
A preliminary version of this paper appears in the ACM Computer and Communications Security
(CCS) Conference, 2017. This is the full version.

Defending Against Key Exfiltration:

Efficiency Improvements for Big-Key Cryptography

via Large-Alphabet Subkey Prediction

Mihir Bellare1 Wei Dai2

September 2017

Abstract

Towards advancing the use of BIG keys as a practical defense against key exfiltration, this
paper provides efficiency improvements for cryptographic schemes in the bounded retrieval model
(BRM). We identify probe complexity (the number of scheme accesses to the slow storage
medium storing the big key) as the dominant cost. Our main technical contribution is what
we call the large-alphabet subkey prediction lemma. It gives good bounds on the predictability
under leakage of a random sequence of blocks of the big key, as a function of the block size. We
use it to significantly reduce the probe complexity required to attain a given level of security.
Together with other techniques, this yields security-preserving performance improvements for
BRM symmetric encryption schemes and BRM public-key identification schemes.

1 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported
in part by NSF grants CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from Microsoft
corporation.

2 Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: weidai@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~weidai/. Supported
in part by a Powell Fellowship and grants of first author.

1

Contents

1 Introduction 3

2 Preliminaries 6

3 Large-Alphabet Subkey Prediction 8
3.1 The Problem . 8
3.2 Subkey Prediction Theorem . 9
3.3 Proof of Theorem 1 . 12

3.3.1 Proof of Lemma 7 . 16
3.3.2 Proof of Lemma 9 and Lemma 10 . 18

3.4 Multi-challenge Subkey Prediction . 20

4 Big-Key Symmetric Encryption 21
4.1 Proof of Theorem 15 . 22

5 Big-Key Identification 25
5.1 Proof of Theorem 16 . 32

6 Acknowledgements 35

References 35

A Proofs of Lemmas 2, 3, and 4 37

B A Rejection Sampling Lemma 39

2

1 Introduction

This paper is concerned with the threat of key exfiltration. This means attacker-planted malware
on the key-storing system uses the system’s network connection to convey the key to a remote
accomplice. A line of theoretical work has suggested a mitigation, called the Bounded Retrieval
Model (BRM) [13, 12, 9, 2, 1], which involves using big keys. BKR [4] initiated an effort to take
the BRM (they call it big-key cryptography) to practicality. We continue this effort. We identify
probe complexity (the number of scheme accesses to the slow storage medium storing the big
key) as the dominant cost. Our large-alphabet subkey prediction lemma allows us to minimize the
probe complexity required to reach a given level of security, thereby optimizing storage usage. We
use this to obtain efficiency improvements for big-key symmetric encryption [4]. We then provide
an additional lemma on polynomial-evaluation entropy preservation, and use the two lemmas in
conjunction to obtain efficiency improvements for the ADW big-key identification scheme [2].

Large-alphabet subkey prediction. Let b ≥ 2 be an integer representing the block size in a
storage system, for example b = 32 or b = 64 for words in memory, or b = 8 · 512 (512 bytes) for a
typical hard-disk drive. Let q = 2b be the alphabet size, and [q] = {0, 1, . . . , q−1} the corresponding
alphabet. Let K = (K[0], . . . ,K[k − 1]) ∈ [q]k be a string over [q] of length k, randomly chosen.
It represents a (big) key stored in our storage system as a sequence of k blocks. We imagine that
an adversary-chosen function Lk: [q]k → [q]` (representing adversary-implanted malware, and here
called the leakage function) is applied to K, and the result L (representing exfiltrated information,
here called the leakage), is provided back to the adversary. Think of ` as somewhat smaller than
k, for example ` ≤ k/10, so that the leakage, although not total, is certainly non-trivial. Despite
this, we wish to make secure use of the big key, specifically to (repeatedly) extract “small” keys
(τ ≥ 1 blocks, for a parameter τ) for use with conventional cryptography. In any such extraction,
we make τ random but distinct probes i1, . . . , iτ ∈ [k] = {0, 1, . . . , k − 1} into K to determine J =
K[i1] . . .K[iτ] as the τ -block short key. Given the leakage L and the probe positions i1, . . . , iτ ,
the adversary aims to predict (compute in its entirety) J . Two metrics (see Section 3 for precise
definitions of what we discuss next) are of interest. First is the subkey prediction advantage

Advskp
q,k,τ (`) , (1)

defined as the maximum probability that an adversary can compute J , the maximum being over all
leakage functions Lk returning ` blocks and over all adversary strategies. It is useful to let k∗ = kb
denote the amount of storage occupied by the big key in bits, and, correspondingly, `∗ = `b the
amount of allowed leakage in bits. (We will want to fix these and vary b, thereby defining k and
`.) Now, in usage, we would ask for a certain number s of bits of security (for example s = 128),
meaning we want the subkey prediction advantage to be at most 2−s, and then want to know the
number τ of probes it takes to get there. This is the probe complexity,

Probesk∗,`∗,s(b) = min
{
τ : Advskp

2b,k∗/b,τ
(`∗/b) ≤ 2−s

}
. (2)

The probe complexity will be our cost in accesses to a potentially slow storage system, like a disk,
and for effiency of the overlying big-key scheme, we want to minimize it. To this end, Theorem 1
gives a good upper bound on the subkey prediction advantage, whence we obtain a good upper
bound on the probe complexity. Next, we compare our bounds to prior ones, and discuss history
and applications (to big-key cryptography and thus key exfiltration resistance).

Prior work and comparisons. ADW [3, Lemma A.3] is an elegant and general result that, as a
special case, gives an upper bound on the subkey prediction advantage (and thus probe complexity)
for all values of parameters we consider. The bounds, however are quite poor, so that, to get a

3

b
s = 128

Us ADW

1 271 11532
8 61 1584
32 47 592
64 45 434

8 · 512 43 287
8 · 4096 43 285

b
s = 512

Us ADW

1 971 46127
8 219 6335
32 171 2366
64 165 1735

8 · 512 159 1146
8 · 4096 158 1139

Figure 1: Fix the amount of storage we allocate to the big key at k∗ = 8 · 1011 bits = 100 GBytes.
Fix the amount of leakage at 10% of the length of the big key, `∗ = k∗/10 = 10 GBytes. The
first table considers security level s = 128, while the second considers s = 512. Each table then
considers different block sizes b. (Once b is chosen, the length of the big key in blocks is k = k∗/b
and the length of the leakage in blocks is ` = `∗/b.) The table entries show upper bounds on the
probe complexity Probesk∗,`∗,s(b). The “Us” column is our bound via Theorem 1, and “ADW” is
what is obtained via [3, Lemma A.3]. The block sizes are chosen to represent common word or
disk sector sizes in storage systems.

desired level of security, one needs a very large number of probes (we will see numbers in a bit),
resulting in a significant loss of efficiency for the overlying big-key cryptography schemes. This lead
BKR [4] (in their quest for practical big-key symmetric encryption) to formulate subkey prediction,
and seek better bounds by direct analysis. They however only considered the case b = 1 of a binary
alphabet. They gave an example to show that there are non-obvious leakage functions that lead
to better subkey prediction advantage than one might expect, making the problem of giving a
(good) upper bound challenging. Via a combinatorial analysis, they showed that the worst case is
when the pre-images of the outputs of the leakage function are approximate Hamming balls in the
space of big keys, thereby deriving estimates (not quite upper bounds, something we rectify) on
the subkey prediction advantage and probe complexity, for the case b = 1 (q = 2), that are much
better than those obtained via ADW [2, Lemma A.3]. They posed the large alphabet (b > 1) case
as an open question, asking, specifically, to give bounds on subkey prediction advantage and probe
complexity, in the b > 1 case, that are better than the ones obtained via ADW [3, Lemma A.3].
(The motivation, as we will see later, was to improve efficiency of big-key symmetric encryption.)
Our work answers this question, giving (good) upper bounds as a function of the block size b.

In usage, we would typically first decide on the amount of storage k∗ (measured in bits) we
allocate to the big key, for example k∗ = 8 · 1011 bits = 100 GBytes. Next we would fix the amount
of leakage `∗ (also measured in bits), for example `∗ = k∗/10 = 10 GBytes, corresponding to 10% of
the length of the big key. The block size b may be determined by the storage system (for example
512 bytes or 4096 bytes) or chosen to optimize security and efficiency as per our bounds. Once it
is chosen, the length in blocks k = k∗/b of the big key and ` = `∗/b of the leakage are determined.
Now, for a given level s of security, we want to know the probe complexity Probesk∗,`∗,s(b). Smaller
(fewer probes into the likely slow storage system) is better. We tabulate results in Fig. 1. Our
bounds emerge as substantially better than those obtained via ADW [3, Lemma A.3]. For example,
for s = 128, the improvement ranges from a factor of 26 (b = 8) to a factor of 6.6 (b = 8 · 4096).
Below, we will see how this translates to efficiency improvements for big-key cryptography.

The BRM. Assume (for concreteness of this discussion) that the primitive is symmetric encryp-

4

tion [4] (we will discuss other primitives later), and let K denote the encryption key, k∗ bits long.
In the Bounded Retrieval Model (BRM) [13, 12, 9, 2, 1, 4], an adversary-chosen function Lk (rep-
resenting adversary-implanted malware) is applied to K, and the `∗-bit result L (representing the
exfiltrated information), is provided back to the adversary. Security would appear impossible, since
Lk could be the identity function, so that L = K, but the idea is that K is big (for example k∗ =
100 GBytes), while L is assumed to be somewhat smaller (like `∗ = k∗/10 = 10 GBytes). In other
words, the model assumes that the amount of data exfiltrated can be limited, say via network or
system monitoring. Indeed, security product vendors such as McAfee [15] provide tools for this
type of monitoring and detection.

If the scheme is poorly designed, the fact that the exfiltrated information is somewhat shorter
than the key won’t guarantee security. For example if the scheme applies SHA256 to K to get a
256 bit key K and then uses AES256 to encrypt the data, then Lk(K) can just return the 256 bit
string K = SHA256(K) and security is entirely compromised no matter how big is K. The first
requirement for a BRM (also called big-key) scheme is thus leakage resilience, meaning an adversary,
given L = Lk(K), still cannot violate security, and this must be true for any (adversary-chosen)
function Lk that returns `∗ bits.

Probe complexity. Big keys may help for security, but it would be prohibitively costly to process
a 100 GByte key for every encryption. The BRM addresses this via a condition that says that each
encryption (or decryption) operation should only make a “small” number of probes into the big
key K, meaning have low probe complexity. Security in the presence of leakage is a difficult goal
under any circumstances, but made even more so here by this requirement.

From bits to blocks. Viewing the big key K = (K[0], . . . ,K[k∗−1]) as a sequence of bits, BKR
encryption [4] begins by making some τ∗ random probes i1, . . . , iτ∗ ∈ [k∗] into K to extract a τ∗-bit
subkey J = K[i1] . . .K[iτ∗]. It then applies a (randomized) hash function to J to get a key K for
a conventional (AES-based) symmetric encryption scheme, and uses K to encrypt the data. Once
J has been obtained, the computation, being symmetric cryptography operations, is quite efficient,
but K, being big, is likely stored on a slow medium like a hard drive, and so the encryption cost is
dominated by the storage accesses needed to get J . For a subkey prediction advantage of s = 128
(based on which BKR show ind-cpa style security of their encryption scheme at the same security
level), BKR will need τ∗ = 271 probes into the storage. (This is as per the b = 1 row of the first
table in Fig. 1. BKR’s subkey prediction lemma gives an estimate, not a bound, so we use our
number, but numerically the two are almost the same.)

But (as BKR themselves point out), their scheme is making very poor use of storage by drawing
only a bit of the big key per probe. Letting b be some appropriate block size determined by the
storage system (for example b = 8 ·512 bits = 512 Bytes), K would actually be stored as a sequence
of blocks, and a single probe into the storage can retrieve an entire block at about the same cost as
retrieving a single bit. Indeed, a typical storage API does not even provide a way to directly access
a bit, so an implementation of BKR would, for a probe for bit-position j, have to draw the block
containing this bit position, take the corresponding bit, and throw the other bits away. A natural
improvement (suggested by BKR) is to draw (and use) an entire block per probe. Thus, we now
view the big key K = (K[0], . . . ,K[k−1]) ∈ [2b]k as a sequence of blocks, corresponding to the way
it is actually stored, where k = k∗/b is the number of blocks. Now, making some τ probes i1, . . . ,
iτ ∈ [k] into K, one obtains the subkey J = K[i1] . . .K[iτ]. The rest of the encryption process is as
before, and as we have already noted, is efficient, even though J could be a bit longer. Continuing
to require a subkey prediction advantage of s = 128, the question is, what value of τ guarantees
this? This is the question that BKR could not answer. It is answered by our large-alphabet subkey
prediction lemma. Specifically, the first table of Fig. 1 gives values of τ for different choices of b.

5

For b = 512 Bytes, we see that τ = 43. Recalling that BKR needed τ∗ = 271 probes, we have
reduced the number of probes (storage accesses) by a factor of 271/43 ≈ 6, meaning offer a 6x
speedup.

The price we pay (as alluded to above) is that J is longer, specifically, 271 bits for BKR and
43 · 512 ≈ 22 KBytes for us. This means the hashing of J to obtain the AES key K takes longer,
but modern hash functions are fast, and the time saved in storage accesses is more than the time
lost in extra hashing [10, 11]. This is especially true since the hashing can be pipelined, taking
advantage of the iterated structure of hash functions to process blocks incrementally as soon as
they are retrieved rather than delaying hashing until after all blocks are retrieved.

