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Abstract

It is well-known that non-comparison-based techniques can allow us to sort n elements in
o(n log n) time on a Random-Access Machine (RAM). On the other hand, it is a long-standing
open question whether (non-comparison-based) circuits can sort n elements from the domain
[1..2k] with o(kn log n) boolean gates. We consider weakened forms of this question: first, we
consider a restricted class of sorting where the number of distinct keys is much smaller than
the input length; and second, we explore Oblivious RAMs and probabilistic circuit families, i.e.,
computational models that are somewhat more powerful than circuits but much weaker than
RAM. We show that Oblivious RAMs and probabilistic circuit families can sort o(log n)-bit
keys in o(n log n) time or o(kn log n) circuit complexity. Our algorithms work in the indivisible
model, i.e., not only can they sort an array of numerical keys — if each key additionally carries
an opaque ball, our algorithms can also move the balls into the correct order. We further show
that in such an indivisible model, it is impossible to sort Ω(log n)-bit keys in o(n log n) time,
and thus the o(log n)-bit-key assumption is necessary for overcoming the n log n barrier.

Finally, after optimizing the IO efficiency, we show that even the 1-bit special case can solve
open questions: our oblivious algorithms solve tight compaction and selection with optimal IO
efficiency for the first time.
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1 Introduction

Sorting has always been one of the most central abstractions in computing. Traditionally, sorting
was intensively studied in both the circuit and Random Access Machine (RAM) models of computa-
tion. It is well-understood that there exist comparison-based sorting circuits of O(n log n) size and
O(log n) depth where n denotes the number of input elements [2, 36]. Comparison-based sorting,
in either the circuit or the RAM model, has a well-known Ω(n log n) lower bound in circuit size
or runtime [44]. This lower bound can be circumvented on a RAM using non-comparison-based
techniques, and (almost) linear-time sorting is possible [5, 40,41,43,68].

In this paper, we consider a specific version of sorting referred to as sorting in the indivisible
model1. Imagine that initially we have n balls each tagged with a key from some domain [1..K]
of size K = 2k. Our goal is to sort the balls based on the relative order of their keys. Informally
speaking, if an algorithm (or a circuit) calls only comparator operations on the keys, we say that
the algorithm (or circuit) is comparison-based; else if the algorithm (or circuit) performs arbitrary
boolean operations on the keys, it is said to be non-comparison-based (see Section 1.3 for further
clarifications). Regardless of which case, we always assume that the balls are opaque and indivisible
— they can be moved around atomically, but cannot be computed upon2.

A long-standing open problem is whether there exist (non-comparison-based) circuits of o(kn log n)-
size capable of sorting n inputs chosen from the domain [1..2k] where k is the word-length [14]. In
this paper, we explore weakened forms of this question: first, we consider restricted classes of sort-
ing where the number of distinct keys is much smaller than the input length; and second, instead of
circuits, we consider Oblivious RAMs and probabilistic circuit families as the computational model
both of which are somewhat more powerful than circuits but much weaker than Random Access
Machine (RAM). We now elaborate on these two computation models.

• Oblivious RAMs. An algorithm in the Oblivious RAM model [32, 33, 65] (also referred to as
an oblivious algorithm3) is one that executes on a standard Random-Access Machine (RAM),
but we additionally require that for any two inputs of the same length, the CPU’s memory
access patterns be statistically close. In other words, by observing the memory access patterns,
an adversary learns almost no information about the secret input. We allow the CPU to have
access to private random bits that are unobservable by the adversary. Throughout this paper
we consider RAMs with O(1) CPU registers.

• Probabilistic circuit family. A probabilistic circuit family C is said to sort n balls whose
keys are from the domain [K] iff given any input key assignment from [K]n, a randomly chosen
circuit from C will correctly sort this input with overwhelming probability. This means that the
input key assignment may be chosen adversarially but the adversary cannot examine the circuit
that is randomly sampled prior to choosing the input. In this paper, we assume that each circuit
in the family has two types of gates: 1) boolean gates with constant fan-in and fan-out; and 2)
selector gates that takes a single bit and two balls, and selects one of the two balls.

Despite the rich results on (almost) linear-time sorting on (non-oblivious) RAMs [5, 40, 41,
43, 68], in the aforementioned Oblivious RAM or probabilistic circuit family models, the most
asymptotically efficient sorting algorithm remains comparator-based sorting networks, e.g., AKS [2]
or Zigzag sort [36] can sort n input elements in O(n log n) comparator operations. To the best of

1In some earlier works especially in the Oblivious RAM literature [14,33,46], the indivisible model is also referred
to as the “balls-and-bins” model.

2Note that the indivisible model precludes certain types of algorithms, e.g., if the key is only 1-bit long, in the
non-indivisible model, an algorithm could simply count the number of 0s and write out an answer; but this algorithm
fails to move the balls into sorted order.

3In some literature, this notion is referred to as “data-oblivious” algorithms, but we use the word “oblivious”.
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our knowledge, it is unknown whether non-comparison-based techniques can asymptotically speed
up sorting in these two models.

1.1 Main Results

We give a two-sided answer to the earlier questions. In this section we summarize our main results,
stated using runtime (or circuit complexity) as a metric. Later in Section 1.2 we shall present
additional results regarding metrics beyond the runtime — specifically we will describe how to
optimize our algorithms’ IO efficiency (i.e., the number of transfers between cache and memory)
when executed on an Oblivious RAM.

Lower bounds for oblivious sorting. On the pessimistic side, we show that any oblivious
algorithm that sorts k-bit keys such that k = Ω(log n) in the indivisible model must incur at least
Ω(n log n) runtime — this lower bound holds even when the algorithm is non-comparison-based and
moreover, even when allowing the algorithm to err with O(1) probability on any input. Recall that
the runtime in RAM model is the number of word operations. Our lower bound proof has a direct
interpretation in the probabilistic circuit model mentioned above: we show that any probabilistic
circuit family that sorts n balls each with an k-bit key must consume at least Ω(n log n) selector-
gates (for moving opaque balls around). Our lower bound results are stated informally below.

Theorem 1.1. (Informal: limits of oblivious sorting in the “indivisible” model). For all k ∈ N,
any (possibly randomized) oblivious algorithm that sorts n balls each with an k-bit key must incur
at least Ω (n ·min(k, log n)) runtime, even when the algorithm is allowed O(1) correctness failure
on any input.

Corollary 1.1. (Informal: limits of sorting with probabilistic circuits in the “indivisible” model).
For all k ∈ N, any probabilistic circuit family that sorts n balls each with an k-bit key must consume
at least Ω (n ·min(k, log n)) selector-gates, even when we allow O(1) correctness failure on any
input.

As mentioned in Section 2.7, our work demonstrates a new paradigm for lower bounding the
complexity of oblivious algorithms — to the best of our knowledge, this is the only new paradigm
since the well-known ORAM lower bound proof by Goldreich and Ostrovsky [32,33]4.

Oblivious sorting in o(n log n) runtime for o(log n)-bit keys. At the first sight, it might seem
that we are at a dead end due to the aforementioned lower bounds imply that sorting (log n)-bit
keys takes time Ω(n log n). However, we show that for smaller key sizes, non-comparison-based
techniques can indeed help us defeat the Ω(n log n) barrier for oblivious sorting. We prove the
following result.

Theorem 1.2. (Informal: oblivious sorting for o(log n)-bit keys). There is a randomized oblivious
algorithm which, except with negligible probability5, correctly sorts n balls each with a key from the
domain [1..2k] in running time O(kn log logn

log k ).

As a special case, this implies that oblivious sorting of n balls each with a constant-sized key
can be accomplished in O(n log log n) time. Furthermore, when the key is o(log n) bits long (note
that this means there must be many duplicate keys), our algorithm completes in o(n log n) time.

4Subsequently, Larsen and Nielsen [46] shows another ORAM lower bound using a novel technique “oblivious cell
probe model”.

5For simplicity, in the introduction, we assume that negligible failure is expressed in terms of n, i.e., the input
length; although later in the paper we will use λ as the security parameter to explicitly distinguish from the input
size.
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To the best of our knowledge, Mitchell and Zimmerman [56] is the only known result in this vein6

— they show how to obliviously sort 1-bit keys in O(n log logn) runtime. Unfortunately there does
not seem to be any straightforward way to extend their algorithm to even 2-bit keys. We also
note that our result is tight in the indivisible model: in light of our lower bound, if the keys were
c log n bits long for any arbitrarily small constant c, Ω(n log n) runtime is a necessary price to pay
for obliviousness. Moreover, for all k asymptotically smaller than log n, our upper bound almost
matches our lower bound, which differ only by a factor of O(log log n).

Although in general oblivious algorithms may not have efficient circuit implementations (e.g.,
if they make data-dependent memory accesses [32,33,65,67,71]), all oblivious algorithms presented
in this paper indeed access memory only in data-independent manners and thus can be easily
implemented with probabilistic circuit families. We thus have the following corollary.

Corollary 1.2. (Informal: sorting with probabilistic circuits for o(log n)-bit keys). There exists a
probabilistic circuit family which, except with negligible probability, correctly sorts n balls each with
a key from [1..2k] consuming only O(k2n log logn/ log k) boolean gates and O(kn log logn/ log k)
selector gates.

Extension: sorting few distinct keys from a large space. Our results stated earlier can
sort keys chosen from a small space in o(n log n) time. Note that one immediate implication that
the keys are chosen from a small space is that the number of distinct keys is small. Thus a very
natural question is whether our results would extend to the case when the keys are chosen from a
large space but the number of distinct keys is small. We answer this question in the affirmative as
informally stated in the following corollary.

Corollary 1.3. For any positive α(n) := ω(1), there is a randomized oblivious algorithm which,
except with n−Ω(α(n)) probability, correctly sorts n balls tagged with at most 2k distinct keys in
running time O(nαL + nα2 log logn + kLn log log n/ log k) where L denotes the number of words
needed for storing each key.

To achieve the above corollary, we devise efficient oblivious algorithms for estimating the number
of distinct keys given an input array — these new building blocks might be of independent interest.

Limits of stability. Our sorting algorithm is not stable but as we show, this is in fact inherent.
Recall that in the context of sorting, stability means that for any two balls whose keys are equal,
the ordering of the balls in the output must agree with their relative order in the input. We prove
a lower bound showing that even for 1-bit keys, stable oblivious sorting is impossible in o(n log n)
time in the indivisible model — in Section 2.7, we argue that the following lower bound can be
viewed as a strengthening of Goldreich and Ostrovsky’s logarithmic ORAM lower bound.

Theorem 1.3 (Limits on stable oblivious sort). Any (possibly randomized) oblivious algorithm that
stably sorts n balls each with a 1-bit key must incur at least Ω(n log n) runtime, even when we allow
the algorithm to err with O(1) probability on any input.

Similar as before, our lower bound proof has a natural interpretation in a probabilistic circuit
model, giving rise to the following corollary.

Corollary 1.4. (Limits on stable sort with probabilistic circuits). Any probabilistic circuit family
that stably sorts n balls each with a 1-bit key must incur at least Ω(n log n) selector gates, even
when we allow O(1) correctness failure on any input.

6Although Leighton et al.’s O(n log logn) selection network [47] may seem close in nature, their definition of
selection does not imply sorting. In fact, their construction is comparator-based and clearly cannot solve the 1-bit
sorting problem or else it would violate the well-known 0-1 principle — see Section 1.3 for further discussions and
the subsequent work of Peserico [59].

3



1.2 IO Efficiency on Oblivious RAMs and Applications to Open Problems

So far, we have solely focused on the algorithm’s runtime (or circuit size). When oblivious sorting is
implemented on a RAM, not only do we care about its runtime, IO performance is also a particularly
important metric — this is exactly why there is a long line of research on external-memory and
cache-agnostic7 algorithms [25,31,35,37].

We devise additional techniques to make our algorithms IO-efficient in the cache-agnostic
model [25, 31]. The cache-agnostic model is an elegant and well-accepted notion first proposed
by Frigo et al. [31] requiring that 1) an algorithm need not know the cache parameters and thus
a single algorithm can readily execute on any target architecture without parameter tuning; and
2) when executed on any multi-level memory hierarchy, the algorithm minimizes cache misses on
every level of the memory hierarchy simultaneously (including between cache and memory, between
memory and disk, and between client and cloud). In this overview section, we present our IO ef-
ficiency results for the 1-bit special case, deferring the general statement of results for longer keys
to Section 5. Interestingly, even the 1-bit special case allows us to solve open questions raised by
prior work [35]. In the following, using standard notations adopted by the algorithms literature,
we denote cache size as M and cache-line size as B (counted in the number of memory words).

Theorem 1.4. (Informal: IO-optimal oblivious sort for constant-sized keys). There exists an
oblivious and cache-agnostic algorithm that can sort O(1)-bit keys (except with negligible probability)
in only O(n/B) IOs (i.e., asymptotically optimal IO) under standard cache assumptions (i.e., tall
cache and wide cache-line).

Sorting 1-bit keys in optimal IO immediately implies tight compaction and selection in optimal
IO — both are fundamentally important algorithmic abstractions that have been extensively studied
in the algorithms literature [13, 35, 47, 56]. We now explain why our IO-efficient construction for
obliviously sorting 1-bit keys solves open algorithmic challenges.

Tight compaction. Tight compaction is the following problem: given an input array I containing
n real or dummy elements, output an array of equal size such that all real elements in I reside in
the front of the array and remainder of the output array is padded with dummies. Earlier, Mitchell
and Zimmerman [56] provides an oblivious tight compaction algorithm that runs in O(n log log n)
time, but takes O(n) IO-cost (see Section 1.3 for more explanations) — as mentioned the optimal
IO-cost would have been O(n/B). In an elegant work by Goodrich [35], he phrased the following
open challenge:

Can we achieve oblivious tight compaction in asymptotically optimal IO8?

As an immediate implication of our main theorem, we answer Goodrich’s question in the affir-
mative — not only so, our algorithm is cache-agnostic. We stress that previously, it was not even
known how to design a cache-aware9 oblivious algorithm that achieves tight compaction in optimal
IO.

Selection. Selection is the following problem: given an input array containing n opaque balls each
associated with a key, output the k ≤ n smallest balls (tagged with their respective keys). Note that
the parameters k and n are publicly known; and obliviousness requires that the algorithm does not

7In the standard algorithms literature this was typically referred to as the cache-oblivious model [25, 31], but we
use the term cache-agnostic instead to avoid overloading the word “oblivious”.

8Leighton et al.’s algorithm [47] does not achieve tight compaction for a similar reason why they cannot solve
1-bit-key sorting. See Section 1.3 for further discussions.

9We say that an algorithm is cache-aware if the algorithm takes as input the cache parameters.
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reveal the keys (or balls) of the input array. Using small-key sorting as a building block, we show
how to achieve oblivious selection in a cache-agnostic model in O(n/B) IO-cost and O(n log log n)
runtime.

In comparison, the previous best known results for selection are the following: First, both
Mitchell and Zimmerman [56] and Leighton et al. [47] achieve O(n log logn) runtime but both
approaches incur O(n) IO-cost (see Section 1.3 for more explanations). Previously the most IO-
efficient algorithm for oblivious selection in the cache-agnostic model is simply by applying Chan
et al. [20] cache-agnostic oblivious sort algorithm which would require Ω((n/B) logM/B(n/B)) IO-
cost and O(n log n log logn) runtime. In the cache-aware model, a partial result exists, again by
Goodrich [35], showing how to obliviously select the k-th smallest element in linear time and optimal
IO. Unfortunately their technique is tailored for selection of only the k-th smallest element; directly
using their algorithm to select all k smallest elements would incur another k blowup in performance;
thus if k = Ω(log n) the runtime would be Ω(n log n).

Corollary 1.5. (Informal: IO-optimal tight compaction and selection). There is a cache-agnostic,
oblivious algorithm for tight compaction (or selection resp.) that completes in O(n log n log n) run-
time and with O(n/B) IO-cost under standard cache assumptions (i.e., tall cache and wide cache-
line).

1.3 Related Works

Sorting. Sorting is a classical algorithmic abstraction, and the study of efficient sorting algorithms
in both the circuit [2, 9, 36] and the Random Access Machine (RAM) [5, 40, 41, 43, 68] models of
computation has been long-standing and extensive.

It is well-understood that there exist deterministic, comparator-based sorting networks that
sort n elements consuming only O(n log n) comparators [2,36]. While such circuit-based techniques
are perfectly oblivious, it is well-known that Ω(n log n) comparison operations are necessary for any
comparison-based sorting algorithm (not only for circuits but also for RAMs) [44]. On a RAM, it is
also well-known that non-comparison-based techniques can sort n elements in o(n log n)-time (e.g.,
Radix sort, counting sort, and others [5,40,41,43,68]). A subset (but not all) of these o(n log n)-time
algorithms [4,69] additionally allow each key to carry an opaque ball and the sorting algorithm will
rearrange the balls according to the relative order of their keys — in our paper such an algorithm is
said to support sorting in the indivisible model (i.e., balls cannot be split nor computed upon). To
the best of our knowledge, most of the classical line of work on o(n log n)-time non-comparator-based
sorting [5, 40,41,43,68] crucially relies on the ability to make data-dependent memory accesses.

Clarifications on the 0-1 principle. It is important to note the 0-1 principle for comparison-
based sorting [34,36,44]: any (possibly probabilistic), comparison-based sorting algorithm (in either
the circuit model or RAM model) that can correctly sort any input array consisting only of 0s and
1s (with high probability) can correctly sort any input array containing any set of comparable items
(with high probability). One implication of this principle is that there cannot be any comparison-
based algorithm (even not requiring obliviousness) that sorts even 0-1 arrays in o(n log n) time —
thus a result of our nature must be non-comparison-based.

