Implementation-Level Corruptions in Distance Bounding

Ioana Boureanu1, David Gerault2, and Pascal Lafourcade3

1 University of Surrey SCCS i.boureanu@surrey.ac.uk
2 Temasek Laboratories, Nanyang Technological University, Singapore
3 University Clermont Auvergne LIMOS pascal.lafourcade@uca.fr

Abstract. In relay attacks, a man-in-the-middle attacker gains access to a service by relaying the messages between two legitimate parties. Distance-bounding protocols are a countermeasure to relay attacks, whereby a verifier measures the round-trip time in exchanges with a prover. Inspired by application-security definitions, we propose a new security model, OracleDB, distinguishing two prover-corruption types: black-box and white-box. We use this distinction to settle the long-lasting arguments about terrorist-fraud resistance, by showing that it is irrelevant in both the black-box and white-box corruption models. We then exhibit a security flaw in the PayPass protocol with relay protection, used in EMV contactless payments. We propose an extension to this industry-standard protocol, with only small modifications, and prove its security in our strongest adversary model. Finally, we exhibit a new generalised distance-fraud attack strategy that defeats the security claims of at least 12 existing distance-bounding protocols.

1 Introduction

In 2015, the most widely used contactless electronic-payment protocol, EMV (Europay, Mastercard and Visa), was shown susceptible to relay attacks [19]. In 2016, the EMV standard included relay-protection for the contactless protocol PayPass [35]. The relay-countermeasure imposes an upper-bound on the round-trip times (RTTs) of message-exchanges. This mechanism is often referred to as proximity-checking: a prover (e.g., contactless card) proves that it is within close distance to a given verifier (e.g., EMV reader). Often, within the proximity-proof, the former also authenticates itself to the latter. This primitive where proximity-checking is composed with a unilateral authentication or identification mechanism bares the name of distance-bounding (DB) [16].

A Recap of the DB Threats. In DB, the tag and the reader are often referred to as the prover and the verifier. In the vast literature covering DB protocols [2], three “classical” types of attacks have been distinguished. In a distance-fraud (DF), a dishonest prover \(P^* \) tries to prove that he is within the distance bound when in fact he is not. A mafia-fraud (MF) attack involves three entities: a honest prover \(P \), far-away from an honest verifier \(V \), and an adversary \(A \); \(A \) tries to authenticate as \(P \). Finally, in a terrorist-fraud (TF), a dishonest prover \(P^* \) colludes with an accomplice \(A \) so that this accomplice authenticates as \(P \), while \(P \) is outside of the distance bound. The fraud is considered successful only if \(A \) cannot impersonate \(P \) in a latter session. This excludes the trivial and difficult to counter attack in which \(P \) gives his credentials to \(A \). In recent years, the DB threat model has been widened: [23] coined impersonation attacks, [20] presented distance hijacking — which extends distance fraud by letting \(P^* \) exploit honest provers located near \(V \), [14] gives further generalisations of these: e.g., mafia-fraud captured via more powerful men-in-the-middle (MiM) and terrorist-fraud...
up-cast to collision-fraud, which considers repeated collusions between P^* and A. The notion of provable terrorist fraud resistance is yet notoriously hard to capture in a sensible way [27,49].

The Rise of Application-Level Distance-Bounding. Contactless EMV with relay protection is being studied as a DB protocol in [22,36]. At Usenix 2018, Chothia et al. [18] presented a hierarchy of properties against which PayPass with relay protection was analysed. These recent security analyses also look at other application-level DB, such as the Mifare protocol from NXP. In this trend, we argue that a finer threat model is necessary to analysis application-level DB.

Contributions.

1. We propose OracleDB, a new security model for distance bounding. Inspired by real-life implementations, this model explicitly distinguishes specification and implementation of DB protocols, and black- and white-box provers. Our model covers all DB threats with 3 attacks: a black-box threat called secret-extraction, a white-box generalised distance fraud, and a generalised mafia fraud.

2. We show that terrorist-fraud resistance is irrelevant: we exhibit a generic TF in the white-box model, and show that TF-resistance is meaningless in the black-box model.

3. We use OracleDB to show that the current version of the EMV contactless protocol PayPass with relay protection is insecure. We propose a minor modification, and prove the security of the resulting protocol secure in our strongest adversarial setting.

4. We use OracleDB to exhibit a generalised distance-fraud on 13 existing protocols.

2 OracleDB: A Refined Provable-Security Model for Distance Bounding

2.1 Protocols & Distance-related Aspects

Security Parameter. Security measures are given depending on a security parameter s. The associated notions, such as polynomial probabilistic time (ppt), negligible, overwhelming, and others (such as Interactive Turing Machines (ITMs) [48]) are considered commonplace; we do not remind their definitions.

Definition 1 (Specification of a DB Protocol.). A specification Π of a DB protocol is a tuple $\Pi = (P, V, \text{idents}, s, \text{dist-bound})$, where:

- s is a variable to hold the values of the security parameter;
- dist-bound is a variable to hold the values of the distance bound allowed by Π (which may vary with s);
- The prover algorithm P and verifier algorithm V are ITMs running probabilistic polynomial time algorithms in s;
- P and V run an identification/authentication scheme which uses the identities idents;
- V contains measurements of the round-trip communication times which it compares against dist-bound, and outputs 0 or 1, denoting respectively failure or success.

Definition 1 corresponds to how formal models introduce a DB protocol: it encodes its algorithmic specification.

Parties or Devices. We take the view that for a more faithful security-analysis we should move beyond Definition 1 into explicitly capturing the fact that a DB protocol is realised via actual implementations of the P and V. In this sense, we use the notion of a “party” or “device” to denote as the implementation of an algorithm (in hardware or software). This algorithm can be that of a prover, verifier, or adversary. Def. 2 below will leave the implementation of V open (since herein we will not focus on corruptions coming from this ITM). Instead, Def. 2 nominates two classes of implementations for P.

\[\text{OracleDB} \]
Definition 2 (Protocol Parties and DB Realisation.). A realisation Π^{real} of a specification Π of a DB protocol is a tuple $\Pi^{\text{real}}=(\text{Setup}, P_{XB}, V, B, s)$, where:

- s is the variable to hold the values of the security parameter as per Π and it is left free (i.e., uninstantiated);
- B is an actual value of the distance bound allowed by Π (which may be given as function of s);
- Setup is an algorithm that instantiates Π’s idents by generating or pulling from a database long-term identifiable information (typically cryptographic keys and/or PUF challenge/response pairs), where the size/security of this identifiable information depends on s. This procedure is an abstraction for the procedures used to make a new prover and/or verifier join the system, obtain long-term identifiable information, and be recognised by the previously instantiated parties. It can be called several times.

- a verifier-party/verifier-device V is an implementation identical to the Π-specified V together with Setup-instantiated long-term identifiable information;
- a prover-party/prover-device P_{XB} is an implementation of Π with its own Setup-instantiated long-term identifiable information, accordingly to one of the two possible types of implementation $\{P_{XB} | XB \in \{WB, BB\}\}$ for Π: white-box (WB) and black-box (BB), respectively.
 - If the prover-party is realised in the white-box manner, i.e., $P_{XB}=P_{WB}$, then there exists an algorithm ppt. in s that can retrieve the long-term identifiable information (created by Setup), found on the device realising Π.
 - If the prover-party is realised in the black-box manner, i.e., $P_{XB}=P_{BB}$, then any ppt. algorithm in s will interact with P_{BB} only in the same way any ppt. ITM interacts with Π.

We stress that Def. 2 per se does not give one specific implementation of a specification Π of a DB protocol. Instead, Def. 2 stipulates that there is an algorithm called Setup which can be used to produce correct implementations of the verifier algorithm, as well as implementations of the prover algorithm that can be either white-box (WB) or black-box (BB). On the one hand, if an implementation produced is of the BB-type, then it is one of the many possible correct implementation which cannot be altered or tampered with. In fact, the last bullet point in Def. 2 denotes that we assume, that the black-box implementations simply ignore all messages that do not conform with the protocol specification. On the other hand, if an implementation is of WB-type, then it is one of the many possible implementations that can be fully read and altered by an third party.

The Setup Procedure. One important point of Def. 2 is its inner Setup procedure. We mean for this procedure to encode the creation of real-life prover-devices/verifier-devices and managing their identities/enrolment into a back-end system. This typically consists in generating appropriate cryptographic keys such that each prover can communicate with each verifier, be it symmetric keys or public/private key pairs. We do not expand further on the details of Setup, as we believe that –for the purpose of this material– modelling the “backend” of registering real-life provers and verifiers is not necessary.

Uniquely Identifiable Devices. As per Definition 2 each party carries uniquely identifiable and secret, long-term information on it, such as private keys or PUFs (Physically Unclonable Functions). We assume that each such secret information is mapped by a non-invertible function to a publicly disclosable, unique identifier denoted id. For a party X, we write $X.id$ to directly refer to its publicly disclosable identifier id. Alternatively, we sometimes write party P_i or V_j to mean that it is a prover-device with publicly disclosable identifier i or, respectively, a verifier-party with publicly disclosable identifier j. From now on, we use simply “identifier” instead of “publicly disclosable identifier”.