Big-key identification. In a (public-key) identification scheme, a user (called the prover) has a
secret key sk whose associated public key pk is held by the server (called the verifier). Access control
is enforced by having the prover identify itself as the owner of sk via an interactive identification
protocol. The Schnorr [18] and Okamoto [16] schemes are well-known examples, but they are of
course conventional (small-key) schemes. Identification is an interesting target for a BRM scheme.
Here it is the secret key sk that would be big (100 GBytes)— we want the public key pk to remain
of conventional size. The usage we envision is hardware-assisted access control, where sk is on an
auxiliary device like a USB stick that the user plugs into a possibly infected machine to identify
herself (login) to the server across the network. The key being large, and reading from a USB being
slow, the malware will have difficulty obtaining enough information about the key (10 GBytes) to
violate BRM security, even after a significant number of usages (logins) by the user.

Identification in the BRM was first treated by ADW [2], who gave (asymptotic) security defini-
tions and a clever scheme that involves combining multiple instances of the Okamoto scheme [16] in
a compact way. We target making this scheme practical. The quest is meaningless in the absence
of concrete security, for practicality is fundamentally about maximizing efficiency for a given level
(eg. 128 bits) of security. A first and central step is thus a concrete-security treatment. We render
the definitions of big-key identification (the goal is security against impersonation under active
attack) concretely, then revisit the asymptotically-stated result of ADW [2] to render it, too, in
concrete form. We note that for the ADW scheme, probe complexity dictates the computational
cost of the two most costly phases of the protocol, the response phase and verification phase (as
we will demonstrate in Fig. 14). Hence, improvements in probe complexity directly translate into
improvements in efficiency. Towards lowering probe complexity for a given level of security, we first
improve the concrete security of the reduction via a lemma on the entropy preservation of polyno-
mial evaluation that improves bounds from ADW [2]. We then obtain further reductions in probe
complexity, by using our large-alphabet subkey prediction lemma in place of ADW’s own [3, Lemma
A.3]. The large-alphabet aspect here is crucial, for the scheme draws, from the big key, a value
in Zmp , where p is a prime of 512 bits long (for 128-bit security of the identification scheme), and
m ≥ 2 is an integer parameter, so probes need to return blocks of the (large) size b = m · dlog2(p)e.
Putting it all together gives a reasonable-cost big-key identification scheme, and the first concrete
rendition of the ADW big-key identification scheme. A preliminary implementation shows that
with a pairing-friendly group of 512 bits, the execution of the protocol takes a few seconds.

2 Preliminaries

For n a positive integer, we let [n] = {0, 1, . . . , n − 1}, and [1..n] = {1, . . . , n}. We also use the
notation Zn to denote the set [n] in contexts where we use the underlying algebraic structure
modulo n. If x is a vector, then |x| denotes its length and x[i] denotes its i-th coordinate. We call
x an n-vector if |x| = n. We number coordinates starting from 0. For example if x = (10, 0, 11)

6

then |x| = 3 and x[2] = 11. We let ε denote the empty vector, which has length 0. If 0 ≤ i ≤ |x|−1
then we let x[0..i] = (x[0], . . . ,x[i]), this being ε when i = 0. We say that x is a vector over set S
if all its coordinates belong to S. We let Sn denote the set of all n-vectors over S and we let S∗

denote the set of all finite-length vectors over the set S. If S is a set then |S| denotes its size. If
τ ≤ |S| is a positive integer, we let S(τ) be the set of τ -vectors over S with distinct entries. Strings
are treated as the special case of vectors over {0, 1}. Thus, if x is a string then |x| is its length, x[i]
is its i-th bit, x[0..i] = x[0]...x[i], ε is the empty string, {0, 1}n is the set of n-bit strings and {0, 1}∗
the set of all strings. For K ∈ [q]k and p ∈ [k]∗, we let K[p] = (K[p[0]],K[p[1]], . . . ,K[p[|p| − 1]]),
this being ε when p = ε.

If X is a finite set, we let x←$X denote picking an element of X uniformly at random and
assigning it to x. Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, · · · ; r) denote running A with random coins r
on inputs x1, · · · and assigning the output to y. We let y←$A(x1, · · ·) be the result of picking r
at random and letting y ← A(x1, · · · ; r). We let [A(x1, · · ·)] denote the set of all possible outputs
of A when invoked with inputs x1, · · · .

We use the code-based game-playing framework [7] (see Fig. 2 for an example). By Pr[G] we
denote the probability that game G returns true. Uninitialized boolean variables, sets and integers
are assume initialized to false, the empty set and 0, respectively.

Following [6], our random oracle H is variable range. This means it takes two inputs, x and Rng,
where the latter is a (description of) an efficiently sampleable set, and returns as output a random
point in Rng. In schemes, we (implicitly or explicitly) fix a unique description for each range set
that is used. For example, x←$ H(x, [k]) will return a random element in [k], and p←$ H(x, [k](τ))
will return a random τ -dimensional vector over [k] with distinct entries.

Hamming balls. Let q ≥ 2 and n ≥ 1 be integers. We define the weight of a n-vector v over [q]
to be

w(v) =
∣∣∣{i ∈ [n] | v[i] 6= 0}

∣∣∣ ,
the number of coordinates of v that are non-zero. Let K ⊆ [q]n for some integer n, we define the
weight of K to be

w(K) =
∑
x∈K

w(x) ,

the sum of weights of vectors in K. For 0 ≤ r ≤ k, the q-ary hamming ball of radius r over [q]k is
the set

Bq,k(r) =
{
v ∈ [q]k : w(v) ≤ r

}
of k-vectors over [q] that have more at most r non-zero coordinates. We let Bq,k(r) denote the size
of the set Bq,k(r) and note that

Bq,k(r) =

r∑
i=0

(q − 1)i
(
k

i

)
.

For convenience of stating our results, we establish the following conventions: if r > k then we let
Bq,k(r) = Bq,k(k) = qk, and if k = 0 then for all r ≥ 0 we let Bq,k(r) = 1. We also define the
function

rdq,k(N) = max { r ∈ [k + 1] : Bq,k(r) ≤ N}

to return the largest radius r in the range 0 ≤ r ≤ k such that the ball Bq,k(r) has size at most
N .

7

Game Gskp
q,k,τ (A, Lk)

K←$ [q]k;L← Lk(K)

p←$ [k](τ)

J ←$A(L,p)

Return (J = K[p])

Game Grskp
k,τ (A,K)

K←$K
p←$ [k](τ)

J ←$A(p)

Return (J = K[p])

q ≥ 2 : the alphabet size. A block is an element of [q].

k : the length in blocks of the big key

τ ≤ k : the number probes into the big key K

A : the adversary

Lk : the leakage function, Lk: [q]k → [q]`

` : the length of the output of the leakage function,

called the leakage length, in blocks

b ≥ 1 : the block length, meaning q = 2b. Theorem 1 does

not assume q is a power of two, but it is in some

applications.

L : the leakage, an `-vector over [q] returned by Lk

K : the big key, a vector of length k over [q]

p : the probe vector, a τ -vector over [k] all of whose

coordinates are distinct

k∗ : the length of the big key in bits, k∗ = kb

`∗ : the length of the leakage in bits, `∗ = `b

ρ : the leakage rate, ρ = `∗/k∗ = `/k

Figure 2: Top Left: Subkey prediction game Gskp
q,k,τ . Bottom Left: Restricted subkey prediction

game Grskp
k,τ used in Section 3.3. Right: Summary of quantities involved.

3 Large-Alphabet Subkey Prediction

Here we define the subkey prediction problem parameterized by alphabet size and give our results
about it.

3.1 The Problem

We consider the subkey-prediction game, Gskp
q,k,τ (A, Lk), shown on the top left of Fig. 2. (Ignore

the game below it for now.) The quantities involved in the game, as well as associated ones, are
summarized on the right of the same Figure. In the game, a k-vector K over [q], called the big
key, is randomly chosen from [q]k. Then, a random τ -vector p is chosen from [k](τ), so that its
coordinates are all distinct. (Recall that [k](τ), the set from which p is selected in the game in
Fig. 2, denotes the set of all τ -vectors over [k] all of whose coordinates are distinct.) We refer
to p as the probe vector. Each of its coordinates is a probe, pointing to a location in the big
key. Adversary A is given the leakage L = Lk(K) and the probe vector p. Its goal is to predict
(compute, output) K[p] = (K[p[1]], . . . ,K[p[τ]]), the τ -vector consisting of the coordinates of K
selected by the coordinates of the probe vector. The adversary returns J as its guess, and the game
returns true if A succeeds, meaning J = K[p]. We define the following advantage metrics:

Advskp
q,k,τ (A, Lk) = Pr

[
Gskp
q,k,τ (A, Lk)

]
,

Advskp
q,k,τ (Lk) = max

A
Advskp

q,k,τ (A, Lk),

Advskp
q,k,τ (`) = max

Lk:[q]k→[q]`
Advskp

q,k,τ (Lk).

8

The first advantage is the probability that the game outputs true, meaning the probability that
the adversary successfully returns K[p]. The second advantage is obtained by maximizing the first
one over all adversaries A. Note that this is well-defined since here we consider all computationally
unbounded adversaries. The third advantage is obtained by maximizing the second advantage over
all leakage functions Lk that output ` blocks.

Now fix some big-key length k∗ (in bits) and leakage length `∗ (in bits). Also fix an integer s
representing the desired security. For any block length b ≥ 1 such that b divides k∗ and `∗, we let

Probesk∗,`∗,s(b) = min
{
τ : Advskp

2b,k∗/b,τ
(`∗/b) ≤ 2−s

}
. (3)

Here, we have set the alphabet size to q = 2b. The length k of the big key and ` of the leakage
in blocks are determined, respectively, by k = k∗/b and ` = `∗/b. Then, Probesk∗,`∗,s(b) is the

smallest number of probes τ that will guarantee that Advskp
q,k,τ (`) is at most 2−s.

The subkey prediction game and problem formulated by BKR [4] differs in two ways. First,
they had only considered the q = 2 case (that is, b = 1) of a binary alphabet. The large alphabet
aspect of our treatment refers to the fact that our alphabet size is a parameter q that we view
as quite large. In some applications, q = 2b where b is the block size of our storage medium, but
Theorem 1 does not assume q is a power of two. The second difference with BKR [4] is that their
probes p[1], . . . ,p[τ] were random and independent, so in particular two of them might be the
same, but ours are random subject to being distinct. This is important towards our being able to
get a provable upper bound on the subkey prediction advantage, whereas BKR were only able to
get (for their setting) an estimate or approximate upper bound.

Now our goal is to upper bound, as well as possible, the subkey prediction advantage Advskp
q,k,τ (`)

as a function of q, k, τ, `. Thence we will obtain upper bounds on Probesk∗,`∗,s(b).

3.2 Subkey Prediction Theorem

The bound in our subkey prediction theorem is the ratio of the sizes of two q-ary hamming balls.
We refer to Section 2 for definitions.

Theorem 1 (Subkey-prediction bound). Let q, k, `, τ be integers with q ≥ 2 and `, τ ≤ k. Let r be
any integer in the range 0 ≤ r ≤ rdq,k(q

k−`). Then

Advskp
q,k,τ (`) ≤

Bq,k−τ (r)

Bq,k(r)
. (4)

The theorem allows us to pick the parameter r arbitrarily in the given range, so for the best
estimates we would pick a r that minimizes the ratio. We postpone the proof to first discuss how
this compares to prior work and how to use it to get numerical bounds.

Comparison. BKR [4] give an upper bound we denote Gbkr
k,τ (2k−`) on the subkey prediction

advantage in their setting. Recall that their setting differs from ours in two ways. First, q = 2 in
their case. Second, in their game, the τ probes are random and independent, while in our game
they are random but distinct. Their function Gbkr

k,τ (N) is a sum of rd2,k(N) terms. It is quite
complex and it is hard to estimate numerically. BKR gave a simpler expression, that approximates
Gbkr
k,τ (N), and that they use for numerical estimates, but this expression is not an upper bound,

and thus it is not clear their numerical estimates are upper bounds either. Our bound, the ratio of
the sizes of two q-ary Hamming balls, is simpler than the bound of BKR (this makes crucial use
of the probes being distinct), and, we will see, more analytically tractable, even when q = 2. In

9

particular, we are able to upper bound minr Bq,k−τ (r)/Bq,k(r), subjected to 0 ≤ r ≤ rdq,k(q
k−`),

quite nicely for numerical estimates, as discussed next.

Tools for deriving numerical bounds. Theorem 1 upper bounds the subkey prediction
advantage as the ratio of the sizes of two hamming balls. Below, we present tools to bound this
ratio. First, we need some definitions. Let H2 be the binary entropy function, defined for x ∈ [0, 1]
by H2(x) = −x log2(x) − (1 − x) log2(1 − x). We note that the value of x logq(x) is taken to be 0
when x = 0. This ensures that H2 is continuous over [0, 1]. More generally, for an integer q ≥ 2
the q-ary entropy function is defined for x ∈ [0, 1] by

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x)

=
H2(x)

log2(q)
+ x logq(q − 1) .

We note that Hq attains its maximum at x = 1−1/q. We define its inverse function, H−1q : [0, 1]→
[0, 1− 1/q] to be such that H−1q (Hq(x)) = x for any x ∈ [0, 1− 1/q]. We define the following error
function for q ≥ 2 and 0 ≤ r ≤ k,

ε(q, k, r) = logq(e)

(
1

12r
+

1

12(k − r)
− 1

12k + 1

)
+

1

2
logq

(
2πr(k − r)

k

)
. (5)

The following lemmas, the proofs of which are given in Appendix A, are key to deriving numerical
bounds. The first gives both upper and lower bounds on the size of a Hamming ball.

Lemma 2. Let k, q, r be integers with q ≥ 2 and 0 ≤ r ≤ k. Then,

qkHq(r/k)−ε(q,k,r) ≤ Bq,k(r) . (6)

Additionally, if 0 ≤ r ≤ k(1− 1/q),

Bq,k(r) ≤ qkHq(r/k) . (7)

The second lemma lower bounds the value of rdq,k(N).

