Related-Key Linear Cryptanalysis
on SIMON

Jung-Keun Lee, Bonwook Koo, and Woo-Hwan Kim

National Security Research Institute, Republic of Korea
{jklee,bwkoo,whkim}@nsr.re.kr

Abstract. We present a general framework of the related-key linear attack that can be applied to a class of block ciphers including the key-alternating iterative ones with linear or affine key schedules. In contrast with the existing linear attacks that use linear characteristics with linear correlations up to around $\pm 2^{-n/2}$, where n is the block length of the block cipher, the proposed attack can use linear characteristics with linear correlations up to around $\pm 2^{-k/2}$, where k is the key length, by exploiting related-key linear approximations introduced in this work. The attack utilizes the key differences as the additional data source so it can use data of size larger than the codebook size. Thus it can cover more rounds than the current linear attacks when the key length is much larger than the block length. The attack is meaningful when the product of the computational complexity and the data size is less than 2^{k+n} considering the generic known related-key attack mentioned by J. Kelsey et al. at Crypto '96 that is an extension of the chosen related-key attack by R. Winternitz et al. Our new attack has significance even when it requires more computation and data than the single-key linear attacks since it can utilize related-key data such that the number of data entries for each related key is not large.

We also present a method of the related-key linear attack using multiple independent linear trails that provides a way to estimate the computational complexity, the data complexity, and the success probability of the attack in terms of the capacity of the system of the linear approximations. It is based on hypothesis testing with new decision rule and can be regarded as an alternative approach of the attack provided by A. Biryukov et al. at Crypto 2004 that is based on maximum likelihood approach and cannot estimate the success probability.

By applying the framework to SIMON, we get various attack results. Then we justify our claims by presenting experimental results that are close to expected ones with a small-scale variant of SIMON.

Keywords: related-key attack, linear cryptanalysis, linear key schedule, multiple linear attack, SIMON

1 Introduction

In the last decades many lightweight block ciphers have been proposed targeting resource-constrained platforms. They adopt simple key schedules to get
competitive performance figures in terms of the resource requirements. In this regard not a few of them have linear or affine key schedules. (e.g. GIFT [2], Skinny [5], Midori [1], Simon [3], Zorro [16], Prince [12], Led [17], Piccolo [28], Katan [13].) But no effective cryptanalytic methods have been discovered utilizing the linearity of the key schedule in the general framework as yet. Since the linear attack was made public by M. Matsui [24], there have been many extensions such as attacks using linear hulls [25] or multiple linear approximations [20] [6] [18]. Also there are lots of works regarding the related-key attacks against block ciphers using differential characteristics. But there are not many works dealing with the related-key linear attacks, in striking contrast with the fact that the differential attack and the linear attack are regarded as the most important cryptanalytic methods to evaluate the security of block ciphers.

Our Contributions

- We present a general framework of the related-key linear cryptanalysis that can be applied to the key-alternating iterative block ciphers with simple and close-to-affine key schedules. The framework enables us to convert a single-key linear attack to a related-key linear attack with similar number of rounds covered and similar attack complexities when the key schedule is affine. Moreover, It enables us to cover more rounds of such a block cipher than the existing linear attacks when the key length of the cipher is considerably larger than its block length.
- We present a method of the related-key linear attack using multiple independent trails. We provide an explicit formula based on hypothesis testing to estimate the complexity of the attack taking the success probability into account.
- We present related-key linear attacks on Simon 32/64, Simon 48/96, Simon 64/128, and Simon 128/256 whose results are summarized in Table 1. Some of the attack results are better than the generic known related-key attack in terms of the attack complexities as highlighted in the table.
- We present experimental results that show the validity of our framework including the appropriateness of the key hypotheses we presume.

Related Works

Related-key linear attacks. There are not so many works referring to the related-key linear attack in the literature. P. Vora et al. [29] presented an attack on a round-reduced DES claiming that using related keys one can amplify the weakness exploited in the single key recovery. M. Hermelin et al. [19] claim that using related keys, one can attack the full Present-128. A. Bogdanov et al. [9] presented a key recovery attack using some related-key linear distinguishers with chosen key differences. C. Beierle et al. [5] argue that the Skinny family of block ciphers are secure against related-tweakey linear attacks by presenting bounds on the correlations of linear trails as the number of rounds increases,
<table>
<thead>
<tr>
<th>cipher (# rounds)</th>
<th># attacked rounds</th>
<th>computation</th>
<th>data</th>
<th>P_{success}</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simon 32/64 (32)</td>
<td>27</td>
<td>$2^{61.34}$</td>
<td>2^{60}</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>$2^{55.26}$</td>
<td>2^{55}</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>$2^{56.3}$</td>
<td>$2^{51.19}$</td>
<td>0.28</td>
<td>[14]</td>
</tr>
<tr>
<td>Simon 48/96 (36)</td>
<td>34</td>
<td>$2^{33.94}$</td>
<td>2^{24}</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2^{71}</td>
<td>$2^{70.88}$</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>$2^{88.28}$</td>
<td>$2^{47.92}$</td>
<td>N/A</td>
<td>[14]</td>
</tr>
<tr>
<td>Simon 64/128 (44)</td>
<td>44</td>
<td>$2^{125.94}$</td>
<td>2^{125}</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>$2^{98.54}$</td>
<td>$2^{95.3}$</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2^{120}</td>
<td>$2^{63.53}$</td>
<td>N/A</td>
<td>[14]</td>
</tr>
<tr>
<td>Simon 128/256 (72)</td>
<td>72</td>
<td>$2^{240.18}$</td>
<td>$2^{240.1}$</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>$2^{190.44}$</td>
<td>$2^{190.39}$</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>$2^{175.67}$</td>
<td>$2^{174.72}$</td>
<td>0.5</td>
<td>This Work</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>$2^{248.01}$</td>
<td>$2^{127.6}$</td>
<td>N/A</td>
<td>[14]</td>
</tr>
</tbody>
</table>

Taking into account the fact that the attacker may utilize the tweakkey as the additional source of data. But the general framework of the linear attacks using the related-key linear approximations is introduced in this work for the first time.

Generic related-key attacks. R. Winternitz and M. Hellman presented a chosen related-key attack that can be applied to any block cipher [30]. The attack uses keys with chosen differences and the product of the number of related keys and the computational complexity is 2^k in the attack. Its success probability is 1. Later J. Kelsey et al. [21] mentioned that the attack can be extended to a known related-key-attack with similar complexity. The average success probability seems to be somewhat less than 0.5 when $k > n$. In either attack, the plaintexts used in the attack are the same regardless of the key differences. So in the setting where the attacker cannot control the plaintext, the attacker needs to get about $M2^n$ pairs of key difference and plaintext to get $M \gg 1$ related keys if such pairs are randomly chosen. Thus the product of the data size and the computational complexity is about 2^{k+n} in such a setting.

Multiple linear attacks and the success probability. A linear attack using multiple trails was first introduced in [20]. But the method has severe limitations in applications as mentioned in [6], where the authors presented an attack using independent linear trails. They provided an explicit formula for the gain of the attack in terms of the capacity of the system of the linear approximations and the data size based on a maximum likelihood approach, but they were not able to estimate the success probability of the attack. Our multiple linear attack is based on hypothesis testing and makes use of a new decision rule that leads to an explicit formula for attack complexities together with the success probability.
On the other hand, extensions of Matsui’s Algorithm 2 using linear hulls were introduced and their computational complexity and the success probability were estimated with standard key hypotheses [25, 27]. Recently, the legitimacy of the standard key hypotheses for the linear attacks has been questioned and some adjusted key hypotheses have been considered [8, 7, 11, 10]. But the complexities of our related-key attacks can be estimated accurately with the standard key hypotheses.

Organization of the paper In Sect. 2 we introduce the terminology and notations used in the paper. In Sect. 3 we describe the general framework of the related-key linear cryptanalysis with emphasis on its application to block ciphers with affine key schedules. In Sect. 4 we present attack results on Simon obtained from the framework presented in Sect. 3 together with some dedicated analysis. In Sect. 5 we provide experimental results on a small-scale variant of Simon that corroborate the claims of the paper. In Sect. 6 we discuss the validity of the attacks in more detail. We conclude in Sect. 7.