Device Holders. Prover-devices are necessarily held by a holder. A holder h holding a prover P_{XB} is denoted as $h^{P_{XB}}$. The holder is an entity, which can be assumed to be a human, a robot, a car, etc. We also allow holders to hold several devices $\{P_1, P_2, \ldots\}$, up to a polynomial number in the security parameter s. In this case, we write $h^{\{P_1, P_2, \ldots\}}$ or simply h^P. We only deal with protocols that cannot identify holders.\footnote{If verifier-devices can reliably ascertain the exact holder of the device in contactless settings, then relay attacks would hardly be a problem.}

Locations. Each party B, and therefore the holder h_B of any prover-device, occupy one position pos_B within an Euclidean space, i.e., a point in the space. In a protocol realisation, we say that two parties are close if the Euclidean distance between their positions is at most B, and far otherwise. More specifically, we operate a notion of location, which allows us to define a party being close or far to an area of interest.

Definition 3. Location. Let Π^{real} be a realisation of a DB protocol. Let \mathcal{P} be a set parties and let them be respectively fixed at positions in the Euclidean space. By abuse of notation, let the resulting set of positions also be called \mathcal{P}. A \mathcal{P}-location, or simply location, is a B-neighbourhood of \mathcal{P}, which is the set of all Euclidean points (i.e., positions) that are at distance at most B from \mathcal{P} (or, the union of all the open balls of radius B that are centred at a point in \mathcal{P}.

If a party E found in a location loc, we often write E_{loc}.

Definition 4. Distance between locations. The distance between a \mathcal{P}_1-location loc_1 and a \mathcal{P}_2-location loc_2 is the shortest distance between a party in \mathcal{P}_1 and a party in \mathcal{P}_2.

Let us explain Def. 3. We fix a set \mathcal{P} of parties, and we are interested in singling out all the possible positions of other parties which are no further than B from devices in \mathcal{P}. All these close-by positions give us the notion of \mathcal{P}-location, formalised in Def. 3. We simply write location, when the set \mathcal{P} is implicit or un-important. Parties can be found only inside locations, i.e., we always reason over one or several locations.

An illustration is presented in Figure 1, where $B=1$ and the parties are A, B, C. The $\{A, B, C\}$-location therefore is the union of the three circles of radius 1. One set \mathcal{P} may be formed, for instance, of just one verifier-party, and therefore the location may be just one circle.

Fig. 1. An $\{A, B, C\}$-Location (Def. 3): Portion of the space no further than B from A, portion of the space no further than B from B, portion of the space no further than B from C.\footnote{If verifier-devices can reliably ascertain the exact holder of the device in contactless settings, then relay attacks would hardly be a problem.}
The notion of location is quite general. The specific ways in which we use it are restricted via the definition below.

Definition 5. Appropriate Universe of Locations. Let Π^{real} be a realisation of a DB protocol, with two apriorily fixed sets P_1 and P_2 of parties. An appropriate universe of locations $U = (\text{loc}_1, \text{loc}_2)$ is formed of a P_1-location loc_1 and a P_2-location loc_2 such that:

1. any two parties in each locations are close together, i.e., within the bound from one another;
2. these two locations are the closest two locations such that the distance between loc_1 and loc_2 is larger than B.

Fig. 2. An appropriate universe of locations. A full arrow denotes a distance lower than B, and a dotted arrow denotes a distance larger than B.

Figure 2 illustrates Def. 5: parties A and B are in one location and are close to each other, and parties C and D are close to each other in another location (condition one in Def. 5). Party A is further than B from party C and from party D, and party B is further than B from party C and party D (condition two in Def. 5). Note that condition two in Def. 5 is an over-approximation of the concept of parties being far apart, as it demands that any party in loc_1 is far away from any party in loc_2.

There may multiple valid appropriate universes of locations, depending on which parties we chose to include. For instance, in Fig. 2, the set P_1 could as well contain only A or B. The set of parties that we consider depends on the security property we study: we restrict ourselves to the set of parties that are relevant. This typically includes a honest holder, a set of verifiers and an adversary, because the presence of other honest holders nearby is generally irrelevant.

2.2 Communication & Threat Models

Communication Model. Let $U = (\text{loc}_1, \text{loc}_2)$ be an appropriate universe of locations. As ITMs, the realisation of P and V can exchange messages. These messages are subject to a time of flight. There exists a time-bound t^B, such that a message from a party C will reach a party D within the time t^B if and only if party C is close to party D (i.e., both in the same loc). Hence, if party A is in loc_1 and C is in loc_2, then a message from party A takes longer than t^B to reach party C, and vice versa.

All messages sent by honest parties are broadcast.

We assume that, at both on the prover and the verifier’s side of a timed round trip, the computation of message is instantaneous.

Threat Model. Def. 2 introduced prover- and verifier-parties. We now introduce a new type of party: the adversary.
Definition 6. Adversary. Let Π^{real} be the realisation of a DB protocol Π, and let $\mathcal{U} = (\text{loc}_1, \text{loc}_2)$ be an appropriate universe of locations.

The adversary $A = (A_{\text{loc}_1}, A_{\text{loc}_2})$ is a party formed of two sub-parties A_{loc_1} and A_{loc_2}, such that:

1. Each device, A_{loc_1} and A_{loc_2}, implements an arbitrary ppt. algorithm in the security parameter of Π^{real}.
2. Devices A_{loc_1} and A_{loc_2} may be respectively present or absent from the two locations loc$_1$ and loc$_2$.
3. If one such adversarial device is not present at its associated location loc, we consider the algorithm A_{loc} to be void.
4. A_{loc_1} and A_{loc_2} operate as ITMs too (i.e., they collaborate and communicate).
5. The communication between A_{loc_1} and A_{loc_2} follow the communication model: they cannot send/receive messages faster than t^B.
6. A cannot change the corruption level of a realised party, i.e., he cannot change a P_{BB} into P_{WB} or vice versa.
7. A interacts with the verifier parties by sending them messages, and they reply honestly as per the specification Π.
8. In addition, when a prover party is white-box, i.e. $P_{XB} = P_{WB}$, A can read its memory (but not modify it).
9. A_{loc_1} and A_{loc_2} can act as holders\footnote{We are aware that devices (i.e., actual implementation of algorithmic specifications) may be able to distinguish a holder (e.g., via a fingerprint reader). However, we deliberately choose to have a strong adversary model, in which an adversary is able to operate such a device without restrictions.} for prover-devices. In this case, we use a notation similar to that of honest holders: A^P_{loc} denotes that A_{loc} holds the prover-party P.
10. A can move prover-parties, i.e., change their holder.
11. A can send unicast messages, which can only be read by their intended target, e.g., using directional antennas\footnote{In line with the threats defined in [41] and the adversary model of [22].}.
12. A can block any message from being received by a party of his choice, irrespectively of their position\footnote{This is known as overshadowing, see [41] for more details}.
13. A can modify messages on the fly, i.e., read and flip bits without introducing a delay to the communication.
14. Messages sent by A have priority, i.e., if a bit b sent by A arrives to a honest party B at the same time as another bit b' sent by a honest party C, then B ignores b' and reads b.

2.3 Concurrent-Execution Model

Now, we define what we consider in terms of possible executions of a realised DB protocol.

Definition 7. Execution Environments. Let Π^{real} be a realisation of a DB protocol and let $\mathcal{U} = (\text{loc}_1, \text{loc}_2)$ be an appropriate universe of locations. An execution environment for Π^{real} at the universe of locations \mathcal{U} denotes a polynomial number of (possibly concurrent) executions by a polynomial number of prover-parties and verifier-parties, positioned in the universe of locations \mathcal{U}.

If neither A_{loc_1} nor A_{loc_2} is present in \mathcal{U}, then the environment is said to be basic.

Otherwise, the environment is extended.
Figure 3 illustrates an example of extended environment. As mentioned in the previous sections, we restrict ourselves to the parties that are relevant to a given security property (defined in Sec. 4.2) when building the corresponding extended environment. For instance, in the definition of the secret extraction resistance property, one of the two locations is empty. And, for our generalised distance fraud, during the attack phase, loc_1 contains no adversary.

Also note that the execution environment is modulo an apriorily fixed universe of locations: if we change the universe of locations, we produce a different environment.

Concurrency. Def. 7 allows for concurrent executions of the protocol. More specifically, as in other formal security models such as Bellare-Rogaway formalisms [9], we allow devices to run their algorithm several times, in interleaved fashion: one execution may start while another one is still in progress. We additionally allow several executions of one prover-device to happen concurrently, with one or several verifier-devices. Hence, in this concurrency model, we can have several prover-sessions from multiple prover-devices and several verifier sessions from multiple verifier-devices, interleaved in any possible way.

