
The Unified Butterfly Effect: Efficient Security Credential Management
System for Vehicular Communications

Marcos A. Simplicio Jr.1, Eduardo Lopes Cominetti1,
Harsh Kupwade Patil2, Jefferson E. Ricardini1 and Marcos Vinicius M. Silva1

Abstract— With the increasing demand for intelligent trans-
portation systems (ITS), security and privacy requirements are
paramount. This led to many proposals aimed at creating a
Vehicular Public Key Infrastructure (VPKI) able to address
such prerequisites. Among them, the Security Credential Man-
agement System (SCMS) is particularly promising, providing
data authentication in a privacy-preserving manner and also
supporting revocation of misbehaving vehicles. Despite SCMS’s
appealing design, in this paper we show that its certificate
issuing process can be further improved. Namely, one of the
main benefits of SCMS is its so-called butterfly key expansion
process, which issues arbitrarily large batches of pseudonym
certificates by means of a single request. Although this protocol
requires the vehicle to provide two separate public/private key
pairs to registration authorities, we hereby propose an improved
approach that unifies them into a single key. As a result, the
processing and bandwidth utilization for certificate provisioning
are reduced from 10% to 50% for all entities involved in the
protocol. We also show that such performance gains come with
no negative impact in terms of security, flexibility or scalability
when compared to the original SCMS.

I. INTRODUCTION

In the last decade, the automotive industry has been
enhancing the computation and communication capabilities
embedded in vehicles (e.g., sensors and actuators) and road-
side units (e.g., cameras, radars, and dynamic displays). In
particular, the growing support for vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communications, collec-
tively called V2X technologies, allows the development of
many applications targeted at intelligent transportation sys-
tems (ITS) [12], [10]. Such applications usually involve the
metering of road conditions (e.g., its slope and current traffic)
and the vehicles’ state (e.g., velocity, position and distance to
other cars) [20]. This information can then be shared among
vehicles and further relayed to drivers, facilitating timely
intervention – either manually or (semi-)automatically – for
improving transportation safety and efficiency.

Albeit promising, the large scale deployment of ITS tech-
nologies still faces some important challenges, especially
security and privacy concerns [22], [8]. For example, the
authenticity of data exchanged via V2X is critical to prevent
abuse of the system by malicious users (e.g., forcing a
vehicle to stop by simulating an accident ahead). This can
be accomplished by means of digital signatures on broadcast
messages, as well as revocation of misbehaving vehicles’
certificates whenever they are detected. In this case, vehicles
would only trust in, and act upon, messages signed by

1Escola Politénica, USP, Brazil. 2LG Electronics, USA. Email:
{mjunior,ecominetti,joliveira,mvsilva}@larc.usp.br, harsh.patil@lge.com

non-revoked peers. If traditional, long-term certificates are
employed for this purpose, however, the users’ privacy can
be put at risk. For example, since many ITS applications
require vehicles to periodically broadcast their positions,
their mobility patterns can be tracked by eavesdroppers.
Actually, even if exact positions are not shared via V2X,
vehicle tracking is still possible with some accuracy if the
eavesdropper pinpoints where and when messages signed by
the target were broadcast. Such concerns create the need for
privacy-preserving mechanisms to protect the drivers’ pri-
vacy: although vehicles might still be tracked by traditional
means (e.g., via video surveillance), at least the underlying
V2X architecture should not facilitate this task.

Aiming to cope with such authentication and privacy
requirements, many proposals appeared in the literature for
creating a Vehicular Public Key Infrastructure (VPKI) (for a
survey, see [13]). Among them, one approach of particular
interest relies on pseudonym certificates [21]. Differently
from traditional certificates, pseudonym ones do not contain
any information that could be easily associated with their
owners. Therefore, such credentials can be used for signing
messages broadcast for other vehicles without compromising
their owner’s privacy. The usage of long-term credentials
is then reserved for situations in which a vehicle must be
identified, such as proving that it is authorized to obtain new
pseudonym certificates.

There are today many pseudonym-based security solutions
for V2X [21]. Examples include the pseudonym scheme
with user-controlled anonymity (PUCA) [8] and the Issue
First Activate Later (IFAL) scheme [25]. However, since
the former was designed to prevent revocation even in case
of misbehavior and the latter allows certificate authorities
to track vehicles [23], the Security Credential Management
System (SCMS) [26], [4] still remains as a more prominent
solution for adoption in practice. Actually, SCMS is today
one of the leading candidate designs for protecting vehic-
ular communications in the United States [4]. In SCMS, a
Registration Authority (RA) creates batches of pseudonym
certificates for authorized vehicles from a single request,
in the so-called butterfly key expansion process. The RA
shuffles those certificates together and sends them to a
Pseudonym Certificate Authority (PCA). The certificates are
then individually signed and encrypted by the PCA before
being sent back to the RA, from which they are delivered
to the requesting vehicle. Even though SCMS does not
provide formal security proofs, it was designed in such a
manner that, unless RA and PCA collude, they are unable to

link a pseudonym certificate to its owner nor learn whether
two pseudonym certificates belong to the same vehicle.
Specifically, the PCA does not identify the owner of each
certificate, whereas the RA that delivers the certificate to
the vehicle does not learn its inner contents. In case of a
misbehaving vehicle, a small piece of information is placed
in the Certificate Revocation List (CRL), thereby exposing
the culprit and revoking its respective certs.

Although SCMS provides an efficient and scalable security
framework for vehicular communications, in this article we
show that its design can be further improved. Namely,
we describe a method that reduces approximately by half
the processing and bandwidth costs of SCMS’s certificate
provisioning protocol. This gain is obtained when, instead
of using separate butterfly keys for encryption and signature,
both keys are combined in a unified key derivation process.
Besides describing the solution in detail, we show that the
performance improvements come with no negative impact in
terms of security, flexibility or scalability when compared to
the original SCMS protocol.