Lemma 3. Let N, q, k be positive integers such that q ≥ 2 and N ≤ qk. Then,⌊
H−1q

(
logq(N)

k

)
· k
⌋
≤ rdq,k(N).

The following provides a two-sided bound on H−1q :

Lemma 4. Let q ≥ 2 be an integer, and x ∈ [0, 1] a real number. Then,

min(x, 1− 1

q
)− 1

log2(q)
≤ H−1q (x) ≤ x(1− 1

q
) .

These bounds are good when q is large.

Deriving numerical bounds. We now use the above to derive upper bounds for example param-
eter values. Let b ≥ 1 be a block size, so that the alphabet has size q = 2b. Fix some big-key length
k∗ (in bits) and leakage length `∗ (in bits) that are multiples of b, and let k = k∗/b and ` = `∗/b be
the big-key and leakage lengths, respectively, in blocks. We assume that τ and ` satisfy that ` ≥ τ ,
as the below method only apply when this condition is met. We note that this is a reasonable

10

assumption for practical applications, as leakage length ` is usually large, and we are attempting to
keep the probe complexity, τ , small. Now, suppose we have obtained some integer value r such that:
(1) r ≤ rdq,k(q

k−`) and (2) 0 ≤ r ≤ (k − τ)(1 − 1/q). Then, we use Equation (6) to lower bound
Bq,k(r). Given condition (2), we can use Equation (7) to upper bound the quantity Bq,k−τ (r). This
results in an upper bound, denoted RatioBoundq,k,`,τ (r), for the ratio Bq,k−τ (r)/Bq,k(r):

RatioBoundq,k,τ (r) =
q(k−τ)Hq(r/(k−τ))

qkHq(r/k)−ε(q,k,r)
.

Note that in the above expression, the terms Hq(r/(k−τ)), Hq(r/k) and ε(q, k, r) can be computed
numerically for any given value of q, k, τ and r. Hence, deriving numerical upper bound for the
ratio Bq,k−τ (r)/Bq,k(r) amounts to obtaining a value r satisfying the two conditions given above.
We take r to be rq,k,`, defined as

rq,k,` =
⌊
H−1q (

k − `
k

) · k
⌋
.

Here, we assume that a method of obtaining numerical lower bounds for H−1q (x) is available1. We

now check the two conditions required. For condition (1), we know that rq,k,` ≤ rdq,k(q
k−`) by

Lemma 3 (taking N = qk−`). For condition (2), note that by Lemma 4 and the assumption that
` ≥ τ ,

H−1q (
k − `
k

) ≤ k − `
k

(1− 1/q) ≤ k − τ
k

(1− 1/q) .

Hence,

rq,k,` =
⌊
H−1q (

k − `
k

) · k
⌋
≤ (k − τ)(1− 1/q) .

We consider the quantity

Adv
skp
q,k,τ (`) = RatioBoundq,k,`,τ (rq,k,`) . (8)

We note that since r = rq,k,` satisfies condition (1) and (2), by Theorem 1 and above analysis,

Advskp
q,k,τ (`) ≤

Bq,k−τ (rq,k,`)

Bq,k(rq,k,`)
≤ Adv

skp
q,k,τ (`) .

Hence, Adv
skp
q,k,τ (`) is an upper bound for Advskp

q,k,τ (`). Now, given a particular desired security

level, s, we want to find the smallest τ such that Adv
skp
q,k,τ (`) ≤ 2−s. We let

Probesk∗,`∗,b(s) = min
{
τ ∈ [k + 1] : Adv

skp
q,k,τ (`) ≤ 2−s

}
.

Note that this is similar to the definition of Probesk∗,`∗,b(s) (Equation (3)), only that Advskp
q,k,τ (`)

is replaced with Adv
skp
q,k,τ (`). Thence,

Probesk∗,`∗,b(s) ≤ Probesk∗,`∗,b(s) . (9)

We note that Probesk∗,`∗,b(s) can be computed numerically by iteratively incrementing τ and

computing Adv
skp
q,k,τ (`). Fig. 1 shows values of Probesk∗,`∗,b(s) for various practical values of k∗,

`∗, b and s.

Plots. For the left plot, we fix the following:

1For example, this is available in mathematical software Sage. Also, when q is large, Lemma 4 provides a good
lower bound for H−1

q that is easily computed numerically.

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200

400

600

800

1000
Probesk ∗ , � ∗ , 128(32) vsℓ � ∗ /k ∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

−log2(Adv
skp
q, k, 47(�)) vsℓ � ∗ /k ∗

Figure 3: Fix the big key length k∗ to be 100 GBytes. The left graph plots (an upper bound on)
Probesk∗,ρk∗,128(32) as a function of the leakage rate ρ. The right graph plots (a lower bound on)

− log2(Advskp
232,k,47

(ρk)) as a function of ρ, where k = k∗/32.

– Blocksize b = 32 bits, so that q = 232.

– Leakage length `∗ = 8 · 1010 bits = 10 GBytes, so that ` = `∗/32.

– Desired security level s = 128 bits.

The left graph in Fig. 3 plots Probes`∗/ρ,`∗,b(s), upper bound for Probes`∗/ρ,`∗,s(b), as a function
of the leakage rate ρ. The left plot shows that the number of probes needed to maintain s bits of
security increases faster once the leakage rate goes over 50%. Hence, for applications, it may be
beneficial to use big keys that are big enough so that the leakage rate can be assumed to be less
than 50%. For example, if 10 GBytes is the leakage bound, one might, for efficiency, target big key
of size at least 20 GBytes.

For the right plot, we fix the following

– Blocksize b = 32 bits, so that q = 232.

– Big key length k∗ = 8 · 1011 bits = 100 GBytes, so that k = k∗/32.

– Number of probes τ = 47.

The number 47 has been chosen because, as per Fig. 1, it ensures Advskp
q,k,τ (k/10) ≤ 2−128. Now

with b, k∗, τ (and thus also q, k) fixed, the right graph plots − log2(Adv
skp
q,k,τρ · k), lower bound for

− log2(Advskp
q,k,τ (ρ · k)), as a function of leakage rate ρ. The right plot in Fig. 3 demonstrates that,

even though a scheme is designed for 10% leakage, security degrades gradually as the leakage rate
goes over 10%.

3.3 Proof of Theorem 1

We follow the framework of the proof of BKR [4].

Restricted subkey prediction. The proof involves consideration of a simpler game, called the
restricted subkey prediction game, denoted Grskp and shown on the right in Fig. 2. Game Grskp is
similar to game Gskp, except that there is no leakage function Lk and leakage L. Instead, the big
key K is drawn from a restricted subset K ⊆ [q]k of big keys. We define the following advantage

12

metrics:

Advrskp
k,τ (A,K) = Pr

[
Grskp
k,τ (A,K)

]
,

Advrskp
k,τ (K) = max

A
Advrskp

k,τ (A,K),

Advrskp
q,k,τ (N) = max

K⊆[q]k,|K|=N
Advrskp

k,τ (K).

The first advantage is the probability that the game outputs true, meaning the probability that
the adversary successfully returns K[p]. The second advantage is obtained by maximizing the first
one over all adversaries A. The third advantage is obtained by maximizing the second advantage
over all sets K ⊆ [q]k that have size N . We note that the first two advantages do not have q in the
subscript, which is due to the fact that K encodes the value of q.

Monotone sets. Let x, x′ be vectors in [q]k. We say that x dominates x′, or x′ is dominated by
x, written x′ ≤ x, if x′ can be obtained by changing non-zero coordinates of x to 0. We let

DSq,k(x) = {x′ ∈ [q]k : x′ ≤ x}
be the set of all x′ dominated by x. A set K ⊆ [q]k is monotone if⋃

x∈KDSq,k(x) ⊆ K .
That is, if x ∈ K, and x′ is dominated by x, then x′ ∈ K. For example, a Hamming ball in [q]k, of
any radius, is a monotone set.

Some notation. For integers x, τ ≥ 0, we let

x(τ) =

τ−1∏
i=0

(x− i) =

x∏
j=x−τ+1

j . (10)

Notice that x(τ) = 0 if τ > x. This can be seen because, if τ > x, then, in the second product
above, the starting value for j is ≤ 0, and since x ≥ 0, this means the term j = 0 is included in
the product. Also when τ = 0, the product has zero terms, and hence by convention takes value 1,
meaning x(0) = 1 for all x ≥ 0. We use below the notation from Equation (10).

For a nonempty K ⊆ [q]k, we define the function

gk,τ (K) =
1

|K|
∑
x∈K

(k − w(x))(τ)

k(τ)
. (11)

The following lemma says that if K is monotone, then the restricted subkey prediction advantage for
big keys drawn from K can be expressed exactly, and in particular by the function of Equation (11).

Lemma 5. Let q, τ, k be positive integers such that τ ≤ k and q ≥ 2. Let K ⊆ [q]k be a non-empty
monotone set. Then,

Advrskp
k,τ (K) = gk,τ (K).

Proof (of Lemma 5). Let A0 be the adversary that, on input p, always returns the all-0 τ -vector.
We claim that this adversary maximizes the advantage, meaning

Advrskp
k,τ (K) = Advrskp

k,τ (K,A0) .

13

This follows from the assumption that K is monotone. Now, we compute the advantage of A0. For
K ∈ [q]k, let Z(K) denote the set of all p ∈ [k](τ) such that K[p] = (0, . . . , 0). We have

Advrskp
k,τ (K,A0) =

1

|K|
∑
K∈K

|Z(K)|
|[k](τ)|

=
1

|K|
∑
K∈K

(k − w(K))(τ)

k(τ)
= gk,τ (K) .

We say that a set K ⊆ [q]k is sandwiched between hamming balls if

Bq,k(r) ⊆ K ⊂ Bq,k(r + 1)

for r = rdq,k(|K|). For N an integer such that 1 ≤ N ≤ qk, we define

Gq,k,τ (N) =
1

N

rdq,k(N)∑
i=0

(q−1)i
(
k

i

)
(k − i)(τ)
k(τ)

+

(
1−

Bq,k(rdq,k(N))

N

)
(k − (rdq,k(N) + 1))(τ)

k(τ)
. (12)

The following says that if K is monotone and sandwiched between Hamming balls, then the re-
stricted subkey prediction advantage for big keys drawn from K can be expressed exactly, and in
particular by the function of Equation (12).

Lemma 6. Let q, τ, k be positive integers such that τ ≤ k and q ≥ 2. Let K ⊆ [q]k be a non-empty
monotone set that is also sandwiched between hamming balls, i.e. Bq,k(r) ⊆ K ⊂ Bq,k(r + 1) for
r = rdq,k(|K|). Then

Advrskp
k,τ (K) = Gq,k,τ (|K|) .

Proof (of Lemma 6). Let N = |K|. By Lemma 5, we have

Advskp
k,τ (K) =

1

N

∑
x∈K

(k − w(x))(τ)

k(τ)
.

Since Bq,k(r) ⊆ K ⊂ Bq,k(r + 1). This means Bq,k(i) ⊆ K for i = 0, . . . , r, and K contains
N −Bq,k(r) vectors of weight r + 1. Thus, the above equals

N −Bq,k(r)
N

(k − r − 1)(τ)

k(τ)
+

1

N

r∑
i=0

(q − 1)i
(
k

i

)
(k − i)(τ)
k(τ)

= Gq,k,τ (N)

as claimed.

Next, we show that monotone sets sandwiched between Hamming balls are the extremal cases for
the restricted subkey prediction game, meaning that they maximize the restricted subkey prediction
advantage. The following is analogous to [4, Lemmas 6,8]. We streamline their analysis and extend
it to large alphabets.

Lemma 7. Let q, k,N be positive integers. Suppose q ≥ 2, N ≤ qk and τ ≤ k. Then, there is a
non-empty monotone set K ⊆ [q]k of size N such that

Advrskp
q,k,τ (N) = Advrskp

k,τ (K) .

Additionally, K is also sandwiched between hamming balls, i.e. for r = rdq,k(N),

Bq,k(r) ⊆ K ⊂ Bq,k(r + 1) .

14

The proof of Lemma 7 is deferred to Section 3.3.1. As a direct corollary of Lemma 6 and
Lemma 7, we get the following result.

Corollary 8. Let q, τ, k be positive integers such that τ ≤ k and q ≥ 2. Then,

Advrskp
q,k,τ (N) = Gq,k,τ (N) . (13)

Hence, from this point on, we identify the two functions Advrskp
q,k,τ (·) and Gq,k,τ (·). Next, we

observe a useful property of Gq,k,τ (N). In particular, it is decreasing in the domain [1..qk].

Lemma 9. Let q, τ, k be positive integers such that τ ≤ k and q ≥ 2. Let i, j be integers such that
1 ≤ i ≤ j ≤ qk. Then,

Gq,k,τ (i) ≥ Gq,k,τ (j) .

We proceed to relate the restricted subkey-prediction game to the subkey-prediction game via
the lemma below.

Lemma 10. Let `, q, k, τ be integers such that 0 ≤ ` ≤ k, q ≥ 2, and 1 ≤ τ ≤ k. Then,

Advskp
q,k,τ (`) ≤ Advrskp

q,k,τ (qk−`) .

The proofs of Lemma 9 and Lemma 10 are deferred to Section 3.3.2. Finally, we give a way to
bound the expression Gq,k,τ (N). In particular, we show that it is at most the ratio of two hamming
balls of the same radius rdq,k(N); one with dimension k − τ and one with dimension k. Recall
that BKR did not give concrete numerical upper bounds for their subkey-prediction advantage,
only estimates. Due to assuming the uniqueness of probes, we are able to simplify our expression
Gq,k,τ (N). In particular, we note that for non-negative integers k, i, τ such that i, τ ≤ k,(

k

i

)
(k − i)(τ)
k(τ)

=
k(i)

i(i)
·

(k − i)(τ)
k(τ)

=
(k − τ)(i)

i(i)
=

(
k − τ
i

)
. (14)

This property allows us to prove the following lemma.

