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Abstract. The loosely defined terms hard fork and soft fork have established
themselves as descriptors of different classes of upgrade mechanisms for the un-
derlying consensus rules of (proof-of-work) blockchains. Recently, a novel ap-
proach termed velvet fork, which expands upon the concept of a soft fork, was
outlined in [22]. Specifically, velvet forks intend to avoid the possibility of dis-
agreement by a change of rules through rendering modifications to the protocol
backward compatible and inclusive to legacy blocks. We present an overview and
definitions of these different upgrade mechanisms and outline their relationships.
Hereby, we expose examples where velvet forks or similar constructions are al-
ready actively employed in Bitcoin and other cryptocurrencies. Furthermore, we
expand upon the concept of velvet forks by proposing possible applications and
discuss potentially arising security implications.

1 Introduction
Nakamoto consensus, the underlying agreement protocol of permissionless blockchains,
enables eventual consensus on the state updates to a distributed ledger if certain major-
ity assumptions on the hashrate of honest mining participants are upheld [16, 27]. A
substantial amount of research has focused on correctly assessing the provided security
guarantees, such as the ability for an adversary to succeed in double spending transac-
tions [5,21,31]. Despite these remarkable efforts, there still remain open questions and
gaps in our understanding of this agreement mechanism. One such topic is approaches
for securely changing consensus rules of permissionless blockchain protocols [35], such
as Bitcoin and Ethereum, which is currently topic of ongoing debate. Reaching agree-
ment on a common set of protocol rules in a decentralized manner could prove to be a
problem as difficult as the double-spending problem Bitcoin originally set out to solve.

In this paper we first provide a brief background on core concepts related to this
topic after which we discuss and define current protocol upgrade mechanisms consid-
ered in permissionless blockchain systems, such as hard forks and soft forks. In partic-
ular, we focus on the recently proposed concept of velvet forks by Kiayias et al. [22],
which seeks to render protocol upgrades via soft forks more inclusive. We then pro-
vide real-world examples where velvet forks or similar concepts are, or have already
? These authors contributed equally to this work.



been, employed. Furthermore, possible negative impacts of such an approach are out-
lined. In particular with regards to the underlying (game-theoretic) incentive model,
such changes may lead to negative side effects in permissionless blockchains. Finally,
we suggest the applicability of velvet forks to a number of existing protocol improve-
ment proposals and outline interesting directions for future work.

2 Background
The fundamental mechanism by which Bitcoin and similar permissionless blockchain-
based systems reach agreement depends, among other, upon consensus participants ex-
tending a proof-of-work weighted hash chain, i.e., a blockchain. Specifically, it is as-
sumed that a sufficient honest majority of these participants, so called miners, will only
build upon the branch with the most cumulative proof-of-work, where each element,
e.g., block, adheres to some pre-agreed set of protocol rules P under which it is consid-
ered valid. The non-deterministic nature of the hash-based proof-of-work employed in
such systems, as well as the relatively weak synchrony assumptions of the underlying
peer-to-peer network, can lead to situations, where multiple branches are created and
extended in parallel. However, the probability of such a blockchain fork prevailing for
prolonged periods decreases exponentially in its length, if a sufficient majority of min-
ers adhere to protocol rules P and, in particular, only extend the heaviest chain (known
to them) [16, 26]. We use b ∈ V to denote a block b is contained in the validity set V
defined by P , i.e., in the set of all blocks considered valid under the protocol rules P .

This brings us to the question how a change P → P ′ to the underlying protocol
rules may affect this consensus mechanism. Disagreement on the validity of a block
b under different rules, i.e., b ∈ V but b /∈ V ′, can lead to a permanent fork in the
blockchain, where a subset of participants will always reject branches building on a, to
them invalid, block, regardless of the cumulative proof-of-work these branches accumu-
late. The requirement for agreement on the block validity also extends to participants
not actively involved in the consensus process by mining, such as fully validating and
simple payment verification (SPV) [26] nodes. The former generally adhere to the same
full set of rules P as miners, while the latter only consider a subset Pspv ⊂ P . For
simplification we shall refer to such non-mining participants as clients.