We stress that the 0-1 principle is applicable even when the algorithm is allowed to perform
arbitrary computation does not dependent on the value of the keys — however, if the algorithm
performs arbitrary computations that are dependent on the value of the keys, then the 0-1 principle
is no longer applicable10. The algorithms described in our paper indeed require computations

10For simplicity, we consider only the described comparator model. The 0-1 principle is applicable on any Min-Max
computation, which is a strictly stronger model compared to the comparator model [48].
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dependent on the outcomes of the comparators, e.g., counting.
In earlier works and resources online, any sorting algorithm that invokes only comparison oper-

ations on the keys is often said to be comparison-based sorting — such a definition does not clearly
articulate whether additional arbitrary computations are allowed. In this paper, we simply use the
0-1 principle as a criterion for classifying comparison-based vs. non-comparison-based sorting.

Oblivious RAM and oblivious algorithms. In the ground-breaking work by Goldreich and
Ostrovsky [32, 33], they propose a new model of computation henceforth referred to as Oblivious
RAM (ORAM) [32, 33, 65]. Specifically, an Oblivious RAM is a Random-Access Machine (RAM)
in which the CPU’s memory access patterns are computationally or statistically independent of the
data that is input to the computation — to achieve this, we assume that the CPU can obtain and
make use of private randomness.

Oblivious RAM (ORAM) is a rather intriguing model of computation. On one hand, we know
that allowing randomness, any RAM program can be simulated with an ORAM with only O(log2 n)
blowup in runtime [21,71]. On the other hand, this does not mean that every algorithm must incur
such a poly-logarithmic blowup when obliviously simulated — in fact, a recent line of research
showed that a broad class of algorithms and data structures can be computed obliviously while
incurring asymptotically smaller overhead than generic ORAM simulation [12,26,32,33,35,38,50,57].

Goldreich and Ostrovsky [32, 33], and the more recent work by Larsen and Nielsen [46] (which
comes subsequently to this work) prove that any ORAM algorithm must incur logarithmic blowup
in comparison with the non-secure baseline. We give more detailed explanations of these known
lower bounds and compare with our new oblivious algorithm lower bounds in Section 2.7.

IO efficiency of oblivious algorithms. Several works have considered the IO efficiency of
oblivious algorithms in either a theoretical setting [7,20,35,37], or in practical implementations [29,
63, 64, 66, 74]. With the exception of Chan et al. [20], almost all known works consider the cache-
aware setting, that is, the algorithm or implementation must be aware of the cache’s parameters,
e.g., the cache-line (or block) size, and the total size of the cache.

Goodrich’s elegant work [35] constructs IO-optimal algorithms for compaction, selection, and
sorting, but his techniques do not extend in any straightforward fashion to the cache-oblivious set-
ting. Specifically, his algorithm relies on packing elements into cache-lines such that the algorithm
can operate on cache-lines without incurring IO — thus the very core idea behind his algorithms
relies on knowing explicitly the cache-line size and cache size. Leighton’s oblivious selection al-
gorithm [47] and Mitchell and Zimmerman’s oblivious 1-bit-key sorting algorithm [56] both take
O(n log log n) runtime but consumes O(n) IO-cost. There does not seem to be any straightforward
method to make their algorithms more IO-efficient (recall that the optimal IO would have been
O(n/B)). In particular, Leighton’s algorithm [47] employs AKS sorting on polylogarithmically
sized buckets; and additionally requires a global (non-oblivious) random permutation of the input
array — both these steps do not exploit data locality and thus are not IO-efficient. Similarly,
Mitchell and Zimmerman [56] requires randomly accessing a constant fraction of the input array
which is expensive in IO.

Circuit complexity for sorting? It remains an open question whether there is a o(w · n log n)-
sized circuit for sorting n words each w-bits long. To the best of our knowledge, no upper bounds
or lower bounds are known regarding the (non-comparator-based) circuit complexity for sorting.
Perhaps rather surprisingly, there does not even seem to be a partial answer for 1-bit words —
note that the probabilistic selection circuit construction by Leighton et al. [47] is comparator-based
and without introducing non-comparison-based techniques, their construction does not imply 1-bit
sorting in o(n log n) time in any immediate, blackbox manner.

Our work may be regarded as some partial progress at understanding the (non-comparator-
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based) circuit complexity for sorting — however, our results apply only for a probabilistic circuit
family model, where we consider a family of circuits and we sample a random circuit to give to an
input (that is chosen by a possibly unbounded adversary who has not observed the circuit).

Estimating the number of distinct elements. There is a long line of research on algorithms
that estimate the number of distinct elements in a data stream [28,42]. This line of work culminated
in Kane et al. [42] who described a streaming algorithm that is tight in time and space — although
it is not difficult to make their algorithm oblivious, to the best of our knowledge, their failure
probability of correctness is o(1) whereas we require negligibly small failure. In Appendix D,
we describe a novel, almost linear-time oblivious algorithm for estimating the number of distinct
elements in an array — in comparison, our algorithm need not be streaming in nature but must
be oblivious. Thus our result here is related but incomparable to those achieved in the streaming
algorithms literature.

Subsequent works. In a work by Chan et al. [18] that was recently released11, the authors define
the notion of (ε, δ)-differential obliviousness (i.e., (ε, δ)-differential privacy for access patterns).
In the sorting context, (ε, δ)-differential obliviousness is strictly weaker than obliviousness. They
show that for differential obliviousness one can sort k-bit keys in O(kN(log k + log logN)) time
for ε = Θ(1) and δ being a suitable negligible function, and moreover with stability. As we show
in this paper, stable oblivious sorting (in the indivisible model) is impossible without at least
Ω(n log n) runtime even for the 1-bit case. Thus Chan et al. [18]’s results show that with appropriate
relaxations in privacy, one can overcome this stability lower bound. The new techniques for proving
lower bounds described in this paper are also extended by Chan et al. [18] to prove more lower
bounds for oblivious and differentially oblivious algorithms.

Peserico [59] shows a deterministic, oblivious algorithm such that performs tight compaction in
linear time. It is not too difficult to extend his result to allow sorting of constant-sized keys (in the
indivisible model) in linear time as well. Therefore, for constant-sized keys, Peserico’s algorithm
asymptotically improved our results. Interestingly, the optimal oblivious tight compaction of Pe-
serico turned out to be a key building block in the construction of optimal ORAM in Asharov et
al. [8].

2 Technical Roadmap

In this section, we present an informal technical roadmap on how we achieve the claimed results.
For simplicity, we shall first explain our results focusing on only the runtime metric: We start from
sorting, or partitioning, 1-bit keys in Section 2.1. Then, we sort “longer” keys by applying the 1-bit
technique recursively in Section 2.2, improve the recursion in Section 2.3, and then extend it to
even larger key space using hashing and distinct estimation in Section 2.4. Additional techniques
are required to achieve IO efficiency and we defer the explanation of these techniques to Section 2.5.
The lower bound proof is sketched and discussed in Section 2.6 and 2.7.

2.1 Partition 1-Bit Keys

We first show how to obliviously partition 1-bit keys: given an input array consisting n balls each
with a 1-bit key, we want to partition the array such that 0-balls appear before the 1-balls.

1-bit sorting is not selection. Let us first consider the probabilistic selection circuit construc-
tion by Leighton et al. [47]. Specifically, Leighton et al. construct a comparator-based circuit of

11Although their work was released earlier, chronologically it actually happened subsequently to the writing of this
paper.
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O(n log log n) size that can select and output the m smallest elements with very high probability
when given an input array that has been randomly permuted. Interestingly, although at first sight,
sorting 1-bit keys and selection seem like very similar problems, we stress that in fact our problem
formulation (i.e., sorting 1-bit keys) is stronger than that of Leighton et al.’s [47] (i.e., selecting m
smallest elements). We stress that there is no straightforward way (i.e., without relying on some
kind of non-comparison-based techniques) of applying Leighton et al. [47]’s (comparator-based)
selection network in a blackbox fashion to sort 0-1 sequences in o(n log n) time, or else it would
clearly violate the 0-1 principle. (For example, it is not difficult to realize that the näıve approach
of first selecting the smaller half and then selecting the larger half does not work — see remark
below.)

Remark 1. Interestingly, if one could reveal the number of 0s and 1s in the input, it would be trivial
to rely on a selection network to realize 1-bit sorting; however, in our formulation, this count must
be hidden.

Our algorithm for partitioning 1-bit keys. Instead, we rely on the core ideas of Leighton et
al. [47] in a non-blackbox fashion. Our 1-bit partitioning algorithm works as follows:

Partition(A):

1. Randomly permute the input elements in A using a linear-time implementation of the Fisher-
Yates shuffle [27]. This random permutation is used only for load balancing and measure con-
centration and thus the permutation need not be secret.

2. Divide the permuted input array into bins of Z = log6 λ in size where λ is the security parameter
(i.e., we aim to achieve negligible in λ correctness failure).

3. Apply a sorting network such as Zigzag sort [36] to sort each bin. When each bin becomes
sorted, we express all bins as a short-and-fat matrix denoted A′ where each column represents
a bin.

4. Our crucial observation is the following: in this matrix A′, there must exist a set of at most
log4 λ consecutive rows henceforth called the mixed stripe, such that all elements above the
mixed stripe (if any) are 0s, and all elements below (if any) are 1s.

5. Now, in one scan of the rows, we can identify the location of the mixed stripe.

6. Now, in one scan of the rows, we can copy the mixed stripe to a working buffer without revealing
where the mixed stripe resides (see the simple Algorithm 7) for details on how to achieve this).
We then call Zigzag sort to sort the working buffer. Finally, using oblivious sorting to cyclically
shift the working buffer, combined with another scan of the rows, we can copy this working
buffer back to where the mixed stripe was without revealing the location of the mixed stripe
(see Section 4 for details).

The Partition algorithm is non-comparison-based. We stress that the above algorithm is
non-comparison-based due to Steps 5 and 6. In these two steps, the algorithm makes use of the
location of the mixed stripe, which is a variable that depends on the number of 0s and 1s in the
input sequence. More specifically, if one were to implement as a circuit the oblivious procedure for
copying the mixed stripe to the working buffer, such a circuit would require gates that take this
mixed stripe location as input. As we clarified in Section 1.3 (the Related Work section), for such
circuits the 0-1 principle for comparison-based sorting is not applicable (and thus such algorithms
should be regarded as non-comparison-based).
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2.2 Sorting Longer Keys: A Simple Algorithm

Our next step is to consider how to leverage our 1-bit partitioning building block to sort longer
keys. For clarity, we will first describe a conceptually simple version of this reduction — this simple
version already allows us to sort o(log n/ log logn)-bit keys in o(n log n) time. Later in Section 2.3,
we describe how to reparametrize our recursion such that we can sort o(log n)-bit keys in o(n log n)
time — this is tight in the “indivisible” model in light of our lower bound in Theorem 1.3.

Consider an input array containing n balls each with a key from the domain [1..K]. Henceforth
let SortK(A) denote an instance of our oblivious sorting algorithm capable of sorting keys from a
domain [a+ 1..a+K] of size K for some integer a when given an input array A. We assume that
the input array has already been randomly permuted — if not, we can always permute it at random
in linear time, e.g., using an efficient implementation of the Fisher-Yates shuffle [27]. As we shall
see, this random permutation is used only for load balancing and thus the permutation need not
be secret.

The algorithm. The algorithm SortK(A) breaks up a larger instance into a good half G and a
bad half B, it calls itself on the good half, i.e., SortdK/2e(G); and calls SortK(B) on the bad half,
where the domain of keys in G is either [a+ 1..a+

⌈
K
2

⌉
] or [a+

⌈
K
2

⌉
+ 1..a+K], and the domain

of keys in B is always [a+ 1..a+K]. We describe the algorithm informally below, leaving a formal
description to Section 5.2.

1. As base cases: 1) if the array A is less than 2Z in size, we simply apply the sorting network
Zigzag sort [36] and output the result; and 2) if K ≤ 2, we simply invoke our earlier Partition
algorithm to complete the sorting. Otherwise we will continue with the following steps.

2. First, we divide the input array A into bins of size Z = log6 λ where λ is a security parameter —
our algorithm should preserve correctness with 1−negl(λ) probability where negl(·) is a negligible
function and moreover we assume that n = poly(λ) for some polynomial function poly(·).

3. Next, we sort each Z-sized small bin using Zigzag sort, an O(Z logZ)-sized sorting network by
Goodrich [36] — in total this takes O(n log log λ) time.

4. Now, imagine we express the outcome as a short-and-fat matrix, where each column, of height
Z, is a sorted bin. Henceforth we refer to the middle 2 log4 λ rows of this matrix as the crossover
stripe. Now we again rely on Zigzag sort to sort all elements in this crossover stripe (all elements
in all bins in the crossover stripe are sorted altogether).

Our key observation is the following: after this crossover stripe is sorted, except with negligible
in λ probability, it holds that any element in the top half of the matrix is no larger than even the
minimum element in the bottom half. We formally prove this fact later in Section 5.2. There are
two direct implications of this observation — both of the following hold except with negligible
probability:

(a) First, either the top half or the bottom half can still have K distinct keys remaining but not
both.

(b) Second, one of the halves must have no more than dK/2e distinct keys remaining.

5. Henceforth, the half that has more distinct keys remaining is referred to as the bad half, and the
half that has fewer distinct keys remaining is referred to as the good half. If both halves have
the same number of distinct keys remaining, we may break ties arbitrarily.

Now, in one scan of each half, we can find the minimum and maximum keys of each half, and
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thus we can decide which is the good and which is the bad half12.

6. Now in linear time, we can create an array where the good half is arranged before the bad half.
To do this, suppose that the starting point is [A0, A1] where A0 is the top half and A1 is the
bottom half. First, we create two possible arrays in linear time: 1) [A0, A1] and 2) [A1, A0].
Now, we can simply use a multiplexer to pick the right one in linear time. Let X = [G,B] be
the outcome of this step. It holds that except with negligible probability, B can have as many
as K distinct keys and G can have no more than dK/2e distinct keys.

7. We next recurse on the bad half B by calling B̃ ← SortK(B). Further, we call G̃← SortdK/2e(G)
on the good half G — note that SortdK/2e(·) is an instance of the algorithm capable of sorting
keys from the domain [a′ + 1..a′ + dK/2e] for some a′.

8. Finally, we again use a multiplexer to select the correct arrangement among [G̃, B̃] and [B̃, G̃].
Clearly this can be accomplished in linear time.

Obliviousness. The obliviousness of the algorithm is straightforward: the access patterns include
a random permutation in the beginning, and then afterwards all access patterns are deterministic
and data independent.

Runtime. The runtime of this algorithm can be analyzed using the following recurrence where
T (n,K) denotes the runtime for sorting n elements whose keys are from [1..K]:

T (n,K) = T (dn
2
e,K) + T (dn

2
e, dK/2e) +O(n log log λ)

Further, we have the following base cases where the former is due to the calling Zigzag sort [36]
for small enough bins, and the latter is due to applying our earlier Partition algorithm for the base
case K ≤ 2.

For n ≤ 2Z : T (n,K) = O(n log n)
For K ≤ 2 : T (n, 2) = O(n log log λ)

(1)

It is not difficult to show that this recurrence solves to T (n,K) = O(n logK log log λ). At
this moment, we have that for o(log n/ log log n)-bit keys, oblivious sorting can be accomplished in
o(n log n) time. Our next section will describe how to optimize parameters of this recurrence to
obtain a tighter upper bound, such that we can sort o(log n)-bit keys in o(n log n) time.

2.3 A Better Recurrence

We observe that in fact, the method in the previous section can be generalized and the parameters
improved. We describe our improved algorithm SortK(A) below where K denotes an upper bound
on the number of distinct keys in the input array A.

1. We assume that the input A has been arranged in a matrix where each column represents a
polylogarithmically-sized bin that has been Zigzag-sorted — this preprocessing step consumes
O(n log log λ) time.

2. Instead of dividing the matrix A into a good half and a bad half, we can divide it into logK
pieces of equal size. We call the neighboring 2 log4 λ rows near every boundary two pieces a
crossover stripe.

3. Now, call Zigzag sort to sort every crossover stripe.

12Note that here our algorithm is not comparison-based, since this step produces a bit that is dependent on the
inputs and this bit will later be used in multiplexers for selecting the good and bad half respectively.
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4. Let us examine the logK pieces of the resulting matrix A. We can now generalize our previ-
ous reasoning to conclude the following useful observation which holds except with negligible
probability: for any i < j, any element in the i-th piece must be smaller than even the smallest
element in the j-th piece. We will formally prove this later in Section 5.3.

5. Thus in one linear scan, we can write down (an upper bound on) the number of distinct elements
in each piece. Specifically, in one linear scan, we can find the maximum and minimum key for
each piece and their difference is clearly an upper bound on the number of distinct elements in
the corresponding piece.

6. Now, in O( n
logK · logK · log logK) = O(n log logK) time, we can Zigzag-sort all these pieces

based on how many distinct keys each piece has, from small to large. Let A1, A2, . . . , Ak denote
the resulting pieces where k = logK and Ai has a smaller number of distinct keys than Aj if
i < j.

Now, using similar reasoning as Section 2.2, we observe that Ak can have at most K distinct
keys, Ak−1 can have at most dK/2e distinct keys, Ak−2 can have at most dK/3e distinct keys,
Ak−3 can have at most dK/4e distinct keys, and so on; finally, A2 can have at most have at most
dK/(k − 1)e distinct keys and A1 can have at most have at most dK/ke distinct keys where
k = logK.

7. Based on the above observation, we can make the following recursively calls to sort each piece:
SortdK/ke(A1), SortdK/(k−1)e(A2), . . ., SortK(Ak). We obtain k sorted pieces as a result; and fi-
nally, in O(n log logK) time, we can Zigzag-sort all these pieces such that their keys are arranged
from small to large.