The remainder of this article is organized as follows.
Section II summarizes the notation employed along the
document. Section III describes with some detail the SCMS
protocol, in particular its butterfly key expansion process.
Section IV then presents our proposed improvements to
the original SCMS, analyzing the resulting security and
performance. Finally, section VII concludes the discussion.

II. GENERAL NOTATION

For convenience of the reader, Table I lists the main
symbols and notation that appear along this document.

Whenever pertinent, we assume standard algorithms for
data encryption, hashing and digital signatures. In particular,
we assume that the following algorithms are employed:
symmetric encryption (i.e., using shared keys) is done with
the AES block cipher [17] whereas asymmetric encryption
(i.e., involving public/private key pairs) is performed with
ECIES [11]; hashing is performed with SHA-2 [19]. and the
creation and verification of digital signatures uses algorithms
such as ECDSA [18].

III. THE SECURITY CREDENTIAL MANAGEMENT
SYSTEM

In this section, we describe SCMS in more detail. Along
the discussion, we focus on the description given in [26]
rather than in [4]. The motivations for this approach are that
(1) the former displays a more concise notation and (2) the
modifications introduced in the latter do not affect our high-
level description, nor the improvements hereby described.
Nevertheless, for completeness, whenever pertinent we also
briefly mention eventual modifications of [26] done in [4].

In SCMS, each device receives two types of certificates:
a long-term enrollment certificate, which identifies valid
devices in the system; and multiple pseudonym certificates,
each having a short validity (e.g., a few days), so σ > 1
pseudonym certificates are valid simultaneously. To avoid
persistent tracking, vehicles can switch between pseudonym

TABLE I
GENERAL NOTATION AND SYMBOLS

Symbol Meaning
G The generator of an elliptic curve group
sig A digital signature
cert A digital certificate

U,U Public signature keys
(stylized U : reserved for PCA)

u, U Private keys corresponding to U and U
S, s Public and private caterpillar signature keys
E, e Public and private caterpillar encryption keys
Ŝ, ŝ Public and private cocoon signature keys
Ê, ê Public and private cocoon encryption keys
X,x Public and private unified caterpillar keys
X̂, x̂ Public and private unified cocoon keys
β Number of cocoon keys in certificate batch
σ Number of certificates valid at any time period
f, f1, f2 Pseudorandom functions
Enc(K, str) Encryption of bitstring str with key K
Dec(K, str) Decryption of bitstring str with key K
Sign(K, str) Signature of bitstring str, using key K
Ver(K, str) Verification of signature on str, using key K
Hash(str) Hash of bitstring str
str1 ‖ str2 Concatenation of bitstrings str1 and str2

certificate employed in their communications. In practice,
the system should limit the value of σ to a small number to
avoid “sybil-like” attacks [7], in which one vehicle poses as
a platoon aiming to get some advantage over their peers [16],
[1]. For example, such a fake platoon could end up receiving
preferential treatment from traffic lights programmed to give
higher priority to congested roads.

The solution was designed to allow the distribution of
multiple pseudonym certificates to vehicles in an efficient
manner, while providing mechanisms for easily revoking
them in case of misbehavior by their owners. For this
purpose, SCMS relies basically on the following entities:
• Pseudonym Certificate Authority (PCA): responsible for

issuing pseudonym certificates to devices.
• Registration Authority (RA): receives and validates re-

quests for batches of pseudonym certificates from de-
vices, identified by their enrollment certificates. Those
requests are individually forwarded to the PCA, in such
a manner that requests associated to different devices
are shuffled together so the PCA cannot link a set of
requests to the same device.

• Linkage Authority (LA): generates random-like bit-
strings that are added to certificates so they can be effi-
ciently revoked (namely, multiple certificates belonging
to the same device can be linked together by adding
a small amount of information to certificate revocation
lists – CRLs). SCMS uses two LAs, even though its
architecture supports additional LAs.

• Misbehavior Authority (MA): identifies misbehavior
patterns by devices and, whenever necessary, revokes
them by placing their certificate identifiers into a CRL.

These entities play different roles in the two main proce-
dures provided by SCMS: the butterfly key expansion, which
allows pseudonym certificates to be issued; and key linkage,
which allows the efficient revocation of malicious vehicles.

Due to limited space, we describe only the former procedures
in what follows. Also, since all communications between
SCMS entities must be performed via a secure channel [4,
Sec. 2.2.11.4], we omit this extra layer of security while
describing their interactions.

A. Butterfly key expansion

The pseudonym certification provisioning process in
SCMS provides an efficient mechanism for devices to obtain
arbitrarily large batches of (short-lived) certificates with
a small-sized request message. It comprises the following
steps, as illustrated in Figure 1. First (Step 1), the vehicle
generates two caterpillar private/public key pairs, (s, S =
s·G) and (e, E = e·G). The public caterpillar keys S and E
are sent to the Registration Authority (RA) together with two
suitable pseudorandom functions (PRF) f1 and f2 (or, more
precisely, to their corresponding seeds). Then (Step 2), the
RA employs S in the generation of β public cocoon signature
keys Ŝi = S + f1(i) · G, where 0 6 i < β for an arbitrary
value of β; similarly, the RA uses E for generating β public
cocoon encryption keys Êi = E + f2(i) · G . The exact
manner by which f1 and f2 are instantiated in [26] differs
from the description given in [4], but since the differences are
not pertinent to our discussion, we hereby omit their internal
details. Pairs of cocoon keys (Ŝi, Êi) from different vehicles
are then shuffled together by the RA and sent individually to
the Pseudonym Certificate Authority (PCA), which generates
the corresponding pseudonym certificates (Step 3).

After receiving the cocoon keys from the RA, the PCA
can create explicit or implicit certificates [5] (Step 4). In
the explicit model, the PCA computes the vehicle’s public
signature key as Ui = Ŝi + ri ·G, for a random value ri. It
then inserts Ui into a certificate certi containing the required
metadata meta (e.g., a validity period), and digitally signs
certi with its own private key U. The Êi key is then used to
encrypt the signed certificate together with the value of ri,
generating the PCA’s response package. The PCA’s response
is then digitally signed (step 5) and sent to the RA (step 6),
which relays it (in batch) to the requesting vehicle (step 7).
As a result of this process, only the corresponding vehicle
can decrypt the PCA’s responses to learn Ui and compute
the corresponding private signature key ui = s+ ri + f1(i)
(step 8). To ensure this is the correct key, the vehicle should
also perform a final verification ui ·G

?
= Ui.