Sessions. As usual, we call each such execution a session: if one execution is run on a prover-device then it is a prover session; if it is run on a verifier-device then it is verifier session. A session is full if its transcript contains the last message of the ITM specification; otherwise, it is partial.

The chronologically-ordered list of the messages sent and received in a session is called the transcript of the session. A session can be identified pseudo-uniquely (e.g., via the application of the pseudorandom function to the transcript). As such, we write X^i for the i-th session of a party X.

In an legitimate execution, each prover session has a corresponding verifier session, and vice versa. To denote this, we write verifier-sessions as (V^i, P), and prover-sessions as (V, P^j). As per Bellare-Rogaway models [9], we call two corresponding sessions (V^i, P) and (V, P^j) partnered sessions. If the transcript of a verifier-session V^i and a prover-session P^j are the same, then V^i and P^j have matching conversations.

Master Sessions. Adversaries may interfere in a session, such that the conversations are not matching anymore.

Definition 8. Master Sessions. We say that the adversary A disrupts partnering (over a session (V^i, P)) if A is involved in an extended execution environment such that there is a verifier-session (V^i, P) but this session V^i has no partner (V, P^j) with which it is engaged in a matching conversation.
A master session is a set of sessions needed for the adversary to disrupt partnering. We consider that master sessions are also identifiable uniquely and we use mid to denote master-session identifiers. Also, the chronologically-ordered list of all messages in the master session gives the transcript of the master session.

Several master sessions may lead to the same disruption of partnering. In this case, if we need to nominate one such master session, we randomly choose one of several possible for the same disruption.

Note that, unlike in classical Bellare-Rogaway models, Def. 8 does not require that \((V^i, P)\) output 1 for a disrupted partnering. By Def. 8 we only mean to gather in a master-session all the sessions that the attacker interleaves in order to mount his attack.

Notation. If we mean to be specific that it is a verifier-party with id \(m\) and a prover-party with id \(k\) that are communicating, then instead of \((V^i, P)\) and \((V, P^j)\) we write: \((V_m^i, P_k)\) and \((V_n, P_k^j)\) to clearly mean that the \(i\)-th session of the verifier-party \(V_m\) is partnered with the \(j\)-th session of the prover-party \(P_k\). We try to omit the party identifiers for readability purposes.

2.4 OracleDB: Game-based Model for DB

We gave the high level description of the adversary capabilities. We now provide a game-based security model to define these capacities formally.

The Challenger. The challenger generates an execution environment, the properties of which depend on the security game. For instance, in a strong generalised mafia fraud game, the challenger does not need to add any white-box prover to the environment. After generating an execution environment, he provides oracles to the adversary, as an interface to interact with the environment. Whenever an adversary wants to interact with a party, the challenger simulates it. The challenger keeps track of all sessions and master sessions.

Definition 9. The Challenger. Let \(\Pi\) be a specification of a DB protocol. A challenger \(\text{Ch}\) is a ppt. algorithm, which does the following. The challenger \(\text{Ch}\) picks an arbitrarily fixed number of appropriate universes of locations \(U = (\text{loc}_1, \text{loc}_2)\). The challenger \(\text{Ch}\) runs the Setup algorithm multiple times to realise \(\Pi\). Then, for each appropriate universe \(U\), the challenger \(\text{Ch}\) creates an execution environment for \(\Pi_{\text{real}}^{U}\) at the universe of locations \(U\).

Each party involved in each \(\Pi_{\text{real}}^{U}\) has a status, which denotes if it is active or not. When a prover or verifier is inactive, it ignores all incoming messages. Initially, all are inactive. If one is active, then it means it executes at least one session.

For each \(\Pi_{\text{real}}^{U}\), the following holds:

1. The challenger \(\text{Ch}\) maintains a prover-list PL of (the polynomial number of) prover-parties present in \(\Pi_{\text{real}}^{U}\).
 1. The prover-list PL contains tuples of the form \((P_k.id, \text{xb, status, } \{P_k^j.sid\}_{j \in \text{sessions}}, \text{secret})\) where: \(P_k.id\) is the identifier of a prover-party \(P_k\); \(\text{xb} \in \{\text{WB, BB}\}\) denoting if the prover-party is white-box or black-box; status is either inactive or active; \(\{P_k^j.sid\}_{j \in \text{sessions}}\) is the set of session identifiers for all the sessions \(j\) that the prover-party \(P_k\) are running by/at this time if \(\text{xb} = \text{WB}\), then secret is formed of all the identifiable, inner material of the prover; if \(\text{xb} = \text{BB}\), then secret is null.

2. The prover-list PL is indexed over \(P.id\).

\(\text{This set is the empty set is the prover-party is inactive.}\)
B. the challenger Ch maintains a verifier-list VL of (the polynomial number of) verifiers present in II\textsubscript{\text{real}}. The verifier-list VL contains tuples of the form \((V_m, id, status, \{V_i, sid\}_{i \in \text{sessions}})\), where: \(V_m.id\) is the identifier of a verifier-party \(V_m\); status is either inactive or active; \(\{V_i, sid\}_{i \in \text{sessions}}\) is the set of session identifiers for all the sessions \(i\) that the verifier-party \(V_m\) is running by/at this time.\footnote{This set is the empty set if the verifier-party is inactive.}

We recall that \(X.id\) and \(X\) both denote the uniquely identifiable party \(X\), with the first just being more specific than the second. The same is the case for \(X^i, sid\) vs. \(X^i,\) w.r.t. to the \(i\)th session of the party \(X\). To simplify notations, from here on, we do not always index parties: i.e., instead of writing \(V_m\) and \(P_k\), we just write a generic \(V\) and \(P\) meaning any arbitrary verifier party \(V\) or prover party \(P\).

C. the challenger Ch stores a list masterL of master-sessions present in the II\textsubscript{\text{real}} environment, with masterL containing tuples \((E, mid, t, out, E')\), where: \(E, E'\) are prover-sessions or verifier-sessions such that \(E, E' \in \bigcup_{i,j} \{(V, P^j), (V^i, P)\} \) and \(E \neq E'\); mid is the identifier of the master-session in which \(E\) and \(E'\) are involved and the whole master session is kept in the list; \(t\) is the corresponding transcript of the master-session; out is the result of the protocol as seen by \(E\): \(-1\) for unfinished protocol, 0 for failure, 1 for success. This list is in sync with the PL and VL lists.

D. for the universe \(U = (loc_1, loc_2)\) determining the execution environment II\textsubscript{\text{real}} of the challenger Ch creates a locations’ list LOCL, which indicates the position of each prover, verifier and adversary entity. It is defined as \(\{h^{loc_1}_{loc_1}, A^{loc_1}_{loc_1}, \{V_{loc_1}\}, h^{loc_2}_{loc_1}, A^{loc_2}_{loc_1}, \{V_{loc_2}\}\}\), where \(h^{loc_1}, A^{loc_1}\) respectively denote the set of provers held by honest holders at location \(loc_1\), the set of prover-parties held by the adversary at location \(loc_1\), the set of verifiers found at location \(loc_1\), and the same respectively for location \(loc_2\). These sets might be empty.

Adversary vs. Challenger: The Oracles Accessible to \(A\). The adversary has access to the prover-list PL, the verifier-list VL and the sessions’ list masterL in that he can read them, but \(A\) cannot modify them directly. He can however inflict modifications on them via oracles. These oracles provided to \(A\) are defined below.

init\((P, V)\): If both \(P\) and \(V\) are inactive, this sets the status of \(P\) and \(V\) to active. It then opens a new session running as \((V, P^i)\) and \((V^i, P)\). Either \(P\) or \(V\) can be omitted, in which case only one record is added to masterL. Otherwise, 2 records are added to masterL: one with \(E = V^i\), and one with \(E = P^j\). Once the session is created, it is recorded in the relevant lists PL, VL, masterL. The session identifier is given to \(A\) slightly before the session actually starts, so that \(A\) can use it directly with the oracles that take a session identifier as input.

term\((P^j_k)\): If the prover-party \(P_k\) is inactive, then this oracle has no effect. If both \(P_k\) is active, then this oracle terminates the \(i\)-th session of this prover-party. The call deletes the corresponding entry from masterL, for the \(i\)-th session \(P^j_k, sid\) of the prover-party \(P_k\). If needed, then it adjusts the masterL list to state, e.g., the outcome of the protocol as viewed by the \(i\)-th session \(P^j_k\) of the prover-party \(P_k\) within the master-session that \(P^j_k\) may be involved in, etc.

term\((V^i_m)\): If the verifier-party \(V_m\) are inactive, then this oracle has no effect. If \(V_m\) is active, then this oracle terminates the \(j\)-th sessions of this verifier-party. The call deletes the corresponding entry from masterL, for the \(j\)-th session \(V^i_m, sid\) of the verifier-party \(V_m\). If the case, then it adjusts the masterL list, e.g., to set the outcome of the protocol as viewed by the \(j\)-th session \(V^i_m\), etc.