2 Terminology and Notations

\(\mathbb{F}_2 \) denotes the field with 2 elements 0 and 1. A word is a bit string of the length \(w = 12, 16, 24, 32, \) or 64. For integers \(i, j \) with \(i \leq j \), \([i, j]\) denotes the set of integers \(x \) such that \(i \leq x \leq j \). The inner product of a mask \(\gamma \) and a value \(x \) of the same length is denoted by \(\langle \gamma, x \rangle \). For a Boolean function \(G : \mathbb{F}_2^l \rightarrow \mathbb{F}_2 \), the correlation of \(G \) is defined to be the imbalance \(|\{ x : G(x) = 0 \} | - |\{ x : G(x) = 1 \}| / 2^l \). For a vectorial Boolean function \(F : \mathbb{F}_2^l \rightarrow \mathbb{F}_2^n \), an \(l \)-bit mask \(\gamma \), and an \(m \)-bit mask \(\lambda \), the (linear) correlation of \(F \) with respect to the mask pair \((\gamma, \lambda) \) is defined to be the correlation of the Boolean function \(G \) given by \(G(x) = \langle \gamma, x \rangle \oplus (\lambda, F(x)) \) and is denoted by \(\varepsilon_F(\gamma, \lambda) \). \(R \) denotes the number of the rounds of the iterative block cipher in consideration. The intermediate state of such a block cipher just before xoring with the \((i+1)\)-th round key is denoted by \(X_i \) \((i = 0, \ldots, R-1)\). \(E_i^r \) is the subcipher of the block cipher from the \((i+1)\)-th round to the \((j+1)\)-th round. The first mask and the last mask of a linear trail are called the initial (intermediate) mask and the final (intermediate) mask, respectively. The intermediate state of a block cipher coupled with the initial mask and the final mask are called the initial intermediate value and the final intermediate value, respectively. \(k \) and \(n \) denote the key length and the block length of the block cipher, respectively. \(K^* \) denotes the unknown fixed key to be recovered, \(rk_k^* \) denotes the round key for the \((i+1)\)-th round derived from \(K^* \). The difference of the round keys for the \((i+1)\)-th round derived from \(K^* \) and \(K^* \oplus \Delta K \) is denoted by \(\delta r k_i \). The LSB (least significant bit) of a word is indexed as 0 and is located at the rightmost position. The \((i+1)\)-th rightmost bit of a word \(x \) is denoted by \(x[i] \) so that \(x[0] \) denotes the LSB of \(x \). For a bit string \(X \) with even length, \(X_L \) and \(X_R \) denote the left half and right half of \(X \), respectively. For a \(w \)-bit word \(x \), \(x[i] \) with \(i \notin [0..(w-1)] \) means \(x[i \mod w] \). \(x \ll a \) and \(x \gg a \) denote the circular shift of a word \(x \) to the left and right by \(a \) bits, respectively. The Hamming weight of
That is, \(\tilde{\text{average}} \) of the empirical correlations over long keys is for the \(E \) and \(K \) as in Fig. 1, the long-key cipher corresponding to \(E \) and \(K \) and approximations between the key differences and the round keys. Let \(r \), denote an attack on \(K \)-bit \(E \) and \(K \)-bit \(F \) with \(0 \leq r \leq s \leq 2^{s+1} \). Let \(E \) be a \(R \)-round key-alternating iterative block cipher with \(k \)-bit keys and \(n \)-bit blocks. We will describe an attack on \(E \) that adds outer rounds to an \(r \)-round related-key linear approximation that is obtained from an \(r \)-round linear trail of the long-key cipher and approximations between the key differences and the round keys. Let \(\check{E} \) be the long-key cipher corresponding to \(E \) and \(\varphi \) be the key scheduling function. That is, \(\check{E} \) is a function \(\mathbb{F}_2^{2n} \times \mathbb{F}_2^R \rightarrow \mathbb{F}_2^n \) defined by

\[
\check{E}(rk_0 || rk_1 || \cdots || rk_{R-1}, x) = F_R(rk_{R-1} \oplus \cdots \oplus F_2(rk_1 \oplus F_1(rk_0 \oplus x)) \cdots)
\]

as in Fig. 1, where each \(F_i \) is a fixed \(n \)-bit permutation, \(\varphi \) is a function \(\mathbb{F}_2^n \rightarrow \mathbb{F}_2^{2n} \), and \(E(K, x) = \check{E}(\varphi(K), x) \) for \((K, x) \in \mathbb{F}_2^n \times \mathbb{F}_2^n \).

Getting a related-key linear approximation Suppose that we have an \(r \)-round linear trail \([\gamma_0, \gamma_1, \ldots, \gamma_{s+r}] \) for \(E \) such that the correlation \(\varepsilon_{F_{i+1}}(\gamma_i, \gamma_{i+1}) \) for the \((i+1)\)-th round is \(\epsilon_i \) for each \(i \in [s..(s+r-1)] \). It is well-known that the average of the empirical correlations over long keys is \(\bar{\epsilon} = \epsilon_s \cdots \epsilon_{s+r-1} \). That is,

\[
\Pr_{x, rk}(\langle \gamma_s, x \rangle \oplus \langle \gamma_{s+r}, \check{E}_{s+r-1}(rk, x) \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, rk_{s+i} \rangle = 0) = \frac{1+\bar{\epsilon}}{2}, \tag{1}
\]
where \(r_k = r_{k_0} \| r_{k_1} \| \cdots \| r_{k_{R-1}} \) and \(\bar{E}_i \) is the subcipher of \(E \) from the \((i+1)\)-th round to the \((j+1)\)-th round. (See e.g. [25].) Let \(K^* \) be the fixed unknown key to be recovered. Let \(\varphi(K^*) = r_k^* = r_{k_0}^\| r_{k_1}^\| \cdots \| r_{k_{R-1}}^\) and let \(\delta r_k := \varphi(K^* \oplus \Delta K) \oplus \varphi(K^*) \) be \(\delta r_k \| \delta r_{k_1} \| \cdots \| \delta r_{k_{R-1}} \). By (1), the correlation of the approximation

\[
\langle \gamma_{s+r} x \rangle \oplus \langle \gamma_{s+r}, E_s^{i} r_{k_s}^{-1}(K^* \oplus \Delta K, x) \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, r k_{s+i} \oplus \delta r_{k_{s+i}} \rangle, \]

i.e. the imbalance of the approximation as \((x, \Delta K) \) takes all the values in \(\mathbb{F}_2^{n+k} \), is very close to \(\epsilon \) regardless of \(K^* \). Suppose that \(\varphi \) admits a linear approximation

\[
\langle \gamma_{s+i}, \Delta K \rangle \oplus \langle \gamma_{s+i}, \delta r_{k_{s+i}} \rangle = 0
\]

with the correlation \(\varepsilon_{s+i} \) for each \(i \in [0..(r-1)] \). Such linear approximations between the key differences and the round key differences are trivially obtained if \(\varphi \) is affine, and in this case \(\varepsilon_{s+i} = 1 \) for each \(i \). If not, we can try to get such approximations by combining two “same” linear approximations between the keys and the round keys. Now, using approximations (2) and (3), we get a linear approximation

\[
\langle \gamma_{s+r} x \rangle \oplus \langle \gamma_{s+r}, E_s^{i} r_{k_s}^{-1}(K^* \oplus \Delta K, x) \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, \Delta K \rangle \oplus \langle \gamma_{s+i}, r k_{s+i} \rangle = 0,
\]

whose correlation, i.e. the imbalance of the approximation as \((x, \Delta K) \) takes all the values in \(\mathbb{F}_2^{n+k} \), is very close to \(\epsilon := \tilde{\epsilon} \prod_{i=0}^{r-1} \varepsilon_{s+i} \) by the Piling-up Lemma assuming that all the approximations are independent. Thus we may assume that the correlation of (4) is \(\epsilon \). We call (4) a related-key linear approximation.

The attack using a single linear approximation Since we have fixed the unknown key \(K^* \), \(\bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, r k_{s+i} \rangle \) is a constant. Thus (4) leads to the linear approximation

\[
\langle \gamma_{s+r} x, X_s \rangle \oplus \langle \gamma_{s+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, \Delta K \rangle = 0,
\]

with the correlation \(\pm \epsilon \) that involves the key differences as well as the initial and the final intermediate values. We perform an attack using (5) as the distinguisher: To check whether a candidate key \(K \) is correct, for many triples \((P, C, \Delta K)\) with \(C = E(K^* \oplus \Delta K, P) \), we compute \(\langle \gamma_{s+r} x, \rangle \), \(\langle \gamma_{s+r}, X_{s+r} \rangle \), and \(\bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, \Delta K \rangle \), where \(X_s = E_0^{-1}(K \oplus \Delta K, P) \) and \(E_{s+r}^{i-1}(K \oplus \Delta K, X_{s+r}) = C \) and then compute

\[
\langle \gamma_{s+r} x, \rangle \oplus \langle \gamma_{s+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, \Delta K \rangle
\]

(See Fig. 2.) If \(K \) satisfies certain conditions that \(K^* \) does, the imbalance of (6) is likely to be close to \(\pm \epsilon \). If not, the imbalance is likely to be close to 0. We assume that we have the related-key linear approximation (5) with the correlation.
\[\sum_{i=0}^{r-1} \langle \bar{\gamma}_s+i, \Delta K \rangle \]

\(\pm \epsilon \). We also assume that we have data \(\{(P_i, C_i, \Delta K_i) : 1 \leq i \leq N\} \) of size \(N \) available for the attack, where \(C_i = E(K^* \oplus \Delta K_i, P_i) \) for each \(i \). For a linear attack, we usually have to perform the data compression first to reduce the computational complexity. The data compression in a linear attack is a process that collapses the data into a new data with multiplicity considering the outer round computations. It is part of the distillation [6] and is also called the linear compression by others [23]. But the data compression in our related-key setting needs to handle the key differences unlike that in the single-key linear attacks. So the “compression function” \(H_c : \mathbb{F}_2^{d+k} \rightarrow \mathbb{F}_2^d \) with \(2^d \ll N \) we need to get for the data compression is one such that the computation of (6) using some of the “outer” round key bits and \((P, C, \Delta K)\) can be carried out using the same round key bits and \(H_c(P, C, \Delta K) \). More specifically, \(\langle \gamma_s, X_s \rangle \oplus \langle \gamma_{s+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \bar{\gamma}_s+i, \Delta K \rangle \) can be computed as \(h(H_c(P, C, \Delta K), rk^O) \oplus g(rk^O) \) for some functions \(h \) and \(g \), where \(rk^O \) is the concatenation of the outer round key bits. Note that the pair \((h, g)\) is not unique but we just need to choose one. Then the set of the concatenations of outer round key bits can be partitioned into outer key classes\(^3\) and the second input of \(h \) is actually an outer key class. Then we apply the compression function to the data set to get the compressed data set

\(^3\) Two concatenations \(rk \) and \(rk' \) of outer round key bits are in the same outer key class if and only if \(h(v, rk) = h(v, rk') \) for all \(v \). In many cases, the outer key classes can be represented by the concatenation of some outer round key bits involved in the computation.
We determine whether Alg.\,\ref{alg:related-key-linear-attack} computes the computational complexity of the attack with that of the exhaustive key search, namely the computational complexity and the success probability. Let μ, t, σ be positive real numbers and let Y be a random variable with $Y \sim N(\mu, \sigma^2)$. Then
\[
\Pr (|Y| \geq \mu) = \Phi ((1 - t)\mu/\sigma) + \Phi ((-1 - t)\mu/\sigma).
\]

To compare the computational complexity of the attack with that of the exhaustive key search, we say that the complexity of 1 encryption (including the key schedule) is 1. Let c_p be the complexity of 1 computation of H_c and c_o be the complexity of 1 computation of h using an entry in the compressed data and a candidate outer key class. Then we have
Theorem 1. The computational complexity of the attack using Alg. 1 is
\[c_p N + c_o 2^{d+k_o} + 2^{k+1} \Phi(-t_{C_N,e}) \]
with the success probability \(\Phi((1-t)c_{N,e}) + \Phi((1-t)c_{N,e}) \).