3 Mechanisms for Consensus Rule Changes
The term hard fork has established itself [8, 18] as a descriptor for protocol changes
which can incur a permanent split of the blockchain, as they permit or even enforce the
creation of blocks considered invalid under previous protocol rules. As an alternative,
soft forks intend to retain some level of compatibility to older protocol versions, specif-
ically towards clients adhering to previous protocol rules. The concepts of both hard-
and soft forks are described in the Bitcoin developer guide [13], as well as the Bitcoin-
Wiki [6]. In scientific literature, some of the principal differences between these two
types of consensus rule upgrades have been covered in [8, 12, 18]. McCorry et al. fur-
thermore provide a history of forking events in both Bitcoin and Ethereum as part of
their work on how parties can bindingly perform atomic cross-chain trades in case of
a permanent blockchain fork [25]. A closer description of different protocol forking
mechanisms and their relation to each other was also presented in a blog post by Bu-
terin in [9].



Differentiating between Hard and Soft Forks If we consider the possibility of a
permanent blockchain split as the defining characteristic of hard forks, most protocol
changes would fall into this category. For example reducing the validity set of rules in a
protocol update, which is generally considered to be a soft fork, can lead to a permanent
split in case the majority of consensus participants is not upgraded. Conversely, if an
expanding protocol change, i.e. a hard fork, does not reach a majority among consensus
participants, no permanent fork is actually incurred as upgraded clients will continue to
follow the chain with the most cumulative proof-of-work.

This dichotomy helps outline the difficulties in presenting a clear distinction be-
tween hard and soft forks. To provide a finer distinction between possible impacts of
protocol upgrades and their potential for permanent blockchain forks we present the
following classes of protocol changes:

– Expanding. The new protocol rules P ′ increase the set of blocks V ′ considered
valid with respect to the previous protocol rules P , i.e., V ′ ⊃ V . Expanding pro-
tocol changes can cause a permanent split in the blockchain if the consensus par-
ticipants adhering to P ′ form a majority. However, if a majority retains protocol
rules P no permanent fork occurs as clients adhering to P ′ also consider any block
under protocol rules P as valid. Examples include blocksize increase and defining
previously unused values as new opcodes.

– Reducing. The new protocol rules P ′ reduce the set of blocks considered valid
with respect to the previous protocol rules. Specifically, the new set of valid blocks
V ′ is a proper subset of the valid blocks of the previous protocol, i.e., V ′ ⊂ V .
Reducing protocol changes represent a soft fork as long as the majority of consen-
sus participants adheres to the new rules P ′. If, however, P retains a majority, a
permanent fork is incurred as updated clients and miners will consider some blocks
valid under old protocol rules P as invalid. Examples could be: blocksize decrease,
introduction of SegWit (BIP 141 [24]) and removal of an opcode.

– Conflicting (Bilateral). We refer to updates introducing mutual incompatibilities
as conflicting or bilateral protocol changes. Here, the goal is to intentionally cause
a permanent fork of the blockchain and prevent potential interactions between the
resulting chains, such as the chain ID introduced in Ethereum for replay protection.

– Conditionally Reducing (Velvet). Velvet protocol changes are a special form of
update where the new set of reducing protocol rules P ′ is conditionally applied
only when the considered elements, such as blocks or transactions, are valid under
the new rules. Otherwise, the new rules are ignored and previous protocol rules P
are relied upon to determine validity. Since the new rules in P ′ are reducing, velvet
protocol changes in fact never incur a (permanent) protocol fork as any element
considered valid under P ′ is also considered valid under P , therefore V ′ = V .
Examples, such as P2Pool [3] and overlay protocols, are discussed in Section 4.