For implicitly certified keys, this process is slightly differ-
ent: the PCA starts by computing a credential Vi = Ŝi+ri ·G
again for a random ri, and then creates the implicit certificate
certi = (Vi, meta) The PCA then signs this certificate to
obtain sigi = hi · ri + U, where hi = Hash(certi), and
sends back to the vehicle (via the RA) the pair (certi, sigi),
encrypted with Êi and signed with the PCA’s private key. The
vehicle, after decrypting the PCA’s response and checking
its signature, computes hi = Hash(certi) and sets its own
private signature key to ui = hi · (s+ f1(i))+ sigi, whereas
the corresponding public signature key takes the form Ui =
ui·G. The validity of the public key Ui can then be implicitly

S E

S E

S0 E0

...

U0

+ f1 , f2

+r0

+ metadata

cert0

(encrypted & signed)

^ ^
S1 E1
^ ^ Sβ-1 Eβ-1

^ ^

butterfly key expansion

Encrypt

VEHICLE

RA

PCA

RA

S0 E0
^ ^

Sign

(shuffled) (shuffled)

Sign

U1

+r1

+ metadata

cert1

(encrypted & signed)

S1 E1
^ ^

Sign

cert1:

Sign

Uβ-1

+rβ-1

+ metadata

certβ-1

(encrypted & signed)

Sβ-1 Eβ-1
^ ^

Sign

Uβ-1certβ-1:

Sign

cert0: U0

U0

U0

U1

U1

U1

Uβ-1

Uβ-1
response

f1, f2 f1, f2 f1, f2

(deshuffled)

(batch)

U0U0Ui

1

2

4

6

7

8

3

5

Encrypt Encrypt

Fig. 1. SCMS’s butterfly key expansion and certificate generation – only
explicit certificates are illustrated. Numbers in circles indicate the sequence
of steps involved in this process.

verified by ascertaining that Ui = hi · Vi + U , where U is
the PCA’s public signature key.

We note that, for both certificate models, the PCA signs
the encrypted response using its own private signature key
for preventing an “honest-but-curious” RA from engaging
in a Man-in-the-Middle (MitM) attack. Namely, without this
signature, a MitM attack by the RA could be performed as
follows: (1) instead of Êi, the RA sends to the PCA a fake
cocoon encryption key Ê∗i = z ·G, for an arbitrary value of
z; (2) the RA decrypts the PCA’s response using z, learning
the value of certi; (3) the RA re-encrypts the certificate
with the correct Êi, sending the result to the vehicle, which
proceeds with the protocol as usual; and (4) whenever a
vehicle presents a pseudonym-based certi to its counterparts,
so they can validate its own public signature key Ui, the RA
can link that certi to the original request, thus identifying
the corresponding vehicle. As long as the vehicle verifies
the PCA’s signature on the received response, however, such
MitM attempt would fail because the RA would not be able
to provide a valid signature for the re-encrypted certificate
generated in the attack’s step 3.

Also independently of the type of certificate adopted, the
users’ privacy is protected in this process as long as the RA
and PCA do not collude. After all, the shuffling of public
cocoon keys performed by the RA prevents the PCA from
learning whether or not a group of keys in the batch belongs

to the same device. Unlinkability of public keys towards the
RA, in turn, is obtained because the latter does not learn the
value of certi in the PCA’s encrypted response.

IV. AN IMPROVED KEY EXPANSION PROCESS: UNIFIED
BUTTERFLY KEYS (UBK)

Albeit quite efficient, in particular from the vehicles’
perspective, SCMS’s pseudonym certificate provisioning pro-
tocol described in Section III-A can be further optimized.
Specifically, the butterfly key expansion procedure is exe-
cuted twice by the RA for each pseudonym certificate: once
for the generation of the public signature keys and another
for encryption keys. As a result, the device itself needs to
send to the RA two caterpillar keys (S and E), as well as the
corresponding PRFs (f1 and f2), for the computation of the
corresponding cocoon keys (Ŝi and Êi, where 0 6 i < β).
Furthermore, since Ŝi and Êi are seen as independent keys
by the PCA when issuing a certificate, the PCA needs not
only to encrypt the certificate but also sign the resulting
encrypted package to prevent the RA from manipulating Êi.
This extra signature leads to overheads in multiple places: on
the PCA, for its computation and transmission; on the RA,
for its reception and re-transmission; and on the end devices,
for its reception and verification, besides the verification of
the certificate’s signature itself.

Aiming to avoid the need of such extra signature while
preserving SCMS’s original certificates’ format and also
improving the overall efficiency of the certificate issuance
procedure, we hereby propose a unified butterfly key (UBK)
expansion process. In the proposed solution, described in
what follows and summarized in Table II, the vehicle’s
request takes a single key. This leads to better efficiency
without loss of security or functionality.

First, the vehicle generates a single caterpillar pri-
vate/public key pair (x,X = x · G), and sends X together
with a PRF f to the RA. The RA then generates β public
cocoon keys X̂i = X + f(i) ·G for several devices, shuffles
them, and sends the resulting batch to the PCA.

The subsequent procedure followed by the PCA when
processing X̂i depends on whether explicit or implicit cer-
tificates are employed, but the steps followed are analogous
to those described in Section III-A. Namely, for implicit cer-
tificates, the PCA uses X̂i to generate the vehicle’s credential
Vi = X̂i + ri · G, builds the certificate certi = (Vi, meta),
and computes the corresponding signature sigi = hi · ri + U,
where hi = Hash(certi). In the explicit model, in turn, the
device’s public signature key is computed directly from X̂i,
by making Ui = X̂i + ri · G; this key is then inserted into
the certificate certi, which is signed by the PCA using U.