The improved recurrence. The above re-parameterized variant yields the following recurrence:

T (n,K) = O(n log logK) +O(n log log λ)

+
∑k

i=1 T
(

n
logK ,

⌈
K

k−i+1

⌉)
,

where the O(n log logK) term is due to sorting the collection of pieces twice (first time by the
number of distinct keys and the second time by the order of the keys), the O(n log log λ) comes
from Zigzag-sorting each bin in the preprocessing step, and all other operations that take linear
time are asymptotically absorbed and not explicitly denoted. The base cases remain unchanged
— see Equation (1). Solving this new recurrence is a bit more challenging, but it is not difficult
to verify that T (n) = O(n log log λ logK/ log logK) is a legitimate solution under the standard
assumption that both n and K ≤ poly(λ).

At this moment, it is not difficult to see that if K = 2o(logn) we can obliviously sort in o(n log n)
time.

2.4 Extension: Large Key Space but Few Distinct Keys

So far we have made a short-key assumption, i.e., each ball carries a key that is at most o(log n)
bits long. Upon careful examination, in our earlier algorithm in Section 2.3 the only place where
we needed the short-key assumption is due to how we estimated the number of distinct keys for
each piece, i.e., by subtracting the minimum key of each piece from the maximum key.

We next propose an extension such that we can remove the short-key assumption, and instead
rely on the weaker assumption that the number of distinct keys K̂ in the input array is small,
although each key can be from a large space. Henceforth we assume that an upper bound on the
number of distinct keys denoted K̂ is known a-priori to the algorithm. To achieve this we devise
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a new, almost linear-time oblivious algorithm for estimating the number of distinct keys for each
piece — and this building block might be of independent interest in other applications. Our idea
is the following.

First, consider a non-oblivious algorithm that estimates the number of distinct elements given
an input array that makes use of a random oracle — we will remove the random oracle later using
almost k-wise independent hash families; and we will also make the algorithm oblivious. We begin
by first hashing all elements into log n bins using the random oracle — note that elements with the
same key will land in the same bin. By averaging, there exists a bin whose load is at most n

logn , and
we can identify such bin in linear time. We then count the number of distinct elements D in this
bin: it is not difficult to prove that the quantity D · log n would be a constant-factor approximation
of the number of distinct elements in the input array (except with negligible probability).

Our algorithm is based on this idea but we must additionally 1) remove the random oracle and
replace it with almost k-wise independent hash families; and 2) make the algorithm oblivious while
preserving efficiency. We thus devise the following algorithm where A is an input array provided
to the algorithm:

1. Select a random hash h from a k-wise ε-independent hash family for appropriate choices of k
and ε to be specified in later in Appendix D.3.

2. For each element x in the input array A, tag the element with its hash h(x) that is log log n-bits
long.

3. Let B1 be A to start with. Henceforth assume that each element is tagged with its hash.

For j = 1, 2, . . . , log logn,

• Obliviously partition Bj based on the j-th bit of the hashes of all elements in Bj — using the
algorithm described in Section 2.1, this can be accomplished in O(|Bj | log log λ) runtime.

• After this partitioning, either the first half of the resulting array contains the 0-th partition or
the second half of the resulting array contains the 1-st partition. Use a multiplexer to select
the half of the array that contains either the 0-th partition or the 1-st partition.

• Assume that the 1st (or 2nd) half of the array is selected w.l.o.g.: now in one linear scan of
the outcome, overwrite any element that does not belong to the 0-th partition (or the 1-st
partition).

• Let the resulting array be Bj+1 — note that the length of Bj+1 is exactly |Bj |/2.

4. Finally, use an oblivious sorting algorithm to count the number of distinct items in Blog logn,
and let D be the outcome. Output D · log n as an estimate of the number of distinct items in A.

In Appendix D.3, we will show that there is a way to concretely instantiate the k-wise, ε-
independent hash family using a construction proposed by Meka et al. [54] such that the above
algorithm completes in O(|A| ·α2 log log λ) time and provides an estimate of the number of distinct
keys in A that is accurate up to a small constant factor except with λ−Ω(α) probability — moreover,
this can be accomplished assuming 1) that the RAM’s word is large enough to store a ball and
its key; and 2) word-level multiplications can be performed in unit cost on a RAM (whereas our
earlier algorithms for short keys only required word-level addition, subtraction, and comparison in
unit cost).

In Appendix D.2, we will further remove the requirement that the RAM’s word is large enough to
store the key — to achieve this, we rely on a collision-resistant compression function (which can be
instantiated from a 2-wise independent hash family and the Merkle-Damg̊ard construction [23,55])
to compress each possibly long key before embarking on the aforementioned algorithm. We defer
the details to Section D. Further, we will also show that using our new distinct key estimation
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algorithm in lieu of the earlier approach of computing the expression (maximum key - minimum
key), we can sort arbitrary-length keys in O(nαL+ nα2 log logn+ kLn log log n/ log k) time where
2k denotes an upper bound on the number of distinct keys, L denotes the number of RAM words
required for storing each key, and α is a term related to the security failure probability n−Ω(α).

2.5 IO Efficiency in the Cache-Agnostic Model

So far, we have focused entirely on running time. We now show how to improve the IO efficiency
of our construction in a cache-agnostic model. Goodrich [35] phrased the open question: can we
achieve a linear-IO tight compaction scheme? We show that our IO-efficient scheme solves this
open question in the 1-bit special case — previously it was not known how to do this even in the
cache-aware model. Further, our result implies an IO-efficient selection algorithm (for selecting all
m smallest elements) in the cache-agnostic model (and this question was implicitly left open by
Goodrich [35] as well).

Random permutation of inputs lacks IO efficiency. The reason our algorithms thus far
were not IO-efficient mainly arises from the need to randomly permute the input array during a
preprocessing stage. This random permutation is necessary to defeat adversarially chosen inputs,
such that for every input, except with negligible probability the output is correct. Aggarwal and
Vitter [1] proved that any algorithm that randomly permutates n elements must incur at least
min{n, nB logM

B

n
B} IOs. To asymptotically improve the IO efficiency of our algorithm, we show

that a weaker primitive called “bin-wise independent shuffle” is sufficient rather than a full random
permutation.

Bin-wise independent shuffle. We observe that a complete random permutation of the inputs is
an overkill; and all we need to do is to permute the inputs barely enough, such that our probabilistic
analysis will nonetheless hold in the same manner as if the data were permuted completely at
random. Interestingly, to realize our bin-wise independent shuffle idea, we make use of an additional
building block, i.e., a cache-agnostic matrix transpose procedure [31] which is well-known in the
algorithms literature — in fact, our algorithm uses this matrix transposition building block in
several other places to be able to collect both the rows and columns of a matrix in an IO-efficient
manner.

We now elaborate: abstracting away other details of our algorithm, our goal is to divide the
input elements into bins such that each bin will have roughly the same fraction of 0s and 1s as the
input array. To achieve this, the idea is to view the input array as a short-and-fat matrix, perform a
random, cyclic shift of each row (which, as we show, can be accomplished in an IO-efficient manner);
and finally relying on a cache-agnostic matrix transpose operation, transform each column of the
matrix into a bin. It is not difficult to observe that the Z random coins for each bin are independent
where Z denotes the bin’s size — hence the name “bin-wise independent shuffle”. In Section 4,
we formally state and prove the statistical properties we need from this random bin assignment
process.

2.6 Lower Bounds for Oblivious Sorting

The following is a proof sketch showing that any algorithm that obliviously sorts (log n)-bit keys
must incur Ω(n log n) runtime, a special case of Theorem 1.1. The full proof — see Appendix B —
and the lower bound of stable oblivious sorting (Theorem 1.3) are both extensions of this sketch.
Recall that we consider sorting algorithms in the indivisible model, where algorithms move opaque
balls between memory and CPU registers (i.e. bins). Our lower bound counts only the number of
such moves, while the CPU is allowed to perform arbitrary computation on the keys.
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Let S be any oblivious algorithm in the indivisible model such that correctly sorts (log n)-bit
keys. For simplicity, assume perfect obliviousness and perfect correctness for the time being. Fixing
an input and a random tape, S has a fixed pattern of moves of balls between CPU registers and
memory. Let G be a directed acyclic graph that represents such pattern of moves constructed as
follows: Consider each memory location or the CPU register is a bin; Each vertex in G represents a
(bin, time step) pair, and each edge in G represents an admissible move from a bin corresponding to
time step t to another bin in time step t′ > t. By perfect obliviousness, if G is encountered on one
input with non-zero probability, it must be encountered for every input with non-zero probability.
By perfect correctness and the indivisible nature of the algorithm, for each input, there exists a
vertex-disjoint routing from input vertices to output vertices in G such that the routing sorts the
input — we henceforth say that G explains the input. Specifically, G explains all n cyclic shifts
of the input sequence (1, . . . , n), and thus every input vertices in G is routed to a distinct output
vertex in each of the shifts. In the beautiful work of Pippenger and Valiant [60], they show that
such graph G must have at least Ω(n log n) edges. It follows that S must take time Ω(n log n)
because each time step creates at most 4 edges in G. To strengthen the proof to algorithms with
O(1) correctness, we apply an averaging argument, which is deferred to Appendix B.2.

2.7 Comparison with Known ORAM Lower Bounds

We remark that neither of our lower bounds (Theorem 1.1 and Theorem 1.3) is implied from
Goldreich and Ostrovsky’s ORAM lower bound [32,33] or its proof techniques; nor implied by the
more recent ORAM lower bound by Larsen and Nielsen [46] (which is in fact subsequent to our
work).

Background on ORAM lower bounds. Both works [33, 46] argue that any ORAM scheme
must incur logarithmic blowup; but Goldreich and Ostrovsky’s lower bound is applicable to only
the “balls-and-bins” model and statistical security; whereas Larsen and Nielsen remove these re-
strictions, and prove the ORAM lower bound for even “non-balls-and-bins” algorithms, and com-
putational security (where the balls-and-bins is the same as the indivisible model). On the other
hand, Goldreich and Ostrovksy’s lower bound applies even to offline ORAMs, whereas Larsen and
Nielsen’s result applies only to online ORAMs (i.e., the memory requests are determined in an
online fashion).

Comparison with our lower bounds. Both of the aforementioned ORAM lower bounds state
that a logarithmic blowup is necessary to compile a generic RAM program to an oblivious one. This
means that there exists a non-oblivious algorithm Alg running in time T (n) on an input memory
array of size n, such that any oblivious algorithm functionally equivalent to Alg must incur at least
T (n) ·Ω(log n) runtime. These lower bounds do not imply that for every algorithm this logarithmic
blowup is necessary. As the simplest example, counting the number of 0s in an array can be done
obliviously in linear time, and thus the oblivious simulation overhead is O(1).

Even more specifically, these known ORAM lower bounds do not seem to directly imply a
general sorting (i.e., sorting n-bit keys) lower bound either. For example, Goldreich and Ostrovksy’s
lower bound, imprecisely speaking, says that any oblivious algorithm, that has to make logical
accesses in an order prescribed by some non-oblivious algorithm, must incur logarithmically higher
runtime than the non-oblivious algorithm. Thus to directly apply their ORAM lower bound to
argue that any generic oblivious sorting algorithm (in the indivisible model) must incur Ω(n log n)
runtime, it seems necessary to argue that any non-oblivious sorting algorithm must access memory
in sufficiently many permutations upon different inputs. While this may not be impossible, such
an extension would at least be somewhat non-trivial.
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On the other hand, our Theorem 1.3 in fact implies Goldreich and Ostrovsky’s ORAM lower
bound: to prove the ORAM lower bound it suffices to find one task whose oblivious implementation
must be at least Ω(log n)-factor more expensive than a non-oblivious implementation. Let 1-bit-
key stable sorting be this task: there is a trivial linear-time, non-oblivious algorithm that stably
sorts 1-bit keys in the indivisible model; and Theorem 1.3 shows that any oblivious implementation
must be at least Ω(logn)-factor more expensive. Note that just like Goldreich and Ostrovsky’s
lower bound, our lower bound is also in the “balls-and-bins” model and applies only to statistical
security.

Technically, our proofs introduce a new paradigm where we lower bound the complexity of
access pattern graphs of oblivious algorithms — to achieve this, we draw connections to the study
of non-blocking graphs in the classical algorithms literature [60]. We believe that these techniques
can spur new applications: for example, they were adopted in the subsequent work where Chan et
al. [18] investigate the complexity of differentially oblivious algorithms.

3 Definitions and Preliminaries

Negligible functions. A function ε(·) is said to be negligible if for every polynomial p(·), there
exists some λ0 such that ε(λ) ≤ 1

p(λ) for all λ ≥ λ0.

Statistical indistinguishability. For an ensemble of distributions {Dλ} (parametrized with
λ), we denote by x ← Dλ a sampling of an instance according to the distribution Dλ. Given
two ensembles of distributions {Xλ} and {Yλ}, we say that the two ensembles are statistically

indistinguishable, often written as {Xλ}
ε(λ)
≡ {Yλ}, iff for any unbounded adversary A,∣∣∣∣ Pr

x←Xλ

[
A(1λ, x) = 1

]
− Pr
y←Yλ

[
A(1λ, y) = 1

]∣∣∣∣ ≤ ε(λ).

3.1 Oblivious Algorithms on a RAM

In this paper, we consider a Random-Access Machine (RAM) where a CPU interacts with a memory
to perform computation. In every step of the computation, the CPU can read and/or write a
memory location, perform computation over words stored in its CPU registers, update the values
stored in (a subset of) its CPU registers.

Assumptions. We assume that the CPU has only O(1) registers, and it also has access to a
private random string that is unobservable by the adversary. Unless otherwise noted, we assume
that word-level additions and comparisons can be performed in unit cost on the RAM, where word
size is Θ(log λ) bits — for our algorithms for short keys (Sections 4 and 5), this is sufficient; however,
our algorithm in Appendix D that support arbitrary key spaces but few distinct keys additionally
require that word-level multiplication be computed in unit cost.

Oblivious algorithms. We formally define what it means for a RAM program to be oblivious.

Definition 3.1 (Oblivious algorithm). We say that a (possibly randomized) algorithm Alg is obliv-
ious, iff the following holds: for any inputs I0, I1 ∈ {0, 1}∗ such that |I0| = |I1|, Alg(1λ, I0)’s access
patterns to memory and Alg(1λ, I1)’s access patterns to memory are identically distributed.

Throughout this paper, all of our algorithms are perfectly oblivious but may suffer negligibly
small statistical failure probability in terms of correctness. (If the output is not correct, we can then
trade security for correctness by checking and running a non-oblivious but efficient sorting.)
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In this work, both the upper bound and lower bound results in the oblivious algorithms model
hold also in a stronger model of probabilistic circuits (please see Appendix A.1 for the definition
and efficiency metrics).

3.2 External-Memory and Cache-Agnostic Algorithms

Not only do we care about the runtime of a RAM program, we also care about minimizing IO-cost.
To characterize IO efficiency, we adopt the same (possibly multi-level) cache-memory model as
adopted in the standard, external-memory algorithms literature [1, 25, 30, 31, 70]. In the external-
memory model, besides the CPU, the storage hierarchy is implemented by a cache and an external-
memory. As before, in each step of execution, a CPU performs some computation over its internal
registers, and then makes a read or a write request to the storage hierarchy.

Memory requests are served in the following manner:

• If the address requested is already in the cache, the CPU then interacts with the cache to
complete the read or write request and thus no external memory read or write is incurred;

• Else if the address requested does not exist in the cache: 1) first, a cache-line containing the
requested address is copied into the cache from external memory possibly evicting some existing
cache-line from the cache in the process where the evicted cache-line is written back to memory;
and 2) then the CPU interacts with the cache to complete the read or write request. Thus, a
cache-line defines the atomic unit of access between the cache and the external memory.

Notation. Throughout this paper, we use the notation M to denote the cache size, i.e., the number
of words the cache can contain; and we use the notation B to denote a cache-line size, i.e., the
number of words contained in a cache-line.

An algorithm’s IO efficiency. In such an external-memory model, an algorithm’s IO-cost is
the number of times a cache-line is transferred between the memory and the cache (thus IO-cost
characterizes the number of cache misses).

Cache-aware vs. cache-agnostic algorithms. As in the standard algorithms literature, if an
external-memory algorithm must know a-priori the parameters of the cache (i.e., M and B), it is
said to be cache-aware. If an external-memory algorithm need not know the cache parameters,
it is said to be cache-agnostic [25, 31]. As is well-known in the algorithms community, cache-
agnostic algorithms offer numerous compelling advantages over cache-aware ones: first, any cache-
agnostic algorithm with optimal IO performance can readily run on any architecture with unknown
architectural parameters and achieve optimal IO performance; second, on any multi-level memory
hierarchy, optimality is achieved in between any two adjacent levels (e.g., between the cache and
memory, between the memory and disk, and between the local disk and the cloud server).

Standard cache assumptions. Our assumptions about the cache are standard and well-accepted
in the algorithms literature. We assume that the cache has full associativity and moreover imple-
ments an optimal replacement policy — the justifications of such assumptions have been clearly
articulated in the algorithms literature: although common architectures in practice may have dif-
ferent realizations, costs in this ideal cache model can be easily translated to costs on common
practical architectures (see Appendix A.2 for details).

Our IO-efficiency-related upper bound results assume that M ≥ log1.1 n — this is satisfied if we
assume the following standard cache assumptions that are widely adopted in the external-memory
algorithms literature [6, 10,11,15,25,31,35,53,58,61,62,72,75]:
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• Tall cache. A tall cache assumption states that the cache is taller than it’s width; that is, the
number of cache line, M/B, is greater than the size of one cache line, B, where M is the size of
cache; or simply stated, M ≥ B2.