Lemma 11. Let N, q, k, τ, r be positive integers such that q ≥ 2, N ≤ qk, τ ≤ k and r ≤ rdq,k(N).
Then

Gq,k,τ (N) ≤
Bq,k−τ (r)

Bq,k(r)
.

Proof (of Lemma 11). By Lemma 9,

Gq,k,τ (N) ≤ Gq,k,τ (Bq,k(r)).

By Equation (12) and Equation (14),

Gq,k,τ (Bq,k(r)) ≤
1

Bq,k(r)

rdq,k(Bq,k(r))∑
i=0

(q − 1)i
(
k

i

)
(k − i)(τ)
k(τ)

=
1

Bq,k(r)

r∑
i=0

(q − 1)i
(
k − τ
i

)

=
Bq,k−τ (r)

Bq,k(r)
.

15

The proof of Theorem 1 follows directly.

Proof. (of Theorem 1). Note that when r = 0, Equation (4) is trivially true. Hence, we let r ≤
rdq,k(N) be a positive integer. Then,

Advskp
q,k,τ (l) ≤ Advrskp

q,k,τ (qk−l) (Lemma 10)

= Gq,k,τ (qk−l) (Corollary 8)

≤
Bq,k−τ (r)

Bq,k(r)
. (Lemma 11)

3.3.1 Proof of Lemma 7

Proof (of Lemma 7). Let

T =
{
K ⊆ [q]k : |K| = N and Advrskp

k,τ (K) = Advrskp
q,k,τ (N)

}
.

Let K ∈ T be the minimal weight element, i.e. the element K ∈ T that minimizes the value
w(K) =

∑
x∈K w(x). We will show thatK is a set satisfying the properties claimed in the lemma. We

will prove the two properties separately, namely that K is monotone and Bq,k(r) ⊆ K ⊂ Bq,k(r+1).
We first claim that K is monotone. The idea is to define a “shifting” operation for any set K′ ⊆ [q]k

at a coordinate to increase Advrskp
k,τ (K′) while decreasing w(K′). Seeking a contradiction, suppose

K is not monotone. Without loss of generality, suppose that for all pairs of x ∈ K and y 6∈ K such
that y ≤ x, we have that x and y differ only in the first component. We build another set K′ with
the following properties.

1. |K′| = |K|

2. w(K′) ≤ w(K)

3. Advrskp
k,τ (K′) ≥ Advrskp

k,τ (K)

We first explain briefly explain the construction of K′ on the high level before giving the formal
construction. Let z ∈ [q]k−1. We will attempt to “swap” vectors of the form α‖z, for α ∈ [q], in and
out of K. The swapping is done in two cases. We define Dz to contain the α’s such that α‖z ∈ K.
First, if 0 ∈ Dz or Dz = ∅, no swapping will be done. Second, if 0 6∈ Dz and Dz 6= ∅, then we will
do the following. Let β = maxDz. We will remove the element β‖z from K and add the element
0‖z to K. After such operations are done for all z ∈ [q]k−1, the resulting set will be K′. Formally,
the construction of K′ is given below. K′ is constructed from K via the function φ : [q]k → [q]k,
which is defined relative to the set B (set A is used in the later analysis). Sets A and B partition
the set of strings of length k − 1. Set A consists of z’s such that no swapping will be done. Set
B consists of z’s such that swapping will be done. The formal definition for A,B, φ, and K′ is as

16

follows:

A =
{
z ∈ [q]k−1 : 0 ∈ Dz or Dz = ∅

}
,

B =
{
z ∈ [q]k−1 : 0 6∈ Dz and Dz 6= ∅

}
,

φ(α‖z) =


0‖z if z ∈ B and α = maxDz

(maxDz)‖z if z ∈ B and α = 0

α‖z otherwise

,

K′ =
{
φ(x) : x ∈ K

}
.

By construction, we note that the swapping operation preserves the size of the set and only decreases
its overall weight. Hence, |K′| = |K| and w(K′) ≤ w(K). It remains to show property (3). Let A
be an adversary such that Advrskp

k,τ (A,K) = Advrskp
k,τ (K). Consider the adversary A′ that behaves

exactly as A with the exception that it always guess 0 for the first position. More precisely, A′
does the following.

Adversary A′((s1, . . . , sτ))

J ′ ← A((s1, . . . , sτ))
For i← 1, . . . , τ do

If si = 1 then J ′[i]← 0
Return J ′

Let P (·) denote the probability function in game Grskp
k,τ (A,K) and P ′(·) the probability function in

game Grskp
k,τ (A′,K′). We now define three events for both games Grskp

k,τ (A,K),Grskp
k,τ (A′,K′), where

z ∈ [q]k−1.

win : The game returns true

one : 1 ∈ {s1, . . . , sτ}
sz : (K[1..k] = z), one and (∀i, si 6= 1 : J ′[i] = K[si])

Note that P (one) = P ′(one), and P (win|¬one) = P ′(win|¬one). We claim that P (win|one) ≤
P ′(win | one). If so we have

Advrskp
k,τ (A,K) = P (win)

= P (win | one) · P (one) + P (win | ¬one) · P (¬one)

= P (win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

≤ P ′(win | one) · P ′(one) + P ′(win | ¬one) · P ′(¬one)

= P ′(win) = Advrskp
k,τ (A′,K′) .

17

So now we need to show that P (win | one) ≤ P ′(win | one). We have

P (win | one) =
∑

z∈[q]k−1

P (win | sz) · P (sz)

=
∑

z∈[q]k−1

P (win | Sz) · P ′(Sz) (15)

≤
∑

z∈[q]k−1

P ′(win | Sz) · P ′(Sz) (16)

= P ′(win | one) .

Equation (15) is true because P (sz) = P ′(sz) for all z ∈ [q]k−1, since the swapping operation do
not change the last k − 1 component of any vector. Next, we argue the validity of Equation (16).
Let z ∈ [q]k−1 such that P (Sz) 6= 0 (and hence P ′(Sz) 6= 0), which means that there is some
α ∈ [q] such that α‖z ∈ K. For any z ∈ [q]k−1, consider the sets Uz = {α ∈ [q] : α‖z ∈ K} and
Vz = {α ∈ [q] : α‖z ∈ K′}. Note that P (win | sz) ≤ 1/|Uz| and P ′(win | sz) ≤ 1/|Vz|. Additionally,
we note that |Uz| = |Vz|, and Vz always contains 0. Since A′ always guess 0 for the first component,
we have P ′(win | sz) = 1/|Vz|. Therefore,

P (win | sz) ≤
1

|Uz|
=

1

|Vz|
= P ′(win | sz) .

Next, we show that K must be sandwiched between two hamming balls. We first claim that
Bq,k(r) ⊆ K. Seeking a contradiction, suppose that Bq,k(r) 6⊆ K. Let x′ be a point in Bq,k(r) \ K
of minimal Hamming weight. Let x be a point in K \ Bq,k(r) of maximal Hamming weight. We
claim that w(x) > w(x′), otherwise Bq,k(r) ⊆ K. Let K′ be obtained by removing x from K and
then adding x′, i.e. K′ = (K \ {x}) ∪ {x′}. Because x′ was minimal in Hamming weight and x
was maximal in Hamming weight, the set K′ continues to be monotone, and it has size N . Also
gk,τ (K) < gk,τ (K′) because w(x) > w(x′). Hence, by Lemma 5

Advrskp
k,τ (K) = gk,τ (K) < gk,τ (K′) = Advrskp

q,k,τ (K′) .

This contradicts the assumption that Advrskp
q,k,τ (N) = Advrskp

k,τ (K). Hence, it must be that Bq,k(r) ⊆
K. Now suppose K 6⊆ Bq,k(r+ 1). Let x′ be a point in Bq,k(r+ 1) \K. Such a point exists because
we know that N < Bq,k(r + 1). It must be that w(x′) = r + 1 since Bq,k(r) ⊆ K. Let x be a
point in K \ Bq,k(r + 1) of maximal Hamming weight. Note that w(x) > r + 1 = w(x′). Let K′
be obtained by removing x from K and then adding x′, meaning K′ = (K \ {x}) ∪ {x′}. The set
K′ continues to be monotone, and it has size N . Also gk,τ (K) < gk,τ (K′) because w(x) > w(x′).
Hence, by Lemma 5,

Advrskp
k,τ (K) = gk,τ (K) < gk,τ (K′) = Advrskp

k,τ (K′).

This contradicts the assumption that Advrskp
q,k,τ (N) = Advrskp

k,τ (K). Hence, it must be that K ⊂
Bq,k(r + 1).

3.3.2 Proof of Lemma 9 and Lemma 10

To prove Lemma 9 and Lemma 10, we recall the notion of discrete concavity. Suppose F : [1..M]→
R. We say that F is concave if F (a + 1) − F (a) ≤ F (b + 1) − F (b) for all a, b ∈ [1..M] satisfying

18

a ≥ b. Now suppose t,m are integers with 1 ≤ m ≤ t. Then we let

S(M,m, t) =
{

(x1, . . . , xm) ∈ [1..M]m : x1 + · · ·+ xm = t
}
.

Define Fm: [1..M]m → R by Fm(x1, . . . , xm) = F (x1) + · · ·+ F (xm). We use the following lemma
proved by [4].

Lemma 12 ([4]). Suppose F : [1..M]→ R is concave. Suppose 1 ≤ m ≤ t are integers such that m
divides t and t/m ∈ [1..M]. Then

max
(x1,...,xm)∈S(M,m,t)

Fm(x1, . . . , xm) = m · F (t/m)

Lemma 13. The function, Fq,k,τ : [1..qk]→ R, defined below, is concave.

Fq,k,τ (N) =
N

qk
·Advrskp

q,k,τ (N).

Proof. Let N0, N1 be two integers such that qk ≥ N0 ≥ N1 ≥ 1. Consider, for i = 0, 1,

∆i = Fq,k,τ (Ni + 1)− Fq,k,τ (Ni),

For i = 0, 1, we let ri be defined as follows. If Ni = Bq,k(r) for some r, then we take ri to be the
value such that Bq,k(ri) = Ni. Otherwise, we let ri = rdq,k(Ni) + 1. Note that we can now express
∆i in terms of ri as follow (via Equation (12)),

∆i = qk ·
(k − ri)(τ)

k(τ)
.

Since N0 ≥ N1, we note that r0 ≥ r1. Therefore, we have ∆0 ≤ ∆1 and that Fq,k,τ is concave.

We first prove Lemma 9 using Lemma 13.

Proof (of Lemma 9). Note that,

Gq,k,τ (N) =
qk · Fq,k,τ (N)

N
.

We let ∆i = qk ·Fq,k,τ (i+ 1)− qk ·Fq,k,τ (i) for all i = 0, . . . , qk − 1. We define ∆0 = qk ·Fq,k,τ (1) =

qk ·Gq,k,τ (1). Hence, by construction Gq,k,τ (i) = (
∑i−1

j=0 ∆i)/i. Note that since Fq,k,τ (·) is concave in

the domain [1..qk], the sequence ∆1, . . . ,∆qk−1 is non-increasing, meaning that ∆i ≥ ∆j whenever

1 ≤ i ≤ j ≤ qk − 1. Additionally, we check that ∆0 = qk and ∆1 ≤ qk, hence ∆0 ≥ ∆1. Therefore,
the partial averages of the sequence ∆0, . . . ,∆qk−1,

(i−1∑
j=0

∆j

)
/ i = Gq,k,τ (i) ,

is non-increasing as claimed.

Lastly, we prove Lemma 10 using Lemma 12 and 13.

19

Game Gmcskp
q,k,τ,t(A, Lk)

K←$ [q]k;L← Lk(K)
For i ∈ [t] do pi←$ [k](τ)

J ←$A(L,p0, . . . ,pt−1)
Return (∃i ∈ [t] : J = K[pi]))

Figure 4: Multi-challenge subkey prediction game Gmcskp
q,k,τ,t.

Proof (of Lemma 10). Let M = qk, m = q` and t = qk. We note that the leakage function
Lk : [q]k → [q]` defines a partition of [q]k into q` sets, with each set being Lk−1(L) for some

L ∈ [q]`. Hence, we can expand Pr[Gskp
q,k,τ (A, Lk)] by conditioning on the value of L. Suppose

[q]` = {L1, . . . , Lm}. We let Ni = |Lk−1(Li)|. We derive

Advskp
q,k,τ (`)

= max
Lk

(∑
L

|Lk−1(L)|
qk

·max
A

Pr[Gskp
q,k,τ (A, Lk) | Lk(K) = L]

)

= max
Lk

(∑
L

|Lk−1(L)|
qk

·Advrskp
k,τ (Lk−1(L))

)

≤ max
(N1,...,Nm)∈S(M,m,t)

m∑
i=1

Fq,k,τ (Ni)

= max
(N1,...,Nm)∈S(M,m,t)

Fmq,k,τ (N1, . . . , Nm)

= m · Fq,k,τ (2k−`) (17)

= m · q
k−`

qk
·Advrskp

q,k,τ (qk−`) = Advrskp
q,k,τ (qk−`) . (18)

Equation (17) is justified since Fq,k,τ is concave and t/m = 2k−`. Equation (18) is by definition of
F and because m = q`.

3.4 Multi-challenge Subkey Prediction

Here, we present an extension of Gskp
q,k,τ with multiple challenges, Gmcskp

q,k,τ,t (Fig. 4), the multi-challenge
subkey prediction game. Note that [4] considers the multi-challenge version directly. However, we
only need this extension in the proof of Theorem 15.