Here we have assumed that the restored outer key class \(z \) reveals simple independent relations between the bits of \(K^* \), meaning that using the \(k_o \)-bit information that \(z \) reveals about \(K^* \), we can recover the whole \(k \) bits of \(K^* \) using other simple \((k - k_o)\) relations between the bits of \(K^* \). (This is mostly the case if, for example, the key schedule is affine.) We will also present an attack method that can halve the computational complexity in some cases without much loss in the success probability later.

The related-key linear attack using multiple linear approximations

We can also consider the related-key linear attack that uses multiple linear trails to reduce the attack complexity as in the single-key setting. We present an attack method based on hypothesis testing using a newly introduced decision rule. Suppose that we have a system of \(m \geq 1 \) independent related-key linear approximations
\[\langle \gamma_j, X_s \rangle \oplus \langle \gamma_{j+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{j+i}, \Delta K \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{j+i}, rk_i^* \rangle = 0 \quad (7) \]

(1 \leq j \leq m) and the correlation of the \(j \)-th approximation is \(\epsilon_j \). We let
\[\epsilon = \left(\sum_{j=1}^{m} \epsilon_j \right)^{1/2} , \]
the square of which is called the capacity of the system in the literature [6]. Suppose that we have related-key data \(\{(P_i, C_i, \Delta K_i)\} \) of size \(N \). Suppose also that we have a function \(H : \mathbb{F}_2^{2n+k} \rightarrow \mathbb{F}_2^d \) from which we get a compressed data set \(\{(v, n_o)\} \) such that the computation of the \(m \) values
\[\langle \gamma_j, X_s \rangle \oplus \langle \gamma_{j+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{j+i}, \Delta K \rangle \quad (j = 1, \ldots, m) \quad (8) \]

using some of the outer round key bits and \((P, C, \Delta K) \) can be carried out using the same round key bits and \(H(P, C, \Delta K) \). That is, for each \(j \), there are functions \(h_j \) and \(g_j \) such that (8) can be computed as \(h_j(P, C, \Delta K, rk) \oplus g_j(rk^O) \), where \(rk^O \) is the concatenation of the outer round key bits. For each \(j \), let \(Z^O_j \) be the set of outer key classes determined by \(h_j \). Let \(Z^O \) be the set of outer key classes determined by all the \(h_j \)'s. That is, two concatenations \(rk \) and \(rk' \) of outer round key bits are in the same outer key class in \(Z^O \) if and only if \(h_j(rk) = h_j(rk') \) for all \(j \) and \(v \). Every \(z \) in \(Z^O \) can be represented as \(z = z^O_1 \cap \ldots \cap z^O_m \), where \(z^O_j \) is in \(Z^O_j \) for each \(j \in [1..m] \). So for each \(j \) and each \(z^O_j \) in \(Z^O_j \), there is a unique \(z^O_{j+} \) in \(Z^O_j \) such that \(z^O_j \subseteq z^O_{j+} \). We denote the correct outer key class by \(z^O = z^O_{j+} \). Let \(e_j^+ = \bigoplus_{i=0}^{r-1} \langle \gamma_{j+i}, rk_i^* \rangle \oplus g_j(rk^O) \) and \(\theta_j = (-1)^{z^O_j} \) for each \(j \in [1..m] \). The \(m \) "parity bits" \(e_{j+1}^* \) also have to be guessed in the multiple linear attack. We let \(z^f_j \) be the \(m \)-bit value such that \(z^f_j = e_{j+1}^* \) for each \(j \in [0..m-1] \). \(z^f_j \) will denote a guess for \(z^f_j \) and \(Z^f_j \) will denote the set of all \(z^f_j \)'s. Let \(k_I = m \) so that \(|Z^f_j| = 2^k_I \). We let \(c_{N,e} = \sqrt{N|\epsilon|} \).
Algorithm 2: Related-key linear attack using multiple linear trails

1. Perform the data compression to get the compressed set of size 2^d. Set $\tau_{(j)}(z_O) = 0$ for each j and z_O.
2. For each entry (v, n_v) in the compressed data,
 - For each $z_O \in Z_O$ and each $j \geq 1$, compute $h^{(j)}(v, z_O)$ and increment $\tau_{(j)}(z_O)$ by n_v if $h^{(j)}(v, z_O)$ is 0. Otherwise, decrement $\tau_{(j)}(z_O)$ by n_v.
3. For each (z_O, z_I) for which
 \[\sum_{j=1}^{m} \epsilon_{(j)}((-1)^{z_I[j]} \tau_{(j)}(z_O)) \geq tN\epsilon^2, \]
 try to recover the whole key bits from (z_O, z_I).

Hypothesis testing and the decision rule. Suppose that we mount a (related-key) multiple linear attack using m linear approximations (7) with the correlations $\epsilon_{(j)}$ ($j = 1, \ldots, m$) with available data of size N. For each $j \in [1..m]$ and $z_O \in Z_O$, let $\tau_{(j)}(z_O) := |\{i : h^{(j)}(P_i, C_i, \Delta K_i), z_O) = 0\}| - |\{i : h^{(j)}(P_i, C_i, \Delta K_i), z_O) = 1\}|$. Then the wrong key hypothesis and the right key hypothesis we presume are that

- For each j, $\tau_{(j)}(z_O)/N$ is a random variable following $N(0, 1/N)$ if $z_O^{(j)}$ containing z_O is wrong.
- For each j, $\tau_{(j)}(z_O)/N$ is a random variable following $N(\theta_{(j)}^*, \epsilon_{(j)}), (1-\epsilon_{(j)})/N) \approx N(\theta_{(j)}^*, 1/N)$ if $z_O^{(j)}$ containing z_O is correct, and
- $\tau_{(j)}(z_O)/N, \ldots, \tau_{(m)}(z_O)/N$ are independent for each z_O.

Under the right key hypothesis,
\[\Pr \left(\sum_{j=1}^{m} \theta_{(j)}^* \epsilon_{(j)} \tau_{(j)}(z_O^*)/N \geq t\epsilon^2 \right) = \Phi((1-t)\epsilon_{N,v}) \quad (9) \]
by Lemma 3 that seems to be well-known.

Lemma 3. Let a_1, \ldots, a_m, b be real numbers with at least one a_j nonzero and let $\mu_1, \ldots, \mu_m, \sigma_1, \ldots, \sigma_m$ be real numbers with each $\sigma_j > 0$. Let Y_1, \ldots, Y_m be independent random variables with $Y_j \sim N(\mu_j, \sigma_j^2)$ for each j. Then
\[\Pr \left(\sum_{j=1}^{m} a_j Y_j \geq b \right) = \Phi \left(\left(\sum_{j=1}^{m} a_j \mu_j - b / \left(\sum_{j=1}^{m} a_j^2 \sigma_j^2 \right)^{1/2} \right) \right). \]

The attack algorithm. We mount the related-key multiple linear attack as in Alg. 2. (Note that the decision rule used in Step 3 is a new one introduced in this work for the first time.) Let $k_O = \log_2 |Z_O|$. Since (z_O^*, z_I^*) with $z_I^*[j] = \epsilon_{(j+1)}^*$ for each j is the correct one we are looking for in the attack algorithm and
\[\Pr \left(\sum_{j=1}^{m} \epsilon_{(j)}((-1)^{z_I^*[j]} \tau_{(j)}(z_O^*)) \geq tN\epsilon^2 \right) \]
\[= \Pr \left(\sum_{j=1}^{m} \theta_{(j)}^* \epsilon_{(j)} \tau_{(j)}(z_O^*)/N \geq t\epsilon^2 \right), \]
the success probability of the attack is $\Phi((1-t)c_{N,\epsilon})$ by (9). Now we consider the false alarm probability. Let $z_O \in Z_O$ and $z_I \in Z_I$ be given. Let $\theta_{(j)} = (-1)^{z_I(j-1)}$ for $j \in [1..m]$. Let $S_O = S_O(z_O, z_I)$ and $S_I = S_I(z_I, z_I)$ be subsets of $[1..m]$ such that $z_O^{(j)} \in Z_O^{(j)}$ containing z_O is correct exactly for $j \in S_O$ and $\theta_{(j)} = \theta_{(j)}^{*}$ exactly for $j \in S_I$. Then

$$
\sum_{j=1}^{m} \epsilon_{(j)}(-1)^{z_I(j-1)}\tau_{(j)}(z_O) \geq tN\epsilon^2
\Leftrightarrow \sum_{j=1}^{m} \theta_{(j)}\epsilon_{(j)}\tau_{(j)}(z_O) \geq tN\epsilon^2
\Leftrightarrow \sum_{j=1}^{m} u_j\theta_{(j)}^{*}\epsilon_{(j)}\tau_{(j)}(z_O) \geq tN\epsilon^2
$$

where $u_j = \theta_{(j)}^{*}\theta_{(j)}$ for each j. Thus,

$$
\Pr \left(\sum_{j=1}^{m} \epsilon_{(j)}(-1)^{z_I(j-1)}\tau_{(j)}(z_O) \geq tN\epsilon^2 \right) = \Phi(-tc_{N,\epsilon} + q(S_O, S_I)),
$$

where $q(U, V) := N^{1/2}(\sum_{j \in U \setminus V} \epsilon_{(j)}^2 - \sum_{j \in U \setminus V} \epsilon_{(j)}^2)/|\epsilon|$ for $U, V \subset [1..m]$ by Lemma 3. Thus the false alarm probability with the threshold parameter t is

$$
p_{fa}(t) = \sum_{(U, V) \neq ([1..m], [1..m])} \frac{\nu(z_O^*, U)}{2^{k_O} + k_I} \Phi(-tc_{N,\epsilon} + q(U, V)), \tag{10}
$$

where $\nu(z_O^*, U)$ is the number of z_O's such that $z_O \in Z_O$ is contained in the correct $z_O^{(j)} \in Z_O^{(j)}$ exactly for $j \in U$. Let c_p be the complexity of 1 computation of H_c, $c_O^{(j)}$ be the complexity of the computation of $h^{(j)}$ from an entry in the compressed data and z_O, and c_a be the complexity of 1 integer addition. Then we have

Theorem 2. The computational complexity of the attack using Alg. 2 is

$$
c_pN + 2^{k_O} \left(\sum_{j=1}^{m} c_O^{(j)}2^d + mc_a2^{k_I} \right) + 2^k p_{fa}(t)
$$

with the success probability $\Phi((1-t)c_{N,\epsilon})$.

