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Quantum Key Recycling aims to re-use the keys employed in quantum encryption and
quantum authentication schemes. QKR protocols can achieve better round complexity

than Quantum Key Distribution. We consider a QKR protocol that works with qubits,

as opposed to high-dimensional qudits. A security proof was given by Fehr and Salvail [1]
in the case where there is practically no noise. A high-rate scheme for the noisy case

was proposed by Škorić and de Vries [2], based on eight-state encoding. However, a

security proof was not given. In this paper we introduce a protocol modification to [2].
We provide a security proof. The modified protocol has high rate not only for 8-state

encoding, but also 6-state and BB84 encoding. Our proof is based on a bound on the

trace distance between the real quantum state of the system and a state in which the keys
are completely secure. It turns out that the rate is higher than suggested by previous

results. Asymptotically the rate equals the rate of Quantum Key Distribution with

one-way postprocessing.

1 Introduction

1.1 Quantum Key Recycling

Quantum cryptography uses the properties of quantum physics to achieve security feats that

are impossible with classical communication. Best known is Quantum Key Distribution

(QKD), first described in the famous BB84 paper [3]. QKD establishes a random secret

key known only to Alice and Bob, and exploits the no-cloning theorem for unknown quantum

states [4] to detect any manipulation of the quantum states. Already two years before the

invention of QKD, the possibility of Quantum Key Recycling (QKR) was considered [5]. Let

Alice and Bob encrypt classical data as quantum states, using a classical key to determine the

basis in which the data is encoded. If they do not detect any manipulation of the quantum

states, then Eve has learned almost nothing about the encryption key, and hence it is safe

for Alice and Bob to re-use the key. A QKR protocol can achieve better round complexity

than QKD, since communication about basis choices is avoided. After the discovery of QKD,

interest in QKR was practically nonexistent for a long time. QKR received some attention

again in 2003 when Gottesman [6] proposed an Unclonable Encryption scheme with partially

re-usable keys. In 2005 Damg̊ard, Pedersen and Salvail introduced a scheme that allows for

complete key recycling, based on mutually unbiased bases in a high-dimensional Hilbert space

[7, 8]. Though elegant, their scheme unfortunately needs a quantum computer for encryption

and decryption. In 2017 Fehr and Salvail [1] introduced a qubit-based QKR scheme (similar

to [5]) that does not need a quantum computer, and they were able to prove its security in

the regime of extremely low noise. Škorić and de Vries [2] proposed a variant with 8-state

encoding, which drastically reduces the need for privacy amplification and tolerates higher

noise levels, but the security was not proven. Attacks on the qubit-based QKR schemes of

[1, 2] were studied in [9], but that did not yield a security proof.
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1.2 Contributions and outline

We investigate qubit-based Quantum Key Recycling.

• We introduce a number of modifications in the QKR protocol of Škorić and de Vries [2].

(i) The basis key now gets refreshed even in case of an Accept; the key update is done by

hashing the payload of the qubits into the old key. (ii) We modify the privacy amplification:

instead of deriving a classical one-time pad from the qubits’ payload solely, we compress

the payload and the old basis key together. For technical reasons we combine the privacy

amplification and the key refreshment into a single hashing operation. This simplifies the

security proof. (iii) The message contains keys for the next round. Consequently our

scheme does not consume key material.

• We provide a security proof. Our proof technique differs from [1]. We treat all keys on

the same footing. Our approach is as follows. We work with an EPR formulation of

the protocol. The permutation invariance of the protocol allows us to invoke Post-selection

[10]. In order to prove security against general attacks we only need to demonstrate security

against ‘collective’ attacks, i.e. attacks where Eve collects quantum side information from

individual EPR pairs, in exactly the same way for each EPR pair. We apply symmetrisation

of the individual noisy EPR pairs as introduced in [11, 12]. The only remaining degree

of freedom in the attack is a single scalar, the bit error probability. We provide an upper

bound on the diamond distance between the real protocol and an idealised version in which

the keys are completely decoupled from Eve’s side information. We do this for one QKR

round. The security of multiple rounds follows inductively by universal composability.

For asymptotically large n (number of qubits) the steps in our derivation are very similar

to [13, 14]; we make use of smooth Rényi entropies, which asymptotically tend to the von

Neumann entropy. For finite n we present a separate result without smoothing, based on

straightforward diagonalisation.

• The QKR rate is defined as the message length divided by n. We obtain an expression

for the QKR rate as a function of n and the tolerated bit error rate (β). For n → ∞ the

rate equals the rate of QKD with one-way postprocessing (i.e. without two-way advantage

distillation). This means that whenever it is possible to do one-way-postprocessing-QKD,

it is also possible to do QKR at the same asymptotic rate and hence get the benefit of

reduced communication complexity.

For finite n, our approach without smoothing yields a rate≈ 1−h(β)−2 log[
√

(1− 3
2γ)(1− γ)

+
√

3
2γ(1 + γ)], where h is the binary entropy function. Both these results are more

favourable than what one would expect based on the min-entropy analysis in [9] and

straightforward generalisations of [1] to the noisy case.

It is interesting to note that the asymptotic equivalence of the QKR and QKD rate holds

not only for 8-state encoding. For 6-state and 4-state (BB84) encoding there is a severe

leakage of the qubit payload if Eve intercepts the whole cipherstate. From [2] and [9] it

would seem that this leakage necessarily implies low QKR rate. However, in our protocol

the leak is masked by the secret key that is used for privacy amplification.

The outline of the paper is as follows. In the preliminaries section we introduce notation; we

briefly review smooth Rényi entropies, proof techniques and methods for embedding classical
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bits in qubits, and we summarise known results regarding Eve’s optimal extraction of infor-

mation from a qubit into a four-dimensional ancilla state. In Section 3 we motivate why we

depart from the entanglement-monogamy based proof technique. In Section 4 we present the

modified QKR protocol. Section 5 states the main theorems and discusses rates and optimal

parameter choices. In Section 6 we compare to existing results, discuss erasures, and suggest

topics for future work.

2 Preliminaries

2.1 Notation and terminology

Classical Random Variables (RVs) are denoted with capital letters, and their realisations with

lowercase letters. The probability that a RV X takes value x is written as Pr[X = x]. The

expectation with respect to RV X is denoted as Exf(x) =
∑
x∈X Pr[X = x]f(x). Sets are

denoted in calligraphic font. We write [n] for the set {1, . . . , n}. For a string x and a set of

indices I the notation xI means the restriction of x to the indices in I. The notation ‘log’

stands for the logarithm with base 2. The notation h stands for the binary entropy function

h(p) = p log 1
p +(1−p) log 1

1−p . Sometimes we will write h({p1, . . . , pk}) meaning
∑
i pi log 1

pi
.

Bitwise XOR of binary strings is written as ‘⊕’. The Kronecker delta is denoted as δab. The

inverse of a bit b ∈ {0, 1} is written as b̄ = 1 − b. The Hamming weight of a binary string x

is written as |x|. We will speak about ‘the bit error rate γ of a quantum channel’. This is

defined as the probability that a classical bit g, sent by Alice embedded in a qubit, arrives at

Bob’s side as ḡ.

For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉
represented as

(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz. The

standard basis is the eigenbasis of σz, with |0〉 in the positive z-direction. We write 1 for the

identity matrix. The notation ‘tr’ stands for trace. The Hermitian conjugate of an operator A

is written as A†. The complex conjugate of z is denoted as z∗. Let A have eigenvalues λi. The

1-norm of A is written as ‖A‖1 = tr
√
A†A =

∑
i |λi|. The trace distance between matrices ρ

and σ is denoted as δ(ρ;σ) = 1
2‖ρ− σ‖1. It is a generalisation of the statistical distance and

represents the maximum possible advantage one can have in distinguishing ρ from σ.