Let q, k, τ, t, ` be positive integers such that q ≥ 2, k ≥ τ , k ≥ `, t ≥ 1. We define the following
advantages associated with the game Gmcskp

q,k,τ,t, analogously to the advantages associated with Gskp
q,k,τ .

Advmcskp
q,k,τ,t(A, Lk) = Pr

[
Gmcskp
q,k,τ,t(A, Lk)

]
,

Advmcskp
q,k,τ,t(Lk) = max

A
Advskp

q,k,τ,t(A, Lk),

Advmcskp
q,k,τ,t(`) = max

Lk:[q]k→[q]`
Advmcskp

q,k,τ,t(Lk).

20

Game Gkey
KEY(A)

b←$ {0, 1}; K←$ [q]k

(Lk, σ)←$AH()

L← LkH(K)

b′←$AROR,H(L, σ)

Return (b′ = b)

ROR()

R←$ {0, 1}r

If (b = 0) then K←$ {0, 1}κ

Else K ← KEYH(K, R)

Return (R,K)

H(x,Rng)

If not T [x,Rng] then T [x,Rng]←$ Rng

Return T [x, n]

Figure 5: Game for defining the security of a big-key key encapsulation algorithm KEY: {0, 1}k ×
{0, 1}r → {0, 1}κ.

Lemma 14. Let q, k, τ, t be positive integers such that q ≥ 2, k ≥ τ , k ≥ `, t ≥ 1. Then,

Advmcskp
q,k,τ,t(`) ≤ t ·Advskp

q,k,τ (`) .

Proof. Let Lk : [q]k → [q]` be any leakage function. Let A be a Gmcskp
q,k,τ,t adversary. We construct

Gskp
q,k,τ adversary A′ such that

Advskp
q,k,τ (A′, Lk) ≥ 1

t
·Advmcskp

q,k,τ,t(A, Lk) , (19)

which implies the lemma by maximizing over all A and Lk. A′ is defined as follows.

Adversary A′(L,p′)
j←$ [t]; pj ← p′

For i ∈ [t]− {j} do pi ← [k](τ)

J ′ ← A(L,p0, . . . ,pt−1)
Return J ′

Let E1 be the event that A succeed in the game Gskp
q,k,τ (A′, Lk), i.e. J ′ = K[pα] for some α ∈ [t].

Note that α is random variable that is well-defined given E1 (in case J ′ = K[pα] for multiple α ∈ [t],
we can take the smallest one). We note that since A′ simulates the multi-challenge game for A
perfectly, Pr[E1] = Advmcskp

q,k,τ,t(A, Lk). Let E2 ⊆ E1 be the event that A′ also guesses the correct α,

i.e. j = α in the game Gmcskp
q,k,τ,t(A

′, Lk). We note that Pr[E2] = 1
t · Pr[E1], since j is independently

uniform in [t] and the distribution of (p0, . . . ,pt−1) does not depend on the value of j. Notice that

Advskp
q,k,τ (A′, Lk) ≥ Pr[E2] = 1

t · Pr[E1] = 1
t ·Advmcskp

q,k,τ,t(A, Lk).

4 Big-Key Symmetric Encryption

In [4], Big-Key symmetric encryption schemes are constructed modularly from Big-Key encapsula-
tion schemes. In this section, we present a block-based big key encapsulation scheme that is more
efficient than achieved previously.

Key Encapsulation Schemes. A (symmetric, Big-Key) encapsulation schemes, on input a big
key K and a random string R, returns a (short) key K. The string R encapsulates the short key
K in the sense that any party holding the big key K can derive K from R. The security of a key

21

Algorithm XKEYH
q,k,κ,τ,r(K, R) // K ∈ [q]k, |R| = r

p← H(R, [k](τ)); J ← K[p]; K ← H(R‖J, κ); Return K

Figure 6: Encapsulation algorithm XKEY. Given a length-k big-key K and a length-r selector R,
the algorithm returns a length-κ subkey K. The value τ specifies the number of unique probes
used.

encapsulation schemes is captured by Gkey
KEY(A) (Fig. 5). In this game, a big key K is randomly

sampled. The goal of the two-stage adversary A is to guess whether the real-or-random oracle,
ROR, is returning real keys, derived using key encapsulation scheme KEY from randomly sampled
R, or randomly sampled keys that is independent of R. In its first stage, A gets access to H and
chooses a leakage function Lk and state σ. Next, the game computes L ← LkH(K) and run the
second stage of A with inputs L, σ and oracles ROR and H. A wins the game if it successfully
guesses the bit b. We define the following advantage of A against key encapsulation scheme KEY

Advkey
KEY(A) = 2 · Pr

[
Gkey

KEY(A)
]
− 1 .

Our construction. Our random oracle model construction is given in Fig. 6.

Theorem 15. Let k, b, κ, τ, r ≥ 1 be integers. Let q = 2b. Let KEY = XKEYq,k,κ,τ,r be the big-key
encapsulation scheme associated to them as per Fig. 6. Let A be an adversary making at most t
queries to its ROR oracle and leaking ` · b bits. Assume the number of H queries made by A in its
first stage, plus the number made by the oracle leakage function Lk that it outputs in this stage, is
at most q1, and the number of H queries made by A in its second stage is at most q2. Then

Advkey
KEY(A) ≤ q2 · t ·Advskp

q,k,τ (`) +
t · (2q1 + t− 1)

2r+1
. (20)

The proof of Theorem 15 is deferred to Section 4.1.

Sampling unique probes. In XKEY, we have outsourced the sampling of the unique probes to the
variable-range random oracle. We note that sampling from [k](τ) can be done via rejection sampling
efficiently. For example, per Lemma 20 in Appendix B, it holds with all but 2−3τ probability that
4τ samples from [k] contains τ unique probes (hence for parameters involved in Fig. 1, the failure
probability is less than 2−129 since τ ≥ 43).

Symmetric Encryption Schemes. To obtain a (big-key) symmetric encryption scheme, one can
plug our XKEY construction directly into the (big-key) symmetric encryption scheme (in Fig. 7)
by BKR. For security, we omit the details here and appeal to [4, Theorem 13].

Efficiency. Let k∗ = 8 · 1011 = 100 GBytes, and `∗ = 10 GBytes. Using b = 8 · 512 = 512 Bytes,
our XKEY makes roughly the same number of H queries compared to [4] but makes significantly
less access into the big key K (43 vs. 271, Fig. 1). In practical instantiations where K is stored on
slow storage medium (e.g. hard disk), this translate to 6x improvement in efficiency.

4.1 Proof of Theorem 15

Proof (of Theorem 15). Consider the games, G0, . . . ,G3 defined in Fig. 8. Let KEY = XKEYq,k,κ,τ,r.

We note that game G0, with the boxed code included, simulates the game Gkey
KEY(A) exactly for

22

Algorithm SE.EncH(K,M)

R←$ {0, 1}r; K ← KEYH(K, R)

C ← SE.Enc(K,M); C ← (R,C)

Return C

Algorithm SE.DecH(K,M)

(R,C)← C

K ← KEYH(K, R)

M ← SE.Dec(K,C)

Return M

Figure 7: Big-Key Symmetric Encryption Scheme [4, Section 5], SE, using a standard symmetric
key encryption scheme SE and a key encapsulation mechanism KEY.

Game G0 G1

K←$ [q]k

For j ← 1, . . . , t do

R[j]←$ {0, 1}r; K[j]←$ {0, 1}κ

P [j]←$ [k](τ)

For i← 1, . . . , t do

If R[i] = R[j] then

bad← true; K[j]← K[i]

stage← 1; (Lk, σ)←$AH0(); L←$ LkH0(K)

stage← 2; b′←$AROR,H0(σ, L)

Return (b′ = 1)

H0(x,Rng)

If not T [x,Rng] then

T [x,Rng]←$ Rng

If stage = 1 then For j ∈ [t] do

If x = R[j] and Rng = [k](τ) then

bad← true; T [x,Rng]← P [j]

If x = R[j]‖J [j] and Rng = {0, 1}κ then

bad← true; T [x,Rng]← K[j]

If stage = 2 then For j ∈ [t] do

If x = R[j] and Rng = [k](τ) then

T [x,Rng]← P [j]

If x = R[j]‖J [j] and Rng = {0, 1}κ then

T [x,Rng]← K[j]

Return T [x,Rng]

Game G2 G3

K←$ [q]k

For j ← 1, . . . , t do

R[j]←$ {0, 1}r; K[j]←$ {0, 1}κ

P [j]←$ [k](τ)

stage← 1; (Lk, σ)←$AH1(); L←$ LkH1(K)

stage← 2; b′←$AROR,H1(σ, L)

Return (b′ = 1)

H1(x,Rng)

If not T [x,Rng] then

T [x,Rng]←$ Rng

If stage = 2 then For j ∈ [t] do

If x = R[j] and Rng = [k](τ) then

T [x,Rng]← P [j]

If x = R[j]‖J [j] and Rng = {0, 1}κ then

bad← true; T [x,Rng]← K[j]

Return T [x,Rng]

ROR()

j ← j + 1; Return (R[j],K[j])

Figure 8: Games G0, . . . ,G3. All games share the same procedure ROR shown on the bottom of
the middle column.

b = 1 case and outputs true when A outputs 1. Similarly, we note that G3, without the boxed code,
simulates the game Gkey

KEY(A) exactly for b = 0 case and outputs true when A outputs 1. Hence,

Advkey
KEY(A) = Pr[G0]− Pr[G3] . (21)

23

Game G4

K←$ [q]k

For j ← 1, . . . , t do

R[j]←$ {0, 1}r; K[j]←$ {0, 1}κ

P [j]←$ [k](τ)

stage← 1; (Lk, σ)←$AH2(); L←$ LkH2(K)

stage← 2; b′←$AROR,H2(σ, L)

Return (b′ = 1)

ROR()

j ← j + 1; Return (R[j],K[j])

H2(x,Rng)

If not T0[x,Rng] then

T0[x,Rng]←$ Rng

If stage = 2 then For j ∈ [t] do

If x = R[j] and Rng = [k](τ) then

T0[x,Rng]← P [j]

If x = R[j]‖J [j] and Rng = {0, 1}κ then

bad← true

Return T0[x,Rng]

Figure 9: Game G4. Note that T0 is a table obtained via coin-fixing.

Adversary B(L,p0, . . . ,pt−1)

i← 0; For j ∈ [t] do

R[j]←$ {0, 1}r

P [j]←$ pj

b′←$A′ROR,H3(L)

α←$ [i]

Return Jα

ROR()

j ← j + 1; Return (R[j],K[j])

H3(x,Rng)

If not T0[x,Rng] then

T0[x,Rng]←$ Rng

If stage = 2 then For j ∈ [t] do

If x = R[j] and Rng = [k](τ) then

T0[x,Rng]← P [j]

If Rng = {0, 1}κ then

Ri‖Ji ← x; i← i+ 1

Return T0[x,Rng]

Figure 10: Subkey prediction adversary B.

We will proceed to bound Pr[G0]. Note that G0 and G1 are identical-until-bad. Hence, via the
Fundamental Lemma of Game Playing [7]

Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1])

≤ Pr[G1] + Pr [G1 sets bad] .
(22)

Next, we claim that

Pr[G1 sets bad] ≤ t(t− 1)

2r+1
+
t · q1
2r

. (23)

First, there is at most t(t− 1)/2r+1 probability of collision in the r-bit values R[1], . . . , R[t] by the
birthday bound. Next, H0 sets bad only when stage = 1, and there are exactly q1 H0-queries when
stage = 1. We note that each H0-query when stage = 1 has at most t/2r probability of setting bad
since there are at most t distinct values for R[1], . . . , R[t].

We proceed to bound Pr[G1]. We note that G2, with the boxed code included, is equivalent to
G1. Furthermore, G3, without the boxed code, is identical to G2 until bad is set. Hence,

Pr[G1] = Pr[G2] = Pr[G3]− (Pr[G2]− Pr[G3])

≤ Pr[G3] + Pr[G3 sets bad] .
(24)

24

Lastly, we claim that
Pr[G3 sets bad] ≤ q2 · t ·Advskp

q,k,τ (`) , (25)

Notice that the theorem follows from Equations (21), (22), (23), (24), and (25). It remains to show
Equation (25). The justification of Equation (25) involves two step. First, we argue that there
is some fixing of the coins of A,H1, Lk, which results in a deterministic leakage function Lk′, an
adversary A′, and partial H table T0 such that

Pr[G3 sets bad] ≤ Pr[G4 sets bad] , (26)

where G4 is given in Fig. 9. Next, we show that

Pr[G4 sets bad] ≤ q2 ·Advmcskp
q,k,τ,t(B, Lk

′) ≤ q2 · t ·Advskp
q,k,τ (`) , (27)

by constructing a multi-challenge subkey prediction adversary B, which is given in Fig. 10. B will
embed the probes given, p0, . . . ,pt−1 into the H response and run A′. It will guess, at random,
one of the H queries of A′ of the form (R‖J, {0, 1}κ). Hence, if G4 sets bad, then with at least 1

q2
probability, B succeeds. The second part of Equation (27) follows from Lemma 14. This justifies
Equation (25) and concludes the proof of the theorem.

5 Big-Key Identification

Identification schemes. An identification scheme ID specifies the following:

– Via prm←$ ID.Pg, parameter generation algorithm ID.Pg generates parameter prm, which is a
common input to all other algorithms.

– Via (sk, vk, hlp)←$ ID.Kg(prm), key generation algorithm ID.Kg is run by the prover to generate
secret key sk, corresponding verification key vk and a string hlp called the help string. The last is
information that, conceptually, can be viewed as part of the public verification key vk, meaning
public and available to the adversary, but to keep the verification key small, hlp is stored by the
prover along with sk.