Adhering to convention and previous definitions, i.e., [8,9,12], both expanding and
bilateral protocol changes are generally considered to be hard forks while reducing
protocol changes are referred to as soft forks. In this context the so called velvet fork
considered in this work would also fall into the latter category of soft forks.



Table 1. Overview of classes of protocol updates P → P ′. V and V ′ denote the validity sets of
old (P) and new (P ′) protocol rules, respectively. N denotes the validity set changes introduced
by the protocol update.

Type Validity Set Incurred Fork Examples
New Relation to Old Soft Permanent / Hard

Expanding
V ′ = V ∪ N ,
∃n ∈ N : n /∈ V V ′ ⊃ V never V ′ is majority

Blocksize increase,
new opcode

Reducing
V ′ = V \ N ,
N ⊂ V V ′ ⊂ V V ′ is majority V is majority

Blocksize decrease,
opcode removal, SegWit

Conflicting
(Bilateral)

V ′ =
(V ∪ N ) \ (V ∩ N ) =

V 4N

(V ′ 6⊆ V),
(V 6⊆ V ′),
V ′ ∩ V 6= ∅

never always
Opcode redefinition,

chain ID for replay protection

Conditionally
Reducing
(Velvet)

V ′ = V V ′ = V never never
P2Pool, merged

mining, colored coins

Velvet Forks The velvet fork, as described in [22], does not require support of a ma-
jority of participants and can potentially avoid rule disagreement forks from happening
altogether. In a velvet fork, the new protocol rules P ′ are not enforced by upgraded con-
sensus participants and any valid block adhering to the new rules is also a valid block
in terms of the old rules. Effectively, velvet forks leverage on the consensus mechanism
of protocol P to bootstrap their own consensus rules P ′ which, as part of their rules,
produce forward-compatible blocks to P . In principle, protocol updates introduced as
velvet forks are always successful, as legacy nodes remain unaware of the changes.
However, some protocol updates may not be applicable as a velvet fork, in particular if
they require non-upgraded participants to also adhere to the new rules, or the new rules
must hold over the span of multiple, possibly arbitrarily many, mined blocks3.

Other Protocol Update Mechanisms

User Activated Forks. The concept of user activated soft forks (UASF) was recently
proposed as a mechanism, whereby non-mining participants of the system attempt to
take influence on the consensus and protocol upgrade process [4, 9]. We note that user
activated forks generally apply to all types of protocol update mechanisms. Specifically,
user activated forks aim to incentivize mining participants to perform a consensus pro-
tocol upgrade P → P ′: users and economic actors of the system present pledges stating
they will strictly enforce the new consensus rules P ′ at a certain activation date by their
client software, regardless of the amount of support of active consensus participants,
i.e. miners.

Emergent Consensus. Emergent consensus (EC) is a concept that was proposed as
an improvement proposal in the Bitcoin Unlimited client (BUIP001 [34]). Its goal is
specifically geared towards reaching dynamic agreement upon the permissible size of
Bitcoin blocks, which is currently part of the consensus rules of the Bitcoin protocol.
However, the mechanism in principle could also be applied to other protocol rules.
EC assumes that a consensus participant will nevertheless accept a, to them invalid,

3 For example, repurposing anyone-can-spend outputs as is the case with SegWit (BIP 141).



block if sufficient other proof-of-work blocks build upon it. In theory, forks caused by
disagreement on the protocol rules could hereby be resolved. However, the resulting
impact on security properties is still subject of ongoing discussion and in particular
Zhang et al. were able to show models of EC are not incentive compatible, even if all
miners fully comply with the protocol [36].

4 Observation of Velvet Forks in Practice
In this section we identify blockchain protocol extensions closely related to velvet forks,
which either already have been deployed or whose design follows the same approach.