Consider uniform classical variables X,Y and a quantum system labeled ‘E’ (under Eve’s

control) that depends on X and Y . The combined classical-quantum state is ρXYE =

Exy|xy〉〈xy| ⊗ ρE
xy. The state of a sub-system is obtained by tracing out a subspace, e.g.

ρYE = trXρ
XYE = Ey|y〉〈y| ⊗ ρEy , with ρEy = ExρExy. The fully mixed state of subsystem X is

denoted as µX . The security of the variable X, given that Eve holds the ‘E’ subsystem, can

be expressed in terms of a trace distance as follows [13],

d(X|E)
def
= δ

(
ρXE ; µX ⊗ ρE

)
(1)

i.e. the distance between the true classical-quantum state and a state in which X is completely

unknown to Eve.

We write S(HA) to denote the space of density matrices on Hilbert space HA, i.e. positive

semi-definite operators acting onHA. Any quantum channel can be described by a Completely

Positive Trace-Preserving (CPTP) map E : S(HA) → S(HB) that transforms a mixed state

ρA ∈ S(HA) to another mixed state ρB ∈ S(HB). We write E(ρA) = ρB. The diamond norm

of a map is defined as ‖E‖� def
= 1

2 supρAC∈S(HAC) ‖E(ρAC)‖1 with HC an auxiliary system that
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can be considered to be of the same dimension as HA. For a map E : S(HA) → S(HB),

the notation E(ρAC) means (E ⊗ 1C)(ρAC), i.e. E acts only on the ‘A’ subsystem. A natural

distance measure between two CPTP maps E1 and E2 is given by ‖E1 − E2‖�; this is the

maximum possible advantage that one can have in distinguishing between the two maps

given one observation of their action.

A family of hash functions H = {h : X → T } is called pairwise independent (a.k.a. 2–

independent or strongly universal) [15] if for all distinct pairs x, x′ ∈ X and all pairs y, y′ ∈ T
it holds that Prh∈H [h(x) = y∧h(x′) = y′] = |T |−2. Here the probability is over random h ∈ H.

Pairwise independence can be achieved with a hash family of size |H| = |X |.

2.2 Smooth Rényi entropies

Let ρ be a mixed state. The von Neumann entropy of ρ is S(ρ) = −tr ρ log ρ. The ε-smooth

Rényi entropy of order α is defined as [13]

For α ∈ (0, 1) ∪ (1,∞) : Sεα(ρ)
def
=

1

1− α log min
ρ̄: ‖ρ̄−ρ‖1≤ε

tr ρ̄α, (2)

where the density operator ρ̄ may be sub-normalised. Furthermore Sε0(ρ) = limα→0 S
ε
α(ρ) and

Sε∞(ρ) = limα→∞ Sεα(ρ). It has been shown that the smooth Rényi entropy of factor states

asymptotically approaches the von Neumann entropy.

Lemma 1 Let σ be a density matrix. It holds that

Sε2(σ⊗n) ≥ nS(σ)− (2 log rank(σ) + 3)
√
n log 2

ε (3)

Sε0(σ⊗n) ≤ nS(σ) +O(
√
n log 1

ε ). (4)

This lemma follows from [11] (Corollary 3.3.7 and the comment above Theorem 3.3.6), com-

bined with Sε2 ≥ Sε∞.

2.3 QKR security definition and proof structure

We use the universal composability framework [11][16]. Let E be the CPTP map that describes

one round of the QKR protocol. Let F denote an ‘ideal’, perfectly secure version of E . We say

that one round of the QKR protocol is ε-secure when ‖E −F‖� ≤ ε. Since the diamond norm

is a composable security measure, the key material that is to be re-used can be considered

uniform in the second round except with probability ε. By an induction argument the scheme

is then Nε-secure after N rounds. This can be seen as follows. The security of two rounds is

‖E ◦ E − F ◦ F‖� = ‖E ◦ E − E ◦ F + E ◦ F − F ◦ F‖� = ‖E ◦ (E − F) + (E − F) ◦ F‖�
≤ ‖E ◦ (E − F)‖� + ‖(E − F) ◦ F‖� (triangle ineq.)

≤ ‖E − F‖� + ‖E − F‖� ≤ 2ε. (5)

The inequality (5) follows from (i) the fact that a CPTP map cannot increase distance,

yielding ‖E ◦(E −F)‖� ≤ ‖E−F‖�; (ii) maximising over states F(ρ) is a subset of maximising

over ρ, yielding ‖(E − F) ◦ F‖� ≤ ‖E − F‖�.
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A QKR protocol has to satisfy two requirements:

• The encrypted message must be secure.

• If Alice and Bob don’t detect disturbance on the quantum channel, it must be safe to re-use

keys, even if Eve knows the plaintext.

A QKR security proof needs to demonstrate ‖E − F‖� ≤ ε for two different definitions of

“ideal F”. In the case where Eve does not know the plaintext, the ideal mapping F is

constructed to mimic E except that the message and the next-round keys are replaced by

completely random variables. In the case of known plaintext, this replacement is done only

for the next-round keys.

Some technical complications may arise in the security proof due to the imperfection of the

MAC function used by Alice and Bob. An elegant way to avoid computational complications is

to describe the classical channel as a channel that is perfectly authenticated (Eve only listens)

except with probability η, where η is the failure probability of the MAC. If the protocol has

security ε in case of a perfectly authenticated classical channel, then the real-life security is

ε+ η. For QKD this method was written out in detail in Appendix D of [16].

2.4 Post-selection

Attacks where Eve acts on individual qubits identically in all positions are called collective

attacks. For protocols that are invariant under permutation of the input states, a post-

selection argument [10] can be used to show that ε-security against collective attacks implies

ε′-security against general attacks, with ε′ = ε(n + 1)d
2−1. Here d is the dimension of the

combined Alice-Bob subsystem (d = 4 for qubits).

A mapping E is called permutation-symmetric if for all permutations π there exists a mapping

Kπ such that E ◦ π = Kπ ◦ E . (Any protocol that starts with a random permutation p and

afterwards applies no operation that depends on p is obviously permutation-symmetric. It

has Kπ = 1.) In [10] the following result was provenafor any permutation-symmetric protocol

E acting on S(H⊗nAB),

‖E − F‖� ≤ (n+ 1)d
2−1 max

σ∈S(HABE)

∥∥∥(E − F)(σ⊗n)
∥∥∥

1
. (6)

Practically this means it is possible to upgrade from security against collective attacks to

security against general attacks by paying a modest price in terms of privacy amplification,

namely changing the usual privacy amplification term 2 log 1
ε to 2 log 1

ε + 2(d2− 1) log(n+ 1).

2.5 Encoding a classical bit in a qubit

We briefly review methods for embedding a classical bit g ∈ {0, 1} into a qubit state. The

standard basis is |0〉, |1〉 with |0〉 the positive z-direction on the Bloch sphere. The set of

bases used is denoted as B, and a basis choice as b ∈ B. The encoding of bit value g in basis

b is written as |ψbg〉. In BB84 encoding we write B = {0, 1}, with |ψ00〉 = |0〉, |ψ01〉 = |1〉,
|ψ10〉 = |0〉+|1〉√

2
, |ψ11〉 = |0〉−|1〉√

2
. In six-state encoding [17] the vectors are ±x, ±y, ±z on the

Bloch sphere. For 8-state encoding [2] we have B = {0, 1, 2, 3} and the eight states are the

aThis follows from applying Theorem 1 in [10] to E − F and then using eq.(5) in [10].
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corner points of a cube on the Bloch sphere. We write b = 2u + w, with u,w ∈ {0, 1}. The

states are

|ψuwg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |g ⊕ w〉
]
. (7)

The angle α is defined as cosα = 1/
√

3. For given g, the four states |ψuwg〉 are the Quantum

One-Time Pad (QOTP) encryptions [18, 19, 20] of |ψ00g〉. The ‘plaintext’ states |ψ000〉, |ψ001〉
correspond to the vectors ±(1, 1, 1)/

√
3 on the Bloch sphere.