– Via (com, st)←$ ID.Com(prm), commitment algorithm ID.Com is run by the prover to generate
its first message com, called the commitment, along with state information st that it saves.

– Via chl←$ {0, 1}ID.Chl, the verifier generates a random challenge chl to return to the prover.

– Via rsp← ID.Rsp(prm, hlp, sk, st, chl), deterministic response algorithm ID.Rsp is run by the prover
to generate its response rsp.

– Via d ← ID.Vrf(prm, vk, com, chl, rsp), deterministic decision algorithm ID.Vrf returns a boolean
decision d for the verifier to accept or reject.

In the ROM, algorithms may have oracle access to the random oracle H. This syntax is non-
asymptotic, in that there is no explicit security parameter. Correctness requires that

Pr[ExecuteID(prm, vk, sk, hlp)] = 1

for all prm ∈ [ID.Pg] and (sk, vk, hlp) ∈ [ID.Kg(prm)], where

Game ExecuteID(prm, vk, sk, hlp)

(com, st)←$ ID.Com(prm)
chl←$ {0, 1}ID.Chl

25

Game Gimp
ID,`(A)

prm←$ ID.Pg; s← 0

(sk, vk, hlp)←$ ID.Kg(prm)

st←$A.SetupLeak`,Prover,H(prm, vk, hlp)

(com, st′)←$A.ComH(st);

chl←$ {0, 1}ID.Chl

rsp←$A.RspH(prm, hlp, sk, st′, chl)

d←$ ID.VrfH(prm, vk, com, chl, rsp)

Return d

Leak`(f)

L←$ f(sk) ; s← s+ |L|
If s ≤ ` then return L else return ⊥

Prover(i, args)

If pst[i] = ⊥ then // Commit

(pcom[i], pst[i])←$ ID.Com(prm) ; return

pcom[i]

If prsp[i] = ⊥ then // Response

prsp[i]←$ ID.RspH(prm, hlp, sk, pst[i], args)

Return prsp[i]

Return ⊥

H(x,Rng)

If T [x,Rng] = ⊥ then T [x,Rng]←$ Rng

Return T [x,Rng]

Figure 11: Game defining security of identification scheme ID under pre-impersonation leakage.

rsp← ID.Rsp(prm, hlp, sk, st, chl)
d← ID.Vrf(prm, vk, com, chl, rsp)
Return d

Security of identification schemes. We give definitions allowing concrete-security assess-
ments. The core definition is that of adversary advantage. The notion captured is security against
impersonation under active attack [14, 5] in the further presence of leakage on the secret key [2].

Let ID be an identification scheme. Let ` be an integer representing a bound (in bits) on
the leakage. Let A be an impersonation adversary, made up of component algorithms A.Setup,
A.Com, and A.Rsp. We associate to these the game of Fig. 11. First, the parameters and keys
are generated. Next, A.Setup is run with access to a leakage oracle Leak` a prover oracle Prover
and the random oracle H. The leakage oracle takes input a function Lk from the adversary and
returns leakage L = Lk(sk). This oracle can be called adaptively and any number of times, its
code ensuring that the total number of bits returned to the adversary does not exceed `. The
prover oracle allows an active attack in which the adversary, playing the role of a dishonest verifier,
can generate prover instances and interact with them. The commitment and state of instance i
are produced by the game and stored as pcom[i] and pst[i], respectively. If instance i has been
activated, meaning pst[i] 6= ⊥, then the adversary can submit, via args, a challenge of its choice,
and obtain response prsp[i]. After exiting this setup phase, the adversary turns into a dishonest
prover, aiming to convince the honest verifier to accept. It produces its commitment via A.Com,
receives a random challenge chl, and produces its response via A.Rsp. The game returns the boolean
decision d of the verifier’s decision function. We define the leakage impersonation advantage of A
against ID to be

Advimp
ID,`(A) = Pr

[
Gimp

ID,`(A)
]
.

Groups. We fix a bilinear group description G = (G,GT , g, e, p), where

– p ≥ 3 is a prime number that will be the order of the groups

– G,GT are (cyclic) groups of order p

26

Game Gcdh
G (A)

(G,GT , g, e, p)← G
x, y←$ [p] ; h←$A(G, gx, gy)

Return (h = gxy)

Game Gdl
G (A)

(G,GT , g, e, p)← G
x←$ [p] ; x′←$A(G, gx)

Return (x = x′)

Game Gpskp
p,m,k,τ (A, Lk)

For i ∈ [k] do sk[i]←$ Zmp
p←$ [k](τ); e←$ Zp
For j ∈ [m] do

sk∗[j] =
∑τ−1
i=0 (sk[p[i]][j])ei

L← Lk(sk); sk←$A(p, e, L)

Return (sk∗ = sk).

Figure 12: Left: Games Gcdh
G and Gdl

G defining the security of CDH and DL problems in G.

Right: Game Gpskp
p,m,k,τ (A, Lk). Where Lk : [q]k → [q]` is a leakage function. [k](τ) contains the set

of τ -dimensional vectors over [k] with distinct entries.

– g ∈ G is a generator of G

– e : G×G→ GT is an efficiently computable, non-degenerate bilinear map. This means that (1)
e(ga, gb) = e(g, g)ab for all a, b ∈ [p], and (2) e(g, g) is not the identity element of GT .

We will base security on the assumed hardness of the CDH (Computational Diffie-Hellman) and
DL (Discrete Logarithm) problems in G. The definitions are based on games Gcdh and Gdl in
Fig. 12, associated to G and an adversary A. We define the following CDH and DL advantages:

Advcdh
G (A) = Pr[Gcdh

G (A)]

Advdl
G (A) = Pr[Gdl

G (A)] .

Hardness of CDH of course implies hardness of DL. Quantitatively, given A, one can construct A′
with similar running time such that

Advdl
G (A) ≤ Advcdh

G (A′).

ADW identification scheme. We present a variant of ADW’s identification scheme [2], which
uses a random oracle to derive the challenges (as considered in [2] without analysis). The scheme
ID = ADW[G, k,m, τ, r] is parameterized by a bilinear group description G and positive integers
k,m, τ, r. We require that m ≥ 2 and k ≥ τ ≥ 1. Here k is the number of blocks of the secret
key, where each block is an m-dimensional vector over Zp, and τ is the number of probes that
algorithms make into the secret key. The parameter r determines the challenge length, meaning
we set ID.chl = r. The algorithms ID.Pg, ID.Kg, ID.Com, ID.Rsp, ID.Vrf are given in Fig. 13.

Intuitively, the scheme consists of k generalized Okamoto identification scheme [16, 2], and one
instance of BLS signature scheme [8]. Each block of the secret key (in Zmp) is a secret key for a
generalized Okamoto identification scheme of dimension m. The public keys, pk[0], . . . , pk[k−1], of
the k Okamoto’s identification schemes, are signed using the BLS signature scheme under signing
key s, yielding signatures σ[0], . . . , σ[k−1]. The public verification key of the identification scheme,
consists only of the verification key, vk, of the BLS signature scheme. During identification, a
random τ instances out of k instances is chosen (via H by the verifier) and compressed via polynomial
evaluation to sk∗, pk∗, and σ∗ by the prover. During response phase, the prover, in addition to
answering the challenge from the Okamoto identification scheme, needs to transmit pk∗ and σ∗ to the

27

ID.Pg()

For i ∈ [m] do gi←$G

Return (g0, . . . , gm−1)

ID.Com(prm)

y←$ (Zp)m

a←$

∏m−1
j=0 g

y[j]
i

Return (a, y)

DeriveH(R)

p← H(R, [k](τ))

e←$ H(0‖R, [p]); c∗←$ H(1‖R, [p])
Return (p, e, c∗)

ID.KgH(prm)

s←$ Zp; vk← gs

For i ∈ [k] do

sk[i]←$ (Zp)m

pk[i]←
∏m−1
j=0 (gi)

sk[i][j]

σ[i]←$ (H(i, G)pk[i])s

hlp← (pk, σ)

Return (sk, vk, hlp)

ID.RspH(prm, hlp, sk, st, chl)

(p, e, c∗)← DeriveH(chl)

For j ∈ [m] do

sk∗[j]←
∑τ−1
i=0 (sk[p[i]][j])ei

pk∗ ←
∏τ−1
i=0 pk[p[i]]e

i

σ∗ ←
∏τ−1
i=0 σ[p[i]]e

i

For j ∈ [m] do

z ← y[j] + c∗ · sk∗[j]
Return (pk∗, σ∗, z)

ID.VrfH(prm, vk, com, chl, rsp)

a← com

(p, e, c∗)← DeriveH(chl)

(pk∗, σ∗, z)← rsp

A← (
∏m−1
i=0 g

z[i]
i = a(pk∗)c

∗
)

h1 ← e(pk∗
∏τ−1
i=0 H(p[i], G)e

i

, vk)

h2 ← e(σ∗, g)

B ← (h1 = h2)

Return (A ∧B)

Figure 13: Algorithms of identification scheme ID = ADW[G, k,m, τ, r] associated to bilinear group
description G = (G,GT , g, e, p) and parameters k,m, τ, r satisfying m ≥ 2 and k ≥ τ ≥ 1. Here H
is a variable range function, meaning H(·,Rng) returns outputs in the set (described by) Rng. In
addition, algorithms Kg,Com,Rsp,Vrf also takes prm as argument.

verifier. We note that the signing key, s, of the underlying signature scheme must not be visible to
the attacker. This signing key is simply be discarded after Kg. (However, we note that, as ADW has
pointed out, there are advanced uses of this key such as updating the big secret key.) The correctness
of ID = ADW[G, k,m, τ, r] is checked as follows. Let prm ∈ [ID.Pg] and (sk, vk, hlp) ∈ [ID.Kg(prm)].
We claim that, during a honest execution of the protocol (ExecuteID(prm, sk, vk, hlp)), the flags A,B
in ID.Vrf will both be set to true. A is set to true because

m−1∏
i=0

g
z[i]
i =

m−1∏
i=0

gy[i]+c
∗·sk∗[i]

=

m−1∏
i=0

gy[i] · (
m−1∏
i=0

gsk
∗[i])c = a · pk∗c

∗
.

B is set to true because

e(pk∗
τ−1∏
i=0

H(p[i], G)e
i
, vk) = e(

τ−1∏
i=0

pk[p[i]]e
i
τ−1∏
i=0

H(p[i], G)e
i
, gs)

= e(
τ−1∏
i=0

((pk[p[i]]H(p[i], G))s)e
i
, g)

= e(
τ−1∏
i=0

(σ[p[i]])e
i
, g) = e(σ∗, g) .

Hence, Pr[ExecuteID(prm, sk, vk, hlp)] = 1, and ID satisfies correctness.

28

Computation cost

Kg Com Chl Rsp Vrf

Mult G k ·m m− 1 0 2τ m+ τ
Exp G k(m+ 1) + 1 m 0 2τ − 2 τ +m+ 1

Mult Zp 0 0 0 m 1
Exp Zp m 0 0 2τ τ
e eval 0 0 0 0 1

Communication cost

G - 1 0 2 0
Zp - 0 0 m 0
{0, 1}r - 0 1 0 0

Example parameters

m τ (Us) τ (ADW)

2 718 3951
4 349 2397
8 245 1996
16 201 1840
32 180 1771
64 169 1739

Figure 14: Left: Table illustrating computation and communication cost of different operations
of the identification scheme ADWG,k,m,τ,r. Chl here represents the challenge phase of the protocol.
Right: Example parameters for ADW scheme to achieve 128-bit security. The schemes uses group
of size p such that 2511 < p < 2512, and we impose a bound on the leakage of 10% on a big-key of
size 100 GB = 8× 1011 bits. For each value of m on the left column, we look the value of τ needed
to achieve 128-bit security for the identification scheme, both using our bound and using ADW’s
bound.

Efficiency. As pointed out in [2], the identification scheme has nice efficiency properties. First,
the public key (verification key) is very short (one group element). Second, the communication
costs of all phases are very small. The bulk of communication happens in the response phase,
which outputs 2 group elements and m elements from Zp. Third, the scheme has probe complexity
depending τ , which can be made small while preserving security. In particular, during each run of
the protocol, only τ locations of the secret-key will be accessed (each location consist of m elements
of Zp). Fig. 14 demonstrates the computation and communication costs of different operations.
Note that very small values of τ makes the scheme insecure. The crux of the security analysis
amounts to giving a lower bound of τ for a desired security level. Here is where we make significant
concrete security improvements over ADW.

Concrete-security analysis. Before we present the theorem stating the concrete security of
the ADW identification scheme, we first need to define the following special subkey prediction game.
The game Gpskp

p,m,k,τ (Lk,A) (Fig. 12) captures a particular type of subkey prediction game in which
the subkey is interpreted as a tuple of polynomials. In this game, the adversary A needs to predict
the value of these polynomials at a random point e, which is given to A. We define the following
prediction advantage

Advpskp
p,m,k,τ (`) = max

A, Lk:(Zm
p)k→(Zm

p)`
Pr
[
Gpskp
p,m,k,τ (A, Lk)

]
.

We state a theorem which captures the concrete security of the ADW identification scheme.
The theorem streamlines the original analysis of ADW to a precise relation of advantages, which
allows us to instantiate parameters of practical sizes.

Theorem 16. Let G = (G,GT , g, e, p) be a group with efficient pairngs. Let ID = ADWG,k,m,τ,r be
the ADW identification scheme shown in Fig. 13. Let A = (A.Setup,A.Com,A.Rsp) be a leakage

29

impersonation adversary. Let q denote the number of H queries plus the number of Prover queries
that A.Setup and A.Com makes. Fig. 16 and Fig. 16 gives two adversaries Acdh and Adl such that

Advimp
ID,`(A)2 ≤ Advcdh

G (Acdh) +m ·Advdl
G (Adl) + Advpskp

p,m,k,τ (`+ k/m) +
q

2r
+

1

p
. (28)

Additionally, let t1 be the running time of A.Setup, t2 be the running time of A.Com, t3 be the
running time of A.Rsp, and let t4 be the running time of ID.Kg. We have that the running time of
Acdh and Adl is approximately t1 + t2 + 2 · t3 + t4.