term\((P^j_k, V^i_m)\): This oracle combines the two oracles above, i.e., both the \(i\)-th session \(P^j_k, sid\)
of the prover-party P_k and the j-th session V_{mj}^j of the verifier-party V_m are terminated at once.

attach(P, h): If the status of P is inactive, then it attaches the prover-party P to a holder h, where h is either a honest holder or an adversary, in loc_1 or loc_2 of some universe U used in the lists $LOCL$. The list $LOCL$ is updated as such. This encodes moving P to a specific location.

send(A, E^i, m): Via this oracle, the adversary $A \in \{A_{loc_1}, A_{loc_2}\}$ sends the message m to the session i of party E. If the party E is not specified, the message is broadcast i.e., sent to all parties and all their sessions.

block($E^j, B, \{S^k \mid S$ party $\}$): Let $M = M_0 \ldots M_k$ denote all the bits sent by the party E during a honest protocol execution. The oracle checks if E is active by looking up in the PL, VL lists and if it has one running session E^j. If it does not, the oracle aborts. If it does, then the oracle blocks the transmission of bits $\{M_i | i \in B\}$, in such a way that only the parties S (and their sessions $\{S^k\}$) receive it.

result(sid): If there exists session sid included in a master session mid inside a tuple $(V, mid, t, out, P) \in masterL$ with V being a verifier-party, then this oracle returns out.

ident(sid): If there exists session sid included in a master session mid inside a tuple $(V, mid, t, out, P) \in masterL$ with V being a verifier-party, then this oracle returns P. Otherwise, it returns error.

Note that if these oracles are called on prover (resp. verifier) identities that do not belong to PL (resp. VL), then the calls do nothing. The last two oracles are not useful to the adversary in practice, but allow to define the security goals in a more convenient way. In some of the oracles, some parameters are optional; this is implicit from their description.

3 Real-World Terrorist Frauds via OracleDB

In Sec. 2, we put forward a much closer to real-world corruption model for prover-devices whereby they can be white-box or black-box. We now show this solves the controversial problems of formal analysis of terrorist-frauds in DB. The take-away message of the section is that TF-analysis needs not be considered in the OracleDB model, or in any formal DB-security model. Sec. 3.1 discusses our corruption model w.r.t. a specific class of DB protocols. Sec. 3.2 gives the main result: in real-life cases, TF attacks are unavoidable.

3.1 White/Black-box Identification

In our model (Def. 1), the algorithms of the provers P-alg make use cryptographic identification mechanisms (called $idents$) which are left under-specified: $idents$ can be for instance cryptographic keys, physically unclonable functions (PUF). The question naturally arising is how to treat PUFs with regards to the white-box/black-box corruption model.

PUFs in the White-box and Black-box Corruption Models. In the DB literature, protocols that use PUFs \[33,30\] use their uncloneability, and implicitly consider the provers using PUFs as black-box. This treatment is however unfair to DB protocols where cryptographic keys are used, instead of PUFs, for prover-authentication purposes; in this case, the default option is to consider these provers as white-box. So, the current state of affairs it to compare the security of protocols using prover-devices considered fully-corrupible (for which the key is known to the adversary) with protocols where prover-devices that are considered to behave honestly. However, security models in which the PUF are corrupted exist. In particular, in the “simulatable PUF” \[43\] model, the PUF can be maliciously replaced by a PRF, for instance by

\[10\] Recall that there are two DB protocols \[33,30\] that use PUFs as the prover’s identification mechanisms.
the manufacturer. It remains indistinguishable from an actual PUF for everyone who does not know the key to the PRF. However, the user who corrupted the device has access to the key, and can therefore simulate, or even clone, the resulting function. The notion of simulatable PUF fits the white-box corruption model, and we believe that protocols using PUFs should be analysed in this model, rather than in a black-box manner.

Therefore, in the rest of this section, in the white-box case, we operate in the simulatable PUF model where corrupted, white-box provers can simulate the PUF’s behaviour via a PRF. In the black-box case, a PUF is a non-simulatable, honest PUF.

3.2 Terrorist Frauds with Real-World Provers

In DB, a man-in-the-middle attacker A_{MiM} has the goal to authenticate as a legitimate, far-away prover-device P in a session sid, without knowing a-priori the authentication details (i.e., idents) of P. A terrorist-fraud (TF) attacker A_{TF} has the same goal as a MiM attacker A_{MiM}, but A_{TF} is allowed to be helped by P in the session sid, as long as this help does not permit A_{TF} to authenticate in future sessions unaided. Section 1 will further formalise the MiM notion in our model. However, Section 1 will not formalise further the TF notion, as we argue in this section that the TF notion is unnecessary.

To be able to show that a formal TF notion and analysis is not necessary, we now give a high-level formulation of terrorist-fraud resistance, which is in line with traditional definitions of this type. Again, this is not a formalisation of TF in our formal model (even though, for continuity, it uses terminology we introduced in previous section). It is a standard expression of TF taken which can be cast in any commonplace model for DB, whereby one has encodings of time, distance, and accomplices to mount such collusion-based attacks over proximity measurements.

General Acceptation in DB. TF-resistance. Let Π be a specification of a DB protocol and Π^{real} be its realisation.

We say that a prover-device P in Π^{real} helps an adversary if any ppt. algorithm is allowed to interact with P and give its outputs to A. Any prover-device P who helps is called a TF-prover.

We say that Π^{real} is TF-resistant if the following holds: for any white-box or black-box prover-device P found far-away11 from a given verifier-party V, for any ppt. adversary A, if P helps A, and makes the verifier-party V output 1 in a master-session (in which V believes to have a partnered session with a session of P’s), with overwhelming probability, then there exist an adversary (who can use A’s knowledge) and make the verifier V output 1 without P’s help or the inadvertent help of any other prover, in another master-session mid' appearing after the master-session mid in the masterL list (in which V believes to have a partnered session is an execution of P), with overwhelming probability.

The tuple (P,A) is called a TF-attacker. We say that a TF-attacker succeeds if Π^{real} is not TF-resistant. Otherwise, we say that all TF-attackers fail.

Note that in the above formulation, we stipulated “without P’s help or the inadvertent help of any other prover”. This means that in the second run of the TF-attack, when the attacker A is trying to impersonate the prover a second time, no prover can take part unwillingly in some form of MiM mounted by A. This is restriction compared to existing work, where in the second attempt of impersonation by A, provers can be unknowingly/unwillingly take part. However, this restriction is only in place for the sake of an easy-to-understand proof

11 I.e., P and V are at different locations in a universe of location used in the execution environment.
for Proposition 10. In fact, as the rest of the section will show, our results do hold for the extended case where honest provers can be present and unknowingly/unwillingly take part in subsequent attempts by \(A \) to impersonate the initially collusive prover \(P \).

No Terrorist Frauds with Black-box Provers We prove that if we consider a DB threat-model where prover-devices are black-box, then TF-resistance is an unnecessary security property.

Indeed, if provers \(P \) are black-box, then all the help they may give to adversaries is nothing beyond a normal protocol execution and so it is futile, i.e., if \(P \) is afar, the help cannot authenticate. We state this formally in Proposition 20 which we also prove in Appendix B.

Another way of stating the above result is this. An attacker can hold a far-away black-box prover and communicate with a second adversarial device found near the verifer. This MiM attacker is clearly equivalent with a terrorist-fraud where the TF-prover is black-box. We state this formally in Lemma 21 which we also prove in Appendix B.

So, from the above, if the provers are black-box, then the following is the case:

— terrorist-fraud resistance is conceptually irrelevant (as a malicious prover cannot help an accomplice);
— the security notion of terrorist-fraud resistance is shown to be redundant, as it is a subset of MiM attacks (which constitute a more generic notion).

Always Terrorist Frauds with White-box Provers If white-box provers can be copied into black-box provers, then a terrorist-fraud attack is always possible, with the exception of some uninteresting cases. These uninteresting cases are:

(a) if protocols identify the holders of devices (which we already argued as a measure that counteracts relaying per se and as such has no place in DB);

(b) if protocols are not MiM-resistant (which is un-interesting as that would make the protocols already widely insecure, so the point of being TF-resistant or not becomes mute). So, if white-box provers can be copied into black-box provers, then a protocol which is widely accepted as secure w.r.t. authentication (against MiM) will never be TF-resistant. This is formally stated in Lemma 10.

Proposition 10. [TF-attacks with White-box Provers.] Let \(\Pi \) be a specification of a DB protocol and \(\Pi^{\text{real}} \) be its realisation in an execution environment. Assume \(\Pi^{\text{real}} \) is resistant to MiM attacks.

If white-box provers can be copied into black-box provers, then \(\Pi^{\text{real}} \) is not TF-resistant.

Synonymously, if WB provers can be copied into BB provers, then there exists a TF-attacker \((P, A)\) which succeeds against \(\Pi^{\text{real}} \) with \(P \) being a white-box TF-prover.