Whether implicit or explicit certificates are adopted, the
PCA uses X̂i as the encryption key for its response. In other
words, X̂i encrypts certi and any other data that needs to
be provided to the vehicle (e.g., ri for explicit certificates,
and sigi for implicit ones). This encrypted package is then
sent to the RA, which relays it to the vehicle.

The vehicle can then compute the corresponding decryp-
tion key x̂i = x+f(i) and retrieve certi. This decryption key

TABLE II
ISSUING PSEUDONYM CERTIFICATES: THE ORIGINAL SCMS AND THE

PROPOSED UBK IN THE IMPLICIT AND EXPLICIT MODELS. OPERATIONS

SAVED IN THE UBK APPROACH ARE SHOWN IN GRAY BACKGROUND.

Vehicle → RA → PCA RA Vehicle

SC
M

S
(e

xp
l.)

s,
S=s·G

e,
E=e·G

S,
f1

E,
f2

Ŝi=S+
f1(i)·G

Êi=E+
f2(i)·G

06 i<β

Ŝi,

Êi

Ui= Ŝi + ri·G
sigi=Sign(U, {Ui, meta})
certi={Ui, meta, sigi}
pkg=Enc(Êi, {certi,ri})
res={pkg, Sign(U, pkg)} res

êi = e+ f2(i)
Ver(U , res)

{certi,ri}=Dec(êi, pkg)
Ver(U , certi)

ui = s+ f1(i) + ri

ui·G
?
= Ui

SC
M

S
(i

m
pl

.) Vi = Ŝi + ri·G
certi={Vi, meta}

sigi=Hash(certi)·ri+U
pkg=Enc(Êi, {certi,sigi})
res={pkg, Sign(U, pkg)}

êi = e+ f2(i)
Ver(U , res)

{certi,sigi}=Dec(êi, pkg)
hi = Hash(certi)

ui = hi·(s+ f1(i)) + sigi

Ui = ui·G
?
= hi · Vi + U

U
B

K
(e

xp
l.)

x,
X=x·G

X,
f

X̂i=X+
f(i)·G

06 i<β

X̂i

Ui = X̂i + ri·G
sigi=Sign(U, {Ui, meta})
certi = {Ui, meta, sigi}
pkg=Enc(X̂i, {certi, ri}) pkg

x̂i = x+ f(i)
{certi,ri}=Dec(x̂i, pkg)

Ver(U , certi)
ui = x̂i + ri

ui·G
?
= Ui

U
B

K
(i

m
pl

.)

Vi = X̂i + ri·G
certi={Vi, meta}

sigi=Hash(certi)·ri+U
pkg=Enc(X̂i,{certi,sigi})

x̂i = x+ f(i)
{certi, sigi}=Dec(x̂i, pkg)

hi = Hash(certi)
ui = hi · x̂i + sigi

Ui = ui·G
?
= hi · Vi + U

works because the encryption is performed using X̂i = x ·
G+f(i) ·G as public key, whereas the corresponding private
key is known only to the vehicle. For implicit certificates, Ui

is then computed and verified as usual, using certi and the
PCA’s public signature key to check that Ui = ui·G satisfies
Ui = hi ·Vi +U , where u = Hash(certi)·(x+ f(i))+ sigi.
For explicit certificates, the vehicle (1) verifies the PCA’s
signature on certi, which encloses Ui, and then (2) computes
ui = ri + x̂i using the value of ri received in the encrypted
package, ascertaining that ui · G = Ui. Whereas this final
verification on the received Ui was only advisable in SCMS,
for verifying the correctness of the PCA’s response, it is
mandatory in the proposed approach for avoiding MitM
attacks by the RA (as further discussed in Section V-C).

V. SECURITY ANALYSIS

Even though SCMS does not provide formal proofs of
security, its underlying goals are basically: the confidentiality
of the vehicle’s private key u; the confidentiality of the PCA’s
response (or, more precisely, of the pseudonym certificate
thereby enclosed), in particular toward the RA; the integrity
of the pseudonym certificates in the PCA’s response; and the
unlinkability of the pseudonym certificates, as long as PCA
and RA do not collude.

The overall security of the proposed scheme builds upon
the same principles as the original SCMS butterfly key
expansion. Namely, there is no modification on the process
that defines how the caterpillar and cocoon signature keys
are handled by PCA and RA. Therefore, the security argu-
ments of SCMS regarding the confidentiality of u, which
rely basically on the fact that x remains protected by the
elliptic curve discrete logarithm problem (ECDLP, given in
Definition V) during the whole execution of the protocol,
remain valid. Hence, neither RA nor PCA is able to recover
the signature or decryption private keys derived from it, even
if they collude. Certificate unlinkability is also preserved as

long as RA and PCA do not collude: the shuffling done by
the RA still hides from the PCA any relationship between
certificate requests for the same vehicle; meanwhile, the
PCA’s encrypted response prevents anyone but the owner
of the decryption key from learning certi.

Definition:Elliptic Curve Discrete Logarithm Problem
(ECDLP) [15]. Let E be an elliptic curve over a finite field
K. Suppose there are points P,Q ∈ E(K) given such that
Q ∈ 〈P 〉. Determine k such that Q = k · P .

On the other hand, the unified key approach introduces two
changes to SCMS: (1) it modifies the manner by which the
encryption key is computed, and (2) it eliminates the PCA’s
signature on the encrypted package. The first modification
could affect the confidentiality of the communication, thus
allowing the RA to learn certi. Meanwhile, since the final
signature made by the PCA on its response is aimed at
ensuring the system’s security against MitM attacks by the
RA, the second modification could result in vulnerabilities
on that aspect, affecting the confidentiality and/or integrity
of issued certificates. However, in what follows we show
that the unified key approach still protects the pseudonym
certificates’ contents and prevents MitM attacks, assuming
the hardness of the ECDLP. More precisely, we show that
the problem of decrypting the PCA’s response encrypted
with X can be reduced to an instance of ECDLP. The
same computational hardness applies to MitM attacks, for
which we show that the PCA’s response is such that any
manipulation by the RA is detectable by the device when
validating the public key Ui, either explicitly or implicitly.