In Theorem 2 we have assumed further that the restored (z_O^*, z_I^*) reveal simple independent relations between the bits of K^*. (This is mostly the case if the key schedule is affine.) Though (10) may vary according to z_O^*, we can check whether it is the same regardless of z_O^*. If, as in most cases, each $\nu(z_O^*, U)$ is the same regardless of z_O^*, then so is (10). In addition, if $|\{z_O \in Z_O : z_O \subset z_O^{(j)}\}| = |\{z_O \in Z_O : z_O \subset z_O^{(j)}\}|$ for any $z_O^{(j)}, z_O^{(j)} \in Z_O^{(j)}$, then $p_{fa}(t)$ is bounded by

$$
\sum_{j=1}^{m} 2^{-k_O^{(j)}} \Phi((1-t)c_{N,\epsilon}) + \Phi(-tc_{N,\epsilon}),
$$

where $k_O^{(j)} = \log_2 |Z_O^{(j)}|$ for each j.

Separate the summands in (10) into two parts using the condition $U \neq \emptyset$ or $U = \emptyset$. 11
The number of z_{iO}’s for which $z^{(j)}_{iO}$ containing z_{iO} is correct for some j is bounded by $\sum_{j=1}^{m} 2^{k_{O}-k^{(j)}_{iO}} = 2^{k_{O}} \left(\sum_{j=1}^{m} 2^{-k^{(j)}_{iO}} \right)$. Note that $q(U, V) \leq c_{N, \epsilon}$ for each (U, V).

If $U = \emptyset$, then $q(U, V) = 0$ for each V.

So if, for example, the capacity ϵ^2 of the system of the related-key linear approximations is larger than 2^{-k+2} and it admits data compression with $2^{k_{O}} \left(\sum_{j=1}^{m} c^{(j)}_{O} 2^{d} + mc_{O} 2^{k_{I}} \right) \ll 2^{k-1}$ and $\sum_{j=1}^{m} 2^{-k^{(j)}_{iO}} \ll 1$, we have an effective attack with the data complexity ϵ^{-2} by setting $t = 1$ and $N = \epsilon^{-2}$.

An improved attack using a single linear trail

When we use a single trail, by guessing the additional parity bit $\bigoplus_{i=0}^{r-1} (\gamma_{s+i}, r k^{*}_{s+i}) \oplus g(r k^{O*})$, we can get an attack with the reduced computational complexity in some cases. The attack proceeds as in Alg. 2 with $k_{I} = 1$. Then we have

Corollary 1. The computational complexity of the attack with a single linear trail using Alg. 2 is

$$c_{p} N + c_{O} 2^{d+k_{O}} + 2^{k} p_{\text{in}}(t)$$

with the success probability $\Phi((1-t)c_{N, \epsilon})$, where $p_{\text{in}}(t) = (2^{k_{O}} - 1)\Phi(-t c_{N, \epsilon})/2^{k_{O}} + \Phi((-1-t) c_{N, \epsilon})/2^{k_{O}+1} \approx \Phi(-t c_{N, \epsilon})$.

So as long as $c_{p} N + c_{O} 2^{d+k_{O}} \ll 2^{k} \Phi(-t c_{N, \epsilon})$, we have an attack whose computational complexity is about half of the previous attack performed by Alg. 1 while maintaining almost the same success probability.

3.2 Related-Key Linear Attack on the Block Ciphers with the Affine Key Schedules

The attacks described in Sect. 3.1 are particularly powerful when $k \gg n$ and the key schedule is affine, i.e., when each round key $r k_{i}$ is expressed as $L_{i}(K) \oplus b_{i}$ for a linear function L_{i} and a constant b_{i}. In this case, we have the following advantages compared with other types of key schedules:

- The difference of round keys for each round can be computed directly from the key difference with probability 1. That is, $\delta r k_{i} = L_{i}(\Delta K)$. So from a linear trail $[\gamma_{s}, \gamma_{s+1}, \ldots, \gamma_{s+r}]$ for the long-key cipher, we get a related-key linear approximation

$$\langle \gamma_{s}, X_{s} \rangle \oplus \langle \gamma_{s+r}, X_{s+r} \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, L_{s+i}(\Delta K) \rangle \oplus \bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, r k^{*}_{s+i} \rangle = 0$$

without any decrease in the absolute value of the correlation compared with the long-key cipher since no additional probabilities are introduced from the key schedule. Here $\bigoplus_{i=0}^{r-1} \langle \gamma_{s+i}, L_{s+i}(\Delta K) \rangle$ can be written simply as $\langle \lambda, \Delta K \rangle$ for some mask λ.

The data compression for adding rounds before or/and after the related-key linear approximation(s) can be performed efficiently: Each \(r_k \oplus \delta r_k \) can be computed as the xor of \(r_k \) and a term determined only by \(\Delta K \).

The restored \((z^*_O, z^*_I)\) is very likely to reveal simple independent relations between the whole key bits in Alg. 2.

Thus if a block cipher has an affine key schedule and its key length is much larger than its block length, then it is very likely to be subject to a related-key linear attack that covers more rounds than the best single-key linear attacks.

4 Related-Key Linear Attacks on SIMON

The NSA published two families of lightweight block ciphers SIMON and SPECK\,[3]. They have remarkable performance figures on most software and hardware platforms and SIMON is the more hardware-oriented of the two. They have been the subject of intensive security analysis since their publication. The designers of SIMON expect that it is secure against related-key attacks\,[4].

4.1 The SIMON Family of Block Ciphers

SIMON \(n/k \) is a block cipher of the classical Feistel structure with \(k \)-bit keys and \(n \)-bit blocks. Its round function \(f \) sends an \(n/2 \)-bit input \(x \) onto \(((x \ll 8) \& (x \ll 1)) \oplus (x \ll 2)\). (See Fig. 3.) It has an affine key schedule. We focus on the following ciphers whose key lengths are double the block lengths: SIMON 32/64, SIMON 48/96, SIMON 64/128, and SIMON 128/256. The details of this section can be applied equally well to the variant of SIMON to be used in Sect. 5.

4.2 Related-Key Linear Approximations of SIMON

Since SIMON \(n/k \) has the classical Feistel structure, an \(r \)-round linear trail can be represented as a sequence of \((r+2)\ n/2\)-bit masks: \(\Gamma_s, \Gamma_{s+1}, \cdots, \Gamma_{s+r+1} \) represents a linear trail such that at the \((i+1)\)-th round, the input and output masks are \(\Gamma_i \| \Gamma_{i+1} \) and \(\Gamma_i \| \Gamma_{i+2} \), respectively, for each \(i \in [s..(s+r-1)] \). (See Fig. 3.) Such a linear trail leads to the related-key linear approximation

\[
\langle I_s, X_{s,L} \rangle \oplus \langle I_{s+1}, X_{s,R} \rangle \oplus \langle I_{s+r}, X_{s+r,L} \rangle \oplus \langle I_{s+r+1}, X_{s+r,R} \rangle \oplus \langle A, \Delta K \rangle \oplus \bigoplus_{i=0}^{r-1} \langle I_{s+i+1}, rk^*_s+i \rangle = 0 \quad (11)
\]

between \(X_s, \Delta K, X_{s+r} \), where \(A \) is a mask with \(\langle A, \Delta K \rangle = \bigoplus_{i=0}^{r-1} \langle I_{s+i+1}, \delta r k^*_s+i \rangle \). Such a mask exists and is easily obtained since the key schedule is affine.
4.3 Adding Outer Rounds

One of the pivotal processes of the related-key attacks as described in Alg. 1 and Alg. 2 is to get effective data compression with the related-key linear approximation(s). For SIMON, we can get effective data compression for prepending and appending many rounds when both the initial mask and the final mask have small Hamming weights. We will describe the way how to add outer rounds to a single linear trail from which how to do so to multiple linear trails can be easily deduced. In this subsection, we will explain in detail how to add 2+2 rounds, i.e., how to prepend 2 rounds and append 2 rounds at the same time. How to add $s + s$ rounds for $s = 3, 4, 5$ will be explained in Appendix D, from which how to add $s + s'$ rounds for $s \neq s'$ and $2 \leq s, s' \leq 5$ will be obvious. For simplicity $a + b$ and ab (or $a \cdot b$) denote the XOR and AND of $a, b \in \mathbb{F}_2$ in this section, respectively.

2-round computation. Let rk_0 and rk_1 be the round keys derived from the candidate key K for the first 2 rounds. For a plaintext $P = P_L || P_R$ and a key difference ΔK, let δrk_0 and δrk_1 be the derived round key differences for the first 2 rounds. Note that δrk_0 and δrk_1 can be computed directly from ΔK since the key schedule is affine. We want to express each bit of $X_2 = X_{2,L} || X_{2,R} = E_0^1(K \oplus \Delta K, P)$ in terms of $P, rk_0, rk_1, \delta rk_0, \delta rk_1$. Let $A = f(P_L) \oplus P_R \oplus \delta rk_0$, and $B = P_L \oplus \delta rk_1$. (See Fig. 4.) Since $X_{2,R} = X_{1,L} = f(P_L) \oplus P_R \oplus \delta rk_0 \oplus rk_0 = rk_0 \oplus A$ and $X_{2,L} = f(X_{1,L}) \oplus P_L \oplus \delta rk_1 \oplus rk_1 = f(rk_0 \oplus A) \oplus B \oplus rk_1$,

\[
\]

Here

- $X_{2,L}[i]$ can be easily computed in terms of $rk_0[i - 8], rk_0[i - 1], A[i - 8], A[i - 1], A[i - 2] + B[i]$ xored with a constant determined only by rk_0, rk_1.
- The underlined terms $rk_0[i - 2], rk_1[i]$, and $rk_0[i]$ depending only on rk_0, rk_1 are absorbed into $g(rk^D)$ and thus they will be ignored in the case of using
a single trail since they will not affect the absolute value of $\tau(z)$ for each guessed value of r_{k_0}, r_{k_1}. They will only affect the sign of $\tau(z)$. But they are relevant to the multiple linear attack and the improved linear attack.

