8(k+1).
Then by Theorem 3.2, 8(k + 1) ≥ w4k+t,3 ≥ 8d4k+t

4 e = 8(k + 1), and the
result follows.

From the proof of Theorem 3.7, for any minimum-weight 2-CI function
f ∈ B4k−1, there always exists a Hadamard matrix of order 4k such that
the function defined in Construction 1 is the same as f . In other words,
our construction can provide all minimum-weight 2-CI Boolean functions in
4k − 1 variables.

4 d-linearly independent sets and d-CI Boolean
functions with low Hamming weights

4.1 d-linearly independent sets

We now introduce the notion, d-linearly independent set, which will be used
in our construction of d-CI Boolean functions with low Hamming weights.

Definition 4.1. A subset of Fm
2 is said to be d-linearly independent if no

vector in the set can be written as a linear combination of any other d − 1
vectors in the set.

Definition 4.2. A subset S of Fm
2 with k vectors is set to be a relative

maximum d-linearly independent set if S is not a subset of any d-linearly
independent set of Fm

2 with k + 1 vectors.

Clearly, any d-linearly independent set can be extended to a relative
maximum d-linearly independent set, and the rank of a relative maximum
d-linearly independent set is m.
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Definition 4.3. A subset of Fm
2 with k vectors is set to be an absolute

maximum d-linearly independent set if there is no d-linearly independent set
of Fm

2 with k + 1 vectors. We denote this maximum value k as vm,d.

It is easy to see that vm,2 = 2m − 1 and vm,d1 ≥ vm,d2 for d1 < d2. We
now determine other values of vm,d.

Proposition 4.4. The cardinality of an absolute maximum 3-linearly inde-
pendent set of Fm

2 is 2m−1. That is, vm,3 = 2m−1.

Proof. Suppose there exists a 3-linearly independent set {p1,p2, . . . ,p2m−1+1} ⊂
Fm
2 . Then we construct a set

T = {pi, 1 ≤ i ≤ 2m−1 + 1}
⋃
{p1 + pj , 2 ≤ j ≤ 2m−1 + 1}.

Clearly, the cardinality of the set T is 2m−1 + 1 + 2m−1 > 2m, which is
contradictory to the fact that T is a subset of Fm

2 . Therefore, vm,3 ≤ 2m−1.
Clearly, the set

S = {p ∈ Fm
2 |wH(p) is odd}

is a 3-linearly independent set with 2m−1 vectors, and the result follows.

Proposition 4.5. For m ≥ 5 and d ≥ 2m+2
3 , the cardinality of an absolute

maximum d-linearly independent set of Fm
2 is m+ 1. That is, vm,d = m+ 1,

for d ≥ 2m+2
3 .

Proof. Let S = {p1,p2, . . . ,pt} ⊂ Fm
2 be any absolute maximum d-linearly

independent set. Take a basis of S, say {p1,p2, . . . ,pm}. Then any vector
in S can be written as a linear combination of the basis vectors. We have

p1

p2

. . .
pm

pm+1

. . .
pt


=



1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

cm+1,1 cm+1,2 . . . cm+1,m

. . . . . . . . . . . .
ct,1 ct,2 . . . ct,m




p1

p2

. . .
pm

 ,

where (ci,1, ci,2, . . . , ci,m) ∈ Fm
2 , for m + 1 ≤ i ≤ t. Therefore,

T = {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1), (cm+1,1, . . . , cm+1,m), . . . , (ct,1, . . . , ct,m)}

is an absolute maximum d-linearly independent set. Since d ≥ 2m+2
3 , there is

no vector q ∈ T with 1 < wH(q) < 2m+2
3 . Moreover, there do not exist two
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Table 1: The values of vm,d

d
m

3 4 5 6 7 8 9

2 7 15 31 63 127 255 511
3 4 8 16 32 64 128 256
4 5 6 8 11 13 15
5 6 7 9 12 14
6 7 8 9 12
7 8 9 10

different vectors q1,q2 ∈ T such that wH(q1) ≥ 2m+2
3 and wH(q2) ≥ 2m+2

3 .
Otherwise, q1 ⊕ q2 is of the Hamming weight

≤ 2m− 4

3
=

2m + 2

3
− 2

and it can be written as a linear combination of other 2m+2
3 − 2 vectors in

T . Therefore, the cardinality of T is at most m + 1. Clearly, the set

S = {p ∈ Fm
2 |wH(p) = 1 or m}

is a d-linearly independent set with m+1 vectors, and the result follows.

If m is small, it is quite easy to determine the values of vm,d. In Table
1, we list all the values of vm,d, for m ≤ 9.

4.2 An efficient method to construct d-CI Boolean functions
with low Hamming weights

We now give a method to construct low-weight d-CI n-variable functions
through d-linearly independent sets.

Construction 2: Let S = {u1, . . . ,uk} ⊂ Fm
2 be a d-linearly indepen-

dent set. Let lj ∈ Bm be the linear function uj · x, where x ∈ Fm
2 and “·”

is the usual inner product. The truth table of lj is denoted by the column
vector pj = (a1,j , a2,j , . . . , a2m,j)

T . Let

M = [p1, . . . ,pk] =


a1,1 a1,2 · · · a1,k
a2,1 a2,2 · · · a2,k
· · · · · · · · · · · ·
a2m,1 a2m,2 · · · a2m,k

 =


q1

q2

· · ·
q2m

 ,
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where qi ∈ Fk
2 and 1 ≤ i ≤ 2m. Then we construct a function f ∈ Bk whose

support is {q1,q2, . . . ,q2m}.
We give an example to illustrate the construction.
Example 2: Take m = 7 and

S ={(1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 1, 1, 1, 0, 0, 0),

(1, 1, 0, 0, 1, 1, 0), (1, 0, 1, 0, 1, 0, 1), (1, 1, 1, 1, 1, 1, 1)}.