• Wide cache-line. The wide cache-line assumption states that B ≥ logc n where c is a constant
(typical works assume that c ≥ 0.55) and n is space consumed by the algorithm.

Oblivious algorithms in the external-memory model. Oblivious algorithms in the external-
memory model is similarly defined as in Definition 3.1. We stress that even in the external-memory
model, for our obliviousness definition we assume that the adversary can observe full memory
addresses being requested in every CPU step — our definition is stronger than those adopted by
some earlier works on external-memory oblivious algorithms [35,37,39] such as Goodrich et al. [35]
— earlier works assume that the adversary can only observe the accesses between the cache and
the memory but not the accesses between the CPU and the cache. Chan et al. [20] were in fact
the first to phrase this notion of obliviousness for external-memory algorithms — they referred to
this stronger notion as strong obliviousness, and the weaker notions adopted earlier [35] as weak
obliviousness. They also argue that this strong notion is desired in practical applications such as
oblivious algorithms for secure processors such as the popular Intel SGX [3, 22, 52] — since strong
obliviousness defends against a well-known cache-timing attack whereas the weak obliviousness
provides no such defense.

3.3 Building Blocks

3.3.1 Cache-Agnostic Algorithms

Cache-agnostic oblivious matrix transpose. Frigo et al. [31] provides a matrix transposition
with optimal runtime and IO-cost, and it is also oblivious.

Lemma 3.1 (Theorem 3, [31]). There is an cache-agnostic, oblivious algorithm Transpose such
that given an m×n matrix A stored in row-major layout, the algorithm computes the transpose AT

in runtime O(mn) and IO-cost O(mnB ).

Cache-agnostic non-oblivious random cyclic-shift. Given an input array I of n elements, a
random cyclic-shift algorithm outputs an array O such that O[i] := I[(i+r) mod n] for all i, where
r is uniformly sampled at random from [n]. The näıve cache-agnostic algorithm shift runs in time
O(n) and IO-cost O(dn/Be) as follows: sample r uniformly from [n]; for i from 0 to n − 1, move
I[(i+ r) mod n] to O[i]. Note that shift reveals randomness r (and hence is not oblivious w.r.t. r).

3.3.2 Oblivious Sorting

Sorting circuits. Ajtai et al. [2] (AKS) and Goodrich [36] (Zigzag sort) show that sorting circuits
with O(n log n) comparators can be constructed. Later, we will make use of such sorting circuits
as a building block (particularly on problems of small sizes).

Funnel oblivious sort. Though Zigzag and AKS sort are asymptotically efficient in runtime, they
are not as good in terms of IO-cost. Chan et al. [20] devised an IO-optimal (randomized) oblivious
sorting algorithm in the cache-agnostic model. At a high level, their algorithm invokes an instance
of funnel sort [31] in a non-blackbox fashion to randomly permute inputs, and then invokes another
instance of funnel sort [31] (this time in a blackbox fashion) to sort the permuted inputs — hence
we call their algorithm “funnel oblivious sort”.
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Figure 1: Matrix layout and example matrix after transpose

In our paper, we rely on a further improved version of Chan et al. [20]’s algorithm henceforth
denoted FunnelOSort — in particular, we substitute the bitonic sort in Chan et al. [20]’s construc-
tion with an improved building block called DeterministicPart (i.e., deterministic partitioning) as
described in Section 4.2. We state the improved result in the following lemma.

Lemma 3.2. (Theorem 5.7, [20] with improvements described in Section 4.2). Assuming M =
Ω(B2), and B = Ω(log0.55 λ), there exists a cache-agnostic, oblivious sorting algorithm henceforth
denoted FunnelOSort, which, except with negligible in λ probability, correctly sorts n elements in
O(n log n log log λ) time, O(n) space and O( nB logM

B

n
B ) IO-cost.

Note that the work of Chan et al. claims the runtime O(n log n(log log λ)2), and thus our im-
provements in Section 4.2 improves a log log λ factor.

4 Partitioning 1-Bit Keys

Our first step is to realize 1-bit partitioning: given n balls each tagged with a 1-bit key, output
an array containing the same balls (tagged with keys) according to the relative ordering of their
keys. The algorithm need not be stable — as shown in Theorem 1.3, no oblivious algorithm in the
indivisible model can realize 1-bit stable partitioning in o(n log n) time.

Assumptions. Throughout this section, we shall assume that the RAM’s word size is large
enough to store each ball as well as its key. We assume that word-level addition, subtraction, and
comparison operations can be computed in unit cost (but we do not need word-level multiplication
in this section).

4.1 Intuition

The high-level idea of our 1-bit partitioning scheme (the IO-inefficient version) was described in
Section 2.1. To quickly recap, the idea is to randomly permute the input balls and divide them into
log6 λ-sized bins. Now we arrange each bin as the column of a matrix, and sort each column. It
thus holds that except with negligible in λ probability, there exists a small mixed stripe containing
at most log4 λ rows such that all rows above (called the top stripe) contain 0s and all rows below
(called the bottom stripe) contain 1s (see Figure 1). The formal proof of this statement will be
presented later in Lemma 4.1. Now, our algorithm simply obliviously sorts (e.g., using Zigzag sort)
the mixed stripe, and outputs the top stripe, mixed stripe, and bottom stripe in this order.

To make the above algorithm IO-efficient, first, we need to instantiate the oblivious sort with
an IO-efficient construction. In our case, we only need to sort 1-bit keys — we thus devise an
IO-efficient, deterministic 1-bit sorting algorithm, DeterministicPart, in Section 4.2. Secondly, as
mentioned earlier in Section 2.5, a novel idea we have is to replace the random permutation in the
preprocessing stage with a weaker primitive that is IO-efficient and still sufficient for our statistical
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Algorithm 1 Partitioning 1-bit keys

1: procedure: Partition(A) // We parse A as a Z × n
Z matrix where Z = log6 λ

2: For each row in A, perform a RandCyclicShift.
3: Sort columns:
AT ← Transpose(A). Use DeterministicPart to sort each row of AT . A← Transpose(AT ).

4: In one scan, identify the first row i with mixed 0s and 1s, and rows [i, . . . , i+ δ] are said to be
the mixed stripe where δ := log4 λ.

5: Move the mixed stripe to a working buffer using MoveStripe(A, i, i + δ), where the working
buffer is represented as a δ × n

Z matrix.
6: Run DeterministicPart to sort the working buffer.
7: Obliviously cyclic-shift the working buffer by (i mod δ) rows using FunnelOSort.
8: Move the working buffer back to the original location in A using the reversed MoveStripe.
9: return A

guarantees. Thus, we perform a “bin-wise independent shuffle” operation, where we express the
initial array A as a short-and-fat matrix of log6 λ height. We then perform an independent random
cyclic shift of each row (the random shift offset need not be secret), and then we call each column
a bin. In our formal algorithm description to follow, we show how to combine this idea with a
cache-agnostic matrix transpose operation to achieve IO efficiency.

4.2 New Building Blocks

We will need two new building blocks, MoveStripe and DeterministicPart.

Oblivious deterministic partitioning. We devise an IO-efficient algorithm (in the cache-
agnostic model) called DeterministicPart that is capable of sorting balls tagged with 1-bit keys
in O(n log n) runtime and O( nB logM n) IO-cost. We defer the details of this algorithm to Ap-
pendix C.1.

Obliviously copying a stripe to a working buffer. Given a matrix A written down in a
row-major manner in memory, a stripe is defined as a set of consecutive rows from l to r. The
MoveStripe(A, l, r) algorithm copies all elements in the rows from l to r to a working buffer of
equivalent size (in any order), without revealing the location of the stripe, i.e., l, r, and A. The
detailed algorithm (deferred to Appendix C.2) runs in O(n) time and O

(
n
B

)
IO-cost, where n is

the number of entries in the matrix A.

4.3 Algorithm for Partitioning 1-Bit Keys

We now describe the detailed Partition (Algorithm 1) that sorts balls tagged with 1-bit keys, and
it is IO-efficient in the cache-agnostic model. In Partition, all matrices are row-major in memory,
which matters when discussing IO efficiency. Let δ be log4 λ and Z be log6 λ.

4.4 Analysis

Correctness. Let the minimum mixed stripe be the minimum set of rows such that all rows above
it contain 0s and all rows below it contain 1s. The number of rows contained in the minimum
mixed stripe is said to be the height of the minimum mixed stripe.
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Lemma 4.1 (Mixed stripe is small). There exists a negligible function negl(·) such that for any
input key assignment, except with negl(λ) probability, the height of the minimum mixed stripe in
the Partition algorithm is upper bounded by δ = log4 λ.

Proof. Sorting a row in AT is equivalent to sorting the corresponding column in A, and hence, in
this proof, we consider columns in A. Consider a fixed column in A after the Partition algorithm
performs the RandCyclicShift — recall that such a column is called a bin, and its size is Z = log6 λ.

Let bin B be a fixed column. Let Xi be the bit associated with the i-th ball in bin B. We observe
that Xi is picked at random from the i-th row of the original matrix A (before the RandCyclicShift
line). Note that Xi draws from Bernoulli distribution B(1, pi), where pi is the fraction of 1 in i-th
row. Further, for any i 6= j, Xi and Xj are independent. Let X :=

∑Z
i=1Xi be the total number

of 1s in B. We next observe that, for every bin B, the expectation equals to E[X] =
∑Z

i=1 pi. By
Hoeffding’s inequality, for every bin B, we have

Pr(|X −E[X]| ≥ 1

2
log4 λ) ≤ 2e−2

(log4 λ)2

4Z = 2e−
1
2

log2 λ.

It follows that, for each bin, except with probability ε(λ) = 2e−0.5 log2 λ, the total number of 1s
must be within the range R = (E[X] − 1

2δ,E[X] + 1
2δ). Let Yk be the total number of 1s in the

k-th bin. By union bound, the probability that there exists k such that Yk /∈ R is upper bounded
by negl(λ) = n

Z ε(λ). It follows that, after sorting each row in AT and transposition, the height of
the minimum mixed stripe is at most δ except with negl(λ) probability.

Corollary 4.1. Given any input array with n elements and each with a 1-bit key, Partition correctly
sorts it except with negl(λ) probability.

Proof. Note that all 0s and 1s that are not in the mixed stripe are located in the correct position after
sorting each row in AT and transposition. By Lemma 4.1, except with negligible probability, there
exists some mixed stripe of fixed size R that contains the minimum mixed stripe. Conditioning
on such good event, the remaining procedures of Partition finds the minimum mixed stripe and
correctly sorts elements in the mixed stripe, which implies the correctness of the final output.

Time complexity.

Lemma 4.2. Given input A and security parameter λ, where n denotes number of elements in A,
Partition completes in time O(n log log λ).

Proof. RandCyclicShift and Transpose run in O(n) time. For each column of A, DeterministicPart
takes time O(log6 λ log log λ), summing up to O(n log log λ). MoveStripe takes time O(n), and then
sorting the working buffer of n

log2 λ
elements (using FunnelOSort) takes time O( n

log2 λ
log n log log λ),

which is o(n) as n = poly(λ). Hence, the total runtime is O(n log log λ).

IO-cost. We now analyze the scheme’s IO efficiency.

Lemma 4.3. The overall IO-cost of RandCyclicShift in Line 2 is O( nB ).

Proof. Considering the input size n and the cache-line size B, the bound holds for both cases:

1. n
Z > B, each RandCyclicShift instance takes at most 2( n

ZB + 1) IOs. Further, there are Z such
instances, thus the overall cost is O( nB ).
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2. n
Z ≤ B, with each cache load, we load b B

n/Z c rows in the matrix. Since we need to load Z

rows in total, the total number of loads is Z
b B
n/Z
c ≤ 2 Z

B
n/Z

= O( nB ).

Lemma 4.4. The algorithm takes O(d nB e logM log λ) IO-cost.

Proof. By Lemma 4.3, Line 2 takes O( nB ) IOs. For Line 3, Transpose takes O( nB ) IOs by Lemma 3.1.
After Transpose, each column in A is consecutive in memory, so DeterministicPart runs in O( nZ ·
dZB e logM Z) IOs if Z > M (and O(d nM e) otherwise). Then, MoveStripe performs linear scan and
costs O(d nB e) IOs. Sorting the working buffer and cyclic shifting run in O(d nB e) as the problem size
is only O( n

log2 n
). In summary, the overall IO-cost is O(d nB e logM log λ).

It follows from Lemmas 4.2 and 4.4:

Theorem 4.1. There exists a negligible function negl(·) such that for all input A, Partition is
a cache-agnostic and oblivious algorithm, correctly sorts A in time O(n log log λ) and IO-cost
O(d nB e logM log λ) except with probability negl(λ). Assuming wide cache-line and tall cache (hence
M ≥ logc λ for some constant c > 0), the IO-cost is O(d nB e).

5 Sorting Short Keys

Our earlier algorithm Partition allows us to sort balls carrying 1-bit keys. In this section, we show
how to use Partition as a starting point and recursively sort larger keys. For simplicity, we first
describe a simple reduction in Section 5.2 that allows us to sort only o(log n/ log logn)-bit keys in
o(n log n) time. Later in Section 5.3, we will show how to improve the recurrence to sort o(log n)-bit
keys in o(n log n) time.

Assumptions. Throughout this section, we shall assume that the RAM’s word size is large
enough to store each ball as well as its key. We assume that word-level addition, subtraction, and
comparison operations can be computed in unit cost (but we do not need word-level multiplication
in this section).

Notation. The notation “domain [K]” is abused to denote any set {a, a + 1, . . . , a + K − 1} of
size K for some integer a — in other words, our SortSmall algorithm can sort not just integer keys
from {1, . . . ,K}, but in fact any contiguous domain of size K as long as each key and ball can be
stored in a single memory word.

5.1 Intuition

Earlier we described the intuition how to leverage a 1-bit partitioning building block to solve the
problem of sorting longer keys. We briefly recap at this moment.

Suppose we would like to sort keys from some contiguous domain [K]. The idea is to still sort
each column of the matrix where each column is a bin of size Z = log6 λ. Now, we make a critical
observation: if we sort the middle 2 log4 λ rows of this matrix, then, except with negligible in λ
probability, it must be that any element in the top half of the matrix is no larger than even the
minimum element in the bottom half.

Two useful implications come out of this observation. First, at most one half (either the top
half or the bottom half but not both) can still have K distinct keys left. Second, the instance
that has fewer number of distinct keys left has at most dK2 e distinct keys. These two observations
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allow us to break the problem apart into 1) an instance of half the size of sorting keys from the
same domain [K] as where we started, and 2) an instance of half the size, but sorting keys from
the domain [dK2 e] which is roughly half the size of the initial domain. Note that to realize this
divide-and-conquer strategy obliviously requires using multiplexers to select a problem instance
from two possibilities, and then for the outcome we again need to apply a multiplexer to select an
answer from two possible answers — we defer these somewhat more tedious details to Section 5.2.

In our full algorithm description in Section 5.2, we also aim to optimize the IO efficiency of
the algorithm. The techniques for IO efficiency here are the same as our techniques for the 1-bit
partitioning algorithm earlier in Section 4: essentially, we use bin-wise independent shuffling rather
than a full random permutation in the preprocessing stage; and further, we rely on cache-agnostic
matrix transposition several times to be able to operate on either the rows or the columns of a
matrix in an IO-efficient manner.

5.2 Warmup Scheme

Notations. Let δ = log4 λ. For simplicity, we use “element” and “key of element” interchangeably
in the following.

New building block. The building block Selection is an oblivious algorithm that finds the element
of rank r in input an array, and its runtime and IO-cost is asymptotically the same as Partition
— in fact, in Appendix E.2, we show that we can select all r smallest elements (not just the r-th
element) in almost linear time and linear IO; and just this building block alone solves an open
problem phrased by Goodrich [35].

Detailed algorithm. In Algorithm 2, we describe a warmup algorithm, SortSmall, that can sort
o(log n/ log logn)-bit keys in o(n log n) time. The algorithm also describes several optimizations
that are necessary for IO efficiency.

The procedure of SortSmall is similar to Partition (Algorithm 1). Hence, the correctness follows in
a similar way: after sorting columns and sorting crossover stripe (Line 5 and 6), with overwhelming
probability, compared to the median key, the top half consists of only smaller keys and the bottom
half consists of only larger keys. We defer the detailed analysis of probability, the recursive analysis
of time and IO-cost to Appendix F.1.

Theorem 5.1 (Sorting small keys). Assuming tall cache and wide cache-line, there exists a neg-
ligible function negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction)
which, except with negl(λ) probability, correctly sorts an input array containing n (key, value) pairs
where the keys take value in the domain [1..K] in running time O(n logK log log λ) and IO-cost
O(d nB e logK).

5.3 Improved Recurrence

To sort even longer keys in o(n log n) time, we further divide the matrix into more pieces (rather
than only two pieces), and thus the key domain of each piece is further reduced except for the worst
piece. To achieve obliviousness, we perform an additional oblivious sort to permute pieces, so the
access pattern is independent from the real key domain of pieces. The algorithm Sort is presented
in Algorithm 3, where the differences between Sort and SortSmall (Algorithm 2) are marked in
blue. The building block osort is an oblivious sorting algorithm, which is instantiated differently to
achieve either runtime or IO efficiency.

In Algorithm 3, to get the best runtime, we shall instantiate each osort with AKS or Zigzag
sort [2, 36], which yields the following runnning time. We defer the analysis of correctness and the
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Algorithm 2 Sort keys from [K]

1: procedure: SortSmall(A,K) // We parse A as a Z × n
Z matrix where Z = log6 λ.