By symmetry of the cipher structure, we get similar expressions for bits of $X_{R-2,L}$ and $X_{R-2,R}$ in terms of $A' = f(C_R) \oplus C_L \oplus \delta r_{k_{R-1}}, B' = r_{k_{R-2}}, r_{k_{R-2}},$ and $r_{k_{R-1}}$. (See Fig. 4.)

The data compression. The above arguments tell us how to compress the data when adding 2+2 rounds. Suppose that we want to make use of the related-key linear approximation (II) with $s = 2$ and $s + r + 2 = R$. Let $w = n/2$ be the word size. Let $I_L = \text{supp}(I_s) = \{i \in [0...(w-1)]: I_s[i] \neq 0\}$, $I_R = \text{supp}(I_{s+1})$, $I_L' = \text{supp}(I_{R-2})$, and $I_R' = \text{supp}(I_{R-1})$. The compression function extracts the following values from each data entry $(P,C,\Delta K)$:

- $A[i]$ for i such that $(i + 8) \text{ mod } w \in I_L$ or $(i + 1) \text{ mod } w \in I_L$
- $A'[i]$ for i such that $(i + 8) \text{ mod } w \in I_R$ or $(i + 1) \text{ mod } w \in I_R$
- $\bigoplus_{i \in I_L} (A[i-2] \oplus B[i]) \oplus \bigoplus_{i \in I_R} (A'[i-2] \oplus B'[i]) \oplus \bigoplus_{i \in I_L} A'[i] \oplus \langle A, \Delta K \rangle$

In the attacks, the outer key classes are represented by the following outer round key bits that we need to guess:

- $r_{k_0}[i]$ for i such that $(i + 8) \text{ mod } w \in I_L$ or $(i + 1) \text{ mod } w \in I_L$
- $r_{k_{R-1}}[i]$ for i such that $(i + 8) \text{ mod } w \in I_R$ or $(i + 1) \text{ mod } w \in I_R$

Note that
– the number k_O of guessed round key bits for outer rounds is at most $2^{\text{wt}(\Gamma_s)} + 2^{\text{wt}(\Gamma_{s+r+1})}$ and
– d, \log_2 of the size of the compressed data set, is $k_O + 1$.

4.4 Attacks on SIMON

Now we are ready to present the attacks on SIMON whose results are summarized in Table 1. Each attack is the “improved” related-key linear one using a single linear trail and we can argue that $c_p \leq R_{\text{add}}/R$, where R is the number of rounds for the reduced SIMON and R_{add} is the number of the added outer rounds. In each attack, the outer key classes are represented by the concatenations of the round key bits in some fixed positions that we will describe. We use the linear trails presented in Appendix C and set the threshold parameter t for each attack to 1 so that the success probability of each attack is $\Phi(0) = 0.5$ by Corollary 1. The attack method presented in this work can be applied to other SIMON n/k with $k > n$ in a straightforward manner.

Attacks on SIMON 32/64 We have a 21-round linear trail with the correlation 2^{-30} whose initial and final mask are 00010044 and 44401010, respectively. We can add 3+3 rounds to this linear trail as explained in Appendix D:

- $k_O = 26$: Each outer key class is represented by a concatenation of 26 round key bits. The guessed round key bits are $rk_0[0, 1, 5, 6, 7, 10, 13, 14], rk_1[8, 15], rk_2[3, 4, 11, 12], rk_3[1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14]$.
- $d = k_O + 1 = 27$.

Since $c_p \ll 1$ and $k_O + d \ll 61$, if we let $N = 2^{60}$, then $c_N = 1$ and the complexity of the improved attack on the 27-round reduced SIMON 32/64 is about $2^{61.34}$. Likewise, using a 19-round subtrail with the correlation 2^{-26} whose initial and final mask are 00010044 and 444000100, respectively, we get an attack on the 25-round reduced SIMON 32/64 with data complexity 2^{35} and computational complexity $2^{55.26}$ by adding 3+3 rounds.

Attacks on SIMON 48/96 We have a 27-round linear trail with the correlation 2^{-47} whose initial and final mask are 000001000044 and 444004010000, respectively. We can add 4+3 rounds to this linear trail:

- $k_O = 37$: The guessed outer round key bits are $rk_0[0, 3, 4, 6, 7, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23], rk_1[1, 5, 8, 14, 15, 18, 21, 22], rk_2[16, 23], rk_3[8, 15], and rk_33 [0, 5, 6, 7, 10, 13, 14, 17, 21, 22]$.
- $d = k_O + 1 = 38$.

Since $c_p \ll 1$ and $k_O + d \ll 93$, if we let $N = 2^{83}$, then $c_N = 2^{-0.5}$ and the complexity of the improved attack on the 34-round reduced SIMON is about $2^{93.94}$. Similarly, using a 19-round subtrail with the correlation 2^{-33} whose initial and final mask are 000001000044 and 000040000000, respectively, we get an attack on the 27-round reduced SIMON 48/96 with data complexity $N = 2^{70.88}$ and computational complexity 2^{71} by adding 3+5 rounds.
Attacks on SIMON 64/128 We have a 36-round linear trail with the correlation 2^{-61} whose initial mask is 0000000400000001 and final mask is 0000000400000001. We can add 4+4 rounds to this linear trail:

- $k_O = 56$: The guessed round key bits are $rk_0[1, 6, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31]$, $rk_1[0, 14, 18, 20, 21, 24, 25, 27, 28, 31]$, $rk_2[1, 22, 26, 29]$, $rk_{43}[24, 31]$, $rk_{42}[1, 6, 22, 23, 26, 29, 30]$, and $rk_{43}[0, 8, 14, 15, 18, 20, 21, 22, 24, 25, 27, 28, 29, 31]$.
- $d = k_O + 1 = 57$.

Since $c_p \ll 1$ and $k_O + d \ll 125$, if we let $N = 2^{125}$, then $c_{N, \epsilon} = 2^{-0.5}$ and the complexity of the improved attack on the full SIMON 64/128 is about $2^{215.34}$. Also, using a 26-round trail with the correlation 2^{-45} whose initial and final mask are 0000000100004044 and 00001000000004400, respectively, we get an attack on the 32-round reduced SIMON 64/128 with data complexity $2^{25.30}$ and computational complexity $2^{95.54}$ by adding 3+3 rounds.

Attacks on SIMON 128/256 We have a 62-round linear trail with the correlation 2^{-118} whose initial mask is $00...004\|00...00$ and final mask is $400...004\|00...001$. We can add 5+5 rounds to this linear trail with $k_O \leq 39 + 2 \cdot 18 + 39 = 114$ and $d = k_O + 1 \leq 115$. Since $c_p \ll 1$ and $k_O + d \ll 240$, if we let $N = 2^{240.1}$, then $c_{N, \epsilon} = 2^{2.05}$ and the complexity of the improved attack on the full SIMON 128/256 is about $2^{240.18}$. Similarly, using a 51-round subtrail with the correlation 2^{-92} whose initial and final mask are $00...004\|00...00$ and $00...001\|400...004$, respectively, we get an attack on the 60-round reduced SIMON 128/256 with data complexity $2^{190.39}$ and computational complexity $2^{190.44}$ by adding 5+4 rounds. Also, using a 45-round subtrail with the correlation 2^{-84} whose initial and final mask are $100...001\|4400...004$ and $400...004\|100...00$, respectively, we get an attack on the 53-round reduced SIMON 128/256 with data complexity $2^{174.72}$ and computational complexity $2^{175.07}$ by adding 4+4 rounds.

5 Experiments

We carry out related-key linear attacks on an 18-round cipher that is a small-scale variant of SIMON with 48-bit keys and 24-bit blocks. The round function and the key schedule of the cipher are defined exactly in the same way as SIMON 32/64. The 31-bit constant used in the key schedule is also the same. We perform the following 3 experiments with the attack algorithms presented in Sect. 4 with $n = 24$:

1. A key recovery attack on the cipher using Alg. 1 by adding 2+2 rounds to a 14-round linear approximation with the correlation 2^{-13}.
2. An improved key recovery attack on the 14-round reduced cipher by adding 2+2 rounds to a 10-round linear approximation with the correlation 2^{-9}.
3. A related-key multiple linear attack on the 14-round reduced cipher using Alg. 2 by adding 2+2 rounds to two 10-round linear approximations with the correlations 2^{-9}.
We perform a related-key linear attack on an

Sect. 4. The theoretical success probability

So the guessed outer round key bits are

Table 2. Experimental result - key recovery using a single linear trail

<table>
<thead>
<tr>
<th>(\log_2 N)</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>E</td>
<td>T</td>
</tr>
<tr>
<td>0.5</td>
<td>(p_S)</td>
<td>0.783</td>
<td>0.776</td>
<td>0.758</td>
<td>0.776</td>
</tr>
<tr>
<td></td>
<td>(p_{fa})</td>
<td>0.724</td>
<td>0.676</td>
<td>0.617</td>
<td>0.580</td>
</tr>
<tr>
<td>1.0</td>
<td>(p_S)</td>
<td>0.579</td>
<td>0.572</td>
<td>0.523</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td>(p_{fa})</td>
<td>0.480</td>
<td>0.445</td>
<td>0.347</td>
<td>0.297</td>
</tr>
<tr>
<td>1.5</td>
<td>(p_S)</td>
<td>0.400</td>
<td>0.390</td>
<td>0.315</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>(p_{fa})</td>
<td>0.289</td>
<td>0.272</td>
<td>0.134</td>
<td>0.123</td>
</tr>
</tbody>
</table>

‘T’ and ‘E’ stand for “theoretical” and “experimental”, resp.