The proof of Theorem 16 is given in Section 5.1. The following lemma relates Advpskp
p,m,k,τ (` +

k/m) to the large-alphabet subkey prediction advantage (as bounded in Section 3.3).

Lemma 17. Let p,m, k, τ, ` be positive integers, then

Advpskp
p,m,k,τ (`) ≤

√
Advskp

pm,k,τ (`) +
τ

p
.

We note that with Lemma 17, we can bound the term Advpskp
p,k,k,τ (`) for any value p,m, k, τ, `.

Hence, the only term that is not explicitly bounded on the right-hand side of Equation (28) are
Advcdh

G (A) and m ·Advcdh
G (A), which can be assumed to be small when the CDH and DL problems

are suspected to be hard in group G.

Comparison with ADW’s analysis. Our analysis of ADW’s identification scheme improves upon
the original analysis in the following ways. First, we analyze the scheme in which the challenge is
generated using a random oracle directly. (The construction that uses a random oracle to derive the
challenge is mentioned to be secure in [2] with no proof.) Second, while ADW’s analysis is offered
in the asymptotic case, we state and prove a reduction that gives concrete security, which lead to
practical instantiation of parameters. The reduction gives a bound of the impersonation advantage
in terms of three dominating quantities: CDH and DL advantages in G, and a special form of subkey-
prediction advantage under polynomial compression, Advpskp

p,m,k,τ (Lk,A). Hence, giving a good

numerical bound of the impersonation advantage amounts to bounding Advpskp
p,m,k,τ (Lk,A). Here

is where we make significant improvements: we use the large-alphabet subkey prediction lemma
(Theorem 1) as well as a tighter polynomial-evaluation entropy preservation lemma (Lemma 17) to
give significantly better concrete bounds. The comparison of parameters can be found in Fig. 14.

Parameter instantiation. We give an example instantiation of the ADW identification scheme
with 128-bits security. First, we find a pairing friendly group G with symmetric pairing e : G×G→
GT . Because of the square-root loss of security, we need 256-bit of security for CDH and DL in G.
Hence, G needs to be of size roughly 512 bits. We consider G = (G,GT , g, e, p), where p is a prime
of roughly 512 bits (2511 < p < 2512). We represent elements in Zp using exactly 512 bits. We pick
a big key size of 100 GB, i.e. k∗ = 8 · 1011. For a choice of m ≥ 2, we have that the block size in
bits is b = m · 512. We let k = k∗/b be the size of the big key in blocks. We fix a leakage rate of
10%. By Theorem 16 and Lemma 17, to achieve 128-bit security for the identification scheme, we
need 512 bits of security from Advskp

pm,k,τ (`+ k
m). Hence, we need

τ = Probesk∗,`∗+k∗/m,s(m · 512)

probes. Values of Probesk∗,`∗+k∗/m,s(m · 512) versus various values of m is shown in Fig. 14 using
both our bound and ADW’s bound.

30

Entropy preservation under polynomial evaluation. Lemma 17 relates the prediction
advantage to the large-alphabet subkey prediction advantage. Note that our bound is quantita-
tively better than [2, Corollary A.1]. In particular, we prove 1

2 rate entropy preservation while
ADW proves a rate of 1

3 . Before proving the lemma, we define the following quantities for jointly
distributed random variables (X,Y). Let X be a random variable, the prediction and collision
probability of X is defined, respectively, to be

Pred(X) = max
x

Pr[X = x] , CP(X) = Pr[X = X ′] ,

where X ′ is an independent random variable that is identically distributed to X. Additionally,
suppose that (X,Y) are jointly distributed, we define the conditional prediction and collision prob-
ability of X given Y , respectively, to be

P̃red(X | Y) = EY [Pred(X | Y)] , C̃P(X | Y) = EY [CP(X | Y)] .

We note that Pred(X | Y) and CP(X | Y) are random variables in Y . We need the following
well-known lemma,

Lemma 18. Let (X,Y) be jointly distributed random variables, then

C̃P(X | Y) ≤ P̃red(X | Y) ≤
√
C̃P(X | Y) .

Proof. For each value y of the random variable Y , we consider the probability mass function of the
random variable X | Y = y, PX|Y=y(·). We note that

Pred(X | Y = y) = max
x

PX|Y=y(x) ,

CP(X | Y = y) =
∑
x

PX|Y=y(x)2 .

First, we derive that

CP(X | Y = y) ≥
(

max
x

PX|Y=y(x)
)
·
∑
x

PX|Y=y(x) = Pred(X | Y = y) .

Taking expectation over y sampled from Y on both sides of the above equation, we obtain that
P̃red(X | Y) ≤ C̃P(X | Y). Next, we note that viewing Pred(X | Y = y),

√
CP(X | Y = y) as 1-

and 2-norms of PX|Y=y(·) respectively, we have Pred(X | Y = y) ≤
√

CP(X | Y = y). Hence, by
the above property and Jensen’s inequality

P̃red(X | Y) = EY [Pred(X | Y)]

≤ EY [
√
CP[X | Y]]

≤
√

EY [CP[X | Y]]

= C̃P(X | Y) .

31

Proof (of Lemma 17). Let A be any adversary and Lk : [q]k → [q]` be a leakage function. Consider

the sample space defined by the experiment Gpskp
p,m,k,τ (A, Lk) (all the coins used by the experiment

and adversary A). We consider all the variables used inside Gpskp
p,m,k,τ (A, Lk) as random variables

(e.g. sk∗ and L = Lk(K)). We note that

Pr
[
Gpskp
p,m,k,τ (A, Lk)

]
≤ P̃red(sk∗ | p, L, e) .

Furthermore, by Lemma 18,

P̃red(sk∗ | p, L, e) ≤
√
C̃P(sk∗ | p, L, e) .

We now need to bound C̃P(sk∗ |p, L, e). To compute this quantity. We consider another independent

execution of Gpskp
p,m,k,τ (A, Lk), where the variables in the second execution is denoted with ′, e.g. sk′.

We restrict to the event that Lk(sk) = Lk(sk′) and p = p′. We define polynomials p1, . . . , pj , which
are functions of sk, sk′,p, pj(x) =

∑τ−1
i=0 (sk[p[i]][j] − sk′[p[i]][j])xi. Notice that these polynomials

are of degree at most τ . If sk 6= sk′, then at least one of pj is a non-zero polynomial, and has at
most τ roots. Hence, if sk 6= sk′, over a independently uniform e, the probability that pj(e) = 0 is
at most τ

p when pj is not the zero polynomial. Finally, we derive that

C̃P(sk∗ | p, L, e) = Ep,L,e

[
CP(sk∗ | p, L, e)

]
≤ Ep,L,e

[
Pr
[
sk[p] = sk′[p] | p, L, e

]
+ Pr

[
∀j ∈ [m] : pj(e) = 0 | sk[p] 6= sk′[p],p, L, e

]]
= C̃P(sk[p] | p, L) + Ee

[
Pr [∀j ∈ [m] : pj(e) = 0]

]
≤ P̃red(sk[p] | p, L) +

τ

p

≤ Advskp
pm,k,τ (`) +

τ

p
.

5.1 Proof of Theorem 16

We follow the proof technique used by [2].

Proof. (of Theorem 16). Let ID = ADWG,k,m,τ,r be the ADW identification scheme. The reduction
is very similar to the reduction from [2, Appendix B.5]. Rewind attemps to run a given leakage
impersonation adverasryA twice with two different programmed challenges that only differ in the el-
ement c∗ (R and e stay the same). Rewind takes an algorithm Gen that generates (prm, vk, sk, hlp, T),
where T is the table used by H. Rewind simulates H for A using HRewind as decribed by the code.
Rewind returns the success status of the rewinding process, along with the two responses of the two
executions (rsp1, rsp2), plus the honest response (rsp∗) and the honestly generated and compressed
secrete key (sk∗). Let x ∈ {1, 2}, we use Pr[Rewindx(Gen,A)] to denote the probablity that the first
component of the output of Rewindx is true. First, using the well-known rewind technique [5], we
will argue that

Pr[Rewind1(Gen,A)] ≥ Advimp
ID,`(A)2 − 1

p
. (29)

32

Game Rewind1(Gen,A) Rewind2(Gen,A)

(prm, vk, sk, hlp, T)← Gen(); s← 0

st←$A.SetupLeak,Prover,HRewind(prm, vk, hlp)

(com, st′)← A.ComHRewind(st); chl← {0, 1}ID.Chl

T1[0‖chl, [p]]←$ [p]; T1[1‖chl, [p]]← ⊥
T1[chl, [k](τ)]←$ [k](τ); T2 ← T1

If C[chl] then

bad← true

T [0‖chl, [p]]← ⊥; T [1‖chl, [p]]← ⊥; T [chl, [k](τ)]← ⊥
rsp1 ← A.Rsp

HRewind[T1](st′, chl)

rsp2 ← A.Rsp
HRewind[T2](st′, chl)

For j ∈ [m] do y[j]← 0

(pk∗, σ∗, z∗)← ADW.RspHRewind[T2](prm, hlp, vk, sk, y, chl)

(p, c, e)← DeriveH(chl)

For j ∈ [m] do sk∗[j]←
∑τ−1
i=0 (sk[p[i]][j])ei

A← VrfHRewind[T1](prm, vk, com, chl, rsp1)

B ← VrfHRewind[T2](prm, vk, com, chl, rsp2)

C ← (T1[1‖chl, [p]] 6= T2[1‖chl, [p]])
Return (A ∧B ∧ C, rsp1, rsp2, rsp∗, sk

∗)

Gen()

prm←$ Pg(); (vk, sk, hlp)←$ Kg(prm)

Return (prm, vk, sk, hlp,⊥)

HRewind[T
′](x,Rng)

If Rng = [p] then b‖x← x

C[x]← true

If T [x,Rng] then return T [x,Rng]

If T ′ then

If not T ′[x,Rng] then T ′[x,Rng]←$ Rng

Return T ′[x,Rng]

Else if not T [x,Rng] then T [x,Rng]←$ Rng

Return T [x,Rng]

Prover(i, args)

If pst[i] = ⊥ then // Commit

(pcom[i], pst[i])←$ ID.Com(prm)

Return pcom[i]

Else If prsp[i] = ⊥ then // Response

prsp[i]←$ ID.RspHRewind(prm, hlp, sk, pst[i], args)

Return prsp[i]

Return ⊥

Figure 15: Game Rewind1 and Rewind2 (boxed). The oracle Leak is the same as the one given in
Fig. 11.

We now justify Equation (29). We consider the event that the flags A,B,C are all set to true.
Notice that the marginal probability that A is true and the marginal probability that B is ture are
both exactly Pr[Gimp

ID,`(A)]. We partition the random tape for Gimp
ID,`(A) into two parts: the random

tape that is used upto right before A.Rsp is run, and the rest of the tape that is used after A.Rsp
starts its execution. Let T be a random variable denoting the first part of the random tape. For
any value of T , say t, we let G(t) be the game Gimp

ID,`(A) with the first part of random tape fixed to
t. We have that

Pr
[
Rewind1(Gen,A)

]
= Pr [A ∧B ∧ C]

= ET [Pr [A ∧B ∧ C | T]]

≥ ET [Pr [A ∧B | T]− Pr [¬C | T]]

= ET [Pr [G(T)]2]− 1

p

≥ Pr
[
Gimp

ID,`(A)
]2
− 1

p
,

where at the last step we used Jensen’s inequality and the convexity of squaring. This justifies

33

Adversary Acdh(G, v, h)

(G,GT , g, e, p)← G
(t, rsp1, rsp2, rsp

∗, sk∗)← Rewind2(Gencdh,A)

(pk∗1, σ
∗
1 , z

(1))← rsp1
(pk∗2, σ

∗
2 , z

(2))← rsp2
(pk∗, σ∗, z∗)← rsp∗

σ̂ ← ((σ∗1)c
∗
1/(σ∗2)c

∗
2) · σ∗c

∗
2−c

∗
1

ω =
∑m
j=1 γj(z

(1)
j − z

(2)
j − x∗j (c∗1 − c∗2))

s′ ← (σ̂)1/ω

Return s′

Gencdh()

(G,GT , g, e, p)← G
For j ∈ [m] do

γj ← Zp; gj ← hγj

prm = (g0, . . . , gm−1, g); vk← v

For i ∈ [m] do

sk[i]← [p]m; pk[i]←
∏m−1
j=0 g

sk[i][j]
j

βi ← [p]; σ[i]← vkβi

T [i, G]← gβi/pk[i]

hlp← (pk, σ)

Return (prm, vk, sk, hlp, T)

Adversary Adl(G, X)

(t, rsp1, rsp2, rsp
∗, sk∗)← Rewind2(Gendl,A)

(pk∗1, σ
∗
1 , z

(1))← rsp1
(pk∗2, σ

∗
2 , z

(2))← rsp2
(pk∗, σ∗, z∗)← rsp∗

For j = 1, . . . ,m do

ŝk
∗
[j]← (z(1)[j]− z(2)[j])/(c∗1 − c∗2)

x← (
∑
i∈[m]−{ρ} xi(ŝk

∗
[i]−sk∗[i]))/(sk∗[ρ]− ŝk

∗
[ρ])

Return x

Gendl()

ρ←$ [m]; gρ ← X

For j ∈ [m]− {ρ} do

xj ←$ Zp; gj ← gxj

prm = (g0, . . . , gm−1, g)

(pk, sk, hlp)← ADW.Kg(prm)

Return (prm, pk, sk, hlp,⊥)

Figure 16: Left: Adversary Acdh. Right: Adversary Adl.