The proof of Proposition 10 is non-technical and exhibits such a terrorist-fraud attack which is always possible against a MiM-secure protocol if the TF-prover is white-box.

Proof. The TF-attacker \((P, A)\) is as follows: a device terrorist-device is produced (e.g., by \(P \)'s holder or by \(A \)) as a black-box copy of \(P \). The terrorist-device is programmed to self-destruct (i.e., wipe its memory) after a successful authentication. The help \(B \) by \(P \) to \(A \) is the terrorist-device itself (which is passed to \(A \) e.g., by \(P \)'s holder, at any point before the attack-session \(mid \)). Then, \(A \) (or the part of \(A \) that is close to \(V \)) executes \(P\text{-alg} \) via terrorist-device to authenticate in session \(mid \). Since terrorist-device is black-box, \(A \) learns nothing other than in a honest session of the protocol. Since terrorist-device wipes its memory after one use, \(A \) cannot use it to authenticate in a post-help session \(mid' \). \(\square \)
We call the attack in the proof of Lemma 10 white-box terrorist-fraud (WB-TF). The WB-TF attack works on all protocols of the literature. WB-TF circumvents the formal models, such as [13,23], as those did not consider a black-box cloned terrorist-device as a means towards a TF-attack.

White-box Terrorist-frauds. WB-TF differs from traditional terrorist frauds, in the sense that the accomplice can authenticate at any time whilst he holds the terrorist-device and the terrorist-device has not wiped itself. Instead, traditionally TF attacks are performed online: the accomplice needs to be able to query the far away prover during the authentication. However, this behaviour can be emulated with a WB-TF by integrating a remote activation/deactivation mechanism to the terrorist-device, so that it only works when the holder intends it to. Adding a remote activation mechanism to the terrorist-device even permits to perform more advanced types of terrorist frauds. For instance, the holder can permit his accomplice to impersonate him at will, but only during certain time periods, by removing the self-destruction mechanism, and activating the terrorist-device only during the desired time-slots. Such control over the actions of the accomplice could be particularly relevant, for instance, if the holder of the prover-device P wants to delegate his access to a facility to his accomplice A only when he is not present. Note that since the accomplice A only observes a protocol execution every time he uses the terrorist-device, as long as the protocol is resistant to MiM attacks, A never becomes able to impersonate the prover-device P when the terrorist-device is not active.

WB-TF was presented w.r.t. our definition of terrorist-fraud resistance, which requires just one successful authentication outside of the the helped session. However, WB-TF can be made more generic as follows. Instead of self-destructing after one authentication, the terrorist-device can be programmed to self-destruct after the kth successful authentication. This modification accommodates the definition for terrorist fraud given in [13], whereby the adversary is helped k times instead of just one.

Finally, WB-TF can be adapted, as the terrorist-device can embed any algorithm. The terrorist-device does not necessarily need to be a copy of the terrorist-device P as per the original description of WB-TF. Actually, whenever there exists any terrorist fraud against a protocol in previous security models, it can be emulated with such a slightly-adapted WB-TF:

Proposition 11. Let Π be a specification of a DB protocol and Π^{real} be its realisation in an execution environment. Assume Π^{real} is resistant to MiM attacks, and that white-box provers can be copied into black-box provers. If Π is vulnerable to a terrorist-fraud attack in any existing formal model, then there is a white-box terrorist-fraud against. Π^{real}.

Proof. Let B be the ppt. algorithm terrorist-fraud attack in another formal model.

Let terrorist-device be a black-box device which is produced as in Proposition 10 but now contains this new ppt. B. By the fact that B amounts in a valid TF-attack, when A uses terrorist-device to authenticate, A does not gain a significant advantage for latter authentications. The rest stays the same as in Proposition 10.

So, this section formally proves that:

- in the black-box setting, there is no TF attack that is relevant;
- in the white-box setting, if the protocol is MiM-resistant, then there is no way to protect against TF-attacks.

As such, we argue that the TF analyses matter is closed and formal models, including ours, should discard the analysis of this threat.
Kilinc and Vaudenay also looked at the equivalence between terrorist fraud and MiM attacks in the black-box corruption-model. However, they interpreted their conclusion differently to us. They do not deem TF irrelevant, instead they consider it as the strongest possible threat (in the black-box corruption-model). Due to the fact that MiM-security and TF-security are equivalent in the black-box corruption-model, our viewpoint and their are synonymous, as far as far models are concerned. However, our additional observations about the irrelevance of TF-resistance in the white-box model leads us to militate that TF-resistance ought to be scrapped as a DB security requirement.

4 DB Security Requirements in OracleDB

4.1 Threat Model: High-level Descriptions

We now study which security goals should be achieved when the provers are black-box vs. white-box.

Corruption Models. We distinguish two corruption modes: strong corruption, and weak corruption. In the strong corruption case, all provers (except, depending on the attack type, for the attacked prover) are white-box. This corresponds, for instance, to a situation where an adversary registers corrupted devices into the system.

In the weak corruption case, only the attacked prover may (or may not, depending on the attack type) be white-box, whereas the other provers are all black-box. This corresponds, for instance, to an adversary performing an expensive side-channel attack on one prover to recover its secret material, but not willing to do the same for other devices.

Our formalisation only considers 3 types of attacks: secret-extraction, generalised mafia fraud (GMF), and generalised distance fraud (GDF).

Secret extraction. Secret extraction (Definition 12), is a new property for distance bounding, that concerns black-box provers. Black-box provers are meant to be temper-proof, and a protocol that leaks secret material violates this temper-proofness. The protocols in the literature that are vulnerable to secret extraction attacks, such as the ones descibed in [7], are typically also vulnerable to a MiM attack as a consequence. On the other hand, secret extraction does not necessarily imply that the adversary can authenticate. For instance, if we add an additional long-term dummy key that is sent in clear at the beginning of a MiM-secure protocol, then it becomes vulnerable to a secret-extraction attack, as the protocol reveals a long-term secret. However, it is still MiM-resistant. We formalise this notion in Definition 12.

Generalised mafia-fraud (GMF). GMF (Definition 14), covers both MiM and distance-fraud/hijacking for black-box provers, and corresponds to the traditional MiM attack for white-box provers. Indeed, if the provers are black-box, then the adversary gains no additional knowledge by holding the prover. Hence, a distance fraud/hijacking adversary can be modeled as a far-away adversary holding a prover. In a mafia-fraud context, a second adversary is located near the verifier. Hence, a mafia-fraud adversary has more resources than a distance fraud/hijacking adversary, and is more general.

Since we exclude terrorist fraud resistance from our model, GMF generalises all classical attacks for black-box provers. However, for white box provers, we need an additional property, defined below.

Generalised distance-fraud. Adding white-box capabilities to the adversary allows him to perform more advanced attacks. In particular, in the white-box context, distance-fraud and distance-hijacking differ from mafia fraud, since the adversary can, for instance maliciously pick nonces, possibly depending on the secret key (for instance, to mount PRF programming
attacks [12]). Hence, in the white-box case, we need to consider another property: generalised distance-fraud (Definition 13).

For white-box provers, generalised mafia-fraud and generalised distance-fraud are enough to cover all the usual security properties, except for terrorist fraud, which we need not to consider (as per Section 3).

4.2 Threat Model: Formal Definitions

By using security games G, we now formally define the DB-security properties informally introduced above.

Definition 12. Secret-extraction. Let Γ^{real} be the realisation of a DB protocol Γ in an appropriate universe of locations, such that in one location there is the an adversary holding provers and a set of verifiers, and there is no one in the second location. Let P be a set of prover-devices in Γ^{real} which have ids being cryptographic keys. Let G be a security game against a protocol Γ in which the challenger C gives the adversary A access to all the oracles. The game G is a secret-extraction game, if the play is as follows: 1. A chooses a prover $P \in P$; 2. A outputs a key-name k and a bitstring x. The winning condition in G is that x is the correct value for the key k of the prover P. The advantage of the adversary A in winning G with probability α in the secret-extraction game is defined as $|\alpha - \frac{1}{2}|$. The protocol Γ is secure against secret-extraction if the advantage of an adversary A in the secret-extraction game is negligible in the security parameter defining Γ. If all provers are black-box, then the game is a weak secret-extraction game. Otherwise, it is a strong secret-extraction game.

Note that this notion can be easily extended to ids which are PUFs or other types as well. However, for this manuscript, due to the protocols we analyse herein, we focus on ids which are keys.

Definition 13. Generalised Distance-fraud. Let Γ^{real} be the realisation of a DB protocol Γ in an appropriate universe of locations $U = (\text{loc}_1, \text{loc}_2)$ such that:
- initially, loc_1 contains an adversary A_{loc_1}, a designated verifier dV, as well as other verifiers and a honest holder, and loc_2 contains a honest holder, an adversary A_{loc_2} and a set of verifiers.
- later, in what is called below the attack phase, A_{loc_1} is removed from loc_1.