2: if |A| < 2Z then return FunnelOSort(A)

3: if K ≤ 2 then return Partition(A)

4: Run RandCyclicShift on each row and transpose the resulting matrix.
5: Sort columns: Let ranks r1 := Z/2− δ, r2 := Z/2 + δ. For each column of A, find elements
a1, a2 of ranks r1, r2 using Selection, and then partially sort the column (using Partition) such
that: (a) a1, a2 are the r1, r2-th elements, (b) all elements located above a1 are taking value at
most a1, (c) all elements between a1 and a2 are in the domain [a1, a2], (d) and all below a2 are
at least a2. Transpose the resulting matrix.

6: Sort crossover stripe: Let the middle 2δ rows be the crossover stripe. Run FunnelOSort on
the crossover stripe.

7: In one scan, find the minimum and maximum key for each half.
8: Let the number of distinct keys in each half be (max key−min key + 1).
9: if top half has ≤ dK2 e distinct keys then // Swap, DummySwap implement a multiplexer

10: Dummyswap(top half, bottom half).
11: Sort sub-problems: SortSmall(top half, dK2 e), SortSmall(bottom half, K).
12: Dummyswap(top half, bottom half).
13: else
14: Swap(top half, bottom half).
15: Sort sub-problems: SortSmall(top half, dK2 e), SortSmall(bottom half, K).
16: Swap(top half, bottom half).

17: return the resulting matrix A

calculation of recursive running time to Appendix F.2.

Theorem 5.2 (Sorting keys in domain K). There exists a negligible function negl(·) and a cache-
agnostic, oblivious algorithm (with an explicit construction) which, except with negl(λ) probability,
correctly sorts an input array containing n (key, value) pairs where the keys take value in the
domain [1..K] in running time O(n logK

log logK log log λ).

IO-efficient instantiation. To get the best IO efficiency in the cache-agnostic model, in the
algorithm Sort, we instantiate every osort with FunnelOSort except for sorting the pieces (i.e.,
Line 13). To sort p = logK pieces in Line 13, arrange the memory layout such that for any i, the i-
th element in piece j are packed together for all j ∈ [p], and then perform FunnelOSort on each pack
of p elements for every i ∈ [n/p]. Note that p < M as M = Ω(log1.1 λ) by wide cache-line and tall
cache assumptions. The correctness follows by the same proof of Theorem 5.2 (see Appendix F.2),
and the time and IO-cost is stated as follows.

Corollary 5.1. Assuming tall cache and wide cache-line, the aforementioned IO-efficient instan-
tiation of Sort runs in time O(n logK

log logK log2 log λ) and IO-cost O(d nB e
logK

log logK ).

Proof. Sorting the columns, the crossover stripes, and the pieces takeO(n logZ log log λ), O(n log log λ),
and O(n log p log log λ) respectively. The recursion solves to O(n logK

log logK log2 log λ).

The IO-cost to sort columns is O( nZ d
Z
B e logM

B

Z
B ), to sort crossover stripes is O(d nB e), to sort

pieces is O(np d
p
B e) as p < M , and the base case SortSmall is O(d nB e logK). Hence, the recursion

solves to O(d nB e
logK

log logK ) as the dominating factor logM
B

Z
B of sorting columns is bounded by a

constant assuming tall cache and wide cache-line.
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Algorithm 3 Sort o(log n)-Bit Keys

1: procedure: Sort(A,K) // The input A is an array of n elements, each element is a key in a

domain [K]. Parse the array into a Z × n
Z matrix, where Z = log6 λ.

2: if |A| < 2Z then
3: return osort(A)

4: if K < 64 then
5: return SortSmall(A,K)

6: Perform RandCyclicShift on each row of A.
7: Sort columns: AT ← Transpose(A). osort each row of AT . A← Transpose(AT ).
8: Let p := blogKc, q := Z

p . Parse matrix A as p pieces, A1, . . . , Ap, where each piece Aj is a
q × n

Z sub-matrix of A.
9: for i from 1 to p− 1 do

10: Sort crossover stripes: osort the boundary between Ai and Ai+1. That is, sort all elements
between row iq − δ and row iq + δ.

11: for i from 1 to p do
12: Find the maximum key x and minimum key y in Ai. Let Ki := x− y + 1.

13: Sort all pieces {Ai}i∈[p] obliviously in increasing order of Ki:

{Bi}i∈[p] ← osort({Ai}i∈[p]). We assume each Bi remembers its original piece index.

14: for i from 1 to p do
15: Sort sub-problems: Sort(Bi, d K

p−i+1e).

16: Obliviously sort {Bi}i∈[p] by their original piece indexes: {Ci}i∈[p] ← osort({Bi}i∈[p]).
17: return {Ci}i∈[p].

6 Open Questions

Our paper raises several interesting open questions:

• Can we achieve similar results as in our paper but with deterministic algorithms?

• In a non-indivisible model, can we overcome the n log n barrier for oblivious sorting and/or tight,
order-preserving compaction with non-comparison-based techniques?

• In our algorithm for sorting o(log n)-bit keys as well as the prior work by Chan et al. [20], to get
the best IO efficiency results would introduce an extra log log factor to the runtime (relative to
the best known algorithm optimized for runtime). Can we obtain the same IO efficiency results
without trading off runtime?
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Appendices

A Additional Preliminaries

A.1 Probabilistic Circuits for Sorting in the Indivisible Model

Both our upper bound and lower bound results have natural interpretations for probabilistic circuit
families that realizes sort.

Consider a family of circuits C for sorting. Each circuit is allowed to have two types of gates:
1) arbitrary boolean gates with constant fan-in and constant fan-out; and 2) selector gates, each of
which takes in a bit b and two balls, and outputs one of the balls.

Definition A.1. (Probabilistic circuit family for sorting in the indivisible model). We say that
the circuit family C is an (n,K, ε)-sorting circuit family in the indivisible model, iff for any input
~X containing n balls each assigned with a key from the domain [K],

Pr
C←$C

[
C correctly sorts ~X

]
≥ 1− ε.

29

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies


Metrics for probabilistic sorting circuits. Given a probabilistic circuit family C, we define the
following metrics where S is referred to as the circuit complexity of C and Ssel is referred to as the
selector complexity which accounts for the number of atomic operations on opaque balls.

S(C) := max
C∈C

(# gates in C)

Ssel(C) := max
C∈C

(# selection gates in C)

Although in general, a sorting algorithm in the Oblivious RAM model may not have an efficient
probabilistic-circuit realization, for our concrete constructions this is true. As explained later,
our upper bound results also imply the existence of an (n,K, negl(n))-sorting circuit family for
K = 2o(logn) and a suitable negligible function negl(·), with o(n log n) selector-gates, and o(k·n log n)
circuit complexity where k := logK denotes the word-width for storing a from the domain [K] — the
O(k) factor arises from implementing word-level addition, subtraction, and comparison operations
with O(k) boolean gates.

On the other hand, our lower bounds are stated in terms of the number of ball movements
incurred in the Oblivious RAM model — thus our lower bound results immediately imply lower
bounds in terms of the number of selector-gates for probabilistic sorting circuit families.

A.2 Standard Assumptions of External-Memory Model

Cache associativity and replacement policy. The design of the cache can affect the IO-cost
of an external-memory algorithm. In the fully-associative model, each cache-line from the memory
can be placed in any of the M

B slots in the cache. In an r-way associative model, the cache is
divided into clusters each containing r cache-lines, and any cache-line can be placed in only one
cluster (but can be placed anywhere within that cluster).

If there is no valid slot in the relevant cluster (or the entire cache in the case of full associativity),
some cache-line will be evicted from the cluster back to the memory to make space — which cache-
line is evicted is decided by what we call a “replacement policy”. Common replacement policies in
practical systems include Least Recently Used (LRU) and First-In-First-Out (FIFO) [25,73].

Ideal cache assumptions and justifications. The IO-cost of external-memory algorithms (in-
cluding cache-agnostic algorithms) depend on the design of the cache, including its associativity
and replacement policy. Throughout this paper, we adopt the standard practice in the litera-
ture [6,10,25,31,61] and analyze our algorithms assuming an “ideal cache” that adopts an optimal
replacement policy and is fully associative. It is important to justify why these assumptions extend
to realistic storage architectures, despite the fact that realistic storage architectures are not “ideal”.
These justifications are standard and well-accepted by the algorithms community [6, 10,25,31,61].
Specifically, Frigo et al. [31,61] justify the ideal-cache model by proving that ideal-cache algorithms
can be simulated on realistic storage hierarchies with degraded runtime — but the slowdown is
only a constant factor in expectation. Henceforth, we omit these justifications.

B Oblivious Sorting Lower Bounds in the Indivisible Model

In this section, we prove lower bounds for oblivious sorting in the “indivisible” model. In this
model, we would like to obliviously sort n opaque balls each carrying a k-bit key by the relative
order of the keys. Our lower bounds work for a probabilistic Oblivious RAM model with the
following assumptions:
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• There are O(1) number of CPU registers;

• The CPU is allowed to perform arbitrary computation on the keys (and moreover such compu-
tation is for free in our lower bound which makes our lower bound stronger);

• Whenever the CPU visits a memory location, it may (but does not have to) read the ball in
the memory location into some CPU register, and/or write a ball from some (possibly different)
CPU register into the memory location. Each such memory operation will count towards cost
in our lower bound.

B.1 Preliminaries on Routing Graph Complexity

Let G = (V,E) be a directed acyclic graph. Suppose that G has n inputs and n outputs every an
input node is one that has in-degree 0 and an output node is one with out-degree 0. We say that
A is an assignment from I to O iff A is a bijection from nodes in I to nodes in O. Henceforth, we
also say that G is a routing graph from I to O. Pippenger and Valiant proved the following useful
theorem [60].

Definition B.1. (Routing graph “implementing” some assignment). Let G be a routing graph from
I to O where |I| = |O| = n, and let A be an assignment from I to O. We say that G implements
an assignment A iff there exist n vertex-disjoint paths from I to O.

Theorem B.1 (Pippenger and Valiant [60]). Let A := (A1, A2, . . . , AK) denote a set of assignments
from I to O where |I| = |O| = n, such that each input in I is assigned to K different outputs in O
by the K assignments in A. Let G be a graph that implements every Ai for i ∈ [K]. It holds that
the number of edges in G must be at least 3n log3K.

In our lower bound proof, we shall make use of this theorem to reason about access pattern
graphs of an Oblivious RAM machine.

B.2 Limits of Oblivious Sorting in the Indivisible Model

Theorem B.2. (Oblivious sorting k-bit keys in the indivisible model must take Ω(nk) time for
any k = O(log n)). Fix any integer k = O(log n). Any (possibly probabilistic) oblivious sorting
algorithm in the indivisible model which correctly sorts any input sequence n balls each carrying a
k-bit key must incur at least Ω(nk) expected runtime. Further, this lower bound holds even if for
any input, the algorithm is allowed to err with probability O(1).

Proof. For simplicity, we first prove the following: assuming that the algorithm S achieves perfect
correctness for any input sequence, then it must incur Ω(nk) runtime with probability 1. Without
loss of generality, henceforth we may assume a RAM with two CPU registers — but our proof
easily extends to RAMs with O(1) CPU registers since clearly any such O(1)-register RAM can
be simulated by a 2-register RAM with constant blowup in runtime. Without loss of generality,
assume n is a power of 2, k ≤ log n, and hence K = 2k divides n.

Access pattern as a routing graph. Imagine that there are n balls in memory, and consider
any fixed initial key assignment ~X ∈ [K]n. Recall that the execution of the algorithm S may be
probabilistic, and thus we consider a specific sample path for input ~X that occurs with non-zero
probability. Let G be the sequence of physical access patterns observable in this sample path.
Henceforth we will think of G as a routing graph in which each node is labeled by one or more pairs
of the form (a, t) where a denotes the (physical) memory address and t denotes the time step in
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which this node is created. We assume w.l.o.g. that at every time step, the CPU reads one memory
address, then writes the same memory address, and there is at most 1 occupied register at the end
of each step. Henceforth for convenience we will assume that the occupied CPU register resides at
memory address 0 and all other memory locations reside at addresses 1 or greater. In this graph G,
there are n input nodes corresponding to the n balls initially in memory each labeled with (a, 0) for
a ∈ [n], and there are n output nodes corresponding to the sorted array at the end of the algorithm
S each labeled with (a, T ) where a ∈ [n] and T denotes the runtime of S in this sample path —
note that without loss of generality, we may assume that the output array is copied to addresses
1..n. In every time step t ∈ [T ] of the execution (recall that the CPU accesses exactly one memory
location in every time step):

• Create a new node (0, t) denoting a copy of the CPU’s register at the end of this time step;

• If the CPU accesses some memory location a during this step (there is exactly one such a), then
we create also a node (a, t); further, we draw the following directed edges:

(0, t− 1)→ (0, t), (0, t− 1)→ (a, t),
(a, t− 1)→ (a, t), (a, t− 1)→ (0, t)

• If the CPU does not access a memory location a during this step, then we henceforth use notation
(a, t) as an alias for (a, t− 1), i.e., without actually creating a new node called (a, t).

We stress that the same node may have multiple labels of the form (a, t), since if the node (cor-
responding to some memory address) did not get accessed in some time step, there is no need to
create a new copy of this address.

Since the algorithm has perfect obliviousness, if G is encountered with non-zero probability for
some input (or initial key assignment) ~X ∈ [K]n it must be encountered with non-zero probability
for every input ~X ′ ∈ [K]n. Now since the algorithm also has perfect correctness and is in the
indivisible model, it must be that for every input ~X ′ ∈ [K]n, there exists a permutation of ~X ′

that makes it sorted, and G implements the assignment naturally implied by this permutation —
henceforth if the above is satisfied for some G and some input ~X ′ ∈ [K]n, we say that G explains
the input ~X ′. More intuitively, G explains ~X ′ if subject to the access pattern G, there is a way
to route input balls to output positions such that the output becomes sorted. We thus have the
following fact:

Fact 1. For an algorithm that has perfect correctness and perfect obliviousness, it must be that if G
is enountered with non-zero probability for some input ~X ∈ [K]n then G must explain every input
~X ′ ∈ [K]n.

Complexity of G. We now prove that an access pattern G encountered with non-zero probability
must be sufficiently large in size.

Lemma B.1. Let I = {(i, 0) : i ∈ [n]} and O = {(i, T ) : i ∈ [n]} be input and output nodes of G.
Suppose that an access pattern G can explain any input sequence ~X ′ ∈ [K]n. Then, there exists a
set of assignments A := (A1, A2, . . . , AK) from I to O such that G implements every As ∈ A, and
every input in I is assigned to a distinct output in O in each of the K assignments in A.

Proof. The goal is to identify a set of K inputs denoted { ~Xs}s∈[K], and show that every ~Xs gives
rise to some assignment As that G implements, such that the assignments {As}s∈[K] satisfy the
distinctness condition (i.e., every input is mapped to a distinct output in each As).
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Intuitively, we consider n/K groups each of size K, and every group takes on a distinct key
from [K]. We now form the K inputs by each time shifting these K groups by one group. More
formally, for any z ∈ N, let [z]K be the smallest non-negative integer that equals to z mod K. Let
~Xs be the input sequence (a0, a1, . . . , an−1), where ai is tagged with the key [

⌊
i

n/K

⌋
+ s]K ; that is,

~Xs consists of K groups of size n/K, each group is tagged with a unique key in [K], and the groups
are shifted by s. Now since G can explain ~Xs, it holds that there must exist a permutation of ~Xs

that makes it sorted, and G can implement the natural assignment As defined by this permutation.
It remains to show that the set of assignments {As}s∈[K] must satisfy the aforementioned

distinctness condition — this is straightforward by the definition of these assignments.

By Lemma B.1, the assignments A := (A1, A2, . . . , AK) satisfy the premise of Theorem B.1,
and thus we conclude that the graph G must have at least 3n log3K edges. Observe that each
time step of S incurs at most 4 edges in the construction of G. Therefore it must be that the
runtime of this sample path T ≥ 3

4n log3K = Ω(nk). Since this must hold for any sample path of
non-zero probability given any fixed input sequence, it holds that with probability 1, the program’s
execution time is Ω(nk).

The case of imperfect correctness. It suffices to describe how to extend this proof for the case
when, given any input sequence, the algorithm S succeeds with p = O(1) probability. Without
loss of generality, we assume that p = 1

2 since we can easily readjust the parameters of the proof
for other constants. Since S has perfect obliviousness, we have that for any input sequence the
distribution of the access pattern graph G is the same — and let D denote this distribution on G.

Let X = { ~Xs}s∈[K] denote the set of K input sequences defined in Lemma B.1. Since for any

input ~X, S succeeds with at least p probability, we have that

∀ ~X : Pr
G←$D

[
G can explain ~X

]
≥ 1

2

which implies that

E ~X←$X
EG

[
I(G, ~X)

]
≥ 1

2
(2)

where I(G, ~X) is the indicator function denoting whether G can explain ~X. It suffices to prove
that

Pr
G←$D

[
G can explain at least

1

4
fraction of X

]
≥ 1

10
.

For the sake of contradiction, suppose that

Pr
G←$D

[
G can explain at least

1

4
fraction of X

]
<

1

10
.

We have that

EGE ~X←$X

[
I(G, ~X))

]
≤ 1

10
· 1 +

9

10
· 1

4
<

1

2

This contradicts Equation (2).

B.3 Limits of Stability

As mentioned, our oblivious sorting algorithm is not stable. As the following theorem states, this
is in fact inherent since one cannot hope to achieve o(n log n)-time stable oblivious sort even for
1-bit keys in the indivisible model.
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Theorem B.3. (Stable oblivious sorting of even 1-bit keys in the indivisible model must consume
Ω(n log n) runtime). Any (possibly probabilistic) oblivious sorting algorithm in the indivisible model
which correctly and stably sorts any input sequence of n balls each carrying 1-bit key must incur
at least Ω(n log n) expected runtime. Further, this lower bound holds even if for any input, the
algorithm is allowed to err with probability O(1).