A. Confidentiality of pseudonym certificates

In SCMS, the goal of encrypting the response package
with a public encryption key Ê is to prevent the RA
from learning its contents. This is accomplished simply by
using Ê, for which the corresponding private key ê remains
unknown by the RA. The unified strategy hereby proposed
basically builds upon the observation that both the encryption
ê and signature ŝ private keys need to remain protected in
SCMS, which can still be done if they are combined into a
single piece of information. Indeed, the security of using X̂i

directly as encryption key can be verified in Theorem V-A.
Theorem: Security of the unified butterfly key (UBK)

expansion against eavesdropping by RA: Suppose that the
RA follows a honest-but-curious security model, sending the
correct X̂ = X + f(i) · G to the PCA. In that case, the
RA is unable to recover the contents of the PCA’s encrypted
response pkg in polynomial time unless it is able to solve
an instance of the elliptic curve discrete logarithm problem
(ECDLP) in polynomial time.

Proof: The proof in this case is actually straightforward:
if the encryption is performed with a secure algorithm,
there should be no polynomial-time algorithm that allows
decryption without knowledge of x̂, nor a polynomial-time
algorithm that allows the recovery of this key from pkg.
Hence, violating the confidentiality of the scheme requires
the recovery of x̂ from either X or X̂ . After all, besides pkg
itself, these are the only pieces of information possessed by

the RA that carry some relationship with the decryption key
x̂. However, since X̂ = X + f(i) ·G, where f(i) is known
by the RA, this task is equivalent to finding x from X , i.e.,
to solving the ECDLP for X .

B. Security against MitM attacks by RAs (implicit model)

The security result obtained in Section V-A assumes that
the RA follows the unified key expansion protocol, providing
the correct X̂ to the PCA. However, the RA might prefer to
replace this key with X̂∗i = z · G, for an arbitrary value of
z. In this case, the confidentiality of the process would be
lost, because the PCA would end up encrypting pkg with
X̂∗i and the result would be trivially decrypted by the RA
using the corresponding private key z. Therefore, we need
to also consider the security of this Man-in-the-Middle sce-
nario, which is complementary to the “honest-but-curious”
scenario previously assumed. We impose no constraint on
the (mis)behavior of the RA, letting it freely choose X̂∗i as
long as the choice: (1) leads to some advantage to the RA, in
particular the ability to violate the confidentiality or integrity
of pkg; and (2) the misbehavior is not detected by vehicles,
so the letter believe it is safe to use the corresponding
certificates in the field. With this scenario in mind, we can
formulate Theorem V-B.

Theorem: Security of the unified butterfly key (UBK) ex-
pansion against MitM attacks in the implicit model: Suppose
that the RA replaces X̂i by an arbitrary X̂∗i in the request for
implicit certificates sent to the PCA. Assuming the hardness
of the ECDLP and the random oracle model, the RA cannot
violate the integrity or confidentiality of the PCA’s response
pkg without the requesting vehicle’s knowledge.

Proof: We start by noticing that the integrity of pkg’s
contents is protected despite the lack of the PCA signature
over it. Indeed, even if the RA is somehow able to violate
the confidentiality of pkg, it would only be able to obtain
the (signed) implicit certificate certi. However, certi is not
treated as confidential in the implicit certification model [5,
Section 3.4], and yet such model ensures the integrity of
certi in the random oracle model assuming the hardness of
the ECDLP [3]. Therefore, the implicit certification itself
already ensures that any modification of certi, either directly
(i.e., after decrypting pkg) or indirectly (i.e., by modifying
only the ciphertext), would be detectable by vehicles.

Proving the confidentiality of the unified key expansion,
however, requires some more effort because we cannot rely
so directly on the security properties of implicit certificates.
Once again, we follow the reductionist approach, showing
that violating the confidentiality of pkg requires the resolu-
tion of an instance of the ECDLP.

Suppose that the malicious RA replaces the correct value
of X̂i by X̂∗i = z · G, for an arbitrary value of z .
This assumption comes without loss of generality, since in
principle we do not impose any restriction on the actual
value of z chosen by the RA. Upon reception of the RA’s
request, the PCA ends up encrypting the implicit certificate
certi with X̂∗i , since it is unable to detect such misbehavior.
As a result, the RA can decrypt the PCA’s response using

z as the decryption key, thus violating the confidentiality
of the system. This attack would allow the RA to learn
the vehicle’s implicit certificate cert∗i = (V ∗i , meta), where
V ∗i = X̂∗i + ri · G, as well as its corresponding signature
sig∗i = Hash(cert∗i) · ri + U, where h∗i = Hash(cert∗i).

However, this misbehavior by the RA can be detected by
the vehicle because, for any z 6= x+ f(i), the resulting sig∗i
would not be a valid signature for the actual X̂i expected
by the vehicle. More precisely, after the vehicle computes
Ui = ui · G for ui = h∗i · (x + f(i)) + sig∗i , the implicit
verification Ui

?
= h∗i · V ∗i + U fails, unless z = x+ f(i):

Ui
?
= h∗i · V ∗i + U

ui ·G
?
= h∗i · (X̂∗i + ri ·G) + U ·G

(h∗i · (x+ f(i)) + sig∗i) ·G
?
= (h∗i · (z + ri) + U) ·G

h∗i · (x+ f(i)) + h∗i · ri + U
?
= h∗i · (z + ri) + U

h∗i · (x+ f(i))
?
= h∗i · z

x+ f(i)
?
= z . Assuming h∗i 6= 0

Hence, to bypass the vehicle’s verification, the RA cannot
just choose any z: it is obliged to make z = x+ f(i). Even
though f(i) is known by the RA, finding the value of x that
allows the computation of z in this scenario is equivalent to
solving the ECDLP for X .