Let G be a security game against a protocol Γ in which the challenger C gives the adversary A access to all the oracles. The game G is a generalised distance-fraud (GDF) game, if the play is in the two phases below:
1. **Learning phase.** 1. A outputs a prover identifier P, and a designated verifier identifier dV, such that P is in loc_2 and dV is in loc_1;
2. **Attack phase.** 1. The adversary A_{loc_1} is removed from loc_1: only A_{loc_2} is left in loc_2. 2. C checks the location of P in LOCL. If it is close to dV (i.e., the holder is h_{loc_1}), or if P is not in PL, then the game G is aborted. Similarly, if dV is not in V_{loc_1}, then the game is aborted.

The winning condition in an un-aborted generalised distance-fraud game G is as follows: in the attack phase, there must exist a session identified as sid such that $\text{ident}(\text{sid}) = P$ and $\text{result}(\text{sid}) = 1$ (as per C checking the records in masterL). Equivalently, A wins if he disrupts partnering over a verifier-session (dV^{sid}, P) and $\text{result}(\text{sid}) = 1$. The advantage of an adversary A in the GDF game is his success probability α. The protocol Γ is secure against GDF if the advantage of an adversary A in the generalised distance-fraud game is negligible.
in the security parameter defining \(\Gamma \). If all provers but \(P \) are black-box, then the game is a weak distance-fraud game. Otherwise, it is a strong distance-fraud game.

For this generalised distance-fraud property in the WB model, as per Definition \[13\] above, no adversarially-controlled entity are allowed near to the prover. Yet, honest holders are allowed near the verifier. Hence, our Definition \[13\] also covers the threat of distance-hijacking (DH) \[20\].

Definition 14. Generalised Mafia-fraud. Let \(\Gamma^{\text{real}} \) be the realisation of a DB protocol \(\Gamma \) in an appropriate universe of locations \(U = (\text{loc}_1, \text{loc}_2) \) such that:

- \(\text{loc}_1 \) contains an adversary \(A_{\text{loc}_1} \), a designated verifier \(dV \), as well as other verifiers and a honest holder, and \(\text{loc}_2 \) contains a honest holder, an adversary \(A_{\text{loc}_2} \) and a set of verifiers.

Let \(\mathcal{G} \) be a DB security game against a protocol \(\Gamma \) in which the challenger \(C \) gives the adversary \(A \) access to all the oracles. The game \(\mathcal{G} \) is a generalised mafia-fraud (GMF) game, if the play is in two phases, as follows.

1. **Learning phase.** 1. \(A \) outputs a prover identifier \(P \), and a designated verifier \(dV \in V_{\text{loc}_1} \);
2. **Attack phase.** 1. \(A \) loses access to the oracle attach, 2. \(C \) checks the characteristics of \(P \) in \(PL \): if it is close to \(dV \) (i.e., its holder is \(h_{\text{loc}_1} \) or \(A_{\text{loc}_1} \)), or if it is white-box, then the game \(\mathcal{G} \) is aborted.

The winning condition on an un-aborted generalised mafia-fraud game \(\mathcal{G} \) is as follows: in the attack phase, there must exist a session identified as \(\text{sid} \) such that \(\text{ident}(\text{sid}) = P \) and \(\text{result}(\text{sid}) = 1 \) (as per \(C \) checking the records in masterL). Equivalently, \(A \) wins if he disrupts partnering over a verifier-session \((dV^{\text{sid}}, P) \) and \(\text{result}(\text{sid}) = 1 \). The advantage of an adversary \(A \) in the gmf game is his success probability \(\alpha \). The protocol \(\Gamma \) is secure against generalised mafia-fraud if the advantage of an adversary \(A \) in the generalised mafia-fraud game is negligible in the security parameter defining \(\Gamma \). If all provers are black-box, then the game is a weak generalised mafia fraud game. Otherwise, it is a strong generalised mafia fraud game.

In this game’s formalisation in Definition \[14\] like in \[14\], prior to the execution of the attack phase whereby the fraudulent authentication is attempted, the adversary is given access to a learning phase. During this phase, he can place the target-prover close to the verifier. We mean that this learning phase is typically used to recover some secret material, by modifying messages during the challenge response part of the protocol, which is possible if both the prover and the adversary are close to the verifier.

5 Protocol Analyses in OracleDB

We now show first that the ubiquitous electronic payment protocol EMV (Europay, MasterCard and Visa) in this variant PayPass protocol with relay protection (which we simply call PayPass) is vulnerable to proximity-based attacks. Then, we propose a simple modification of PayPass and prove it fully secure in our strongest corruption model.

The PayPass Protocol. The PayPass protocol with relay protection is an industry standard for relay-attack protection in contactless payments. It is used by Mastercard, and described in the EMV book C-2, Kernel 2 specification 2.5. It is depicted in figure \[1\] and a more complete high-level description can be found in \[47\].

Note that the correctness of the MAC is irrelevant to (the distance-bounding component of) the protocol, as the reader does not have the key to verify it, and this verification is performed by the bank.

Note: From here on, we use interchangeably the words: a). card and prover; b). reader and verifier.
5.1 Insecurities in the Contactless Payments

While PayPass is secure against generalised mafia fraud, it fails to protect users against generalised distance fraud. However, distance frauds can be costly for the card issuer. Imagine a malicious user \(A \), mounting a distance fraud to pay in store \(A \), and paying in a far away store \(B \) at the same time. \(A \) could claim that his card was hacked, because it appears to be in two locations at the same time, and ask for reimbursement of both his purchases to the bank. Since the contactless payment limit can sometimes be bypassed [24], the attacker could claim reimbursement for a very expensive goods. Such fraudulent operations can actually be prevented with minor modifications to the PayPass protocol.

The Attack on PayPass In the PayPass protocol with relay attack protection, the response of the prover in the timed phase is independent of the challenge. Hence, a malicious prover can send this response in advance, to meet the time bound [11]. To counter such attacks, a first step is to include \(UN \) in the response due by the prover, so that the malicious prover cannot send the response before receiving \(UN \). However, this is not sufficient to prevent distance-hijacking style attacks. Indeed, a distant GDF adversary \(A \) can do the following:

- replace the messages that a card \(C \) found close to the reader \(R \) sends to the reader \(R \) with his own during the non-timed parts of the protocol;
- overwrite the nonce from \(C \) with his own, while not interfering with the \(UN \) part of the message;
- send the correct MAC/signature to the reader \(R \) (i.e., the one containing \(A \)'s injected nonce, and \(A \)'s SSAD).

In this way, \(A \) will be accepted by the reader. To prevent this type of attacks, we propose to tie \(UN \) with something identifying \(P \), so that \(A \) cannot anymore claim the message as his own. To this end, we consider a (unique) identifier \(ID \), with same length as \(UN \).
5.2 Securing Contactless Payments

We now present our protocol PayPass^+ which—with the modification briefly described above—becomes provably secure against generalised distance frauds.

The PayPass^+ Protocol Our protocol is part-depicted in Fig. 5.

![Diagram of the PayPass+ Protocol](image)

Fig. 5. The PayPass+ Distance-Bounding Protocol.

It differs from PayPass only in that, during the timed phase, the card responds with $(UN \oplus ID, \text{Nonce, Timing Info})$ instead of just $(\text{Nonce, Timing Info})$, i.e., $UN \oplus ID$ is added; this is marked with red on Figure 5. The ID bitstring is a public, pseudo-unique identifier written on the card and in its SSAD. Therefore, the card’s certificate certifies this ID too. Moreover, the lengths of nonces become a variable ℓ_{nonce}, with values depending on the security parameter; this is to be able to formally prove the security of our protocol.

Security Analysis of PayPass+ We now analyse the security of our protocol w.r.t. our security properties, given in Sec. 4.

In PayPass+, the prover has 2 cryptographic keys, K_M and PrivC, that are of interest for our secret-extraction definition introduced in Sec. 4. Each of them is used only once.

Encryption-driven security. We first define a secret recovery (SR) experiment for symmetric encryption. Informally, an encryption scheme is SR-secure if no polynomially bounded adversary can recover the secret key used for the encryption of messages of his choice. Any reasonable encryption scheme, with a reasonable key size, should be SR secure. Similarly to other security definitions for block ciphers, e.g. [8], security is not considered in an asymptotic fashion, since practical symmetric key schemes do not have a security parameter. However, we assume that the key size that is used in the protocol is chosen to be in line with the security parameter.

Definition 15. **Secret recovery security.** Let E be a symmetric encryption scheme, for which we write $E_k(m)$ to denote that message m is encrypted with the key k. The SR security experiment is defined as follows. A challenger picks a random key K, and gives \mathcal{A} an encryption oracle $EO(\cdots)$, such that $EO(m) = E_K(m)$ for any message m. The adversary outputs a bitstring K', and wins if $K' = K$. E is SR-secure if no practical adversary wins this game.