Proof. The proof proceeds in almost identical manner as Theorem B.2. The only modification
necessary is that we now have to prove an equivalent of Lemma B.1 for the case of stable, 1-bit
sorting. This is not difficult to construct by considering the following subset of up to n− 1 number
of 0-1 input sequences: in the i-th such sequence where i ∈ [n], the last i balls are marked with 0
and the remaining balls are marked with 1. We note that this claim no longer holds if the sort is
not required to be stable (and that is why our Partition algorithm, which is not stable, can possibly
work).

B.4 Implications for Probabilistic Sorting Circuits in the Indivisible Model.

Note that a lower bound in such a probabilistic Oblivious RAM model immediately implies a lower
bound in a probabilistic circuit model as described in Section A.1. We thus conclude with the
following immediate corollaries.

Corollary B.1. (Lower bound for probabilistic sorting circuits). Let 0 < ε < 1 be a constant and
K = O(n); for any (n,K, ε)-sorting circuit family C, it must be that Ssel(C) ≥ Ω(n logK).

We may now define a family of circuits for stably sorting 1-bit keys in the indivisible model
in a similar fashion as Definition A.1. We also obtain the following immediate corollary for the
selector-complexity of any circuit family that stably sorts 1-bit keys.

Corollary B.2. (Lower bound for probabilistic 1-bit stable sorting circuits). For any constant
0 < ε < 1, for any circuit family C that stably sorts n balls with 1-bit keys with correctness error ε,
it must be that Ssel(C) ≥ Ω(n log n).

C New Building Blocks

C.1 Deterministic Partitioning

In this section, we describe a deterministic algorithm in the cache-agnostic model for performing
partitioning of 1-bit keys. As mentioned earlier, this can be used as a building block in some of
our algorithms and to improve the runtime of the FunnelOSort algorithm of Chan et al. [20] by a
log logn factor.

C.1.1 Intuition

Given an input array containing n balls each tagged with a 1-bit key, the algorithm DeterministicPart
performs following steps:

• Divide the array into
√
n blocks each of size

√
n.

• Recurse on each
√
n-sized block to partition each block using our DeterministicPart algorithm

itself — let A1, A2, . . . , A√n denote the outcome blocks.
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• Let (P,M)← PurifyHalf(B0, B1) be an algorithm that upon receiving two sorted blocks B0 and
B1, outputs two blocks P and M such that P ∪M = B0 ∪ B1, and moreover, 1) P must be
pure, i.e., it contains either all 0s or all 1s; and 2) M is sorted. Notice that from B0 ∪ B1 it is
guaranteed that we can extract at least one pure block.

• Now leverage this building block PurifyHalf such that we emit
√
n− 1 pure blocks and at most

1 unpure block. To achieve this, do the following steps. Let M = A1. For i = 2 to
√
n, let

(Pi−1,M)← PurifyHalf(M,Ai). At this point, all of P1, . . . , P√n − 1 are pure, and the M block
is the only unpure block.

• Since the
√
n − 1 blocks P1, . . . , P√n−1 are pure, we can write each of these pure blocks as the

row of a matrix. We now recursively call DeterministicPart itself to sort all rows of this matrix
— let the outcome of this step be A′.

• Finally, use an efficient procedure called PartBitonic to combine the sorted outcome M with the
earlier outcome A′ into a single sorted array and output the result.

The PartBitonic algorithm realizes the following abstraction: given a bitonically partitioned (i.e.,
bitonically sorted) array, it outputs a fully partitioned (i.e., sorted) array. Here we say that an
array is bitonically partitioned iff either all the 0s are at the beginning or the end; or all the 1s
are at either the beginning or the end of the array.

To fully instantiate the above algorithm, we also need to instantiate the building blocks PurifyHalf
and PartBitonic. It turns out that it is not difficult to construct an IO-efficient algorithm for these
building blocks in the cache-agnostic model — and in fact in our instantiation later, PurifyHalf
in turn relies on PartBitonic as a building block. The details are described in the full algorithm
description in the next subsection.

C.1.2 Algorithm

We use capital letters A,B,C, . . . to denote arrays, subscripts Ai denote the i-th subarray of
arrayA, and A[i] denotes the i-th element of array A, where indexes start from 1. In addition, A||B
denotes the concatenation of two arrays A,B, and |A| denotes the number of elements in A. To
move elements, the following oblivious operations and their corresponding dummy operations have
identical memory-access pattern. Henceforth, we use them in if-else branches without specifically
stating their dummy counterparts.

• To (or not to) oblivious compare-and-swap two elements, take two elements as input, compare
two keys, and swap two elements if the first key is greater than the second one.

• To (or not to) oblivious swap two consecutive subarrays A1, A2 possibly of different lengths,
copy A2||A1 to a scratch array B and then copy B back and overwrites A1, A2. By copying,
the access pattern depends only on the total length of A1||A2.

• The standard array Reverse algorithm is oblivious.

We say an array A of n elements is partitioned if for all i < j ∈ [n], A[i] ≤ A[j]. Also, an array
A is pure if all elements A[i] ∈ A have the same key. We say an array A of n elements is bitonically
partitioned iff (a) all the 0s are either at the beginning or the end; or (b) all the 1s are either at
the beginning or the end of the array.

Our IO-efficient deterministic partitioning algorithm is described in Algorithms 4, 5, and 6.
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Algorithm 4 Deterministic Partition

1: procedure DeterministicPart(A) // The input A is an array of n elements

2: if n ≤ 2 then
3: If n = 1, return A. Else, return the result of oblivious compare-and-swap A[0], A[1].

4: Parse A as subarrays of size q, denoted as A1, . . . Ap, where q = b
√
nc and p = bn/qc.

Parse the remainder as Ap+1.
5: T ← DeterministicPart(A1)
6: for i from 2 to p do
7: T ′ ← DeterministicPart(Ai)
8: (Bi−1, T )← PurifyHalf(T, T ′) // Put majority to Bi−1 and the remaining to T

9: Let Bp+1 ← DeterministicPart(Ap+1). Let Cp ← PartBitonic(T ||Reverse(Bp+1)).
10: Let ki be the key of the pieces Bi. Transpose the memory layout of {Bi}i∈[p−1] such that

for every j ∈ [q], the elements {Bi[j]}i∈[p−1] are packed contiguously in memory.
11: Sort each pack {Bi[j]}i∈[p−1] by {ki}i∈[p−1] using DeterministicPart.
12: Transpose back the memory layout, let the result be C.
13: return PartBitonic(C||Reverse(Cp)).

Algorithm 5 Purify Half

1: procedure PurifyHalf(A,B) // A,B are arrays such that |A| = |B| = n and both A,B are sorted.

2: Count the number of 0 and 1 keys in all elements of A||B. Let b be the majority.
3: if b is 1 then oblivious Reverse both A,B.

4: Parse A as A1||A2, B as B1||B2, where |Ai| = |Bi| = n/2. Let C ← A1||B1.
5: return (C,PartBitonic(A2||Reverse(B2))).

Algorithm 6 Partition a Bitionically Partitioned Array

1: procedure PartBitonic(A) // A is a bitonically partitioned array of n elements.

2: if n = 1 then return A.
3: if n is odd then let n′ be n− 1, A′ be the subarray of A with first n− 1 elements
4: else let n′ be n, A′ be A.

5: Parse A′ as A1||A2, where |A1| = |A2| = n′/2.
6: for i from 0 to n′/2− 1 do
7: Oblivious compare-and-swap A1[i], A2[i] iff k(A2[i]) < k(A1[i]).

8: Scan A1, get the maximum and minimum keys (m1, n1). Also get (m2, n2) from A2 similarly.
9: if m1 − n1 < m2 − n2 then

10: Oblivious swap A1, A2, A1 ← PartBitonic(A1), oblivious swap A1, A2.
11: else A1 ← PartBitonic(A1) // Perform dummy swap before and after this operation

12: Let B be A1||A2.
13: if n is odd then insert A[n] to B by oblivious compare-and-swap all elements in B.

14: return B.
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C.1.3 Analysis

Correctness. We first argue that PartBitonic correctly outputs a partitioned array by induction.
Observe the for-loop at Line 6 yields two bitonically partitioned arrays A1 and A2. Afterwards,
either A1 is pure with all 0s or A2 is pure with all 1s, and we find it by the maximum and minimum
keys at Line 8. The correctness follows by the induction hypothesis that the impure subarray is
then sorted by PartBitonic recursively.

To see DeterministicPart is correct for all |A| = n, assume by induction that it is correct for all
A′ such that |A′| < n. Note that, after the loop at Line 6, each Bi is pure for all 1 ≤ i < p − 1
by induction hypothesis. Then, both C and Cp are also sorted by induction. It follows by the
correctness of PartBitonic and C||Reverse(Cp) is bitonically partitioned.

Running time. The running time of PartBitonic is O(n) as it performs linear operations and
recurses on the subproblem of half length. Then, denote the running time of DeterministicPart as
T (n). There are 2

√
n recursive calls with at most

√
n elements, and other procedures are linear

time. Hence, for recursion depth k, there are total 2kn1−2−k instances, and each instance costs
O(n2−k) time. The total cost is the sum of all log log n depths,

T (n) =

log logn∑
k=0

2kn = O(n log n).

IO-cost. Recall that M is the cache size, B is the size of a cache line. Observe that PartBitonic
takes O(dn/Be) IO by the argument similar to the running time. The IO-cost of DeterministicPart
is O(d nB e logM n) by solving the summation

C(n) =

log logn−log logM∑
k=0

2kd n
B
e = O(d n

B
e logM n).

Lemma C.1. DeterministicPart is a cache-agnostic and oblivious algorithm such that correctly sorts
1-bit keys in time O(n log n) and IO-cost O(d nB e logM n).

C.2 Move Stripe to Working Buffer

Given a matrix A written down in a row-major manner in memory, a stripe is defined as a set of
consecutive rows from l to r. The following MoveStripe algorithm can copy all elements in the rows
from l to r to a working buffer of equivalent size (in any order), without revealing the location of
the stripe.

Algorithm 7 MoveStripe

1: procedure MoveStripe(A, l, r) // This function is an oblivious and cache-agnostic procedure, it

will move items in the interval [l, r) to a temp memory.

2: Let M be the temporary memory to hold the mixed stripe.
3: Parse A as Z × n

Z matrix, where Z = log6 λ.
4: Move ptr to the first row of M .
5: for i from 0 to Z do
6: if i ∈ [l, r) then // inside the region

7: M [ptr]← A[i], where X[t] denotes the t-th row of matrix X.
Move ptr to next row. If it reaches the end of M , move it to the beginning.

8: return M
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D Sorting Arbitrary-Length but Few Distinct Keys

So far, our algorithms assumed that the key is short in order to overcome the n log n barrier. In
this section, we show how to relax this assumption on the key length as follows. In Section D.1,
we present a simple building block to count few number of distinct keys, and then, using k-wise ε-
independent hash family, we extend the counting algorithm to estimate the number of distinct keys
in Section D.2. Then, in Section D.3, we show how to overcome the n log n barrier for arbitrary-
length keys but assuming that the number of distinct keys is 2o(logn).

Assumptions. In this section, we shall assume that the RAM’s word size is Θ(log n) bits, and
that each key may be large and require L words to store. We assume that word-level addition,
subtraction, comparison, and multiplication operations can be computed in unit cost (cf. in earlier
sections, we did not need unit-cost word-level multiplication).

D.1 Counting Few Number of Distinct Keys

If an input array contains only polylogarithmically many distinct keys, we can count the number of
distinct keys in O(n log log λ) time as described in the following algorithm. The idea is to maintain
a working buffer whose size bucketSize is polylogarithmic. Each time we read in the next batch of
polylogarithmically many elements, union it with the working buffer, and obliviously sort to move
elements of the same key together. Then in one linear scan, for each unique key, we mark only the
first occurrence as distinguished and the remaining as dummy. With another oblivious sort, we
can extract the first up to bucketSize elements with distinct keys (and if there are not enough the
result is padded to bucketSize with dummies).

Finally, the algorithm either outputs FAIL if the working buffer is full or it outputs the number
of distinct, non-dummy elements in the working buffer.

Algorithm 8 Cardinality estimation for small cardinality

1: procedure FewDistinct[bucketSize](A) // Input A is an array. This procedure outputs the

number of distinct keys of A correctly if A contains less than bucketSize elements. Otherwise it outputs

FAIL.

2: Initialize two empty arrays B,C of length bucketSize elements.

3: for i from 1 to
⌈

|A|
bucketSize

⌉
do

4: Copy from A to C the i-th sub-array of length bucketSize.
5: Concatenate arrays B and C, eliminate duplicate elements by sorting, output smallest

distinct elements to B. (Both B and C are padded with dummy elements to achieve
obliviousness).

6: Let count be the number of distinct elements in B.
7: if count = bucketSize then return FAIL else return count

We mainly use FewDistinct with BucketSize = log5 λ. When instantiating FewDistinct[log5 λ]
using ZigZagSort, it runs in time O(n log log λ). To be IO-efficient, FewDistinct[log5 λ] is instantiated

with FunnelOSort, which runs in IO-cost O(d nB e logM/B
log5 λ
B ) but time O(n log2 log λ).

D.2 Counting Distinct Keys

Recall that in our earlier algorithms, we needed the short-key assumption because we used the
expression (maximum key − minimum key + 1) to estimate the number of distinct keys in each
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piece. In this section, we will propose a new oblivious algorithm for estimating the number of
distinct keys accurate up to a constant factor (except with negligible probability).

As mentioned, we assume each key is of L-words such that L ≤ poly(λ) (rather than 1-word as
in previous sections). We use the notation F0(A) (or F0 for short) to denote the number of distinct
keys in the array A as in the literature [28,42]. Our algorithm estimates F0 in O(nαL+nα2 log log λ)
time with negligible failure probability assuming n := |A| ≤ poly(λ).

D.2.1 Preliminaries

We define the problem of cardinality estimation (i.e., estimating the number of distinct keys given
an input array) as follows.

Definition D.1. (Cardinality estimation problem). Given an array of elements x1, x2, ..., xn with
repetitions, we use the notation F0 = |{x1, x2, ..., xn}| to denote the number of distinct elements in
the array. For constants a, b > 0, we say F̃0 is an [a, b]-estimation of F0 iff aF0 ≤ F̃0 ≤ bF0.

k-wise ε-independent hash family. We will leverage a k-wise ε-independent hash family to
sub-sample keys (Meka et al. [54]), and the tail bound of k-wise ε-almost independent variables
(Celis et al. [17]) is needed in the analysis.

Definition D.2. (k-wise ε-almost independent hash function). A hash family H = {h : {0, 1}p →
{0, 1}q} is said to be k-wise ε-almost independent if for any k fixed inputs, their (joint) output
distribution is ε-close to uniform (in statistical distance, where the probability is over the choice of
a function from the family).

Lemma D.1 (Construction 1, [54]). Let k > 1, 2`1 ≥ k`2/ε, and F be the field GF (2`1). Then,
there exists a k-wise ε-almost independent hash family H = {h : F → {0, 1}`2} such that every
h ∈ H can be evaluated in O(log(k`2)) field operations, where each field operation is either an
addition or a multiplication in F, and the seed of h is two elements sampled at random from F.

Lemma D.2 (Lemma 2.2, [17]). Let X1, . . . , Xm ∈ {0, 1} be k-wise ε-almost independent random
variables for some k/2 ∈ N and 0 ≤ ε < 1. Let X =

∑m
i=1Xi and µ = E[X]. Then, for any t > 0,

it holds that

Pr[|X − µ| > t] ≤ 2

(
mk

t2

)k/2
+ ε
(m
t

)k
.

Counting few distinct elements. As described in Appendix D.1, the algorithm FewDistinct
counts the number of distinct elements in an array efficiently and obliviously.

Lemma D.3. For all m,n ∈ N, let A be an array of length n such that consists of at most m− 1
distinct elements. The algorithm FewDistinct[m] is oblivious and computes F0(A) in time O(n logm)
for all A.

Collision-resistant compression family. Let constants t, p ∈ N. We say a family of function
G := {g : {0, 1}tp → {0, 1}p} is a collision-resistant compression iff for all x 6= y ∈ {0, 1}tp,

Pr
g∈G

[g(x) = g(y)] ≤ t2−p.

The following is a family of functions constructed from the pairwise independent hash family
H2 = {h : {0, 1}2p → {0, 1}p} using the Merkle-Damg̊ard construction [23,55].
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• For t > 1, define a family of functions G := {gh1,...,ht−1 : {0, 1}tp → {0, 1}p | h1, . . . , ht−1 ∈
H2}, where

gh1,...,ht−1(x) := ht−1(ht−2(. . . h1(x1||x2)|| . . . xt−1)||xt),

where x is parsed as x1||x2|| . . . xt and xi ∈ {0, 1}p for all i ∈ [t].

Lemma D.4. The family G is collision-resistant compression family.

Proof. Fix any pair x 6= y ∈ {0, 1}tp, there exists i ∈ [t] such that xi 6= yi and for all j ∈ [i+ 1, t],
xj = yj . If g(x) = g(y), then there exists i′ ∈ [i, t] such that

hi′−1(hi′−2(. . . h1(x1||x2) . . . )||xi′) =

hi′−1(hi′−2(. . . h1(y1||y2) . . . )||yi′)

but hi′−2(. . . h1(x1||x2) . . . )||xi′ 6= hi′−2(. . . h1(y1||y2) . . . )||yi′ . That is, i′ is the first collision of h
after xi and yi. By union bound, i ≤ t, and H2 is pairwise independent, the collision probability is
at most t2−p.