Clearly, S is a 4-linearly independent set with 11 vectors. We have

l1 = x1, l2 = x2, l3 = x3, l4 = x4, l5 = x5, l6 = x6, l7 = x7,

l8 = x1 ⊕ x2 ⊕ x3 ⊕ x4, l9 = x1 ⊕ x2 ⊕ x5 ⊕ x6,

l10 = x1 ⊕ x3 ⊕ x5 ⊕ x7, l11 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7.

Then we can get the function f ∈ B11 by Construction 2 with the support

{(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), . . . , (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)}

It is easy to check that f is a 4-CI Boolean function with the Hamming
weight 128. Therefore, w11,4 ≤ 128. Since w11,4 ≥ w10,4 = 128, we have
w11,4 = 128. This is a previously unknown value, thus a triple question
mark ??? in Table II of [4] can be taken place by it.

Proposition 4.6. Let f ∈ Bk be the function defined in Construction 2.
Then f is a d-CI Boolean function with the Hamming weight 2m.

Proof. Clearly, f is d-CI if and only if∑
x∈Supp(f)

(−1)v·x = 0,

for any v = (v1, . . . , vk) ∈ Fk
2 satisfying 1 ≤ wH(v) ≤ d. That is, wH(v1p1⊕

. . . ⊕ vkpk) = 2m−1, for any v ∈ Fk
2 with 1 ≤ wH(v) ≤ d. Since S is a

d-linearly independent set, for any v ∈ Fk
2 with 1 ≤ wH(v) ≤ d, we have

v1u1 + . . . + vkuk 6= 0. Therefore,

v1l1 ⊕ . . .⊕ vklk = (v1u1 + . . . + vkuk) · x

is a balanced function, and the result follows.
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Table 2: The values of wn,d

n
d

1 2 3 4 5 6 7 8

1 2
2 2 4
3 2 4 8
4 2 8 8 16
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 64 128
8 2 12 16 64 128 128 128 256
9 2 12 24 128 128 256 256 256
10 2 12 24 128 256 512 512 512
11 2 12 24 128 256 512 1024 1024
12 2 16 24 256? 256 512 1024 2048
13 2 16 32 256? 512? 1024? 1024 4096

Theorem 4.7. Let vm,d be the cardinality of the absolute maximum d-
linearly independent set of Fm

2 . Then

wvm,d,d ≤ 2m.

Proof. Let S = {u1, . . . ,uk} ⊂ Fm
2 be an absolute maximum d-linearly

independent set. Then k = vm,d. By Construction 2, we can generate a
function f ∈ Bvm,d

. By Proposition 4.6, f is a d-CI Boolean function with
the Hamming weight 2m. Therefore,

wvm,d,d ≤ 2m.

For n ≤ 13, there are 8 unknown values of wn,d (see Table II of [4]).
By Theorem 4.7 and Table 1, we can determine the exact values for half of
them. That is, w11,4 = 128, w12,5 = 256, w12,6 = 512 and w13,7 = 1024.
For other four unknown values, Theorem 4.7 provides an upper bound. In
Table 2, we list the values of wn,d for n ≤ 13. All values for n ≤ 10 can be
determined by the SMT tool [2], and those entries in italic are new values
obtained by [2, 4]. Those entries in bold are new values obtained by us. A
question mark ? indicates that the value is the upper bound deduced from
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Theorem 4.7. In Appendix A, we give an example of the 12-variable 6-CI
Boolean function with the minimum Hamming weight.

By computing vm,d and wvm,d,d, for small m and d, we find that wvm,d,d =
2m always holds. So we propose the following conjecture.

Conjecture 4.8. Let vm,d be the cardinality of the absolute maximum d-
linearly independent set of Fm

2 . Then

wvm,d,d = 2m.

It is noted that if Conjecture 4.8 holds, then all the values of wn,d for
n ≤ 13 and most values for general n are determined. Moreover, the func-
tions generated by Construction 2 using absolute maximum d-linearly inde-
pendent sets are minimum-weight d-CI Boolean functions. Anyway, given
an absolute maximum d-linearly independent set S, Construction 2 can pro-
vide a d-CI Boolean function with low weight. That is, we have transformed
the problem of finding low-weight correlation-immune Boolean functions to
the problem of finding absolute maximum d-linearly independent sets, which
can be done very efficient.

5 Conclusion

In this paper, we studied the relationships between Hadamard matrices, d-
linearly independent sets and correlation-immune Boolean functions with
minimum Hamming weights. We proposed two constructions of minimum-
weight d-CI Boolean functions, and deduced some quite interesting results.
The field is still open and there are many problems deserved to be studied.
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A A 12-variable 6-CI Boolean function with the
minimum Hamming weight

Take m = 9 and

S ={(1, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 0, 1),

(1, 1, 1, 1, 1, 1, 0, 0, 0), (1, 1, 1, 0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1, 1, 1, 1)}.

Clearly, S is a 6-linearly independent set with 12 vectors. We have

l1 = x1, l2 = x2, l3 = x3, l4 = x4, l5 = x5, l6 = x6, l7 = x7,

l8 = x8, l9 = x9, l10 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6,

l11 = x1 ⊕ x2 ⊕ x3 ⊕ x7 ⊕ x8 ⊕ x9, l12 = x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x9.

Then a function f ∈ B12 is defined by Construction 2. It is easy to check
that f is a 6-CI Boolean function with the minimum Hamming weight 512.
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