P2Pool P2Pool [3] is a protocol for implementing decentralized mining pools pre-
sented in 2011. In contrast to conventional mining pools, attestation of each miner’s
contribution to solving the next block’s PoW puzzle and the distribution of rewards are
accomplished without a trusted operator. P2Pool uses an additional, length-bounded
blockchain, the sharechain, consisting of otherwise valid blocks which fail to meet the
mining difficulty target d but exceed a minimal target dshare, agreed upon and deter-
mined by the protocol4, sometimes referred to as near or weak blocks. These blocks are
used to attest each miner’s contribution, while the reward distribution is in turn achieved
by introducing the following rule: ”Each time a miner finds a block exceeding the target
d, she can claim 0.5% of the block reward, while the rest must be distributed among all
participating miners according to their portion of the last N sharechain blocks”.

While this additional axiom is an extension to the mined blockchain’s rule set, it
generates fully backward compatible blocks, and hence remains oblivious to all but
P2Pool miners. As a result, any valid block generated by P2Pool miners will be accepted
by non-P2Pool miners. In turn, P2Pool miners accept any valid blocks produced by non-
P2Pool miners, i.e., even blocks that do not adhere to the above mentioned rule. Since
the set of accepted blocks by both parties is exactly the same, P2Pool can be considered
a velvet fork.

Sub-chains with Weak Blocks The concept of sub-chains was initially proposed
by TierNolan (pseudonymous) in 2013 [28] and has been extended, for instance, by
Rizun [29]. It builds upon the idea of exchanging weak blocks between miners to form
sub-chains between consecutive full blocks, by referencing the previous’ weak blocks
header in an additional pointer.

The required subchain pointer can be readily included in a miner-definable data
field, such as the coinbase transaction in the case of Bitcoin. Miners that have adopted
sub-chain rules will also accept blocks containing invalid, or no pointer data to sub-
blocks. As a result, the set of accepted blocks remains identical for both miners using
sub-chains and as those following legacy rules, rendering this proposed protocol exten-
sion a form of velvet fork.

Merged Mining Merged mining refers to the process of reusing (partial) PoW solu-
tions from a parent blockchain as valid proofs-of-work for one or more child block-
chains [20]. It was first introduced in Namecoin [7] both as a bootstrapping technique
and to mitigate the fragmentation of computational power among competing cryptocur-

4 The target dshare is adjusted such that the sharechain maintains an average block interval of
30 seconds



rencies sharing the same PoW. While a child cryptocurrency may require a hard fork to
implement merged mining, parent blockchains only need to allow for miners to include
additional arbitrary data in its blocks. This arbitrary field is then used to link to blocks
to the merge mined child cryptocurrency.

Merged mining can be considered closely related to velvet forks, as new consen-
sus rules, namely those of the merge mined children, are incorporated in the parent
blockchain in a fully backward compatible way. If either invalid or no links to child
blocks are included in a block, the data will be ignored by participants of merged min-
ing and the block is nevertheless accepted. Merged mining and P2Pool make use of the
same principle mechanisms, with the marked difference being that in merged mining
additional rewards are received in the child cryptocurrency, whereas P2Pool sharechain
blocks represent claims to portions of the next valid block’s reward on the main chain.

Overlay Protocols and Colored Coins Another concept closely related to the idea of
velvet forks is that of overlay protocols and colored coins, inter alia described in [30].
The term colored coin refer to cryptocurrency transactions where the outputs are ad-
ditionally “colored“ to represent some assets or tokens, allowing to use such outputs
in transactions to transfer their ownership. We consider colored coins to be part of the
class of overlay protocols and herein focus on the latter, more general concept.

Overlay protocols leverage on an underlying property of Bitcoin and similar block-
chain systems, namely providing eventual consensus on the ordering of transactions.
This primitive, termed total order broadcast or atomic broadcast has been shown to be
equivalent to consensus [11] and can, for instance, be used to readily implement state
machine replication. As such, encoding messages in regular valid transactions allows
overlay protocols to utilize Bitcoin or similar systems as if they were a (eventual) to-
tal order broadcast protocol. While this approach may provide overlay protocols with
a mechanism for reaching agreement on the ordering of messages, it does not extend
any guarantees towards their correctness. In particular, miners may remain completely
oblivious to the consensus rules O of the overlay protocol and only adhere to the un-
derlying base protocol P . Hence, transactions encoding invalid messages of the overlay
protocol O, which have to be ignored by the participants of the overlay system, may be
included in blocks [8]. However, if participants in the overlay system agree to both the
same set of rulesO and the (eventual) ordering of both valid and invalid messages, then
ignoring messages considered invalid under O by all (honest) participants leads to the
same (eventually) consistent system state.