2.6 Eve’s auxiliary state

Consider Eve preparing noisy EPR pairs for Alice and Bob. Let one noisy singlet state be

denoted as σAB. Eve holds the purifying ‘auxiliary’ state σE = tr AB|ΨABE〉〈ΨABE|. One

of the results of [9] was an expression for Eve’s auxiliary state after the symmetrisation

technique of [11] is applied to σAB. The pure state is |ΨABE〉 =
√

1− 3
2γ|Ψ−〉 ⊗ |m0〉 +√

γ
2

(
−|Φ−〉 ⊗ |m1〉+ i|Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
, where Ψ±,Φ± are the Bell basis states

in the AB subsystem, and |mi〉 is an orthonormal basis in Eve’s four-dimensional ancilla

space. The single remaining degree of freedom γ is the bit error probability caused by Eve.b

Let v = (v1, v2, v3) be a 3-component vector on the Bloch sphere. Let |v ·m〉 be shorthand

notation for v1|m1〉+ v2|m2〉+ v3|m3〉. Alice and Bob do a measurement in the v-basis, such

that |v〉 stands for ‘0’ and | − v〉 for ‘1’. Let x ∈ {0, 1} be the bit value that Alice measures,

and y ∈ {0, 1} Bob’s bit value. (In the noiseless case we have y = x̄ because of the anti-

correlation in the singlet state.) After these measurements have taken place, Eve’s auxiliary

system is in state σv
xy, given by

σv
xy

def
= |Ev

xy〉〈Ev
xy|, (8)

|Ev
01〉 =

1√
1− γ

[√
1− 3

2γ|m0〉+
√

γ
2 |v ·m〉

]
|Ev

10〉 =
1√

1− γ

[√
1− 3

2γ|m0〉 −
√

γ
2 |v ·m〉

]
(9)

|Ev
00〉 =

1√
2(1− v2

3)

[
(−v1v3 − iv2)|m1〉+ (−v2v3 + iv1)|m2〉+ (1− v2

3)|m3〉
]

|Ev
11〉 =

1√
2(1− v2

3)

[
(−v1v3 + iv2)|m1〉+ (−v2v3 − iv1)|m2〉+ (1− v2

3)|m3〉
]
.

The E-vectors are not all orthogonal. We have 〈Ev
01|Ev

10〉 = 1−2γ
1−γ . (The rest of the inner

products are zero.) It holds that |−v1v3−iv2√
1−v23

|2 = 1 − v2
1 and |−v2v3+iv1√

1−v23
|2 = 1 − v2

2 . We have

|Ev
10〉 = |E−v01 〉 and |Ev

11〉 = |E−v00 〉. The state |Ev
00〉 looks complicated, but the projector

is given by the more simple expression |Ev
00〉〈Ev

00| = 1
2

∑3
j=1 |mj〉〈mj | − 1

2 |v ·m〉〈v ·m| +
i
2

∑3
jkp=1 εjkpvj |mk〉〈mp|, where εjkp stands for the antisymmetric Levi-Civita symbol. For

a given basis set B and b ∈ B we will write σbxy instead of σv
xy, as the vector v is implicitly

bIn the case of 4-state encoding an extra ingredient is needed to arrive at this expression: the use of test states
so as to probe more than a circle on the Bloch sphere. Otherwise Eve has more degrees of freedom [12].
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defined by the pair (B, b). The following useful identity holds,

Exyσ
b
xy = (1− 3

2γ)|m0〉〈m0|+ γ
2

3∑
j=1

|mj〉〈mj |. (10)

3 Motivation

It is possible to add noise tolerance to the construction of Fehr and Salvail [1], but this leads

to a result that is unsatisfactory in two respects. (i) For 4-state and 6-state encoding the

scheme has a low rate. Even at zero noise the rate is below 1. (ii) For 8-state encoding it is

known [9] that the zero-noise rate should be 1, but the proof technique of [1] does not show

it. We explain this below.

A straightforward way of adding more noise tolerance to the construction of Fehr and Salvail

[1] is as follows. Alice sends to Bob an encrypted syndrome. The encryption is done with a

one-time pad, i.e. a certain amount of existing key material has to be spent. Let the number of

qubits be n; the length of the secret after privacy amplification is `; the tolerated bit error rate

is β. The proof technique in [1] is based on an entanglement monogamy game [21]. It yields

a trace distance
√

2`pwin between ideality and reality, where pwin is the winning probability,

pwin ≤ µn2nh(β) (asymptotically), where µ = 1
|B| + |B|−1

|B|

√
maxbb′∈B:b′ 6=b maxxx′ ‖F bxF b

′
x′‖∞.

Here F bx is the projection operator that corresponds to data bit x ∈ {0, 1} in the basis b. The

value of µ is given by µ4 = 1
2 + 1

2

√
1
2 ≈ 0.85, µ6 = 1

3 + 2
3

√
1
2 ≈ 0.80, µ8 = 1

4 + 3
4

√
2
3 ≈ 0.86 for

4-state, 6-state and 8-state encoding respectively.cGiven that an amount nh(β) of key material

has to be spent, the asymptotic QKR rate `−expenditure
n is upper bounded by 1−log(2µ)−2h(β).

This bound on the rate is unfavourable for the 8-state case, even though it is known that QKR

with 8-state encoding has good properties [9], e.g. no leakage of the qubit payload at zero noise.

Our aim is to obtain a tighter bound on the rate, for all encoding schemes.

4 Protocol

4.1 Our adapted QKR protocol

In this paper we consider the QKR scheme #2 proposed in [2], which is a slightly modified

version of the QEMC∗ scheme of Fehr and Salvail [1]. We introduce several changes:

• Some key refreshment of the basis key occurs even in case of an Accept.

• We derive the one time pad not only from the qubits’ payload but also from the basis key.

It turns out that with this construction it becomes evident that rate 1 (at zero noise) can

be achieved not only using 8-state encoding but also using 6-state encoding.

• For technical reasons we combine the privacy amplification and the key refreshment into

a single hashing operation. This simplifies the security proof.

• Part of the message is used to communicate keys for the next round. Consequently the

scheme does not consume existing key material.

cWe mention that the pwin obtained numerically with Semidefinite Programming is the same for 6-state and
8-state.
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The key material shared between Alice and Bob consists of several parts: a basis sequence

b ∈ Bn, two MAC keys k1
MAC, k

2
MAC ∈ {0, 1}λ, an extractor keydu ∈ U , and a classical

OTP ksyn ∈ {0, 1}a for protecting the syndrome. The plaintext is mbare ∈ {0, 1}`
′
, with

`′
def
= `− 2λ− a.

Alice and Bob have agreed on a pairwise independent hash function Ext : U ×{0, 1}n×Bn →
{0, 1}`×Bn, a MAC function Γ : {0, 1}λ×{0, 1}n+`+a → {0, 1}λ, and a linear error-correcting

code with syndrome function Syn : {0, 1}n → {0, 1}a and decoder SynDec: {0, 1}a → {0, 1}n.

For efficiency reasons we take a one-time MAC function whose key size does not exceed the

tag size.e

The basis set B and the functions Ext,Γ, Syn, SynDec are publicly known.