Equation (29). Second, we argue that

Pr[Rewind1(Gen,A)]− Pr[Rewind2(Gen,A)] ≤ Pr[Rewind1(Gen,A) sets bad] =
q

2r
. (30)

This is because the size of the table C is upper-bounded by the number of queries that A.Setup
and A.Com makes to H and Derive, which is q. Next, we attempt to bound Pr[Rewind2(Gen,A)].
We define the following events in the game Rewind2(Gen,A).

E : A ∧B ∧ C ∧
((pk∗1)

(c∗1)

(pk∗2)
(c∗2)

= (pk∗)c
∗
1−c∗2

)
,

E : A ∧B ∧ C ∧
((pk∗1)

(c∗1)

(pk∗2)
(c∗2)
6= (pk∗)c

∗
1−c∗2

)
.

Notice that per construction of the events,

Pr[Rewind2(Gen,A)] = Pr[E] + Pr[E] . (31)

Consider Acdh (Fig. 16) and Adl (Fig. 16), which attemps to break CDH and DL problems, respec-
tively, using Rewind2. We will show the following (in)equalities

Pr[E] = Advcdh
G (Acdh) , (32)

34

and

Pr[E] ≤ m ·Advdl
G (Adl) + Advpskp

p,m,k,τ (`+
k

m
) . (33)

This part of the analysis follows from [2, Appendix B.5] and we restate their derivation here.
Assume E or E, since the signatures verifies, for w =

∏τ
i=0H(p[i], G)e

i
, we have

σ∗ = (pk∗w)s , σ∗1 = (pk∗1w)s , σ∗2 = (pk∗2w)s .

If E happens, the following two values are distinct

(σ1)
c∗1

(σ2)c
∗
2

=

(
w(c∗1−c∗2) (pk∗1)

c∗1

(pk∗2)
c∗2

)s
, (σ∗)c

∗
1−c∗2 =

(
wc

∗
1−c∗2(pk)c

∗
1−c∗2

)s
.

Hence, the value σ̂ computed by Acdh is

σ̂ =

(
(pk∗1)

c∗1

(pk∗2)
c∗2
· 1

(pk∗)c
∗
1−c∗2

)s
= (gω)s .

Therefore, Acdh can compute gs and solve the CDH problem that it was given. This concludes
the proof for Equation (32). If E happens, then we claim that sk∗ = ŝk with probability at most

Advpskp
p,k,k,τ (` + k/m). This is true per definition of Advpskp

p,k,k,τ (` + k/m). Notice that if sk∗ 6= ŝk,
then with probability 1/m, Adl can solved the DL problem that it embedded into the parameters.
This is because Adl has two representation of pk∗ in the basis g0, . . . , gm−1, namely sk∗ and ŝk.
This concludes the proof of Equation (33). Notice that Equations (29), (31), (30), (32), and (33)
together implies the theorem. Finally, notice that Acdh and Adl has roughly the running time of
Rewind2 and ADW.Kg, which is about t1 + t2 + 2t3 + t4.

6 Acknowledgements

We thank the anonymous CCS 2018 reviewers for their helpful comments. We thank Yevgeniy
Dodis and Daniel Wichs for helpful discussions.

References

[1] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-key encryption in the
bounded-retrieval model. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 113–134. Springer, Heidelberg, May 2010. 3, 5

[2] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 36–54.
Springer, Heidelberg, Aug. 2009. 3, 4, 5, 6, 26, 27, 29, 30, 31, 32, 35

[3] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. Cryptology ePrint Archive, Report 2009/160, 2009. http://eprint.iacr.

org/2009/160. 3, 4, 6

[4] M. Bellare, D. Kane, and P. Rogaway. Big-key symmetric encryption: Resisting key exfiltra-
tion. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 373–402. Springer, Heidelberg, Aug. 2016. 3, 4, 5, 9, 12, 14, 19, 20, 21, 22, 23

35

http://eprint.iacr.org/2009/160
http://eprint.iacr.org/2009/160

[5] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 162–177. Springer, Heidelberg, Aug. 2002. 26, 32

[6] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures, tightly: A frame-
work and generic transforms. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 435–464. Springer, Heidelberg, Dec. 2016. 7

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. 7, 24

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, Dec.
2001. 27

[9] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient key
exchange in the bounded retrieval model. In S. P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 479–498. Springer, Heidelberg, Feb. 2007. 3, 5

[10] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic characteristics and system
implications of flash memory based solid state drives. In ACM SIGMETRICS Performance
Evaluation Review, volume 37, pages 181–192. ACM, 2009. 6

[11] https://www.cryptopp.com/benchmarks.html, 2015. Accessed: 2017-05-18. 6

[12] G. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the
bounded retrieval model. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of
LNCS, pages 225–244. Springer, Heidelberg, Mar. 2006. 3, 5

[13] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In S. Halevi and T. Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 207–224. Springer, Heidelberg, Mar. 2006. 3,
5

[14] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, Aug. 1987. 26

[15] McAfee. Stop data exfiltration, 2015. August 2015. https://www.mcafee.com/us/

resources/solution-briefs/sb-quarterly-threats-aug-2015-1.pdf. 5

[16] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Heidelberg, Aug. 1993. 6, 27

[17] H. Robbins. A remark on stirling’s formula. The American Mathematical Monthly, 62(1):26–29,
1955. 37

[18] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991. 6

36

https://www.cryptopp.com/benchmarks.html
https://www.mcafee.com/us/resources/solution-briefs/sb-quarterly-threats-aug-2015-1.pdf
https://www.mcafee.com/us/resources/solution-briefs/sb-quarterly-threats-aug-2015-1.pdf

A Proofs of Lemmas 2, 3, and 4

We need the following version of Stirling’s approximation of n!.

Lemma 19. [17] For any n ∈ Z+,

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

We first prove Lemma 2.

Proof (of Lemma 2). We first show the lower bound Equation (6) . Notice that by definition of
Hq(r/k),

qkHq(r/k) = (q − 1)r(r/k)−r(1− r/k)r−k .

Hence, by Lemma 19,

Bq,k(r) =
r∑
i=0

(q − 1)i
(
k

i

)

≥ (q − 1)r
k!

r!(k − r)!

≥ (q − 1)r
√

2πk(ke)ke
1

12k+1

√
2πr(re)re

1
12r

√
2π(k − r)(k−re)k−re

1
12(k−r)

= qkHq(r/k)

√
ke

1
12k+1√

2πr(k − r)e
1

12r e
1

12(k−r)

= qkHq(r/k)−ε(k,r) .

Now, we assume that r ≤ k − k/q and derive the upper bound, Equation (7).

Bq,k(r)

qkHq(r/k)
=

∑r
i=0(q − 1)i

(
k
i

)
(q − 1)r(r/k)−r(1− r/k)r−k

=
r∑
i=0

(
k

i

)
(q − 1)i−r(r/k)r(1− r/k)k−r

=

r∑
i=0

(
k

i

)
(q − 1)i(1− r/k)k

(r/k

(q − 1)(1− r/k)

)r
≤

r∑
i=0

(
k

i

)
(q − 1)i(1− r/k)k

(r/k

(q − 1)(1− r/k)

)i
=

r∑
i=0

(
k

i

)
(r/k)i(1− r/k)k−i

≤
k∑
i=0

(
k

i

)
(r/k)i(1− r/k)k−i

= 1 ,

where the first inequality is by the fact that r/k ≤ (q − 1)(1− r/k) if r ≤ k − k/q.

37

Lemma 3 follows from Lemma 2.

Proof (of Lemma 3). Per definition of rdq,k(N), it suffices to show that

Bq,k(r) ≤ N ,

for r = bH−1q (logq(N)/k) · kc. Per definition of H−1q , r ≤ (1 − 1/q) · k. Hence, we can apply
Equation (7) and obtain

Bq,k(r) ≤ qkHq(r/k) ≤ qkHq(H
−1
q (logq(N)/k)) = N .

Lastly, we prove Lemma 4.

Proof (of Lemma 4). We first show the lower bound that

min(x, 1− 1

q
)− 1

log2(q)
≤ H−1q (x) . (34)

Note that this is trivially true if the left-hand side of Equation (34) is negative. Hence, we suppose
that the left-hand side of Equation (34) is non-negative. As noted before, Hq is increasing in the
domain [0, 1−1/q]. Additionally, note that min(x, 1−1/q)−1/ log2(q) ≤ 1−1/q. Hence, it suffices
to show

Hq

(
min(x, 1− 1

q
)− 1

log2(q)

)
≤ x . (35)

We consider two cases. Case 1, x ≤ (1− 1/q). Case 2, (1− 1/q) ≤ x ≤ 1. We claim that both cases
follow from the equation below, which holds for x ∈ [log2(q), 1].

Hq(x−
1

log2(q)
) ≤ x . (36)

Case 1 is directly implied by Equation (36). For case 2, note that the left-hand side of Equation (34)
always evaluate to 1−1/q−1/ log2(q). Hence, by Equation (36), Hq(1−1/q−1/ log2(q)) ≤ 1−1/q ≤
x. Finally, we justify Equation (36). Recall that Hq(x) = H2(x)/ log2(q)+x logq(q−1). We compute

Hq(x−
1

log2(q)
) =

H2(x− 1
log2(q)

)

log2(q)
+ (x− 1

log2(q)
) logq(q − 1)

≤ 1

log2(q)
+ x logq(q ·

q − 1

q
)−

logq(q − 1)

log2(q)

=
1

log2(q)
+ x− x logq(

q

q − 1
)−

logq(q − 1)

log2(q)

= x+
1

log2(q)
(1− logq(

q(x log2(q))

(q − 1)(x log2(q)−1)
))

≤ x+
1

log2(q)
(1− logq(q))

= x.

38

Next, we show the upper bound that

H−1q (x) ≤ x(1− 1

q
) . (37)

Similar to the lower bound we just obtained, we note that it suffices to show Hq(x(1 − 1
q)) ≥ x.

Let us define, for x ∈ [0, 1]:

f(x) =
x

q
logq(

x

q
)− x logq(x)− (1− x+

x

q
) logq(1− x+

x

q
) .

We will show that Hq(1(1− 1/q)) = x+ f(x). The derivation is as follows.

Hq(x(1− 1/q))

= x(1− 1/q) logq(q − 1)− x(1− 1/q) logq(x(1− 1/q))

− (1− x+ x/q) logq(1− x+ x/q)

≥ x logq(q − 1)− x/q logq(q − 1)

− x(1− 1/q)(logq(x) + logq(1− 1/q))

− (1− x+ x/q) logq(1− x+ x/q)

= x logq(q − 1)− x/q logq(q − 1)

− x logq(x)− x logq(1− 1/q) + x/q logq(x) + x/q logq(1− 1/q)

− (1− x+ x/q) logq(1− x+ x/q)

= x
(

logq(q − 1) + logq(q/(q − 1))
)
− x logq(x)

− x/q
(

logq(q − 1) + logq(1/x) + logq(q/(q − 1))
)

− (1− x+ x/q) logq(1− x+ x/q)

= x+ x/q logq(x/q)− x logq(x)− (1− x+ x/q) logq(1− x+ x/q)

= x+ f(x) .

Lastly, we show that f(x) ≥ 0 for any x ∈ [0, 1]. First, we check that f(0) = f(1) = 0. Next, check
that the second derivative of f ,

f ′′(x) =
q − 1

x(qx− q − x)
≤ 0 ,

is at most 0 for any x ∈ [0, 1]. We omit the details of the derivative computation here. Hence, f is
concave over the domain [0, 1], with f(0) = f(1) = 0. Thence, f(x) ≥ 0 for all x ∈ [0, 1].

B A Rejection Sampling Lemma

We prove the following lemma, which allows one to efficiently sample from [k](τ), for appropriately
constrained integers k, τ , via rejection sampling.

39

Lemma 20. Let τ, k, c be positive integers. Suppose k ≥ 2(c+ 1) · τ2. Let x1, . . . , xt←$ [k] be i.i.d
samples, where

t = τ +
⌈ cτ

log2(k)− log((c+ 1)τ2)

⌉
≤ τ + cτ .

Let S = {x1, . . . , xt}. Then
Pr[|S| < τ] ≤ 2−c·τ .

Proof. Let δ = t− τ . Since k ≥ 2(c+ 1) · τ2, we have log2(k)− log2((c+ 1)τ2) ≥ 1. Hence, δ ≤ c · τ .
Define Si = {x1, . . . , xi}. Hence, S0 = ∅ and St = S. Suppose that |S| < τ , then there exists at
least δ positions i such that xi ∈ Si−1. Since xi is a independent uniform sample from [k], the
probability that xi ∈ Si−1 is |Si−1|/k, which is at most τ/k. Hence,

Pr[|S| < τ] ≤
(
τ + δ

δ

)
(
τ

k
)δ

≤
(

(c+ 1)τ

δ

)
(
τ

k
)δ

≤
((c+ 1)τ2

k

)δ
.

Hence,

log2(Pr[|S| < τ]) ≤ δ log2(
(c+ 1)τ2

k
) ≤ −c · τ .

40

	Introduction
	Preliminaries
	Large-Alphabet Subkey Prediction
	The Problem
	Subkey Prediction Theorem
	Proof of Theorem 1
	Proof of Lemma 7
	Proof of Lemma 9 and Lemma 10

	Multi-challenge Subkey Prediction

	Big-Key Symmetric Encryption
	Proof of Theorem 15

	Big-Key Identification
	Proof of Theorem 16

	Acknowledgements
	References
	Proofs of Lemmas 2, 3, and 4
	A Rejection Sampling Lemma