A standard instantiation of the pairwise hash family H2 was described by Carter and Weg-
man [16]. Hence, in the RAM model, to compress a long input of L words, it takes O(L) words to
write down one such function g ∈ G, and applying g to an input is by construction oblivious and
completes in O(Lp/w) runtime as field multiplication, where w is the word size.

D.2.2 Algorithm for Estimating Number of Distinct Keys

To estimate F0 of the array A (of length n), the idea is to put keys into log n bins by the hash value
of each key. There exists a small bin such that consists of at most n/ log n (possibly duplicated)
keys, and then we can sort and count keys in such small bin in time O(n). Observing that all
identical keys are put into the same bin, the counting of the small bin is a good approximation of
F0/ log n if F0 is large enough and the hash is random enough. When F0 is small, we can simply
use FewDistinct (Algorithm 8) and obtain a exact number.

Algorithm 9 obliviously searches for the small bin of size at most n/ log n and performs the
estimation. We instantiate the k-wise ε-almost hash family H of Meka et al. (Lemma D.1), where
the parameters are k := 2 log λ

log log λα, ε := 2−4α log λ, `1 := 6α log λ, `2 := log log n, and F = GF (2`1),

where α(λ) := ω(1) is a super constant such that 1 < α ≤ log λ. Note that 2`1 ≥ k`2/ε holds
for all λ ≥ 28 and α > 1. The collision-bounded compression G := {gh1,...,ht−1 : {0, 1}tp →
{0, 1}p | h1, . . . , ht−1 ∈ H2} (see Lemma D.4) is instantiated with parameters p := `1 and t := L/p,
where H2 := {{0, 1}2p → {0, 1}p} is the standard pairwise independent hash family of Carter and
Wegman [16]. The above h ∈ H and g ∈ G take space O(α) and O(L) words respectively, and their
sampling and evaluation are fast and oblivious.

D.2.3 Analysis

To show correctness, note that there exists no collision for all i, i′ such that ai 6= ai′ but g(ai) = g(ai′)
except with negligible probability by Lemma D.4 and union bound. Hence, it suffices to show the
following holds had we generated Hi as Hi ← h(a′i) at Line 4, where a′i ∈ {0, 1}

p for all i.

Lemma D.5. There exists a negligible function negl(·) such that for all A, Distinct(InitHash(A))
outputs a [1

2 ,
3
2 ]-estimation except with probability negl(λ).
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Algorithm 9 Cardinality estimation

1: procedure InitHash(A) // The input A is an array of n keys, where each key ai ∈ A is L-word

long. This procedure pre-calculates all hash values that will be used in the Distinct procedure.

2: Sample at random functions h from H, g from G.
3: For each ai ∈ A, let Gi = g(ai) if L ≥ 12α, Gi = ai otherwise.
4: Let HA := {(ai, Hi, Gi)}i∈[n], where Hi ← h(Gi) is (log log n)-bit for each Gi.
5: return HA.

6: procedure Distinct(HA) // The input HA := {(ai, Hi, Gi)}i∈[n] is an array of n elements that is

generated by InitHash(A). It outputs an estimation of F0(A).

7: Let B1 be the array ((H,G))(a,H,G)∈HA , i.e., using only the latter two entries.
8: for j from 1 to dlog log ne do
9: Partition(Bj) according to Hi,j for all (Hi, Gi) ∈ Bj , where Hi,j is the j-th bit of Hi.

10: Count the number of 0s and 1s in (Hi,j)i∈[n/2j ], let b be the bit with count ≤ n/2j .
11: Let Bj+1 be an array of length n/2j . Obliviously copy into Bj+1 each pair (Hi, Gi) ∈ Bj

such that Hi,j = b (and pad Bj+1 with dummies for obliviousness).

12: Let Ḡ be the array consists of second entries ofBdlog logne+1, i.e., Ḡ = (G)(H,G)∈Bdlog logne+1
.

Sort Ḡ using FunnelOSort.

13: Let est be the number of elements in Ḡ (using a linear scan).
14: Let G′ be the array (Gi)(ai,Hi,Gi)∈HA .

15: Let ans := FewDistinct[log5 λ](G′); return ans if ans 6= FAIL; else return est · log n.

Proof. If F0 < log5 λ, then Distinct outputs an exact number. Otherwise, the algorithm is equivalent
to distribute F0 balls into log n bins using hash values Hi. We claim that for every bin Z, the number
of balls in Z is in the range [1

2µ,
3
2µ], except with negligible probability, where µ = F0/ log n is the

expectation. We note that the bound holds for every bin, and thus how does Distinct choose a bin
doesn’t affect correctness.

To prove the claim, fix a bin Z, let X1, . . . , XF0 be random variables such that Xj = 1 iff

the j-th distinct key hashes to bin Z. Let X =
∑F0

i=1. Note that {Xj}j∈[F0] are ε-almost k-wise

independent random variables, where k = 2 log λ
log log λα, ε = 2−4α log λ. By Lemma D.2, plugging in

m = F0, µ = F0/ log n, t = 1
2µ, we have

Pr[|X − µ| > t] ≤ 2

(
mk

t2

)k/2
+ ε
(m
t

)k
= 2

(
4k log2 n

F0

)k/2
+ ε(2 log n)k

≤ 2−Ω(α log λ) + 2−Ω(α log λ),

where the last inequality follows by F0 ≥ log5 λ and n = poly(λ). Choosing negl1(λ) be the RHS,
we have the claim holds for every bin except with probability negl(λ) := (log n)negl1(λ) by union
bound.

The time complexity of InitHash is dominated by evaluating g and h. Recall that w = Ω(log λ)
is the length of a word, and the field F = GF (26α log λ) is used in both g and h, where a field
operation takes time (6α log λ/w)2 = O(α2) as multiplication. As evaluating g takes O(t) and
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h takes O(log(k`2)) field operations, InitHash runs in time O(nαL + nα2 log log λ). The the run-
time of Distinct depends on β := min(L,α), which is dominated by Partition, FunnelOSort, and
FewDistinct[log5 λ], which are all O(βn log log λ). Also, both InitHash and Distinct are oblivious as
the access pattern doesn’t depend on A or randomness except for the input length n and security
parameter λ.

Summarizing the above, we conclude with the following theorem.

Theorem D.1. Let A an array of n keys, where each key has L words. There exists a negli-
gible function negl(·) such that for n,L ≤ poly(λ), the algorithm InitHash runs in time O(nαL +
nα2 log log λ), Distinct runs in time O(min(L,α)n log log λ), and the pair (InitHash,Distinct) is obliv-
ious and outputs a [1

2 ,
3
2 ]-estimation except with probability negl(λ).

IO-cost. We now analyze the IO-efficiency of the instantiation using the IO-efficient FewDistinct.

Corollary D.1. Assuming tall cache and wide cache-lines, InitHash consumes O(dnLB e) IO-cost,

and Distinct consumes O(dβnB e) IO-cost and time O(βn log2 log λ), where β = min(L,α).

Proof. By tall cache and wide cache-line assumption, we choose α ≤ log0.5 λ = o(B). The IO-cost
of InitHash is dominated by evaluating g on L words as each evaluation of h needs only O(α) words,
which fits into the cache of size M .

The IO-cost follows the fact that Partition, FunnelOSort the array Bdlog logne+1 of length n
logn ,

and FewDistinct are all O(dβnB e) under the tall cache and wide cache-line assumption, where β
in logarithmic factors are canceled under the assumption. The time complexity follows by the
dominating term of FewDistinct, O(βn log2 log λ).

D.3 Sorting Arbitrary-Length but Few Distinct Keys

In the previous Sort algorithm (Algorithm 3), we assumed that keys are short integers in the domain
[K]. In this section, we relax this assumption — instead of assuming that keys are short, we assume
that the number of distinct keys is small relative to n but the keys can be from a large domain.
Henceforth let K̂ denote the an upper bound on F0, i.e., the number of distinct elements in the
input — we assume that the algorithm knows K̂. To achieve this, we rely on our earlier distinct
element estimation algorithm Distinct — we will show that a constant-factor approximation suffices.

Detailed algorithm. Before calling SortArbitrary as shown in Algorithm 10, we begin by per-
forming the following initialization procedure. Given an input array A, we begin by 1) applying
the collision-resilient compression function to compress each long key; and 2) applying a k-wise,
ε-independent hash function to each compressed key. Note that the above initialization procedure
is performed only once upfront, and the resulting compressed keys and their hash values will be used
by all instances of Distinct algorithms subsequently. Therefore, in the description of SortArbitrary,
we simply assume that each input element is already tagged with and a compressed key and its
hash value.

After this initialization procedure, we proceed with the main algorithm (i.e., SortArbitrary) as
follows. As before, we will divide the input into polylogarithmically sized bins and obliviously
sort each bin. We now write the bins as columns and divide the resulting matrix into pieces. We
then apply the Distinct algorithm to estimate the number of distinct elements in each piece and
obliviously sort pieces in increasing order of the estimation. To upper-bound the real number of
distinct elements in each piece, the upper bound of the previous Sort is multiplied by 3 as Distinct
outputs [1

2 ,
3
2 ]-estimations (except with negligible probability). Now we recurse on each piece using
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Algorithm 10 Sort Arbitrary-Length but Few Distinct Keys

1: procedure SortArbitrary(A, K̂) // The input A is an array of

n elements, each element is a tuple (key , H,G), where key is L-word long and F0(A) is at most K̂, and

H,G are the hashes generated by InitHash. Parse the array as a Z × n
Z matrix, where Z = log6 λ.

2: if |A| < 2Z then
3: return ZigZagSort(A)

4: if K̂ ≤ 2 then return Partition(A)

5: Perform RandCyclicShift on each row of A.
6: Sort columns: AT ← Transpose(A). ZigZagSort each row of AT . A← Transpose(AT ).
7: Let p := 2 if K̂ < 64, otherwise p := blog K̂c. Let q := Z

p . Parse matrix A as p pieces,

A1, . . . , Ap, where each piece Aj is a q × n
Z sub-matrix of A.

8: for i from 1 to p− 1 do
9: Sort crossover stripes: ZigZagSort the boundary between Ai and Ai+1. That is, sort

all elements between row iq − δ and row iq + δ.

10: for i from 1 to p do
11: Estimate the number of distinct keys in Ai:

K̃i ←
{

FewDistinct[64](Ai) if K̂ < 64
Distinct(Ai) otherwise.

12: Sort all pieces {Ai}i∈[p] obliviously in increasing order of K̃i:

{Bi}i∈[p] ← ZigZagSort({Ai}i∈[p]). We assume each Bi remembers its original piece index.
13: for i from 1 to p do

14: Sort sub-problems:

{
SortArbitrary(Bi, d K̂

p−i+1e) if K̂ < 64

SortArbitrary(Bi,min(3d K̂
p−i+1e, K̂)) otherwise.

15: Obliviously sort {Bi}i∈[p] by their original piece indexes: {Ci}i∈[p] ← ZigZagSort({Bi}i∈[p]).
16: return {Ci}i∈[p].

this estimated distinct count (multiplied by 3). Finally, the base cases of K̂ < 64 are implemented
with the exact distinct counting algorithm FewDistinct (see Appendix D.1).

In our detailed algorithm description (Algorithm 10) ZigZagSort by default sorts in increasing
order of key if not specified.

Correctness. We first argue that in the execution of SortArbitrary, all instances of Distinct output
[1
2 ,

3
2 ]-estimation except with negligible probability. For each Distinct, the failure probability is

negligible by Theorem D.1. We take union bound over polynomially many Distinct, and it follows the
total failure probability is still negligible. Note the union bound holds even though the probabilities
of two Distinct are not independent (as they depend on the same g and h, sampled once upfront).

The following variant to bound the number of distinct keys in pieces follows from a proof that
is similar to Lemma F.6 — thus we state the following lemma without repeating the proof.

Lemma D.6. Let A be an array of at most K̂ distinct keys, A := {A1, . . . , Ap} be a piecewise-
ordered partition of A. Then, for every i ∈ [p], there exist at least i pieces of A′ ∈ A such that A′

has at most d K̂
p−i+1e distinct keys.
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Compared to Sort integers (Algorithm 3), the only difference is that SortArbitrary works on
estimated values K̃i when K̂ ≥ 64, and it suffices to show the relaxed sub-problem SortArbitrary(Bi,

min(3d K̂
p−i+1e, K̂)) is correctly solved except with negligible probability. Suppose that A has at

most K̂ distinct keys. Condition on the good event such that {A1, . . . , Ap} is a piecewise-ordered
partitioning of A, and all K̃i are [1

2 ,
3
2 ]-estimation of the real F0(Ai). It suffices to observe the

following fact, and thus, by union bound, SortArbitrary is correct except with probability negligible
in λ.

Fact 2. Conditioning on the good event stated above, for any i ∈ [p], if the real F0(Ai) ranks j
among all real {F0(At) : t ∈ [p]} and the estimation K̃i ranks j̃ among all estimation {K̃t : t ∈ [p]}
such that j̃ < j, then F0(Ai) ≤ 3d K̂

p−j̃+1
e.

Proof. Assume for contradiction that F0(Ai) > 3d K̂
p−j̃+1

e. By [1
2 , ·]-estimation, K̃i >

3
2d

K̂
p−j̃+1

e.
Also, as K̃i ranks j̃ < j, by pigeon hole principle, there exists a piece Ai∗ such that has real rank
≤ j̃ but estimated rank > j̃. This cannot happen: by ranking ≤ j̃ and Lemma D.6, it holds that

F0(Ai∗) ≤ d K̂
p−j̃+1

e , which implies K̃i∗ ≤ 3
2d

K̂
p−j̃+1

e by [·, 3
2 ]-estimation; it follows K̃i∗ < K̃i and

contradicts that the estimation K̃i∗ ranks > j̃.

Running time. The overall sorting consists of one InitHash and one SortArbitrary. To InitHash,
it takes O(nαL + nα2 log log λ) time. To SortArbitrary, it takes ĉ1 = c1nL log log λ to perform
column-wise ZigZagSort for some constant c1, and then the recursion of SortArbitrary is

T (n, K̂) =

p∑
i=1

T

(
n

p
,min(3d K̂

p− i+ 1
e, K̂)

)
+ ĉ1,

where the base cases are: if |A| < 2Z, then it is ZigZagSort and runs in time O(nL log n); if K̂ < 64,
then it is exactly SortSmall and runs in time O(n log K̂ log log λ). The recurrence and hence the
solution are identical to that of Sort (Lemma F.7) except with a larger constant. Following the
same induction and induction hypothesis, we have the inequality

T (n, K̂) ≤ (cnL log log λ)
log K̂ − log p+ log(3)

log log(3K̂/p)
+ ĉ1.

Choosing sufficiently large c ≥ c1/0.16 such that cn log K̂

log log K̂
log log λ bounds both base cases, we

have

T (n, K̂) ≤ O

(
nL

log K̂

log log K̂
log log λ

)

by the fact that log K̂−log p+log(3)

log log(3K̂/p)
≤ log K̂

log log K̂
− 0.16 for all K̂ ≥ 64.

Summarizing the above, we conclude with the following theorem.

Theorem D.2. Let A an array of n keys and at most K̂ distinct keys, where each key has L
words. There exists a negligible function negl(·) for all A such that n, K̂, L ≤ poly(λ), the pair

(InitHash, SortArbitrary) obliviously sorts A in time O(nαL + nα2 log log λ + nL log K̂

log log K̂
log log λ)

except with probability negl(λ).

44



Remark 2. Compared to the earlier Sort algorithm in Section 5, we remark that SortArbitrary has
a couple more advantages (even when the key space is small): 1) Sort requires that the subtraction
operation be well-defined on the key space (w.r.t. the ordering) whereas SortArbitrary requires only a
comparison operator on the key space (and yet SortArbitrary is not comparison-based sorting since
it needs to evaluate hash functions over keys); and 2) even when the key space K is small, if the
number of distinct keys K̂ is much smaller than the key space K, SortArbitrary can be more efficient
than the earlier Sort algorithm.

If keys are L-word long and L can be greater than cache size M , then just comparing two
keys costs L/B IOs. Hence, the IO-cost is simply runtime divided by cache-line size B in the
cache-agnostic model.

E Applications to Other Open Problems

E.1 Tight Compaction

Tight compaction is the following problem: given an input array containing n real or dummy
elements, output an array where all the dummy elements are moved to the end of the array13.
Oblivious compaction is a fundamental building block — in fact, the large majority of existing
oblivious algorithms [50, 57] as well as ORAM/OPRAM schemes [7, 19, 32, 33, 37, 45] have adopted
compaction as a building block. Goodrich phrased an open question in his elegant paper [35]:

Can we achieve tight compaction in linear IO?

As mentioned earlier, the probabilistic selection network construction by Leighton et al. [47]
can easily be extended to perform tight compaction in O(n log logn) time — however the resulting
algorithm would not have good IO efficiency when implemented on a RAM machine. It is obvious
that IO-efficient oblivious sorting algorithm for the 1-bit-key special case could answer Goodrich’s
open question as stated in the following corollary.

Corollary E.1. (Tight compaction in almost linear time and linear IO). There exists a negligible
function negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction) which,
except with negl(λ) probability, correctly achieves tight compaction over n real or dummy elements
in O(n log log λ) time and with O(n/B) IOs assuming the cache size M ≥ log1.1 λ (which is satisfied
under the standard tall cache and wide cache-line assumptions).