In each experiment, the related-key data is chosen such that the number of data entries per related key is \(2^{12} \). Note that the first experiment is an attack using a linear trail with the correlation whose absolute value is less than \(2^{-n/2} \) that alone is not so useful in the single-key linear attacks.

5.1 A Key Recovery Using a Single Linear Approximation

We perform a related-key linear attack on an 18-round toy cipher that can be regarded as SIMON 24/48. The attack proceeds as in Alg. 1 by adding 2+2 rounds to the following 14-round linear trail with the correlation \(2^{-13} \):

\[
001.000.001.410.001.000.001.410.001.000.001.410.001.000.001.410
\]

So the guessed outer round key bits are \(rk_0[4, 11], rk_1[2, 9] \), the number \(k_O \) of the guessed outer round key bits is 4, and the size of the compressed data set is \(2^8 \). In the experiment:

- For each fixed \(K^* \) we do not recover the whole key bits. Instead we stop when we obtain the list of \(z_0 \)'s with \(|\tau(z_0)| \geq tN|\epsilon| \). The attack is successful if the correct round key bits are obtained and the experimental false alarm probability is measured as the ratio of the number of the wrong entries in the list to \(2^{k_0} \).
- We repeat the experiment using 1,000 different keys \(K^* \) so that the experimental success probability is measured as the number of the successful attempts divided by 1,000, and the average false alarm probability is obtained as the average of the experimental false alarm probabilities.

The theoretical success probability \(p_S \) is \(\Phi((1-t)c_{N,\epsilon}) + \Phi((-1-t)c_{N,\epsilon}) \) and the false alarm probability \(p_{fa} \) is \(2\Phi(-t\epsilon_c) \) where \(c_{N,\epsilon} = \sqrt{N}\epsilon \) by Theorem 1. The result is shown in Table 2 from which we can see that the experimental probabilities are close to the theoretical ones.

5.2 An Improved Key Recovery Using a Single Approximation

We perform an improved related-key linear attack on the cipher described in Sect. 5.1 reduced to 14-rounds by adding 2+2 rounds to a 10-round trail. The
The result of the experiment is shown in Table 3. Theoretical probabilities obtained by Corollary 1 are close to the experimental ones again.

<table>
<thead>
<tr>
<th>$\log_2 N$</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>E</td>
<td>T</td>
</tr>
<tr>
<td>0.5 p_s</td>
<td>0.638</td>
<td>0.640</td>
<td>0.691</td>
<td>0.706</td>
<td>0.760</td>
</tr>
<tr>
<td>p_{in}</td>
<td>0.344</td>
<td>0.345</td>
<td>0.291</td>
<td>0.294</td>
<td>0.225</td>
</tr>
<tr>
<td>1.0 p_s</td>
<td>0.500</td>
<td>0.502</td>
<td>0.500</td>
<td>0.529</td>
<td>0.500</td>
</tr>
<tr>
<td>p_{in}</td>
<td>0.227</td>
<td>0.230</td>
<td>0.149</td>
<td>0.152</td>
<td>0.074</td>
</tr>
<tr>
<td>1.5 p_s</td>
<td>0.401</td>
<td>0.422</td>
<td>0.362</td>
<td>0.365</td>
<td>0.309</td>
</tr>
<tr>
<td>p_{in}</td>
<td>0.137</td>
<td>0.158</td>
<td>0.063</td>
<td>0.065</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Linear trail is

$$001.000.001.410.001.000.001.410.001.000.001.400$$

with the correlation $\epsilon = 2^{-9}$. So the guessed outer round key bits are $rk_0[4, 11]$ and $rk_{13}[2, 9]$, the number k_O of the guessed outer round key bits is 4, and the size of the compressed data set is 2^4. The total number of guessed key bits is $k_O + 1 = 5$ with 1 additional parity bit. Proceeding the experiment similarly as in Sect. 5.1, we get the result as shown in Table 3 from which we can see that the theoretical probabilities obtained by Corollary 1 are close to the experimental ones in this case, too.

5.3 A Key Recovery Using Multiple Approximations

We also perform a related-key multiple linear approximation on the same 14-round cipher using 2 independent linear trails with the correlations 2^{-9}. One of the linear trails is (12) presented in the preceding experiment and the other is

$$004.000.004.041.004.000.004.041.004.000.004.001$$

that is obtained by rotating all the intermediate masks in (12) by 2 bits to the left. We try to restore the following 10 bits:

- 8 outer round key bits: $rk_0[1, 4, 6, 11], rk_{13}[2, 4, 9, 11]$
- 2 parity bits

The result of the experiment is shown in Table 4. The theoretical probabilities obtained by Theorem 2 are close to the experimental ones again.

6 Discussions

6.1 Linear Trails versus Linear Hulls

The formulations in Sect. 3.1 indicate that in our related-key linear attacks it seems natural to use linear trails rather than linear hulls since they incorporate
The standard key hypotheses for single-key linear attacks are regarded as rather
with the correlation
J. Daemen and V. Rijmen’s analysis \[15\].

bits come from key differences so the deviation of the distribution might be

due to make it hard or inherently impossible to utilize the linear hulls. Though the
use of a linear trail is known to lead to inaccurate analysis for single-key linear
attacks [25], especially when the linear trail is not dominant, the experimental
results in Sect. 5 show that our analyses of the complexities of the related-key
linear attacks are accurate even when we use linear trails that are not dominant
when many related keys are used. All the linear trails in the experiments in Sect. 5
are not dominant. For example, we have at least three 10-round linear trails
with the correlation 2^{-9} whose initial and final mask are 001000 and 001400,
respectively, other than the one used in Sect. 5.2: 001.000.001.410.001.000.0
01.c10.001.000.001.400, 001.000.001.c10.001.000.001.410.001.000.01400, and
001.000.001.c10.001.000.001.c10.001.000.01400.

6.2 Key Hypotheses

The standard key hypotheses for single-key linear attacks are regarded as rather
misleading and some adjusted key hypotheses are adopted in recent works [8]
[7] [11] [10]. But we claim that the standard key hypotheses are adequate for
our attacks in the typical related-key scenario where the attacker has randomly
chosen related-key data, or related-key data that is not concentrated at a small
number of related keys. The standard right key hypothesis is applicable in our
related-key setting since many keys are involved in the attack and the average
of the empirical correlations of the linear trail as the key varies is much more uniform
than when just a single key is involved. The standard wrong key hypotheses are
also appropriate in the typical related-key scenario. In the extreme nontypical
case when we have only one related key, our attack becomes one in the single-key
setting and we may have to consider some adjusted wrong key hypotheses
especially when the data size is large. But our hypotheses are appropriate in
the typical related-key scenario. The reason is that the distribution of observed
correlations for wrong keys in the single-key setting has deviation $O(2^{-n})$ from
J. Daemen and V. Rijmen’s analysis [15] on the distribution of the correlations
of linear approximations for n-bit permutations. But in our related-key setting,
we just need to consider $(k + n)$-bit-to-n-bit functions where the additional k
bits come from key differences so the deviation of the distribution might be

\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{log}_2 N & 16 & 17 & 18 & 19 & 20 \\
\hline
\text{t} & \text{T} & \text{E} \\
\hline
0.5 & \text{ps} & 0.638 & 0.638 & 0.691 & 0.676 & 0.760 & 0.753 & 0.841 & 0.853 & 0.921 & 0.929 \\
& \text{ps0} & 0.362 & 0.362 & 0.310 & 0.310 & 0.245 & 0.246 & 0.170 & 0.170 & 0.099 & 0.099 \\
1.0 & \text{ps} & 0.500 & 0.522 & 0.500 & 0.508 & 0.500 & 0.502 & 0.500 & 0.490 & 0.500 & 0.470 \\
& \text{ps0} & 0.241 & 0.240 & 0.162 & 0.160 & 0.084 & 0.084 & 0.029 & 0.029 & 0.007 & 0.007 \\
1.5 & \text{ps} & 0.362 & 0.377 & 0.309 & 0.302 & 0.240 & 0.236 & 0.159 & 0.163 & 0.079 & 0.079 \\
& \text{ps0} & 0.146 & 0.148 & 0.069 & 0.068 & 0.020 & 0.019 & 0.003 & 0.003 & < 0.001 & < 0.001 \\
\hline
\end{tabular}
\end{center}
\caption{Experimental result - key recovery using 2 linear trails}
\end{table}
that is negligible compared to $1/N$ with the data size N being much smaller than 2^{k+n}. The validity of the standard wrong key hypothesis in Matsui’s Algorithm 2 in the single-key linear attack is questionable especially when the capacity is close to 2^{-n}. But the experimental result in Sect. 5.1 using a linear trail with correlation whose absolute value is less than $2^{-n/2}$ provides an evidence of our claims on the wrong key hypotheses as well as the right key hypotheses in our related-key attacks.

7 Conclusions

We have introduced a general framework of the related-key linear cryptanalysis on block ciphers. The attack is most effective when the key schedule of the cipher is affine and in this case it is very likely to cover more rounds than the existing linear attacks if the key length of the cipher is much larger than its block length. We also have provided a method of the multiple related-key linear attack with an explicit formula for the attack complexities taking both the success probability and the false alarm probability into account. Using the framework, we are able to get effective related-key linear attacks on Simon that cover longer rounds than the previous attacks and also have advantages over the generic related-key attack in terms of the attack complexities. Then we have performed experiments with a small-scale variant of Simon, which corroborates the validity of the attack together with the suitability of the key hypotheses. Though the attack may be hard to apply in practice due to the requirement of large related-key data, it is certainly one that should be taken into account in the design of a block cipher with a small block length and a simple key schedule. A remarkable feature of our attack is that the complexity of the attack does not depend much on the detail of the key schedule once the key schedule is affine. As possible extensions of the current work, the followings seem worth investigation:

- Applying the attack method presented in this work to various block ciphers with affine key schedules other than Simon.
- Extending the current method to various cryptographic constructions based on block ciphers.