C. Security against MitM attacks by RAs (explicit model)

The security arguments for explicit certificates are similar
to those presented in Section V-B for the implicit model, as
summarized in Theorem V-C.

Theorem: Security of the unified butterfly key (UBK)
expansion against MitM attacks in the implicit model: Sup-
pose that the RA replaces X̂i by an arbitrary X̂∗i in the
request for explicit certificates sent to the PCA. Assuming the
hardness of the ECDLP, the RA cannot violate the integrity
or confidentiality of the PCA’s response pkg without the
requesting vehicle’s knowledge.

Proof: Once again, it is easy to show that the explicit
certificate certi enclosed in the PCA’s encrypted response,
pkg, cannot be modified while avoiding detection by vehi-
cles. After all, the certi is itself digitally signed by the PCA,
so any modification would invalidate the signature assuming
that a secure algorithm was employed for its computation.
Therefore, even if the confidentiality of pkg is somehow
violated by the RA, that might allow the (unsigned) value of
ri to be modified, but not the modification of the (signed)
certi. Indirectly, however, the non-malleability of certi also
ensures that a possible modification of ri would be detectable
by the vehicle. The reason is that the value of Ui obtained
from certi is verified by the vehicle when it computes
ui = ri+x+f(i) and then checks if ui ·G

?
= Ui. Since x and

f(i) are known by the vehicle (i.e., cannot be manipulated
by the RA), and Ui is fixed in the certificate, turning ri into
r∗i 6= ri would lead to u∗i = r∗i + x + f(i) 6= ui and hence
to u∗i · G 6= Ui. Therefore, none of the pkg’s contents can
be modified without detection by the vehicle.

The final verification performed by the vehicle also en-
sures the confidentiality of the unified key expansion, assum-
ing the hardness of the ECDLP to which this problem can be
reduced. To prove this, we once again suppose without loss of
generality that the malicious RA replaces X̂i by X̂∗i = z ·G,
for an arbitrarily chosen value of z. In this case, the RA
uses z to decrypt the PCA’s response and then learns: (1)
the device’s final public key U∗i = ri ·G + X̂∗i enclosed in
the certificate; and (2) the value of ri itself.

To avoid detection, the RA would then have to re-encrypt
the PCA’s response in such a manner that the vehicle does
not notice that X̂i was not used in the computation of the re-
ceived U∗i . Accomplishing this requires replacing the original
ri by some r∗i that passes the verification process performed
at the vehicle, i.e., that satisfies (r∗i + x + f(i)) · G ?

= U∗i .
Otherwise, the vehicle that performs this final verification
would identify the received U∗i as invalid, frustrating the
attack. Unfortunately for the RA, however, this means that
r∗i must be set to (ri + z)− (x+ f(i)), which is equivalent
to solving the ECDLP for the point (U∗i − X̂i). Actually,
since f(i) is known by the RA, z can be freely chosen by
it, and ri is learned due to the attack, this problem can be
reduced to finding x given the value of X provided by the
vehicle. Nevertheless, this is still an ECDLP instance, which
concludes the proof.

D. Implementation-related security aspects

As an additional remark, the original SCMS design pro-
poses the adoption of two caterpillar keys most likely be-
cause it is considered a good practice to avoid using the same
(or even correlated) public/private key pair for encryption
and signature. The main reason for this recommendation
is that possible vulnerabilities (e.g., implementation errors)
found in one process may leak the key for the other [6].
Hence, if an attacker can somehow interact with a vehicle
in such a manner that (1) the vehicle works as an oracle
for one process, and then (2) recover the private key thereby
employed, then (3) that would also give away the private key
for the other process.

At first sight, it may seem that the strategy hereby
described violates this general rule by creating a key X̂i

that is used both for encryption (by the PCA) and for
generating digital signature (by the vehicles). However, this
is not the case in the proposed scheme. The reason is that
the private key x̂i corresponding to X̂i is actually never
used for signing any piece of data. Instead, vehicles use
ui = x̂i + ri as signature keys in the explicit model, and
hi · x̂i + sigi in the implicit model, where ri and sigi are
secret values known only by the vehicle and the PCA. As
long as ri 6= 0 (for explicit certificates) and sigi 6= 0
(for implicit ones), any predictable correlation between the
encryption and the signature processes is eliminated from
the perspective of all entities (as expected from randomly
generated keys), except for the PCA itself. Interestingly,
this approach follows the same line of thought behind the
butterfly key expansion process that is the basis for SCMS:

different signature cocoon keys are generated from the same
secret information (the caterpillar key), but this correlation is
known only by the vehicle and a system entity (in this case,
the RA). Therefore, the proposed modification can be seen
as a natural development of the original SCMS protocol.

VI. PERFORMANCE ANALYSIS

Besides preserving SCMS’s security properties, this uni-
fied butterfly key expansion leads to a reduced overhead
when compared to the original process.

For vehicles, the request sent to the RA includes a single
cocoon public key and a single PRF rather than two, the
processing and bandwidth costs involved in this process
drop by half. The batches received are also smaller, because
each encrypted package containing a certificate is not signed
(only the certificate itself is). Finally, the processing costs
for validating batches is smaller than in SCMS, since the
verification of the PCA’s signature on the encrypted package
is eliminated.

The RA, in turn, only performs the butterfly key expansion
for signature keys, leading to half the processing overhead.
Ignoring ancillary metadata, bandwidth usage is similarly
reduced when forwarding the request to the PCA, which
involves a single cocoon key and a single PRF rather than
two of each. Finally, the response by the PCA is also smaller
due to the absence of a signature on the encrypted package.

At the PCA, The processing savings come from the fact
that each (implicit or explicit) certificate issued takes a single
signature instead of two. Inbound and outbound bandwidth
are also saved, since the RA’s requests are smaller (they do
not include Êi) and so are the PCA’s responses (one less
signature is sent).

To give some concrete numbers, Table III compares the
estimated costs of the proposed procedure with the original
SCMS as described in [4], assuming the algorithms thereby
recommended: ECDSA for signature generation/verification
and ECIES for asymmetric encryption/decryption. Both al-
gorithms are configured to provide a 128-bit security level.