Signature-driven security. In our security proofs, we need the signature scheme to be secure in a multi-user setting, since we allow for several provers with different keys. Hence, we use the multi-user security definition for digital signatures given in [38]. In particular, we use the
GMR-SKS security notion. In this security model, the adversary is given access to a signature oracle \(S \) corresponding to a public key \(y \). This oracle takes as input a message \(m \), and returns a signature \(s \), such that \(s \) is valid with regards to \(m \) and \(y \). A signature scheme is GMR-SKS secure if no polynomially bounded adversary can output a triple \(t = (y', m', s') \) such that the signature \(s' \) is valid for the message \(m' \) and the public key \(y' \), and either of the two following conditions hold: (1) \(m \) was not sent to \(S \), \(y' = y \) and \(s \) is correct for \(m' \) and \(y' \), or (2) \(m' \) has been sent to \(S \), \(s' = s \), \(y' \neq y \), and \(s' \) is correct for \(y' \) and \(m' \).

Theorem 16. Secret-Extraction Security. Let \(S \) and \(E \) respectively denote the signature and encryption scheme used in PayPass. If the \(E \) is SR secure, and \(S \) is GMR-SKS secure, then PayPass\(^+\) is strong secret-extraction secure.

Proof. We start with the key \(K_M \). Assume the adversary \(A \) wins the secret extraction game for \(K_M \). Then, we can use \(A \) to build an adversary \(B \) against the SR experiment. The construction is as follows: for each prover, \(B \) starts a new SR experiment, uses the corresponding encryption oracle \(EO \) to produce \(K_S = E.(ATC) \). When the adversary \(A \), placed in the environment simulated by \(B \), outputs a value for \(K_M \), \(B \) returns this value to the corresponding SR challenger. Hence, its success probability in the SR experiment \(\frac{p^A}{q_B} \), where \(p^A \) is the success probability of \(A \), and \(q_B \) is the (polynomial) number of provers. Therefore, if \(p^A \) is non negligible, then \(B \) breaks the SR security of \(E \).

We now prove the security for the security for \(PrivC \). Assume \(A \) wins the secret extraction game for \(PrivC \). Then we can use \(A \) to to build an adversary \(B \) that wins the forgery game against the signature scheme. First, the \(B \) creates a new forgery experiment for each prover, and uses the corresponding signing oracles to generate the messages \(SDAD \). When \(A \) outputs a value \(PrivC' \), \(B \) picks a random message \(m \) (which was not previously queried to the oracle), computes \(\sigma = S_{PrivC'}(m) \), and returns \((m, \sigma) \) to the forgery challenger. If \(A \) recovered the correct signature key, then \((y, m, \sigma) \) (where \(y \) is the public key of \(P \)) is a valid forgery. Hence, the success probability in the GMR-SKS experiment is \(\frac{p^A}{q_B} \).

Theorem 17. Generalised Mafia-Fraud Security. Let \(S \) be the signature scheme used in PayPass. If \(S \) is GMR-SKS secure, then PayPass\(^+\) is strong generalised mafia-fraud secure.

Proof. This is a game-based proof [44]

G1: This game is the initial game \(G_0 \), where no \(Nonce \) value is indeed used more than once by any prover.

Let \(qn \) be the number of \(Nonce \) values issued by provers, during the experiment encapsulating this game. The probability that one \(Nonce \) repeats is upper bounded by \(\frac{qn^2}{2^{\ell_{nonce}}} \). \(G_0 \) and \(G_1 \) are identical except for the failure event that two identical \(Nonce \) values are used, so we have \(Pr[G_1] - Pr[G_0] \leq \frac{qn^2}{2^{\ell_{nonce}}} \), which is negligible.

G2: This game is the game \(G_1 \), where no \(UN \) value is indeed used more than once by any verifier.

Let \(qn \) be the number of \(UN \) values issued by provers, during the experiment encapsulating this game. The probability that one \(UN \) repeats is upper bounded by \(\frac{qn^2}{2^{\ell_{nonce}}} \). \(G_1 \) and \(G_2 \) are identical except for the failure event that two identical \(UN \) values are used, so we have \(Pr[G_2] - Pr[G_1] \leq \frac{qn^2}{2^{\ell_{nonce}}} \), which is negligible.

G3: This game is the same as \(G_2 \), except that the verifier never sends a value \(UN \) that has previously been sent by an adversary through the \(send \) oracle. Additionally, the experiment
is aborted if a prover located in a different location than the verifier who sent a given value
UN receives it before a time corresponding to $\frac{2}{3}$.

The aim of this transition is to eliminate the failure event E_{guess} that A randomly guesses a
value UN in advance. Let qs denote the (polynomial) number of calls to the $send$ oracle, and qv
the (polynomial) number of executions of the verifier algorithm: we have $Pr[E_{guess}] \leq \frac{qs-qv}{2^{\ell_{nonce}}}$.
Hence, $Pr[G_3] - Pr[G_2] \leq \frac{qs-qv}{2^{\ell_{nonce}}}$, which is negligible.

We now prove that the success probability of A in G_3 is negligible. Remark that in G_3, A
cannot relay UN to a distant prover and receive its response and the corresponding $Nonce$
in time to be accepted by dV. Hence, either A sends a random UN' in advance to obtain
$Nonce$ in time, or it receives UN and replies with a random $Nonce$. In the first case, we
have $UN \neq UN'$, due to the transition of G_2. In the second case, the probability that A’s
guess is correct is negligible ($\frac{qv}{2^{\ell_{nonce}}}$). Hence, except with negligible probability, the signature
$SDAD$ provided by the attacked prover is not related to both UN and $Nonce$. However, to be
accepted by dV, the signature needs to be correct. Hence, the authentication is only accepted
if A forges a correct signature on $(Nonce, UN, AC, \ldots)$, corresponding to the public key of
the attacked prover, which contradicts the hypothesis on the signature scheme.

For distance-fraud resistance, the ID values need to be pseudo-unique, i.e., generated in
such a way that any two IDs have a high hamming distance.

Definition 18. Pseudo-unique identifiers. Let s be a security parameter. A set of identifi-
cers I is set to have the pseudo-unique property if, for any pair of identifiers $(a, b) \in I^2$, such
that $d = HD(a, b)$ (where HD is the hamming distance), it holds that 2^{-d} is negligible in s.

Pseudo-unique identifiers can be instantiated with Reed-Solomon codes [42]: any two
codewords have a minimum hamming distance $d = n - k - 1$, where n is the length of the
codeword, and k is the length of the message (identifiers). If we fix k to an arbitrarily large
constant, and n varying with the security parameter, then 2^{-d} is negligible, which satisfies
the definition.

Theorem 19. Generalised Distance-Fraud Security. If the UN values sent by the reader
are random and uniformly distributed, and the identifiers ID are pseudo unique, then $PayPass+$
has strong generalised distance-fraud security.

Proof. The value $UN \oplus ID$ uniquely identifies the prover running the protocol for a given
UN. In a GDF, A is at a distance greater than B, so that if he waits until he receives US to
send a response, then the elapsed time will be larger than $2 \cdot B$, and dV will reject A. Hence,
to be accepted, the response needs to either (1) be sent in advance by A or (2) be sent by a
closely prover P, or (3) be a composition of a message from P and a message from A. Let qv
denote the number of verifier sessions started during the attack phase. In case (1), A needs to
guess UN for his response to be correct, which succeeds with a probability upper bounded by
$\frac{qv}{2^{\ell_{nonce}}}$. In case (2), the response of P is $UN' \oplus ID_P$, where UN' is sent by either a verifier
or A. Let qp denote the number of prover sessions started by A during the attack phase. The
probability for a random UN' to satisfy $UN' \oplus ID_P = UN \oplus ID_A$, where UN is sent by dV,
is upper bounded by $\frac{nbP \cdot qv}{2^{\ell_{nonce}}}$, where nbP is the total number of prover IDs. Finally, for case 3,
A could overwrite parts of the response from a closely prover P: since A knows the ID values,
he knows which bits of the $ID_P \oplus UN$ differ from the corresponding ones in $ID_A \oplus UN$. Hence,
A only needs to guess the send these bits and can let P send the other ones. He therefore has x
bits to guess, where $x = HD(ID_A, ID_P)$. Due to the pseudo unique property of the identifiers,
2^{-x} is negligible, so the probability for A to properly guess these x bits is negligible.

6 Generic Distance-Fraud Attacks

In this section, we introduce a generalised distance fraud (similar to a distance-hijacking) that works on most symmetric-key distance bounding protocols using a PRF. Our attack is similar in nature to attacks presented in symbolic-verification formalisms [22][36], but uses the notion of “programmable PRF” [12], and is therefore applicable to more protocols.