References

A Proof of Lemma 3

Lemma 3 follows easily from Lemma 4 that seems to be well-known.

Lemma 4. Let a_1, \ldots, a_m, b be real numbers with at least one a_j nonzero and let Z_1, \ldots, Z_m be independent random variables with $Z_j \sim N(0, 1)$ for each j. Then

$$\Pr \left(\sum_{j=1}^m a_j Z_j \leq b \right) = \Pr \left(\sum_{j=1}^m a_j Z_j \geq -b \right) = \Phi \left(b / \left(\sum_{j=1}^m a_j^2 \right)^{1/2} \right)$$
Proof. Replacing Z_j by $-Z_j$ if necessary, we may assume that $a_j \geq 0$ for each j. Let p be the density function defined by $p(x_1, \ldots, x_m) = (\frac{1}{\sqrt{2\pi}})^m \exp \left(-\sum_{j=1}^m x_j^2/2 \right)$ and let D be the half space $\{(x_1, \ldots, x_m) \in \mathbb{R}^m : \sum_{j=1}^m a_j x_j \leq b\}$ in \mathbb{R}^m. Let ρ be a rigid motion in \mathbb{R}^m having 0 as a fixed point that maps D to the half space $\{(x_1, x_2, \ldots, x_m) \in \mathbb{R}^m : x_1 \leq b/((\sum_{j=1}^m a_j^2)^{1/2}) \}$. Since p is invariant under the rigid motions having 0 as a fixed point,
\[
\Pr \left(\sum_{j=1}^m a_j Z_j \leq b \right) = \int_D p \, dx = \int_{\rho(D)} p \, dx = \Phi \left(b/((\sum_{j=1}^m a_j^2)^{1/2}) \right).
\]

To prove Lemma 3, let $Z_j = (Y_j - \mu_j)/\sigma_j$ for each j. Then each Z_j follows $N(0, 1)$ and $\sum_{j=1}^m a_j Y_j \geq b$ if and only if $\sum_{j=1}^m a_j \sigma_j Z_j \geq b - \sum_{j=1}^m a_j \mu_j$. So the lemma follows by Lemma 4.

B Searching Method for the Linear Trails of SIMON

Linear trails with the correlations whose absolute values are less than $2^{-n/2}$ for SIMON n/k are not found in the previous works. To find good linear trails of SIMON n/k whose correlations are around $\pm 2^{-n}$, we apply an efficient search algorithm that we have designed by slightly modifying the searching method described in [23] that is based on M. Matsui’s branch-and-bound algorithm.

As noted before, an r-round linear trail of SIMON n/k can be represented as a sequence of $(r + 2)$ $n/2$-bit masks: $\Gamma_i, \Gamma_{i+1}, \ldots, \Gamma_{i+r+1}$ represents a linear trail such that at the $(i+1)$-th round, the input and output masks are $\Gamma_i \parallel \Gamma_{i+1}$ and $\Gamma_{i+1} \parallel \Gamma_{i+2}$, respectively, for each $i \in [s..(s + r - 1)]$. Such a linear trail leads to the related-key linear approximation (11). The linear correlation of the round function of SIMON with respect to various input-output mask pairs can be easily computed as explained in [22] and [23]. Throughout this section, f denotes the round function of SIMON n/k that sends an $n/2$-bit input x onto $(x \ll 8) \& (x \ll 11) \oplus (x \ll 2)$. The following is a basic fact about the linear trails of SIMON noted in the previous works:

- If $\Gamma_s, \ldots, \Gamma_{s+r+1}$ is a linear trail with the correlation ϵ, so are the reversed trail $\Gamma_{s+r+1}, \ldots, \Gamma_s$ and the rotated trail $(\Gamma_s \ll l), \ldots, (\Gamma_{s+r+1} \ll l)$ for each l.

For each $l \geq 0$, let L_l be the list of mask pairs (α, β) such that $\varepsilon_f(\alpha, \beta) = 2^{-l}$. We denote $-\log_2(\varepsilon_f(\beta \gg 2, \beta))$ by $\text{lac}(\beta)$. Then the mask pairs in L_l are exactly those (α, β)’s for which $\text{lac}(\beta) = l$ and $\varepsilon_f(\alpha, \beta) \neq 0$. A mask β is called a rotational representative if $(\beta \ll j) \geq \beta$ for each j. For each $l \geq 0$, let L_l^{red} be
We get linear trails for
When we search for an
The linear trails we have used in our attacks on

\[\text{correlations that have small Hamming weights for the initial and final masks.} \]

\[\sum_{i=1}^{r'} \text{lac}(T_i) \]

\[\Gamma \]

\[T \]

\[\Gamma_{0,1, \ldots, r+1} \]

\[\text{lac}(T_i) \leq 4 \text{ for } i = 0, \ldots, r. \]

\[\text{If } T_1 = 0, T_0 \text{ is a rotational representative. Otherwise, } T_1 \text{ is a rotational representative.} \]

It turns out that these restrictions let us quickly find out the trails suitable for our purposes. For each \(r \), let \(B_r \) be the minimum of \(\text{lac}(T) \) when \(T \) runs among all the \(r \)-round trails such that each mask in the trail except the last one has \(\text{lac} \leq 4 \).

It is easy to see that \(B_1 = 0, B_2 = 1, \) and \(B_3 = 2. \) In the search algorithm, for each \(r \geq 4 \), we get \(B_r \) and an \(r \)-round linear trail \(T \) with \(\text{lac}(T) = B_r \) assuming that we have already computed \(B_1, \ldots, B_{r-1} \). The search algorithm is presented as Alg. 3. Before running it, we prepare two lists of \(n/2 \)-bit masks in advance for acceleration: One with \(\beta \)'s such that \(\text{lac}(\beta) \leq 4 \) and the other with \(\beta \)'s such that \(\text{lac}(\beta) \leq 4 \) and \(\beta \) is a rotational representative. \(B_r \)'s we have obtained are the same as those presented in \([23]\) for SIMON \(n/k \) with \(n=32, 48, \) or \(64 \) whenever \(B_r \leq n \). We remark that by modifying Alg. 3, we can also find many linear trails with large correlations and various constraints on the intermediate masks.

C Linear Trails of SIMON

We get linear trails for SIMON with large correlations as in Table 5, using the algorithm described in the preceding section. But we also get trails with large correlations that have small Hamming weights for the initial and final masks. The linear trails we have used in our attacks on SIMON in Sect. 4.4 are as follows:

- a 21-round trail for SIMON 32/64 with the correlation \(2^{-30} \):

 \[
 0001.0044.0010.0040.0000.0040.0010.0044.0001.4044.1010.4440.0100.4
 400.1000.4000.0000.4000.1000.4400.0100.4440.1010
 \]

- a 27-round trail for SIMON 48/96 with the correlation \(2^{-47} \):

 \[
 000001.000044.000010.000040.000000.000040.000010.000044.0000001
 .400044.100010.440040.610000.4c0040.300010.400044.000001.000044.
 000010.000040.000000.000040.000010.000044.000001.400044.100010.
 440040.010000
 \]

Table 5. – \(\log_3 \text{[correlation]} \) of the best linear trails found

<table>
<thead>
<tr>
<th>block length</th>
<th># rounds</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
<td>28</td>
<td>31</td>
<td>33</td>
<td>37</td>
<td>-</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>34</td>
<td>36</td>
<td>37</td>
<td>39</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>34</td>
<td>36</td>
<td>37</td>
<td>39</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>52</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>66</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alg. 3 The search algorithm

Set $\bar{B} = B_{r-1} - 1$, and $found = 0$.

repeat
 $\bar{B}++$
 ProcessR1()
until $found == 1$

Output T, \bar{B}

function ProcessR1()
 ProcessR2A()
 for $l \leftarrow 1$ to min($4, \bar{B} - B_{r-2}$) do
 for $(\alpha, \beta) \in \mathcal{L}_r^\text{red}$ do
 ProcessR2(α, β)
 end for
 end for
 return
end function

function ProcessR2A()
 for $l \leftarrow 1$ to min($4, \bar{B} - B_{r-2}$) do
 for $(\alpha, \beta) \in \mathcal{L}_r^\text{red}$ do
 Set $T_0 = \beta$, $T_1 = 0$, $T_2 = \beta$, $T_3 = \alpha$.
 ProcessR(3)
 end for
 end for
 return
end function

function ProcessR2(α, β)
 Set $c = \text{lac}(\beta)$.
 for $l \leftarrow 0$ to min($4, \bar{B} - c - B_{r-2}$) do
 for $(\alpha_1, \beta_1) \in \mathcal{L}_r$ for which $\text{lac}(\alpha \oplus \beta_1) \leq 4$ do
 Set $T_0 = \alpha \oplus \beta_1$, $T_1 = \beta$, $T_2 = \beta_1$, $T_3 = \beta \oplus \alpha_1$.
 ProcessR(3)
 end for
 end for
 return
end function

- a 26-round trail for Simon 64/128 with the correlation 2^{-45}:
 \[0.0000004.00000001.00000004.00000000.00000000.00000014.000000\]

- a 36-round trail for Simon 64/128 with the correlation 2^{-63}:
 \[0.0000004.00000001.00000004.00000000.00000000.00000000.00000000.00000000.00000014.000000\]
Alg. 3 The search algorithm (continued)

function PROCESSR(m)
 Set $\beta_m = T_m$, $c = \text{lac}(\beta_m)$.
 if $m < r$ then
 if $(\text{lac}(T\lfloor m-1\rfloor) + c + B_{r-m} > B)$ or ($c > 4$) then
 return
 else
 for α_m for which $\varepsilon_f(\alpha_m, \beta_m) \neq 0$ do
 Set $T_{m+1} = \alpha_m \oplus T_{m-1}$.
 PROCESSR($m + 1$)
 end for
 end if
 else
 if $\text{lac}(T\lfloor m-1\rfloor) + c = B$ then
 Choose an α_m for which $\varepsilon_f(\alpha_m, \beta_m) \neq 0$.
 Set $T_{m+1} = \alpha_m \oplus T_{m-1}$.
 Set $\text{found} = 1$, and exit all the functions.
 else
 return
 end if
 end if
 end function

04.10000000.44000000.01000001.04400004.06100000.04c00004.03000
001.44000004.10000000.40000004.00000001.00000004.00000000.00000000
00000.00000001.40000004.10000000.44000004.01000001.04400004.06
10000.04c00004.03000001.44000004.10000000.40000004.00000001.0
00000004.00000000.00000000.00000000

− a 62-round trail for SIMON 128/256 with the correlation 2^{-118}:
04.10000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000001.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000
Linear trails for SIMON 32/64, SIMON 48/96, SIMON 64/128 were found by the search algorithm described in the preceding section. The linear trail for SIMON 128/256 was constructed from an iterative trail in [23].