Encryption

Alice performs the following steps. Generate random x ∈ {0, 1}n, k ∈ {0, 1}2λ+a. Concatenate

m = mbare||k to form augmented message m ∈ {0, 1}`. Compute s = ksyn⊕Syn(x) and z||b′ =

Ext(u, x||b). Compute the ciphertext c = m⊕ z and authentication tag τ = Γ(kMAC, x||c||s).
Prepare the quantum state |Ψ〉 =

⊗n
i=1 |ψbixi〉 according to Section 2.5. Send |Ψ〉, s, c, τ to

Bob.

Decryption

Bob receives |Ψ′〉, s′, c′, τ ′. He performs the following steps. Measure |Ψ′〉 in the b-basis. This

yields x′ ∈ {0, 1}n. Recover x̂ = x′⊕ SynDec(ksyn⊕ s′⊕ Synx′). Compute ẑ||b̂′ = Ext(u, x̂||b)
and m̂ = c′ ⊕ ẑ. Accept only if τ ′ = Γ(kMAC, x̂||c′||s′) holds and the syndrome decoding

was successful. Communicate Accept/Reject to Alice (publicly but with authentication using

k2
MAC). In case of Accept parse m̂ as m̂bare||k̂.

Key update

Alice and Bob perform the following updates for the next round.

• In case of Reject: Take completely new keys k1
MAC, k

2
MAC, ksyn, b, u.

• In case of Accept: Set b← b′, (k1
MAC||k2

MAC||ksyn)← k. The key u is re-used.

The protocol uses up 2λ+a bits of key material (the two MAC keys and ksyn) but also delivers

the same amount in the augmented message m; hence the net effect in case of Accept is that

Alice and Bob expend no key material. The value of the parameter a (size of the syndrome)

depends on the noise level and on the choice of error-correcting code. See Section 5.5 for a

discussion of the balance between message length and syndrome length.

4.2 EPR version of the protocol

We work with the EPR version of the protocol (Fig. 1). The protocol steps are practically

the same as in Section 4.1. The only difference is that Alice does not prepare the state |Ψ〉;
instead Alice performs a measurement in the b-basis on one half of an EPR pair, resulting in

a state |Ψ〉 with random payload x. This EPR pair does not have to be produced by Alice

herself but can come from an outside source. Most generally this is described by an attacker

Eve creating an 8-dimensional quantum state ρABE and sending 2-dimensional subspaces to

dThe extractor key was not mentioned explicitly in [2].
eAlternatively, it is an arbitrary information-theoretically secure MAC and the MAC key is re-used indefinitely;
but then the tag has to be one-time padded and the pad has to be refreshed in every round. This construction
leads to the same amount of key expenditure and involves a few more operations.
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both Alice and Bob. If Eve is to have any hope of being undetected the ρAB subsystem should

be close to an EPR state.

D.Leermakers and B. Škorić 9

Alice	 Bob	
EPR	

Random k 2 {0, 1}2�+a.
m = mbare||k.
Measure in basis b 2 Bn.
Result x 2 {0, 1}n.
s = ksyn � Synx.
z||b0 = Ext(u, x||b).
c = m� z.
⌧ = �(k1

MAC, x||c||s). s, c, ⌧

Measure in basis b 2 Bn.
Result y 2 {0, 1}n.

Receive as s0, c0, ⌧ 0.
x̂ = ȳ � SynDec(ksyn � s0 � Syn ȳ).

ẑ||b̂0 = Ext(u, x̂||b).
m̂bare||k̂ = c0 � ẑ.
! = 1 if SynDec worked

and �(k1
MAC, x̂||c0||s0) = ⌧ 0.

� = �(k2
MAC, !).!, �

If ! = 1: b̃ = b̂0, ũ = u,

k̃1
MAC||k̃2

MAC||k̃syn = k̂.

If ! = 0: new keys.

Receive as !0, �0.
Check �(k2

MAC, !0) = �0.

If !0 = 1: b̃ = b0, ũ = u,

k̃1
MAC||k̃2

MAC||k̃syn = k.

If !0 = 0: new keys.

• In case of Accept: Set b b0, (k1
MAC||k2

MAC||ksyn) k. The key u is re-used.

The protocol uses up 2�+a bits of key material (the two MAC keys and ksyn) but also delivers

the same amount in the augmented message m; hence the net e↵ect in case of Accept is that

Alice and Bob expend no key material. The value of the parameter a (size of the syndrome)

depends on the noise level and on the choice of error-correcting code. See Section 5.5 for a

discussion of the balance between message length and syndrome length.

4.2 EPR version of the protocol

We work with the EPR version of the protocol (Fig. 1). The protocol steps are practically

the same as in Section 4.1. The only di↵erence is that Alice does not prepare the state | i;
instead Alice performs a measurement in the b-basis on one half of an EPR pair, resulting in

a state | i with random payload x. This EPR pair does not have to be produced by Alice

herself but can come from an outside source. Most generally this is described by an attacker

Eve creating an 8-dimensional quantum state ⇢ABE and sending 2-dimensional subspaces to

both Alice and Bob. If Eve is to have any hope of being undetected the ⇢AB subsystem should

be close to an EPR state.

Fig. 1. EPR version of the QKR protocol. The EPR pairs are in the singlet state.

Fig. 1. EPR version of the QKR protocol. The EPR pairs are in the singlet state.

4.3 Invariances

We argue that our QKR protocol is statistically equivalent to a protocol that additionally does

a random permutationfof the input EPR particles. The argument is as follows. In the original

prepare-and-measure protocol of Section 4.1 the basis sequence B and the payload X are

uniform; therefore it does not matter if Alice performs a random permutation b 7→ π(b), x 7→
π(x) (and Bob the corresponding permutation). The effect is still a uniform payload encoded

in a uniform basis. The above action is identical to keeping b, x untouched but permuting

the qubits: Alice applies π, and Bob π−1. In the EPR version Alice and Bob both apply the

same permutation, i.e. the EPR pairs get permuted.

In a similar fashion, we argue that the EPR protocol is statistically equivalent to a protocol

where Alice and Bob first apply the random-Pauli transform as introduced by [11] in every

qubit position. The argument is analogous to the one in [11]. Before measuring their i’th qubit

in basis bi Alice and Bob both apply the same random Pauli operation Ai
$← {1, σx, σy, σz}

and then forget Ai. The effect on each mixed EPR state is ρAB 7→ 1
4

∑
α(σα⊗σα)ρAB(σα⊗σα),

which gives a huge simplification and allows one to use a single-parameter description of noisy

EPR states as in Section 2.6. Applying a uniformly chosen Pauli operation on a qubit state

and then measuring in basis bi has exactly the same effect as keeping the qubit unmodified

and measuring in a uniformly transformed basis. But as b was completely random, this is

fHere the randomness is public but cannot be affected by Eve.
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statistically equivalent to doing no transform at all.

By this line of reasoning we have a sequence of equivalences E ≡ EEPR ≡ EEPR
π ≡ EEPR

πΣ

showing that the original prepare-and-measure protocol E behaves statistically the same as

the EPR version with random permutation (‘π’) and noise symmetrisation (random Pauli

transformations, ‘Σ’). We will give a security proof for EEPR
πΣ . Security of EEPR

πΣ implies

security of E .

5 Security proof

5.1 Attacker model and proof steps

The attacker model is the one used in most works on QKD. Eve is able to manipulate the

classical channel and the quantum channel between Alice and Bob in any way. Eve has

no access to the private computations taking place in Alice and Bob’s devices. Eve has

unbounded (quantum) computation power and unbounded quantum memory.

The security proof consists of the following steps. We specify the CPTP map EEPR
πΣ and the

idealised version F , both for the known plaintext and unknown plaintext case. Then we

invoke Post-selection and noise symmetrisation. This means we can start from (6), and for

the single-position noisy EPR states σ use the symmetrised states as described in Section 2.6,

i.e. parametrised only by the bit error probability γ. We derive an upper bound on the

trace norm appearing in (6). We do this for the limit n → ∞ (Theorem 1) as well as non-

asymptotically (Theorem 2). For the asymptotic result we follow proof steps as in [13, 14].