Overlay protocols are comparable to velvet forks in that they impose no restrictions
and apply new protocol rules O only if the input is considered valid 5. The primary dif-
ference is that velvet forks additionally assume an active participation in the underlying
consensus protocol of P , whereas overlay protocols only take on the role of clients.
Practical examples of overlay protocols are Omni-Layer (previously Mastercoin) [2]
and Counterparty [1].

5 We point out that the the agreement problem on the overlay protocol rules themselves is hereby
of course not solved, and an upgradeO → O′ may cause a logical fork with similar problems
to those of the underlying consensus protocol, discussed previously .



5 Considering Security Implications
As outlined in Section 4, velvet forks can be utilized to introduce consensus rule changes
in a backward compatible way. However, non-upgraded miners may be unaware of these
changes and the potential alterations to the incentives of upgraded velvet miners that
they entail. As such, blocks produced in accordance with the old rules P may no longer
have the same (economic) utility for velvet miners, as blocks generated under P ′, i.e.,
velvet miners may be biased towards accepting upgraded over legacy blocks. This in
turn can have an unclear impact on the security assumptions of such systems, as current
attack models mostly do not assume a variable utility of blocks. The following exam-
ples outline commonly described attack strategies and how they may relate to velvet
forks.

Double Spending The double spending problem was one of the first studied threats
in Bitcoin [5, 21, 31]. As miners are required to invest significant amounts of com-
putational power into solving the proof-of-work puzzles, attacks on transactions with
sufficient number of confirmations are generally considered economically infeasible.
However, long waiting times are often impracticable, while a trade-off between security
and usability may be inevitable and must be considered carefully [33]. The necessary
thresholds for transaction security assumptions can be shifted in blockchains experi-
encing a velvet fork, as some blocks may be attributed a higher utility than others by a
subset of miners in the system, and must be re-evaluated.

Selfish Mining Selfish mining [15, 32] is known to allow adversaries to increase their
expected revenue by deviating from the correct protocol rules. Thereby, selfish miners
intentionally withhold blocks and attempt to create a longer secret chain. Determined
by the respective strategy, the selfish miner will only publish a select number of blocks
from her secret chain, overriding progress in the public chain and forcing honest miners
into reorganization. The success rate of the attack is, among other, dependent on the
network connectivity of the adversary and the acceptance probability of the blocks in
the attacking parallel chain.

However, a velvet fork may significantly impact the success rate of an attacker if
some blocks attain a higher probability of acceptance than others, based on the protocol
rules they adhere to. In the latter case, an attacker potentially has a higher chance of
overriding the public chain, as upgraded miners may prefer her blocks over those of
honest (legacy) miners. It is conceivable that the disparity in rewards may even incen-
tivize miners to behave against protocol rules and discard more than one block, i.e.,
intentionally disregard the heaviest chain rule. Carlsten et al. have shown that selfish
mining performs better in Bitcoin under a block reward free model, i.e., when blocks
have different economic value and adversaries can utilize this information to better time
their attacks [10], and these insights may similarly apply to velvet forks.

Insidious Soft Forks A velvet fork could potentially be abused to enforce a regular
soft fork in a hostile manner. Assume a new protocol update P → P ′, favored by some
portion of the community, does not reach a majority among miners. Hence, it could
be deployed as a velvet fork at first. However, if it at some point gains sufficient, i.e,
> 50% adoption, miners adhering to these rules could start to enforce them on the
remaining unupgraded participants, i.e., by unilaterally declaring old blocks as invalid



and triggering a soft fork. As the velvet miners had sufficient time to accumulate a
wider range of support, the fork now has better chances of success due to economic
asymmetry, i.e., the unupgraded may conform out of economic interest.