D Adding More Rounds to Related-Key Linear Approximations of SIMON

In this section, we will explain how to add $r_{\text{pre}} + r_{\text{post}}$ rounds for $(r_{\text{pre}}, r_{\text{post}}) = (3, 3), (4, 4), \text{ or } (5,5)$. For simplicity $a + b$ and $a \cdot b$ denote the XOR and AND of $a, b \in \mathbb{F}_2$, respectively. Let $w = n/2$ be the word size as before.

Adding 3+3 rounds

27
3-round computation. Let \(rk_0, rk_1, rk_2 \) be the round keys derived from the candidate key \(K \) for the first 3 rounds. For a plaintext \(P_L = P_L \oplus P_R \) and a key difference \(\Delta K \), let \(\delta r k_0, \delta r k_1, \delta r k_2 \) be the derived round key differences for the first 3 rounds. Let \(A = f(P_L) \oplus P_R \oplus \delta r k_0 \), and \(B = P_L \oplus \delta r k_1 \) as before. Then using the relations \(X_{3,R} = X_{2,L} \) and \(X_{3,L} = f(X_{2,L}) \oplus X_{2,R} \oplus \delta r k_2 \oplus r k_2 \), we can compute each bit of \(X_3 = X_{3,L} \oplus X_{3,R} = E^0_0(K \oplus \Delta K, P) \) in terms of bits of \(A, B, r k_0, r k_1, r k_2, \delta r k_0, \delta r k_1, \delta r k_2 \) as follows:

\[
+ rk_0[i-10]rk_0[i-8] + rk_0[i-10]A[i-8] + A[i-10]rk_0[i-8] \\
+ rk_0[i] + A[i] + r k_2[i] + \delta r k_2[i].
\]

\(X_{3,R}[i] = X_{2,L}[i] \).

Thus

- \(X_{3,L}[i] \) can be easily computed in terms of \(rk_0[i-9], rk_0[i-2], rk_0[i-3], rk_0[i-16], r k_0[i-10], r k_1[i-8], r k_1[i-1], A[i-9], A[i-2], A[i-3], A[i-16], A[i-10], B[i-1], B[i-8], \) xored with \(A[i-4] + B[i-2] + A[i] + \delta r k_2[i] \) and a constant determined only by \(rk_0, rk_1, rk_2 \).

- \(X_{3,R}[i] \) can be easily computed in terms of \(rk_0[i-8], rk_0[i-1], A[i-8], A[i-1], \) xored with \(A[i-2] + B[i] \) and a constant determined only by \(rk_0, rk_1, rk_2 \).

- The underlined terms that depend only on the outer round keys \(r k_0, r k_1, r k_2 \) will be ignored in the attack using a single trail as in the 2-round computations.

By symmetry of the cipher structure, we get similar expressions for bits of \(X_{R-3,R} \) and \(X_{R-3,L} \) in terms of \(A' = f(C_L) \oplus C_L \oplus \delta r k_{R-1}, B' = C_R \oplus \delta r k_{R-2}, \delta r k_{R-3}, r k_{R-1}, r k_{R-2}, \) and \(r k_{R-3} \).

The data compression. Suppose that we want to make use of the related-key linear approximation (11) with \(s = 3 \) and \(s + r + 3 = R \). Let \(\mathcal{I}_L = \text{supp}(I_s), \mathcal{I}_R = \text{supp}(I_{s+1}), \mathcal{I}'_L = \text{supp}(I_{R-3}), \) and \(\mathcal{I}'_R = \text{supp}(I_{R-2}). \) The compression function extracts the following values from each data entry \((P, C, \Delta K)\):

- \(A[i] \) for \(i \) such that one of \(i + 9, i + 2, i + 3, i + 16, i + 10 \ mod \ 26 \) is in \(\mathcal{I}_L \)
- \(B[i] \) for \(i \) such that one of \(i + 1, i + 8 \ mod \ 26 \) is in \(\mathcal{I}_R \)
- \(A'[i] \) for \(i \) such that one of \(i + 9, i + 2, i + 3, i + 16, i + 10 \ mod \ 26 \) is in \(\mathcal{I}'_R \)
- \(B'[i] \) for \(i \) such that one of \(i + 1, i + 8 \ mod \ 26 \) is in \(\mathcal{I}'_L \)
- \(\bigoplus_{i \in \mathcal{I}_L} (A[i-4] + B[i-2] + A[i] + \delta r k_2[i]) \oplus \bigoplus_{i \in \mathcal{I}_R} (A[i-2] + B[i]) \oplus \bigoplus_{i \in \mathcal{I}'_L} (A'[i-4] + B'[i-2] + A'[i] + \delta r k_{R-3}[i]) \oplus \bigoplus_{i \in \mathcal{I}'_R} (A'[i-2] + B'[i]) \oplus (A, \Delta K) \)
In the attacks the outer round key bits we need to guess are as follows:

- \(rk_0[i] \) for \(i \) such that one of \(i + 9, i + 2, i + 3, i + 16, i + 10 \mod w \) is in \(I_L \)
- \(rk_1[i] \) for \(i \) such that one of \(i + 1, i + 8 \mod w \) is in \(I_L \)
- \(rk_0[i] \) for \(i \) such that one of \(i + 1, i + 8 \mod w \) is in \(I_R \)
- \(rk_{R-1}[i] \) for \(i \) such that one of \(i + 9, i + 2, i + 3, i + 16, i + 10 \mod w \) is in \(I_R \)
- \(rk_{R-2}[i] \) for \(i \) such that one of \(i + 1, i + 8 \mod w \) is in \(I_R' \)
- \(rk_{R-1}[i] \) for \(i \) such that one of \(i + 1, i + 8 \mod w \) is in \(I_R' \)

Note that

- the number \(k_O \) of guessed round key bits for outer rounds is at most \(7\text{wt}(I_s) + 2\text{wt}(I_{s+1}) + 2\text{wt}(I_{s+r}) + 7\text{wt}(I_{s+r+1}) \) and
- \(d, \log_2 \) of the size of the compressed data set, is \(k_O + 1 \).

Adding 4+4 rounds

Let \(A = f(P_L) \oplus P_R \oplus \delta rk_0 \), and \(B = P_L \oplus \delta rk_1 \) as before. Using the relations \(X_{4,R} = X_{4,L} \) and \(X_{4,R} = f(X_{3,L}) \oplus X_{3,R} \oplus \delta rk_3 \oplus rk_3 \), we see that \(X_{4,L}[i] \) (up to a constant determined only by \(rk_0, rk_1, rk_2, rk_3 \)) is a function of the following values and round key bits

- \(rk_0[i - 1, i - 3, i - 4, i - 5, i - 8, i - 10, i - 11, i - 12, i - 17, i - 18, i - 24] \)
- \(A[i - 1, i - 3, i - 4, i - 5, i - 8, i - 10, i - 11, i - 12, i - 17, i - 18, i - 24] \)
- \(rk_1[i - 2, i - 3, i - 9, i - 10, i - 16, i - 18, i - 19, i - 20, i - 25, i - 26, i - 32] \)
- \(B[i - 2, i - 3, i - 9, i - 10, i - 16, i - 18, i - 19, i - 20, i - 25, i - 26, i - 32] \)
- \(\delta rk_2[i - 1, i - 8] \)

xored with \(A[i - 6] + B[i - 4] + \delta rk_3[i - 2] + \delta rk_4[i] \). Note also that \(X_{4,R}[i] = X_{4,L}[i] \) and the backward computations can be carried out similarly. So when we use a single trail, we have a compression with

- \(k_O \leq 18\text{wt}(I_s) + 7\text{wt}(I_{s+1}) + 7\text{wt}(I_{s+r}) + 18\text{wt}(I_{s+r+1}) \) and
- \(d = k_O + 1 \).

Adding 5+5 rounds

Let \(A = f(P_L) \oplus P_R \oplus \delta rk_0, \) and \(B = P_L \oplus \delta rk_1 \). \(X_{4,L}[i] \) (up to a constant determined only by \(rk_0, rk_1, rk_2, rk_3, rk_4 \)) is a function of the following values and round key bits

- \(rk_0[i - 2, i - 3, i - 4, i - 5, i - 6, i - 7, i - 9, i - 10, i - 11, i - 12, i - 13, i - 14, i - 16, i - 18, i - 19, i - 20, i - 25, i - 26, i - 32] \)
- \(A[i - 2, i - 3, i - 4, i - 5, i - 6, i - 7, i - 9, i - 10, i - 11, i - 12, i - 13, i - 14, i - 16, i - 18, i - 19, i - 20, i - 25, i - 26, i - 32] \)
- \(B[i - 2, i - 3, i - 4, i - 5, i - 8, i - 9, i - 10, i - 11, i - 12, i - 17, i - 18, i - 24, i - 19, i - 20, i - 25, i - 26, i - 32] \)
- \(\delta rk_2[i - 1, i - 2, i - 3, i - 8, i - 9, i - 10, i - 16] \)

We also have \(X_{5,R}[i] = X_{4,L}[i] \) and the backward computations can be carried out similarly. So when we use a single trail, we have a compression with

- \(k_O \leq 39\text{wt}(I_s) + 18\text{wt}(I_{s+1}) + 18\text{wt}(I_{s+r}) + 39\text{wt}(I_{s+r+1}) \) and
- \(d = k_O + 1 \).