Smoothing is introduced, after which the trace distance is upperbounded in a number of

steps. First the average over the hashing key u is pulled into the square root using Jensen’s

inequality; then the properties of pairwise independent hashes are used to evaluate the average

over u; then the trace is pulled into the square root as well; this results in an expression that

can be written in terms of smooth Rényi entropies Sε0 and Sε2 . Finally Lemma 1 is invoked

to make the transition from smooth Rényi entropies to non-smooth von Neumann entropies,

which are then easily evaluated.

The proof of the non-asymptotic result follows similar steps up to and including the average

over u, but does not make use of smoothing. The operator square root is evaluated explicitly,

which is feasible because of the diagonal form of the operator. No use is made of entropies.

We always model Eve’s ability to interfere on the classical channel as a failure probability

2−λ on a channel without any interference.

5.2 The CPTP maps

The action of one QKR round on the n noisy EPR states is denoted as EEPR
πΣ . The output

consists of Eve’s auxiliary states as well as all the classical variables shown in Fig. 1, some

of which are observed by Eve. The EEPR
πΣ comprises initialisation I, measurement M and

post-processing P,

EEPR
πΣ = P ◦M ◦ I ◦ Σ ◦ π. (11)

In the initialisation step the message and all the keys are fetched and put in working memory.

Mathematically this action can be written as tensoring the ABE state σ⊗n with a fully mixed

state of the form Ekeys|keys〉〈keys|.
The measurement M reads out the state of the basis key register b and then performs a

measurement in this basis, resulting in values x, y held by Alice and Bob respectively. Let

10



σ ∈ S(HABE) (for a single position i ∈ {1, . . . , n}) be of the form |ΨABE〉〈ΨABE| as specified

in Section 2.6. Then the action of M is

M
(

Eb|b〉〈b| ⊗ σ⊗n
)

= EbExy|bxy〉〈bxy| ⊗ ρEbxy,

ρEbxy
def
=

n⊗
i=1

σbixiyi , (12)

where Eve’s auxiliary states σbixiyi are as defined by (8) with v equal to the appropriate

basis vector corresponding to bi. The notation Exy(·) stands for
∑
x 2−n

∑
y py|x(·), with

py|x = γ|x⊕ȳ|(1− γ)|x⊕y|.

The post-processing P generates all the remaining classical variables occurring in Fig. 1. We

distinguish between output variables and internal variables. The list of output variables

comprises the keys for the next round (ũ, b̃, k) and the transcript s, c, τ, ω, χ visible to Eve. We

also include mbare in the output list. The internal variables are traced over in the computation

of the output.

We will ignore the authentication tags τ and χ since we handle the possibility of each MAC

failure by adding 2−λ to the trace distance. We set s′ = s, c′ = c, ω′ = ω for the same reason.

We introduce an indicator variable θxy ∈ {0, 1} which indicates whether error correction

succeeds,

θxy
def
=

{
1 if Hamm(x⊕ ȳ) ≤ t
0 otherwise

, (13)

and automatically set the value of the Accept/Reject bit to ω = θxy. When ω = 1 each

‘hatted’ variable equals the variable without hat.

Formally, the above tweaks define a CPTP map EEPR
πΣAuth that uses a perfectly authenticated

classical channel. This map is close to EEPR
πΣ ,

‖EEPR
πΣAuth − EEPR

πΣ ‖� ≤ 2 · 2−λ. (14)

By the triangle inequality we have

‖EEPR
πΣ −F‖� ≤ 2 · 2−λ + ‖EEPR

πΣAuth −F‖�. (15)

For didactic purposes we write down the intermediate state including internal variables and

then trace them out. We have

ρ

internal︷ ︸︸ ︷
XY UBZB′Ksyn

output︷ ︸︸ ︷
B̃ŨMSCΩE

= Exyubksyn
∑
zb′s

|xyubzb′ksyn〉〈xyubzb′ksyn| ⊗ Em
∑
b̃ũcω

|b̃ũmscω〉〈b̃ũmscω| ⊗ ρEbxy

δs,ksyn⊕Syn x δz||b′,Ext(u,x||b) δc,m⊕z

{
ωθxyδũuδb̃b′ + ω̄θxy

1

|B||U |

}
. (16)

Here the expectations over u, b, ksyn are uniform. The Em is not necessarily uniform because

m contains the plaintext message mbare. The protocol output is given by

11



EEPR
πΣAuth(σ⊗n) = trXY UBZB′Ksyn

ρXY UBZB
′KsynB̃ŨMSCΩE = ρB̃ŨMSCΩE .

ρB̃ŨMSCΩE = Eb̃ũms
∑
cω

2−`|b̃ũmscω〉〈b̃ũmscω| ⊗ [ωρE
b̃ũmc,[ω=1]

+ ω̄ρE
b̃ũmc,[ω=0]

] (17)

ρE
b̃ũmc,[ω=1]

= Exyθxy2`
∑
b

δ(m⊕c)||b̃,Ext(ũ,x||b)ρ
E
bxy (18)

ρE
b̃ũmc,[ω=0]

= ExyθxyEbρ
E
bxy. (19)

Note that S is completely decoupled from the rest, since it is a one-time-pad encryption.

Next we describe the action of the ideal protocol F ′ in the case of unknown plaintext. We

write F ′ = R′ ◦ EEPR
πΣ , where R′ replaces b̃ũm with randomgvalues that have no coupling to

Eve’s state,

F ′(σ⊗n) = R′(ρB̃ŨMSCΩE) = Eb̃ũm|b̃ũm〉〈b̃ũm| ⊗ ρSCΩE . (20)

In the case of known plaintext we write F = R ◦ EEPR
πΣ . We have to split up m = mbare||k.

The R replaces b̃ũk with random values that have no coupling to Eve’s state,

F(σ⊗n) = R(ρB̃ŨMSCΩE) = Eb̃ũk|b̃ũk〉〈b̃ũk| ⊗ ρMbareSCΩE . (21)

We note that F ′(σ⊗n) = F(σ⊗n). This is seen as follows. Taking the partial trace trŨ of

(17) leads to an expectation Eũδ(m⊕c)||b̃,Ext(ũ,x||b) which evaluates to the constant 1
2`|B| due

to the properties of the pairwise independent hash function Ext. This entirely decouples M

from Eve’s auxiliary state.

Consequently we do not have to provide two security proofs but only one. We will derive an

upper bound on ‖(EEPR
πΣAuth−F)(σ⊗n)‖1. By taking a partial trace of (17) we find ρMbareSCΩE ,

ρMbareSCΩE = Embare
|mbare〉〈mbare| ⊗ µSC ⊗

∑
ω

|ω〉〈ω| ⊗ [ωρE[ω=1] + ω̄ρE[ω=0]], (22)

ρE[ω=1] = ExyθxyEbρ
E
bxy (23)

ρE[ω=0] = ExyθxyEbρ
E
bxy. (24)

The states with subscript [ω = 1] are sub-normalised and their trace is Pcorr, the probability

that error correction succeeds,

Pcorr(t, γ) = Exyθxy =

t∑
a=0

(
n

a

)
γa(1− γ)n−a. (25)

The states with subscript [ω = 0] have trace 1 − Pcorr. The quantity that we now have to

bound is

‖(EEPR
πΣAuth −F)(σ⊗n)‖1 = ‖ρB̃ŨKMbareCΩE − µB̃ŨK ⊗ ρMbareCΩE‖1 = 2d(B̃ŨK|MbareCΩE).

(26)

The S has dropped out of this expression since S is completely decoupled. The expression

(26) makes sense of course; we are interested in the security of all the next-round keys given

the data and auxiliaries in the hands of Eve.

gAgain, m is not necessarily uniform because it contains mbare.