The bandwidth costs are measured in bytes, ignoring
eventual metadata not strictly related to the butterfly key
expansion process (e.g., time period to which the certifi-
cate should be associated, etc.). The processing costs are
measured in cycles, using the RELIC cryptography library
version 0.4.1 [2], running on an Intel i5 4570 processor.

For completeness, we consider two different settings for
ECDSA when measuring the processing costs of the batch
verification by vehicles: a standard implementation, in which
the ECDSA verification process takes basically one fixed-
point EC multiplication by the generator G and one random-
point multiplication by the PCA’s signature key U ; and an
optimized implementation, in which U is also considered
a fixed point. More precisely,fixed-point EC multiplications
in RELIC rely on pre-computations, using the fixed comb
method with w = 8 For random-point multiplications, in
turn, RELIC is set to use the Montgomery ladder method,
thus providing an isochronous operation. As a result, fixed-
point multiplications end up being ≈ 8 times faster than their

random-point counterparts, at the cost of extra memory usage
for storing pre-computed tables. In practice, the adoption
of this optimized version is interesting when multiplications
by U are performed multiple times per batch for verifying
ECDSA signatures from a same PCA, so the underlying pre-
computation costs can be amortized. Nevertheless, in actual
deployments such optimized version may not be adopted,
for at least two reasons: (1) vehicles may not have enough
memory for storing pre-computed tables; and (2) the batch
verification may involve multiple values of U , e.g., because
the RA’s policy dictates that different PCAs are contacted
so the revocation of one PCA does not invalidate the entire
batch, as well as for improved privacy. In this latter case, the
standard implementation may be preferred over the one that
turns U into a fixed point.

As shown in Table III, the bandwidth and processing gains
of the proposed unified butterfly key expansion process can
reach up to 50%, whereas in the worst case it is at least as
efficient as SCMS’s original approach. Interestingly, those
gains are slightly more significant in the implicit certification
model, which is the one suggested for standardization [4].

In practice, whereas such benefits at the vehicles’ side are
clearly important given their resource-constrained nature, we
argue that they are also relevant at the servers’ side due to
the large scale of the vehicular networking scenario. More
precisely, to put these savings in perspective, we can consider
the case of the PCA: more than 16 million vehicles are sold
per year only in US [24]); since the number of certificates
provisioned per vehicle is expected to range from a few
thousands [26] to more than 30 thousand [14], avoiding
one signature per certificate translates to 16 – 480 billion
signatures that do not need to be computed or transmitted per
year by PCAs in US. Those savings alone are, thus, orders
of magnitude larger than the total load of the world’s largest
PKI, which issues under 10 million certificates every year,
run by the US Department of Defense [26]. In particular,
if the signatures are generated using a modern Hardware
Security Module (HSM), capable of processing 20,000 ECC-
based signatures per second [9], the processing time saved at
PCAs provisioning that many signatures would be equivalent
to 9–277 days of that HSM’s continuous operation.

VII. CONCLUSIONS

Data authentication and user privacy are essential for
preventing abuse in intelligent transportation systems, either
by drivers or by the system itself. This is, however, a chal-
lenging task, in particular because any acceptable solution
needs to cope with constraints on the vehicle’s side such
as limited connectivity and processing power. Fortunately,
SCMS’s pseudonym certificates provisioning and revocation
processes are able to address such requirements while also
taking into account performance and scalability issues.

Despite those advances, in this article we show that there
are still optimization opportunities in the SCMS architec-
ture. Specifically, we describe a novel, unified butterfly key
expansion in which two vehicle-provided keys are replaced
by a single one. Besides eliminating the need of including

TABLE III
COMPARISON OF PROCESSING (IN CYCLES, SHOWN IN A GRAY BACKGROUND) AND COMMUNICATION (IN BYTES) COSTS BETWEEN THE ORIGINAL

SCMS AND THE PROPOSED SOLUTION WHEN ISSUING β EXPLICIT AND IMPLICIT CERTIFICATES, INCLUDING REQUEST AND RESPONSE.

Vehicle → RA → PCA → RA → Vehicle (RP)∗ Vehicle (FP)∗

SCMS expl. 508×103 96 β ·(499×103) β ·(64) β ·(3.27×106) β ·(|cert|+80) 0 β ·(|cert|+80) β ·(5.30×106) β ·(3.23×106)
UBK expl. 254× 103 48 β ·(250×103) β ·(32) β ·(2.86×106) β ·(|cert|+48) 0 β ·(|cert|+48) β ·(3.75×106) β ·(2.73×106)
UBK/SCMS 0.5 0.5 0.5 0.5 0.88 [0.75, 1[‡ – [0.75, 1[‡ 0.71 0.85

SCMS impl. 508×103 96 β ·(499×103) β ·(64) β ·(2.86×106) β ·(|cert|+48) 0 β ·(|cert|+48) β ·(5.74×106) β ·(4.72×106)
UBK impl. 254×103 48 β ·(250×103) β ·(32) β ·(2.46×106) β ·(|cert|+16) 0 β ·(|cert|+16) β ·(4.19×106) β ·(4.19×106)
UBK/SCMS 0.5 0.5 0.5 0.5 0.86 [0.67, 1[‡ – [0.67, 1[‡ 0.72 0.89
∗ Assuming that ECDSA verification uses the PCA’s public signature key U as a random (RP) or fixed (FP) point
‡ Ignoring encryption overhead and assuming |cert| > 48, which is close to the minimum for a certificate (32 bytes for representing
Ui or Vi, plus 16-bytes for metadata such as the expiration date and linkage values)

such extra key in the vehicle’s requests, this approach also
removes one signature from each pseudonym certificate
generated in response (and, hence, the corresponding costs
for their creation, transmission and verification). As a result,
when compared to SCMS’s pseudonym certificate provision-
ing protocol, we are able to obtain processing and bandwidth
savings (both downstream and upstream) that reach as high
as 50%. This is specially relevant when considering that the
number of certificates provisioned per vehicle is expected
to range from a few thousands [26] to tens of thousands
[14]. In addition, whereas these gains are more noticeable
at the vehicles’ side, which are exactly the most resource-
constrained entities in the system, they are also relevant from
the PCA’s and RA’s perspective given the large number of
certificates that need to be handled by the system. The pro-
posed schemes support either implicit or explicit certificates,
while still preserving the system’s security, flexibility and
scalability in both approaches.