Goodrich stated a notion of “order-preserving” for tight compaction which is the same as the
standard stability notion for sorting. Our tight compaction algorithm is not stable but our 1-bit-
key stable sorting lower bound (Theorem B.3) rules out the existence of any o(n log n)-runtime
oblivious algorithm for tight stable compaction in the indivisible model (since from tight stable
compaction one can easily construct oblivious sorting for 1-bit keys).

E.2 Selection

We consider the selection problem studied frequently in the classical algorithms literature [13, 47]:
given an input array containing n number of (key, value) pairs, output the k ≤ n pairs with smallest
keys. We note that Goodrich [35] considered a much weaker selection abstraction in which only

13This formulation is slightly stronger than Goodrich’s [35]. Unlike Goodrich’s formulation, here our algorithm is
not aware of the number of real elements.
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the k-th smallest element is required to be output (henceforth we refer to his variant as the weak-
selection problem). Goodrich [35] showed that weak-selection can be realized with O(n/B) IOs and
almost linear time if the algorithm knows the cache’s parameters M and B. It is not too difficult to
extend Goodrich’s algorithm to realize (strong) selection for k = o(n/ log2 n) — however, for larger
k values, e.g., k = O(n), a straightforward extension of their algorithm would result in Ω(n log n)
since they lack an efficient tight compaction building block (which they phrased as an open question
in their paper).

Using our oblivious tight compaction algorithm, we can easily devise a linear IO, almost linear-
time selection algorithm that not only selects all k smallest elements for any k ≤ n, but also is
cache-agnostic. The idea is simple:

1. First, as we explain in more detail below, we rely on an oblivious variant of Demaine’s median
algorithm [25] (which is a modification of the classical, linear-time median algorithm by Blum
et al. [13]) to find the element of the k-th rank14.

2. Next, in one scan, we mark all elements greater than k as dummy, and we call tight compaction
to suppress all dummies.

It thus suffices to describe how to find the element of the k-th rank. We first describe Demaine’s
cache-agnostic selection algorithm which proceeds as follows. First, divide the input array into
groups of 5 and find the median of every 5 elements. Then the algorithm recurses and finds the
median of the medians. Then in a partitioning step, the elements are partitioned into a set smaller
than this median (of the medians) and a set that is larger than or equal to this median. Finally, the
algorithm recurses on the partition which contains the element of the desired rank. This algorithm
is not oblivious due to two reasons:

1. First, Demaine’s implementation of the partitioning step is not oblivious.

2. Second, we cannot reveal how many elements fall on each side of the median (of the medians).

In light of these issues, we make the following modifications to Demaine’s algorithm.

• First, we rely on our new Partition algorithm to perform the partitioning step in an oblivious
manner.

• Second, since we cannot reveal how many elements are on each side of the median of the median,
no matter which side we recurse on, we always overapproximate and use 7

10n as the length of
the array to recurse on — note that the algorithm guarantees that the number of elements on
either side must be bounded by 7

10n.

• Third, due to the conditions necessary for our probabilistic analysis, whenever the problem size
is smaller than log6 λ, we stop the recursion and simply rely on FunnelOSort to find the element
of the desired rank.

It is not difficult to see that this modified algorithm achieves O(n log logn) runtime and con-
sumes O(n/B) IOs whenever M ≥ log1.1 λ (which is satisfied under the standard tall cache and
wide cache-line assumptions). This gives rise to the following corollary:

14 Alternatively, the following variant of our Partition will also work: sort all buckets, then sort the stripe covering
the k-th element, and then the median of the sorted stripe is the global k-th element with overwhelming probability;
moreover, the first piece (before the k-th element) contains all k smallest element with overwhelming probability.
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Corollary E.2. (Selection in almost linear time and linear IO). There exists a negligible function
negl(·) and a cache-agnostic, oblivious algorithm (with an explicit construction) which, except with
negl(λ) probability, correctly achieves selection over n elements in O(n log log λ) time and with
O(n/B) IOs assuming the cache size M ≥ log1.1 λ (which is satisfied under the standard tall cache
and wide cache-line assumptions).

E.3 Additional Applications

Although oblivious algorithms aroused significant interest in the security and architecture commu-
nities due to emerging applications such as cloud outsourcing [24, 37, 66, 74] and secure processor
design [29, 49, 51, 64], the available toolbox for designing oblivious algorithms in practical applica-
tions is in fact embarrassingly small in comparison with our rich body of knowledge on classical
algorithms for (non-oblivious) RAMs.

Our work also enriches the toolbox for oblivious algorithms. For example, Goodrich and Mitzen-
macher [37] and others [50, 57] have shown that any algorithm that has an efficient representation
in a MapReduce model (with a streaming reduce function) can be obliviously computed asymp-
totically faster than the best known ORAM scheme [21, 45, 71]. Goodrich and Mitzenmacher’s
compiler [37] that converts a streaming MapReduce program to an oblivious form makes use of
oblivious sort to aggregate keys of the same value. Thus, for cases where the key space is small,
our results will immediately improve both the runtime and IO efficiency of such a compiler. This
observation has numerous applications and we give some examples below:

• Histogram. Histogram is efficiently expressible in the streaming-MapReduce framework, our
results immediately imply that there exists a o(n log n)-time oblivious algorithm for evaluating
histograms with 2o(logn) distinct bins.

• K-means. K-means is a well-known algorithm for performing clustering of data. Each iteration
of the K-means algorithm reassigns each data point to the nearest cluster, and then updates the
cluster centers by averaging. Our results imply that for K-means where K = O(log log n), each
iteration of the algorithm can be obliviously evaluated in O(n log log n) time and O(n/B) IOs
(assuming standard cache assumptions) where n denotes the number of data points.

F Deferred Proofs

F.1 Proof of Theorem 5.1

Below, we prove the correctness of SortSmall (Algorithm 2) in Lemma F.2, analyze the running
time in Lemma F.3 and the IO-cost in Lemma F.4.

Lemma F.1 (Piecewise-ordered partition). Let m be the median key in A. There exists a negligible
function negl(·) such that after we sort the crossover stripe, the maximum element in the top half is
at most m and the minimum element in the bottom half is at least m except with probability negl(λ).

Proof. We prove the statement of the top half, and the bottom half follows symmetrically. Let A
be the Z × n

Z matrix after RandCyclicShift. For each element Aij , define the random variable Xij

as

Xij :=

{
1 if Aij ≤ m
0 if Aij > m

.
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Let random variable Xj :=
∑Z−1

i=0 Xij be the number of keys in column j that is at most m. For
every column j, observe that the expectation E[Xj ] is the same value µ = (

∑
i

∑
j Xij)/n. For

every j, the following Hoeffding’s inequality holds (similar to Lemma 4.1):

Pr(|Xj − µ| ≥
1

2
δ) ≤ 2e−2

(log4 λ)2

4Z = 2e−0.5 log2 λ.

Considering random variables Ymax := maxj{Xj} and Ymin := minj{Xj}, we have Ymax − Ymin < δ

except with probability negl(λ) := n
Z 2e−0.5 log2 λ by union bound. We say that the conceptual mixed

stripe (after sorting columns) is the rows between Ymin and Ymax. Conditioning on the event that
Ymax − Ymin < δ, i.e., the height of the mixed stripe is less than δ, we consider the location of the
conceptual mixed stripe in the following cases.

• If the mixed stripe is totally in the bottom half, i.e., Ymin ≥ Z
2 , then there are at least Z

2
elements greater than m for every column of A. It follows that after sorting the crossover
stripe, every element is at most m in the top half.

• If the mixed strip is on the boundary of the top and bottom half, i.e., Z
2 − δ ≤ Ymin <

Z
2 ,

then the mixed stripe of height δ is totally covered by the crossover stripe of height 2δ. Note
that any element a such that a > m and in the top half must be in the crossover stripe by
Z
2 − δ ≤ Ymin and Line 5(c). Hence, after sorting the crossover stripe, any a > m must be in
the bottom half because there are at most n/2 such a. The statement of the top half follows
by the contraposition.

Note that the mixed stripe cannot be totally in the top half (Ymin <
Z
2 − δ) while conditioning

on Ymax−Ymin < δ (otherwise Ymax <
Z
2 , and then m cannot be the median). It follows that every

element in the top half is at most m.

After sorting the crossover stripe, we say the top and bottom half pieces form a piecewise-ordered
partition of A iff the partition satisfies the median property as stated in the above Lemma F.1.
Now, we prove the correctness of SortSmall using the following fact and union bound.

Fact 3. If the top and bottom halves is a piecewise-ordered partition of A, then at least one in the
two pieces has at most dK2 e distinct keys.

Lemma F.2. There exists a negligible function negl(·) such that for any input array of n elements
and keys from the domain [K], SortSmall correctly sorts the array with probability 1− negl(λ).

Proof. If all partitions of A in the recursive SortSmall are piecewise-ordered, and all base-case
Partitions are correct, then SortSmall outputs correctly by Fact 3. By taking union bound over
Lemma F.1 and Theorem 4.1, the bad event happens with probability negligible in λ as there are
at most n crossover stripes and K Partitions.

Lemma F.3. The algorithm runs in time O(n logK log log λ) for all n ≥ λ.

Proof. Let c0, c1 be constants such that FunnelOSort runs in time c0n log n log log λ and Partition
runs in time c1n log log λ. Denote T (n,K) as the runtime of SortSmall on n elements in the domain
[K]. Observe that sorting a column takes a constant number of Partition as Selection is implemented
by Partition. Hence, the recursion of runtime is

T (n,K) = T
(n

2
,K
)

+ T

(
n

2
,

⌈
K

2

⌉)
+ c′1n log log λ,
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where c′1 > c1 is the constant absorbing the runtime of all other linear-time operations. We prove
by induction that the property T (n,K) ≤ c · n logK log log λ holds for all positive integer n and

K ≥ 2, where c :=
c′1

log 1.3 is a constant. For two base cases,

1. If n < 2Z, the runtime is not bounded by c · n logK log log λ. We set T (n,K) = 1 in the
recursion and will sum up this term later.

2. If K = 2, the runtime is c1n log log λ ≤ c · n logK log log λ.

Assuming the induction hypothesis holds: for all n′ < n, K ′ ≤ K, T (n′,K ′) ≤ c · n′ logK ′ log log λ.
To prove that T (n,K) ≤ c · n logK log log λ holds, we substitute the recursion,

T (n,K) ≤ c · n2 logK log log λ

+c · n2 log dK2 e log log λ+ c′1n log log λ
≤ c · n logK log log λ
−(log 1.3)c · n log log λ+ c′1n log log λ

where the second inequality holds by dK/2e ≤ K/1.3 for all K ≥ 2. By c = c′1/(log 1.3), it
follows that T (n,K) ≤ c · n logK log log λ. Now, the base case, n < 2Z, which takes time
O(2Z(log 2Z) log log λ). If logK ≥ log log λ, then, there are at most n/(2Z) such base cases, and
thus the total time of all such base cases isO(n log2 log λ), which is dominated byO(n logK log log λ).
Otherwise, logK < log log λ, then most elements go to the K = 2 base case, and only a small frac-
tion of elements go to n < 2Z base case: it takes (log n − log 2Z) recursive calls to reach n < 2Z,
there are at most logK − 1 such call has K divided by 2 (it is K = 2 otherwise), and thus the
number of such base cases is

logK−1∑
i=0

(
log n− log 2Z

i

)
≤
(

log n− log 2Z

logK − 1

)
logK

≤
(

(log n− log 2Z)e

logK − 1

)logK−1

logK,

where the RHS is at most (e log n)logK−1 logK. Given that n = λc
′

for some constant c′, it
follows that the multiplication of (e log n)logK−1 logK and O(2Z(log 2Z) log log λ) is bounded by
O(n logK log log λ). Hence, T (n,K) = O(n logK log log λ).

Lemma F.4. Assuming tall cache and wide cache-line, SortSmall runs in IO-cost O(d nB e logK).

Proof. The IO-cost has a similar recursion,

C(n,K) = C(
n

2
,K) + C(

n

2
,
K

2
) +O(d n

B
e logM log λ),

where the base case n < 2Z is O(dZB e logM
B
dZB e) by FunnelOSort, and the base case K ≤ 2 is

O(d nB e logM log λ) by Partition. Hence, the total IO-cost is O(d nB e(logK logM log λ+logM
B
d log6 λ

B e)).
Recall that wide cache-line assumes B ≥ logc n for c ≥ 0.55 and tall cache assumes M ≥ B2, the
IO-cost is bounded by O(d nB e logK).

This concludes the proof of Theorem 5.1.
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F.2 Proof of Theorem 5.2

We show the correctness by proving the following Lemma F.5 and F.6. Then, the running time is
analyzed in Lemma F.7 by solving the recursion.

Correctness. The following Lemma is the counterpart of Lemma F.1, and their proofs are identical
except for that the element of rank tn

p is used instead of the median. Thus the proof of the following
lemma is omitted.

Lemma F.5. For every t ∈ {1, 2, . . . , p− 1}, let mt be the element of rank tn
p in A (which should

be sorted to the tZ
p -th row of A). After sorting the crossover stripes, let Topt be the piece above the

tZ
p -th row, and Bottomt be the piece below the row. There exists a negligible function negl(·) such

that the maximum element in Topt is at most mt and the minimum element in Bottomt is at least
mt except with probability negl(λ).

After sorting the crossover stripes, we extend the terminology and say that A1, . . . , Ap is a
piecewise-ordered partition of A iff for every t ∈ {1, 2, . . . , p − 1}, mt partitions A correctly as
stated in Lemma F.5. Now, conditioning on the event that {Ai}i∈[p] is piecewise-ordered, we show
that there exist many pieces such that consists of significantly reduced key domain.

Lemma F.6. Let A be an array of key in the domain [K], A := {A1, . . . , Ap} be a piecewise-ordered
partition of A. Then, for every i ∈ [p], there exist at least i pieces of A′ ∈ A such that the domain
of A′ is at most d K

p−i+1e.

Proof. Define the set Ai := {A′ ∈ A : A′ has at most d K
p−i+1e distinct keys} for every i ∈ [p].

Equivalently, the lemma states that |Ai| ≥ i. It suffices to prove the property holds had {Ai}i∈[p]

was totally sorted as the domain of each Ai are identical. We prove that |Ai| ≥ i holds for every
i ∈ [p] by induction.

For i = 1, let Kj be the domain of the piece Aj , Kmin := minj{Kj}j∈[p]. Then, the domain
of A is at least pKmin − (p − 1), where p − 1 deducts the double counting on (p − 1) boundaries.
Solving pKmin − (p− 1) ≤ K, we have Kmin ≤ dK/pe, and hence the property holds for i = 1. For
any i > 1, assume by induction hypothesis that the property holds for i − 1, i.e., |Ai−1| ≥ i − 1.
Considering the p − i + 1 pieces of largest domain, the union domain of all such pieces is at most
K. Hence, there must exists a piece A′ /∈ Ai−1 such that has domain at most d K

p−i+1e by the same
argument as i = 1. Observing Ai−1 ⊆ Ai and |Ai−1| ≥ i− 1, it follows |Ai| ≥ i.

By Lemma F.5 and Lemma F.6, we conclude that Sort is correct except with negligible proba-
bility.

Time complexity. Recall that in Algorithm 3 osort is instantiated with Zigzag sort [36]. We now
analyze the algorithm’s runtime for this specific instantiation.

Lemma F.7. The algorithm Sort runs in time O(n logK
log logK log log λ).

Proof. Let c0, c1 be constants such that Zigzag sort runs in time c0n log n and SortSmall runs in
time c1n logK log log λ. Denote T (n,K) as the runtime of Sort on n elements in the domain [K].
Observe that all operations are linear-time except for recursion, sorting columns, and sorting pieces.
Sorting columns takes time 6c0n log log λ, and sorting pieces takes time 2c0n log p ≤ 2c0n log logK ≤
4c0n log log λ for K ≤ λc2 , where c2 is a constant. (Recall that the key length is at most word length,
which is O(log λ), which implies K ≤ λc2 .) Hence, the recursion of runtime is

T (n,K) =

(
p∑
i=1

T (
n

p
,
K

i
)

)
+ c′0n log log λ,
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where c′0 ≥ 10c0 + 1 is the constant absorbing the runtime of all other linear-time operations. We
prove by induction that the property T (n,K) ≤ c · n logK

log logK log log λ holds for all positive integer

n and K ≥ 64, where c := max(
c′0

0.39 , 3c1) is a constant. The property holds for two base cases:

1. If n < 2Z, the runtime is c0n log n < c0n(log 2Z) ≤ c · n logK
log logK log log λ (recall that Z =

log6 λ).

2. If K ≤ 64, the runtime is c1n logK log log λ ≤ c · n logK
3 log log λ ≤ c · n logK

log logK log log λ.

Assuming the induction hypothesis holds: for all n′ < n, K ′ ≤ K, T (n′,K ′) ≤ c·n′ logK′

log logK′ log log λ.
To prove that T (n,K) ≤ c · n logK log log λ holds, we substitute the recursion,

T (n,K) =
(∑p

i=1 c ·
n
p

log (K/i)
log log (K/i) log log λ

)
+ ĉ

≤
(

cn
p log log(K/p) log log λ

∑p
i=1 log (K/i)

)
+ ĉ,

where ĉ is c′0n log log λ for short. Note that
∑p

i=1 log (K/i) = p logK − log(p!) ≤ p(logK − log p)
by log(p!) ≥ p log p. By p = logK, we have

T (n,K) ≤ cn(log log λ)
logK − log logK

log(logK − log logK)
+ ĉ.

Note the fact that g(x) := x
log x −

x−log x
log(x−log x) > 0.39 for all x ≥ 6 (as the derivative is positive). By

K > 64, it follows that logK−log logK
log(logK−log logK) <

logK
log logK − 0.39, and hence the induction holds for all c

such that 0.39c ≥ c′.

This concludes the proof of Theorem 5.2.
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