12



Note that the maximisation maxσ in (6) has become maximisation over γ. We will first derive

bounds as a function of γ and then study the implications at a given bit error rate β = t/n

tolerated by the error-correcting code. Asymptotically the optimal value of γ equals β.

It is important to remark that the two ‘Reject’ case expressions (19) and (24) are identical.

In the difference ρB̃ŨKMbareCΩE − µB̃ŨK ⊗ ρMbareCΩE we see that the ω = 0 part vanishes.

5.3 Asymptotic result

Theorem 1 Consider one round of the QKR protocol (Section 4.1) with 6-state or 8-state

encoding. Let Eve cause noise described by parameter γ as discussed in Section 2.6. Let t be

the number of errors that can be corrected by the error-correcting code. In the limit n → ∞
it holds that

d(B̃ŨK|MbareCΩE) ≤ min
(
Pcorr(t, γ),

√
2`−2−n+nh({1− 3

2γ,
γ
2 ,
γ
2 ,
γ
2 })−nh(γ)

)
(27)

with Pcorr as defined in (25).

Let β
def
= t/n. For γ > β the probability Pcorr is exponentially small. For γ ≤ β, the second

expression can be made exponentially small for ` < n+ nh(γ)− nh({1− 3
2γ,

γ
2 ,

γ
2 ,

γ
2 }).

Asymptotically the length of the syndrome is a = nh(β), and the O(log n) contribution from

post-selection (Section 2.4) becomes negligible compared to n. The QKR rate `′−O(logn)
n goes

to

asymptotic rate = 1− h({1− 3
2β,

β
2 ,

β
2 ,

β
2 }), (28)

which is exactly the asymptotic rate of 6-state QKD.

Proof of Theorem 1: We write D
def
= ‖ρB̃ŨKMbareCΩE − µB̃ŨK ⊗ ρMbareCΩE‖1. We introduce

smoothing as in [13, 11, 14] by allowing states ρ̄ that are ε-close to ρ in terms of trace distance.

This yields D ≤ 2ε + D̄, with D̄
def
= ‖ρ̄B̃ŨKMbareCΩE − µB̃ŨK ⊗ ρ̄MbareCΩE‖1. Substituting

(17,22) into this expression gives

D̄ = Eb̃ũmc‖ρ̄Eb̃ũmc,[ω=1]
− ρ̄E[ω=1]‖1. (29)

In slight abuse of notation we have written Ec(· · · ) def
=
∑
c 2−`(· · · ). The ρ̄E

b̃ũmc,[ω=1]
and ρ̄E[ω=1]

are both sub-normalised states with trace Pcorr(t, γ). Hence it holds that D̄ ≤ 2Pcorr(t, γ).

This corresponds to the first expression in the ‘min’ in (27). We derive the second expression

as follows.

D̄ = Eb̃ũmctr
√

(ρ̄E
b̃ũmc,[ω=1]

− ρ̄E[ω=1])
2 (30)

Jensen
≤ Eb̃mctr

√
Eũ(ρ̄E

b̃ũmc,[ω=1]
− ρ̄E[ω=1])

2 (31)

= Eb̃mctr
√

Eũ(ρ̄E
b̃ũmc,[ω=1]

)2 − (ρ̄E[ω=1])
2. (32)
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From the properties of two-universal hash functions we get

Eũ(ρ̄E
b̃ũmc,[ω=1]

)2 − (ρ̄E[ω=1])
2

= Exx′
∑
bb′

[22`Eũδm⊕c||b̃,Ext(ũ,x||b)δm⊕c||b̃,Ext(ũ,x′||b′)]ρ̄
E
bx,[ω=1]ρ̄

E
b′x′,[ω=1] − (ρ̄E[ω=1])

2 (33)

= Exx′
∑
bb′

[|B|−2n + δbb′δxx′(2
`|B|−n − |B|−2n)]ρ̄Ebx,[ω=1]ρ̄

E
b′x′,[ω=1] − (ρ̄E[ω=1])

2 (34)

= (2`|B|n − 1)Exx′Ebb′δbb′δxx′ ρ̄
E
bx,[ω=1]ρ̄

E
b′x′,[ω=1] (35)

≤ (2`|B|n − 1)Exx′Ebb′δbb′δxx′ ρ̄
E
bxρ̄

E
b′x′ (36)

= (2`|B|n − 1)EbxEb′x′trBX |bx〉〈bx||b′x′〉〈b′x′| ⊗ ρ̄Ebxρ̄Eb′x′ (37)

= (2`|B|n − 1)trBX(ρ̄BXE)2. (38)

Line (36) should be read as an operator inequality for a sum of positive semidefinite matrices;

we used θxy ≤ 1. Substituting (38) into (32) gives

D̄ <
√

2`|B|n trE

√
trBX(ρ̄BXE)2 (39)

Jensen
≤

√
2`|B|n

√
rank(trBX(ρ̄BXE)2)

√
trBXE(ρ̄BXE)2 (40)

=
√

2`|B|nrank(ρ̄E)tr (ρ̄BXE)2. (41)

=
√

2`|B|n2S0(ρ̄E)−S2(ρ̄BXE) =

√
2`|B|n2S

ε
0(ρE)−Sε2(ρBXE) (42)

=

√
2`|B|n2S

ε
0([Ebxyσbxy ]⊗n)−Sε2([Ebxy|bx〉〈bx|⊗σbxy ]⊗n) (43)

Lemma 1→
√

2`|B|n2nS(Ebxyσbxy)−nS(Ebxy|bx〉〈bx|⊗σbxy). (44)

(In the last two lines we have x, y ∈ {0, 1} and b ∈ B in contrast to the previous lines.) In

line (40) we used a rank equality that is further detailed in Appendix A. From (10) we have

S(Ebxyσbxy) = h({1− 3
2γ,

γ
2 ,

γ
2 ,

γ
2 }) = −(1− 3

2γ) log(1− 3
2γ)− 3γ2 log γ

2 and

S(Ebxy|bx〉〈bx| ⊗ σbxy) = S(BX) + EbxS(Eyσ
b
xy) (45)

= log |B|+ 1 + EbxS([1− γ]σbxx̄ + γσbxx) (46)

= log |B|+ 1 + h(γ). (47)

In the last line we used that the projectors σbxx̄ and σbxx are orthogonal to each other.

Note that the description of Eve’s ancilla state in Section 2.6 is valid for 4-state (BB84)

encoding under the condition that test states are used which probe the whole Bloch sphere;

then the QKR rate is given by (28). If only the xz-plane of the Bloch sphere is involved in

the protocol, then (44) still holds, but with different σbxy matrices, yielding a QKR rate equal

to the BB84 QKD rate.

5.4 Non-asymptotic result without smoothing

We want to have a security proof also for finite n. One approach would be to start from (43)

and analyse the smooth entropies Sε0 and Sε2 for finite n and ε, and minimise over ε. However,

that is a cumbersome procedure. Below we present a less tight but easier to derive bound,

obtained by setting ε to zero.
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Theorem 2 Consider one round of the QKR protocol (Section 4.1). Let Eve cause noise

described by parameter γ as discussed in Section 2.6. Let t be the number of errors that can

be corrected by the error-correcting code. Let the function f be defined as

f(γ)
def
=
√

(1− 3
2γ)(1− γ) +

√
3
2γ(1 + γ). (48)

The trace distance between the actual state and the ideal state can be bounded as

d(B̃ŨK|MbareCΩE) ≤ min
{
Pcorr(t, γ), 1

2

√
2`−n+2n log f(γ)

}
. (49)

For large γ the probability Pcorr(t, γ) is exponentially small in n. Note that 2 log f(γ) ∈ [0, 1)

for γ ∈ [0, 1
2 ). For any γ < 1

2 it is possible to choose ` < n− n · 2 log f(γ), so that the
√· · · in

(49) becomes exponentially small in n.