6.1 PRF Programming

“Programmable PRFs” [12], which are at the basis of our attack, underline a loophole in the security claims of many distance bounding protocols: the security property for a PRF is that it behaves randomly to someone who does not know the key, but not to someone who knows the key. In other words, there exist functions that are secure PRFs, but that contain trapdoors, i.e., input values derived from the key, and for which the output is not random. Dishonest provers do know their keys, so they can exploit programmable PRFs. Suchs trapdoors can be implemented, for instance by the manufacturer of the device implementing it. We define the programmed PRF PPRF that we use for our attack. Let \(f_x \) be a PRF keyed with a key \(x \), and \(R \) be a constant.

\[
\text{PPRF}_x(NP, NV) = \begin{cases}
R & \text{if } NP = g(x) \\
R & \text{if } NV = h(x) \\
f_x(NP, NV) & \text{otherwise},
\end{cases}
\]

where \(g \) and \(h \) are arbitrary functions functions from \(\{0, 1\}^{|x|} \) to \(\{0, 1\}^{|\text{nonce}|} \). For clarity, we use \(g(x) = h(x) = x \) but other functions could be used, for instance hash functions. The function PPRF is a PRF: for a PRF adversary, guessing a value that triggers a non-random behaviour accounts to guessing the key. Using this PRF, we can mount a distance-hijacking attack against a wide range of distance bounding protocols.

Description of Our Generic Attack We illustrate the attack on the DB3 protocol [15]. The DB3 \((q=2)\) protocol works as follows. The verifier sends a nonce \(NV \), the prover replies with a nonce \(NV \). Both compute \(a = f_x(NP, NV) \), where \(f_x \) is a PRF keyed with the shared key \(x \). Then, in \(n \) timed rounds, the verifier sends a random bit \(c_i \), expects a response \(r_i = a_i \oplus c_i \). Finally, the prover sends \(\text{tag} = f_x(M_P, NV, c) \) (where \(c \) is the concatenation of all \(c_i \) values). The verifier accepts if the times, \(r_i \) and \(\text{tag} \) are correct.

We consider a generalised distance-fraud scenario, with an adversary \(A_{loc2} \) in location \(loc_2 \), far from the location of the designated verifier \(dV \). Let \(P_x \) and \(P_y \) be WB provers, using respectively secret keys \(x \) and \(y \). The attack goes as follows, and is illustrated on Figure 6.

1. \(A \) reads the secrets \(x, y \) from \(P_x, P_y \); 2. \(A \) uses \(\text{Move} \) to move \(P_x \) far from \(dV \), and \(P_y \) close to \(dV \); 3. \(A_{loc2} \) sends \(NP_x = x \) to \(dV \); 4. \(A \) uses his \(\text{Launch} \) oracle to make \(*P_y \) start a session with \(dV \) by sending a message \(NP_y \), which \(A \) redirects to \(A_{loc2} \) with the \(\text{ChangeDestination} \) oracle; 5. \(A_{loc2} \) receives a message \(NV_x \) from \(dV \), and sends a message \(NV_y = y \) to \(P_y \); 6. \(P_y \) computes \(a_y = PPRF_y(NP_y, y) = R \); and \(dV \) computes \(a_x = PPRF_x(x, NV_x) = R \); 7. \(dV \) sends \(n \) challenges, to which \(P_y \) replies using \(a_y = a_x = R \); 8. \(A_{loc2} \) sends the final message \(\text{tag} \), computed with the key \(x \); 9. \(dV \) accepts the authentication of \(P_x \), and \(A \) wins.

While we used the DB3 protocol to illustrate our attack, it applies to several protocols of the literature. For some protocols, NV is sent before NP, but a similar attack applies. Vulnerable protocols include: Kim and Avoine [32], Benfarah et al. [10] (both versions), TMA [16], Hancke and Kuhn [29], Munilla et Peinado [40], Avoine et Tchamkerten [5], Pouliod [45], NUS [28], Lee et al. [34], LPDB [39], EBT [25], Baghernejad et al. [26]. This list is not exhaustive.
7 Conclusions

We proposed a new application-oriented security model for distance-bounding. Using our adversary model, we exhibit flaws in 13 protocols of the literature, previously believed to be secure. One of them is the EMV protocol called PayPass with relay protection. We also propose a backwards-compatible version of PayPass, which we show fully secure in our strongest collusion model. This is the first practical DB protocol shown secure in a provable-security model. Moreover, our model completely eliminates terrorist-fraud, as irrelevant to any concrete implementation of a DB protocol. This underlines the need for fully secure protocols for real-life applications. We aimed to end the debate about how terrorist-fraud resistance should be formalised, and bring hope for a unified model in which real-life protocols can actually be proven secure. Our results pave the way for exciting research directions, such as the design of optimal application-oriented DB protocols, filling the long-lasting gap between academic protocols and practical applications/implementations. Finally, we built this model closes to the formalisms used in automatic tools to soon yield mechanised cryptographic proofs for DB. As future work, we aim to extend this with dishonest verifiers and with privacy/anonymity requirements, both of which are needed in some application-level DB.
References

A Related Work

Provable-Security Models for DB. The formalisation effort for distance bounding began with a first classification of attacks by Avoine et al. [3]. The authors distinguished black- and white-box provers, but did not provide a formal security model. Later, two main computational models were proposed: the DFKO model [23], and the BMV model [13]. They were further refined with different flavour of terrorist-fraud resistance: three different definitions for terrorist fraud in the DFKO model are given in [27], and even more in the successors of the BMV model. Terrorist-fraud resistance is generally achieved through artificial mechanisms (extractors, leakage schemes, backdoors ...), around which the definition is specifically designed. More recently, Kilinc and Vaudenay proposed a new provable-security model, which considers black-box provers [31]. In particular, they state that in a black-box context, terrorist-fraud resistance is the strongest and most generic property. Traditionally, these provable-security models have been used to study protocols from the academia, rather than practical ones. Our model is the first provable-security formalism to study practical, real-life protocols. Our model is most inspired by the initial framework of Avoine et al. [3], which it extends substantially.

Symbolic-Verification Models for DB. On the symbolic-verification side, where the cryptographic aspects are idealised, a first model was proposed in 2007 by Meadows et al. [37]. Later, Basin et al. proposed an Isabelle/HOL formalisation in [6]. This formalisation was extended by Cremers et al. [21] to include advanced message-manipulation, such as overshadowing, which permitted to discover distance -ijacking attacks. Last year, at Usenix, Chothia et al. [18] proposed a full DB formalisation, with a hierarchy of attacks, and used it to analyse real-world protocols: Mastercard’s PayPass with relay protection, and NXP’s relay-resistant protocol. This formalisation does however not consider dishonest provers. The same year, Mauw et al. [36] and Debant et al. [22] proposed other symbolic models for analysing distance-bounding protocols. In the last two lines, adversary model differs more widely from other works in formal DB: in particular, they allow for dishonest verifiers, and permit the adversary to block messages from afar. With this modified adversary model, they exhibit new attacks on recent protocols, such as [17,4]. In our new model, we also allow for such blocking of messages by the attacker, but we do not allow for dishonest verifiers. We add more finesse to the corruption of the provers and, as such, we exhibit new attacks, that no other model has found thus-far. Some of these are on practical protocols such as PayPass.

B Proofs for Section 3

Lemma 20. Let Π be a specification of a DB protocol and Π^{real} be its realisation in an execution environment. If TF-provers are black-box, then Π^{real} is TF-resistant.

Proof. Let P be a black-box TF-prover, far-away from a given verifier-party V. From Def2 P being black-box means that any algorithm B that interacts with it follows the ITM specification in Π. So, P’s help is the adversary A having B, which equates to A interacting in the session mid with a far-away prover P. According to the communication model and adversarial model, V cannot accept P in mid (as P is far-away). So, Π is TF-resistant by trivial implications: i.e., “if P helps A make the verifier-party V output 1...” is always false.

Lemma 21. Let Π be a specification of a DB protocol and Π^{real} be its realisation in an execution environment. If TF-provers are black-box, then a TF-attacker (P, A^1) succeeds against Π^{real} if and only if there is a successful MiM attacker A against Π^{real}.

Proof. Assume a TF-attacker \((P,A^1)\) where \(P\) is black-box. Let us consider an arbitrary universe of locations \((loc_1, loc_2)\) in the execution environment such that, w.l.o.g., that the verifier-party \(V\) in the TF attack is found in location \(loc_2\) and \(P\) is therefore found in \(loc_1\).

Let \(A=(A_{loc_1},A_{loc_2})\) be an arbitrary adversary in our model. Let the adversarial party \(A_{loc_1}\) hold the black-box prover \(P\) (which is allowed in our model). And let \(A_{loc_1}\) communicate with \(A_{loc_2}\) found at the same location as \(V\), as per our communication model. So, if TF-attacker \((P,A^1)\) succeeds, since \(P\) is black-box, so does \((A_{loc_1},A_{loc_2})\).

If \((A_{loc_1},A_{loc_2})\) authenticates as \(P\), then let \((A_{loc_1}, adv_{loc_2})\) be the help that \(P\) gives \(A^1\). And so, \((P,A^1)\) succeeds. \(\square\)