6 Applicability to Existing Proposals
We now move on to provide a non-exhaustive list of consensus extension proposals
which could potentially be implemented as velvet forks.

Bitcoin-NG In [14] Eyal et al. present Bitcoin-NG, which aims at improving latency
and bandwidth consumption compared to Bitcoin, while maintaining similar security
properties. Bitcoin-NG distinguishes between normally mined key blocks and so called
microblocks, which are generated at a significantly lower interval by a leader, i.e., the
miner of the previous key block. Fees earned from transactions included in microblocks
are split in a 40:60 ratio between miners of consecutive key blocks. To disincentivize
double spending by malicious leaders, honest leaders can submit proof of fraud transac-
tions to the blockchain if they detect attacks, invalidating the funds paid to the adversary.

Velvet Fork applicability Bitcoin-NG adds three rules to the Bitcoin consensus layer,
two of which are compatible as a velvet fork. Similar to sub-chains, unupgraded miners
would remain agnostic to microblocks, if microblock transactions are included in the
subsequent key block6. By adding a pointer to the previous Bitcoin-NG key block7, the
new reward scheme can be implemented, despite the presence of legacy blocks. How-
ever, the invalidation of funds paid to a malicious leader by a proof of fraud transaction
must also be accepted by unupgraded miners, which remains an open problem.

Aspen Aspen [17] is an extension to the Bitcoin-NG concept that allows consensus
participants to fully validate the correct functionality of blockchain services in a trust-
less manner, while only keeping track of a, to them, relevant subset of blocks. Service
specific data is stored in chains of key and microblocks, thereby, there can exist multiple
independent layers of microblock chains used by different services.

Velvet Fork applicability Apart from the rules required to implement Bitcoin-NG, the
Aspen protocol requires the annotation of outputs with so called service numbers, which
determine on which microblock chains the referenced funds can be spent. In Bitcoin,
this could be achievable for instance through using the OP RETURN script opcode. We
note that Aspen in its current form could possibly also be implemented using the pre-
viously described concept of sub-chains, thereby evading potentially incompatible re-
quirements introduced by Bitcoin-NG.

Extension blocks The Extension block proposal was introduced by Lau [23] and fur-
ther expanded upon by Jeffrey et al. [19]. It aims at increasing the transaction through-
put by introducing an additional layer of (potentially larger) blocks atop the Bitcoin
blockchain. While each extension blocks are linked to Bitcoin blocks via the coinbase
transaction in a 1-to-1 mapping, they maintain their own independent set of transac-
tions, creating a parallel accounting system.

6 And do not exceed Bitcoin’s block size limitations.
7 In the data used as input to the proof-of-work of the block.



Velvet Fork applicability To allow users to transfer funds between normal and extension
blocks, the proposal re-purposes the OP TRUE opcode, which in turn would render such
funds spendable by anyone in the eyes of legacy miners. While the presented approach
necessitates a soft fork, alternative constructions possibly allowing for a velvet fork
deployment (e.g., multisig locks) may be conceivable.

7 Future Work and Conclusion
Herein, we outlined and extended upon the previously described concept of velvet forks
and contextualize it to other blockchain consensus rule change mechanisms such as
hard- and soft forks. Furthermore we show that variants of this new upgrade mechanism
have already been employed in real-world scenarios. Velvet forks present a possible new
upgrade path to blockchain consensus rules that could help avoid long-lasting scaling
debates and discord in the community. New protocol extensions could be actively de-
ployed without necessitating at least majority agreement by all consensus participants.
On the other hand, velvet forks could introduce new possible attacks and threats and
fundamentally impact the game-theoretic incentives of the underlying blockchain. In
any case, this interesting new concept deserves further research attention.
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