Proof of Theorem 2: We follow the proof of Theorem 1 up to (39) but without smoothing

(ε = 0).

D <
√

2`−ntr
√

Ebx(ρEbx)2. (50)

Next we show that the expression under the square root is diagonal. Using ρEbx =
⊗

i{(1 −
γ)σbixixi + γσbixixi} and the orthogonality σbxx̄σ

b
xx = 0 we get

Ebx(ρEbx)2 =

n⊗
i=1

{
(1− γ)2Ebi

σbi01 + σbi10

2
+ γ2Ebi

σbi00 + σbi11

2

}
(51)

=
{

(1− γ)
[
(1− 3

2γ)|m0〉〈m0|+ γ
6

3∑
j=1

|mj〉〈mj |
]

+ γ2

3

3∑
j=1

|mj〉〈mj |
}⊗n

(52)

=
{

(1− γ)(1− 3
2γ)|m0〉〈m0|+ γ(1+γ)

6

3∑
j=1

|mj〉〈mj |
}⊗n

(53)

from which it follows that

tr
√

Ebx(ρEbx)2 =

{√
(1− γ)(1− 3

2γ) +
√

3
2γ(1 + γ)

}n
. (54)

Theorem 3 Consider the context of Theorem 2. Let β = t/n. Let ν be a security parameter.

Let ` be chosen as

` ≤ n− 2n log f(β)− 2ξ
√
νn− 2ν − 1 (55)

ξ
def
= min

{
f ′(β)

f(β)

[√
2β

ln 2
+
ν

n
+

√
ν

n

]
,

√
3

ln 2

}
. (56)

Then

d(B̃ŨK|MbareCΩE) ≤ 2−ν . (57)
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Proof: See Appendix B.

If according to (55) the length ` becomes smaller than 2λ + a (negative size of the message

mbare) then this means that the desired security level ν cannot be achieved.

A typical choice for the tag length would be λ = ν, yielding security ‖(EEPR
πΣ − F)(σ⊗n)‖1 ≤

2 · 2−λ + 2 · 2−ν = 2−ν+2 . Several things are worth noting.

• The ξ is of order 1. Hence the term ξ
√
νn scales as

√
n.

• Analysis of QKD instead of QKR using the same technique yields a result similar to Theo-

rem 2, but with a slightly more favourable function instead of f(γ), namely
√

(1− γ)(1− 3
2γ)+√

1
2γ(1− γ)+γ

√
2. (We mention this without showing the proof.) Nevertheless, the asymp-

totics of QKD and QKR are the same.

As explained in Section 2.4, by invoking post-selection we can ‘buy’ security against general

attacks by reducing the message length ` a bit. The bound (49) changes by a factor (n+1)15,

which can be compensated by shrinking ` from (55) to

` ≤ n− 2n log f(β)− 2ξ
√
νn− 2ν − 1− 30 log(n+ 1). (58)

5.5 Non-asymptotic QKR rate; Choosing the parameter values

We want to characterize the non-asymptotic performance of our QKR scheme under ideal

circumstances. Consider a sequence of QKR rounds with a large number of consecutive

Accepts. Let η = 2 · 2−λ + 2 · 2−ν be the ‘imperfection’ induced by one round of QKR. Let θ

be the maximum distance that Alice and Bob are willing to tolerate between reality and the

ideal state. After N = bθ/ηc rounds they have to refresh all their key material. We define

the amortised QKR rate as

A
def
=

total message data sent in N rounds− expended key material

N · n (59)

=
`′

n
− log |U × Bn|

N · n , (60)

namely the usual definition of rate ( `
′

n ) minus the amortised cost of completely replacing u

and b after N rounds. The A is an operational quantity that measures how much useful

classical payload is sent per qubit. The subtraction can be understood as the cost of putting

enough key material into all the mbare to compensate for the eventual replacement of u, b.

The total message size is N`′ = N(` − 2λ − a), with ` specified in (58). The total key

expenditure consists of log |Bn| bits of basis key b, and log |U| = log |{0, 1}n × Bn| bits of

extractor key u. This gives

A = 1− a

n
− 2 log f(β)− 2ξ

√
ν√
n
− 30 log(n+ 1)

n
− 2λ+ 2ν

n
− 1 + 2 log |B|

N
. (61)

Note that η can be made exponentially small (N exponentially large) by increasing λ and ν.

For large n and N the rate (61) tends to 1 − h(β) − 2 log f(β), which is lower than the

asymptotic result of Section 5.3. The discrepancy is of course caused by the fact that we did

not use smoothing for Theorem 2. Fig. 2 shows the asymptotic (QKR=QKD) rate (28) as
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Fig. 2. Asymptotic QKR rates. The ‘with smoothing’ curve is the result (28). The ‘without

smoothing’ curve is the result 1 − h(β) − 2 log f(β) obtained without smoothing. The ‘EM6’ and

‘EM8’ curves correspond to the bound 1 − log(2µ) − 2h(β) based on Entanglement Monogamy,
with constants µ = µ6 and µ = µ8 respectively (see Section 3).

well as the ε = 0 rate (61) in the limit n → ∞, N → ∞ and the rates obtained from the

Entanglement Monogamy approach (Section 3). Obviously smoothing improves the tightness

of the provable bounds significantly. Furthermore it is also clear that the Entanglement

Monogamy bounds are very far from tight.

Instead of pairwise independent hashing one may use ‘δ-almost pairwise independent’ hash

functions. A small security penalty δ is incurred, but the length of the extractor key u is

reduced from n+ n log |B| to approximately n− `+ 2 log 1
δ .

Typically θ is fixed. Then it remains to tune N (which via η = θ/N fixes ν) and n for fixed

(θ, β) so as to optimise the rate. In Fig. 3 the non-asymptotic rate is plotted for θ = 2−256

and various values of β, N and n. We see that the asymptotic rate can be approached well

for realistic values of N and n.
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Fig. 3. Non-asymptotic bound on the amortised QKR rate as a function of the number of
qubits (n), for various values of the design parameter N and tolerated noise β. The dashed lines

indicate the ε = 0 limit 1 − h(β) − 2 log f(β). λ = ν; θ = 2−256; the syndrome length a is

set to nh(β) +
√
nΦinv(10−6)

√
β(1− β) log 1−β

β
(see e.g. [22]), where Φ is defined as Φ(z)

def
=∫∞

z (2π)−1/2 exp[−x2/2]dx.
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6 Discussion

6.1 Comparison to existing results

The proof technique of [1] requires a special ‘key privacy’ property of the MAC function, and

has to keep track of the security of the MAC key. We avoid this requirement at the cost of

shortening `′. An interesting difference with respect to [1] is that we capture the security of

the basis key B and the extractor key U in a single quantity (a single trace distance), whereas

[1] uses a min-entropy result for B and a trace distance for U .

We compare our result to the min-entropy analysis of attacks in [9]. For the ‘K2 attack’ (a

known-plaintext attack on b) a min-entropy loss of log(1 +
√

6β(1− 3
2β)) bits per qubit was

found for 8-state encoding; that is more than our leakage result 2 log f(β). We conclude that

non-smooth min-entropy is too pessimistic as a measure of security in this context.

It was pointed out in [2, 9] that with 8-state encoding there is no leakage about the qubit

payload X, whereas 6-state and BB84 encoding allow Eve to learn a lot about X in case of

a Reject. One may conclude that more privacy amplification is needed for 6-state and BB84

encoding than for 8-state. However, it turns out that the situation is the same for all encoding

schemes: the privacy amplification key U adequately masks X and gets replaced upon Reject.