Acknowledgements. This study was financed in part by the
Brazilian CAPES (Finance Code 001), CNPq (grant 301198/2017-
9), and LG Electronics. We also thank William Whyte, Virendra
Kumar and Jonathan Petit for their insightful comments on this
work.

REFERENCES

[1] K. Alheeti, A. Gruebler, and K. McDonald-Maier. An intrusion detec-
tion system against malicious attacks on the communication network
of driverless cars. In 12th Annual IEEE Consumer Communications
and Networking Conference (CCNC), pages 916–921, Jan 2015.

[2] D. Aranha and C. Gouvêa. RELIC is an Efficient LIbrary for Cryp-
tography. https://github.com/relic-toolkit/relic, 2018.

[3] Daniel Brown, Robert Gallant, and Scott Vanstone. Provably secure
implicit certificate schemes. In Financial Cryptography, pages 156–
165, Berlin, Heidelberg, 2002. Springer.

[4] CAMP. Security credential management system proofofconcept im-
plementation – EE requirements and specifications supporting SCMS
software release 1.1. Technical report, Vehicle Safety Communications
Consortium, may 2016.

[5] Certicom. Sec 4 v1.0: Elliptic curve Qu-Vanstone implicit certificate
scheme (ECQV). Technical report, Certicom Research, 2013. http:
//www.secg.org/sec4-1.0.pdf.

[6] Jean-Sébastien Coron, Marc Joye, David Naccache, and Pascal Paillier.
Universal padding schemes for RSA. In Advances in Cryptology
(CRYPTO’02), pages 226–241, London, UK, UK, 2002. Springer.

[7] J. Douceur. The Sybil attack. In Proc. of 1st International Workshop
on Peer-to-Peer Systems (IPTPS). Springer, January 2002.

[8] D. Förster, F. Kargl, and H. Löhr. PUCA: A pseudonym scheme with
user-controlled anonymity for vehicular ad-hoc networks (VANET). In
IEEE Vehicular Networking Conference (VNC), pages 25–32, 2014.

[9] Gemalto. SafeNet Luna Network HSM - product brief. https://
safenet.gemalto.com/, 2018.

[10] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade,
M. Lukuc, J. Simons, and J. Wang. Vehicle-to-vehicle communica-
tions: Readiness of V2V technology for application. Technical Report
DOT HS 812 014, NHTSA, 2014.

[11] IEEE. IEEE Standard Specifications for Public-Key Cryptography –
Amendment 1: Additional Techniques. IEEE Computer Society, 2004.

[12] A. Iyer, A. Kherani, A. Rao, and A. Karnik. Secure V2V commu-
nications: Performance impact of computational overheads. In IEEE
INFOCOM Workshops, pages 1–6, April 2008.

[13] M. Khodaei and P. Papadimitratos. The key to intelligent transporta-
tion: Identity and credential management in vehicular communication
systems. IEEE Veh. Technol. Mag., 10(4):63–69, Dec 2015.

[14] Virendra Kumar, Jonathan Petit, and William Whyte. Binary hash
tree based certificate access management for connected vehicles. In
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec’17), pages 145–155, New York, NY, USA, 2017. ACM.

[15] Kristin E Lauter and Katherine E Stange. The elliptic curve discrete
logarithm problem and equivalent hard problems for elliptic divisibility
sequences. In Selected Areas in Cryptography (SAC’08), pages 309–
327. Springer, 2008.

[16] R. Moalla, B. Lonc, H.Labiod, and N. Simoni. Risk analysis study of
ITS communication architecture. In 3rd Int. Conf. on The Network of
the Future, pages 2036–2040, 2012.

[17] NIST. FIPS 197 – Advanced Encryption Standard (AES). National
Institute of Standards and Technology, November 2001.

[18] NIST. FIPS 186-4 – Digital Signature Standard (DSS). National
Institute of Standards and Technology, July 2013.

[19] NIST. FIPS 180-4 – Secure Hash Standard (SHS). National Institute
of Standards and Technology, August 2015.

[20] P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo, and
S. Cosenza. Vehicular communication systems: Enabling technologies,
applications, and future outlook on intelligent transportation. IEEE
Communications Magazine, 47(11):84–95, November 2009.

[21] J. Petit, F. Schaub, M. Feiri, and F. Kargl. Pseudonym schemes
in vehicular networks: A survey. IEEE Communications Surveys
Tutorials, 17(1):228–255, 2015.

[22] F. Schaub, Z. Ma, and F. Kargl. Privacy requirements in vehicular
communication systems. In Proc. of the Int. Conf. on Computational
Science and Engineering, volume 3, pages 139–145. IEEE, 2009.

[23] M. Simplicio, E. Cominetti, H. Kupwade Patil, J. Ricardini, L. Ferraz,
and M. Silva. A privacy-preserving method for temporarily link-
ing/revoking pseudonym certificates in vanets. In 17th IEEE Int. Conf.
On Trust, Security And Privacy In Computing And Communications
(TrustCom’18), 2018. See also eprint.iacr.org/2018/185.

[24] Statista. U.S. car sales from 1951 to 2017 (in units). www.statista.
com/statistics/199974/us-car-sales-since-1951/, 2018.

[25] E. Verheul. Activate later certificates for V2X: Combining ITS
efficiency with privacy. Cryptology ePrint Archive 2016/1158, 2016.

[26] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. A security

credential management system for V2V communications. In IEEE
Vehicular Networking Conference (VNC’13), pages 1–8, 2013.