Upon Accept, our protocol does not reduce the stack of shared key material that Alice and

Bob have. A difference with respect to [1] is that the ‘top’ keys on the stack are modified

upon Accept. We do not see this as a significant drawback; the key modification is just some

additional data processing.

6.2 Dealing with erasures

Our analysis has not taken into account quantum channels with erasures. (Particles failing

to arrive.) Consider a channel with erasure rate η and bit error rate β for the non-erased

states. The Alice-to-Bob channel capacity is (1 − η)(1 − h(β)). A capacity-achieving linear

error-correcting code that is able to deal with such a channel has a syndrome of size nh(β) +

nη[1−h(β)]. Imagine the QKR scheme of Section 4.1 employing such an error-correcting code.

On the one hand, the parameter a increases from nh(β) to nh(β)+nη[1−h(β)]. On the other

hand, the leakage increases. Every qubit not arriving at Bob’s side must be considered to be

in Eve’s possession; since an erasure can be parametrised as a qubit with β = 1
2 , the leakage is

1 bit per erased qubit. Hence the leakage term n ·2 log f(β) changes to n(1−η)2 log f(β)+nη.

The combined effect of the syndrome size and the leakage increase has a serious effect on the

QKR rate. The asymptotic rate becomes 1− h(β)− η[1− h(β)]− (1− η)2 log f(β)− η. For

β = 0 this is 1−2η; at zero bit error rate no more than 50% erasures can be accommodated by

the scheme. In long fiber optic cables the erasure rate is often larger than 90%. Under such

circumstances the QKR scheme of Section 4.1 simply does not work. (Note that continuous-

variable schemes do not have erasures but instead have large β.)

One can think of a number of straightforward ways to make the QKR protocol erasure-

resistant. Below we sketch a protocol variant in which Alice sends qubits, and Bob returns

an authenticated and encrypted message.

1. Alice sends a random string x ∈ {0, 1}q encoded in q qubits, with q(1− η) > n.

2. Bob receives qubits in positions i ∈ I, I ⊆ [q] and measures x′i in those positions. He

aborts the protocol if |I| < n. Bob selects a random subset J ′ ⊂ I, with |J ′| = n.
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He constructs a string y′ = x′J ′ . He computes s′ = ksyn ⊕ S(y′), z′||b′ = Ext(u, y′||b),
c′ = m⊕ z′, t′ = Γ(k1

MAC,J ′||y′||c′||s′). He sends J ′, s′, c′, t′.
3. Alice receives this data as J , s, c, t. She computes y by doing error correction on xJ

aided by the syndrome ksyn ⊕ s. Then she computes z||b′′ = Ext(u, y||b), m̂ = z ⊕ c and

τ = Γ(k1
MAC,J ||y||c||s). Alice Accepts the message m̂ if τ = t and Rejects otherwise.hKey

refreshment is as in the original protocol.

The security is not negatively affected by the existence of erasures. Assume that Eve holds

all the qubits that have not reached Bob. Since the data in the qubits is random, and does

not contribute to the computation of z′, it holds that (i) it is not important if Eve learns the

content of these bits, (ii) known plaintext does not translate to partial knowledge of the data

content of these qubits, which would endanger the basis key b and the extractor key u.

6.3 Future work

It is possible to evaluate or bound the Sε0(ρE) and Sε2(ρBXE) in (42) for finite n and ε ‘by

hand’, i.e. specifically for ρEbxy = ⊗ni=1σ
bi
xiyi . That would yield a non-asymptotic result for `

that is more favorable than Theorem 3.

It is interesting to note that QKR protocols which derive an OTP z from the qubit payload

and then use z for encryption look a lot like Quantum Key Distribution, but with reduced

communication complexity. This changes when the message is put directly into the qubits,

e.g. as is done in Gottesman’s Unclonable Encryption [6]. It remains a topic for future work

to prove security of such a QKR scheme.

The QKR scheme of Section 4.1 can be improved and embellished in various ways. For

instance, the λ-bit space in m reserved for the new k1
MAC may not be necessary. Alice’s

authentication tag may simply be generated as part of the Ext function’s output, and then

the security of the MAC key can be proven just by proving the security of the extractor key u

(similar to what is done in [1]).

Another interesting option is to deploy the Quantum One Time Pad with approximately half

the key length, which still yields information-theoretic security. This would reduce the cost

of refreshing b from 2n bits to n bits.

Finally, various tricks known from QKD may be applied to improve the noise tolerance of

QKR, e.g. artificial noise added by Alice.
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Appendix A: Rank equality

Here we show that rank(trBX(ρ̄BXE)2) = rank(ρ̄E). We write ρ̄BXE in its spectral decom-

position, ρ̄BXE =
∑
j rj |vj〉〈vj |, where the vj are the eigenvectors in the BXE space, and

rj > 0. We have ρ̄E = trBX ρ̄
BXE =

∑
j rjVj , with Vj

def
= trBX |vj〉〈vj |. Similarly we write

hAlice may send the Accept/Reject bit along with the next batch of qubits; then the protocol has only two
rounds.
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trBX(ρ̄BXE)2 =
∑
j r

2
jVj . Since Vj > 0 we can write Vj = A†jAj . We construct a ma-

trix A = [
√
r1A1;

√
r2A2;

√
r3A3; · · · ] by concatenating the matrices Aj under each other.

It holds that
∑
j rjVj = A†A. Similarly we construct Q = [r1A1; r2A2; r3A3; · · · ], so that∑

j r
2
jVj = Q†Q. We use the fact that rank(A†A) = rank(A) and rank(Q†Q) = rank(Q). By

the construction of A and Q, the rows of A span the same space as the rows of Q.

Appendix B: Proof of Theorem 3

We (implicitly) define a function γmax(t, ν) as Pcorr(t, γmax) = 2−ν . For γ ≥ γmax eq. (57)

clearly holds. Next we need to bound the expression log f(γ) for γ ≤ γmax. Taking the

Chernoff bound Pcorr(t, γ) ≤ exp[− n
2γ (γ − t

n )2] and solving for γ we get

γmax(t, ν) ≤ γ0(t, ν)
def
=

t

n
+
ν ln 2

n
+

√
2
t

n

ν ln 2

n
+ (

ν ln 2

n
)2. (B.1)

We will bound the expression log f(γ0) in two different ways: for ‘large’ β and for ‘small’ β.

• As f is a concave function we have f(γ0) ≤ f(β) + (γ0 − β)f ′(β). This yields

log f(γ0) ≤ log f(β) + log[1 +
f ′(β)

f(β)
(γ0 − β)] ≤ log f(β) +

f ′(β)

f(β)

γ0 − β
ln 2

= log f(β) +
ν

n
+

√
2β

ν

n ln 2
+ (

ν

n
)2. (B.2)

• We write log f(γ0) = log f(β)+log f(γ0)
f(β) ≤ log f(β)+ log f(γ0)

f(β)

∣∣∣
β=0

. The inequality follows

from the fact that f(γ0)/f(β) is a decreasing function of β. This yields

log f(γ0) ≤ log f(β)+log f(
2ν

n
) ≤ log f(β)+ log[1+

√
3
2 ( 2ν

n )] ≤ log f(β)+ 1
ln 2

√
3ν
n .

(B.3)

From (B.2) and (B.3) we conclude n log f(γmax(t, ν)) ≤ n log f(β) + ξ
√
νn with ξ as defined

in (56). With ` chosen according to (55), the expression
√

2`−n+2n log f(γmax) in (49) is upper

bounded by 2−ν/
√

2. Hence the second expression in the min{·, ·} (49) is upper bounded by
2−ν

2
√

2
+ 2−ν

2 + 2−2ν

2
√

2
< 2−ν .
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