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Abstract. The standard acceptance policy for a cryptocurrency transaction at most exchanges is to
wait until the transaction is placed in the blockchain and followed by a certain number of blocks.
However, as noted by Sompolinsky and Zohar [16], the amount of time for blocks to arrive should
also be taken into account as it affects the probability of double spending. Specifically, they propose a
dynamic policy for transaction acceptance that depends on both the number of confirmations and the
amount of time since transaction broadcast.
In this work we study the implications of using such a policy compared with the standard option that
ignores block timing information. Using an exact expression for the probability of double spend, via
numerical results, we analyze time to transaction acceptance (performance) as well as the time and cost
to perform a double spend attack (security). We show that while expected time required for transaction
acceptance is improved using a dynamic policy, the time and cost to perform a double spend attack for
a particular transaction is reduced.

1 Introduction

Bitcoin and other cryptocurrencies [4, 11] serialize monetary transactions in a data structure called the
blockchain to prevent double spending : If one transaction spends a certain coin, a subsequent transaction
cannot spend that same coin. However, the blockchain occasionally experiences a re-organization where a
short suffix is replaced. Therefore, a transaction should not be considered as final prematurely, as it would
allow an attacker to replace it with another in a double-spending attack.

Transactions are typically considered accepted once there is a sufficiently long suffix after them e.g., after
five blocks following the block containing the transaction (i.e. 6 confirmations). However, the probability of
a successful double-spending attack against a particular blockchain transaction depends on both the number
of confirmations and the time elapsed since transaction broadcast.

Consider two cases of a Bitcoin transaction that is accepted as settled after six confirmations. Suppose that
in one case, these confirmations take eleven minutes, such as a transaction included in block #485661 [1]. In
the other case suppose, these confirmations take nearly three hours, such as a transaction included in block
#152217 [2]. The probability of a successful double spend is significantly different between these cases since
the attacker has more time to build his chain when the six confirmations take three hours as compared to
eleven minutes.

In this paper, we analyze a more general type of acceptance policy first introduced in [16], which takes into
account not only the number of confirmations but also the time elapsed since the transaction was broadcast.

The plot shown in Fig. 1 shows the probability of double spend versus the length of time taken for transaction
acceptance, assuming transactions are accepted after six confirmations and the attacker has 20% of the
network hashrate. Applied to the cases above, when the six confirmations take eleven minutes the probability
of double spend is roughly 0.01%, and when the six confirmations take nearly three hours the probability
of double spend is roughly 10%. Note how the probability of double spend changes significantly depending
on the length of time taken for transaction acceptance and in fact cannot even be bounded below one. This
implies accepting a transaction after six confirmations without considering the time taken since transaction
broadcast is insufficient to ensure the probability of double spend is below a threshold at the time of
transaction acceptance. In this paper we analyze security and performance of an acceptance policy that
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Fig. 1. This plot shows the probability a double spending attack succeeds against a particular transaction versus
the amount of time from transaction broadcast to acceptance, assuming the transaction was accepted after six
confirmations and the attacker has 20% of the network hashrate. Note that waiting for six confirmations alone is not
sufficient to ensure a low double spending probability at the time of transaction acceptance.

depends on both confirmations and time since transaction broadcast that bounds the probability of double
spend at the time of transaction acceptance.

We call a transaction acceptance policy that waits for a fixed number of confirmations a static policy, and call
an acceptance policy that depends on both amount of time waited since transaction broadcast and number
of confirmations a dynamic policy.

Our paper makes the following contributions:

1. A derivation of a closed-form expression for the probability of double spend in terms of a finite sum
assuming the attacker persistently attempts to double spend a particular transaction, regardless of cost.

2. An analysis comparing dynamic acceptance policies to static policies, from both the security and perfor-
mance perspective. Specifically, we analyze dynamic acceptance policies that guarantee the probability
of double spend is below a certain threshold, no matter how long the confirmations take to arrive. Via
numerical results, we find that dynamic policies reduce the expected waiting time for transaction ac-
ceptance as compared to static policies. On the other hand, we find dynamic acceptance policies reduce
the attacker’s time (and cost) for the successful double spend of a particular transaction as compared to
static policies.

3. A discussion of other families of dynamic acceptance policies which may have different security and
performance trade-offs.

We overview prior art and proceed by covering each of these contributions in order.

2 Related work

Most previous work has analyzed the probability of double spend solely as a function of the number of
confirmations [11, 14]. To the best of our knowledge, Sompolinsky and Zohar [16] were the first to present
an acceptance policy based on time since transaction broadcast as well as the number of confirmations.
However, they did not analyze of the security and performance properties of dynamic acceptance policies as
we do here. Unlike [16], we neglect block propagation delay in our analysis as we make no assumptions on
blocksize.

Acceptance policies that depend on the block height that enable different security guarantees are considered
in [17], however those ignore the time aspect. Pinzon and Rocha [13] also note that ignoring the time element



does not result in an accurate double-spending probability calculation. [6] considers a ‘time-based transaction
confirmation verification’ policy, however it differs from the dynamic policies considered in this paper.

Blockchains are also exposed to other attacks. The Selfish Mining attack [7] can be combined with other
attacks and double-spending [9,12,15]. In the Eclipse attack [10] a node is disconnected from the network by
the attacker making it vulnerable to a double spending attack. Considering such combined attacks, a secure
acceptance policy should consider timing information.

3 Calculating The Probability of Double Spend

In this section we find the exact closed-form expression for the probability a particular transaction is double
spent as a function of the length of time and number of blocks added to the main chain since transaction
broadcast. We start by introducing notation and our attacker model. We then derive the probability of
double spend in three steps.

We let λ represent the rate at which blocks are added to the main chain when all parties follow the protocol.
In Bitcoin, λ = 0.1 blocks/min and we assume this rate for the remainder of this work. We assume there
is one attacker with α fraction of the total network hashrate that is attempting to perform a double spend
against a particular transaction. This allows the attacker to generate blocks at a rate of αλ. We also assume
all other miners are honest and produce blocks at a rate of (1−α)λ. A double spend occurs when the attacker
releases a longer blockchain after the transaction has been accepted as settled. We also assume the attacker
persistently attempts to double spend a particular transaction regardless of time and cost or if the attacker’s
chain falls many blocks behind.

We now derive the exact probability of double spend expressed as a finite sum in three steps. In the first
step, we determine how many blocks ahead the attacker is before the transaction is broadcast. In the next
step, we determine how many blocks the attacker is ahead or behind the main chain after the transaction
has been accepted as settled. In the third step, we determine the probability that the attacker ever creates
a chain longer than the main chain after the transaction has been accepted as settled.

Step 1: To prepare for the double spend attempt, we assume the attacker may mine before the transaction is
broadcast. Let pi denote the probability the attacker is exactly i blocks ahead of the main chain immediately
before the transaction is broadcast. We note that if the attacker does not mine on his own chain before the
transaction, then p0 = 1. Other distributions over pi can be chosen depending on the how the attacker is
modeled.

Step 2: We now determine the attacker’s state after transaction acceptance. We let T be the length of
time elapsed from broadcast to transaction acceptance, during which the main chain added N blocks. From
the point of view of the receiver of the transaction, the number of blocks the attacker has mined since the
transaction broadcast has a Poisson distribution (the receiver does not know the state of the attacker’s chain,
only the state of the main chain). In the following, we calculate the probability the attacker is a particular
number of blocks ahead/behind the main chain immediately after transaction acceptance.

Let p∗i denote the probability the attacker is exactly i blocks ahead (if attacker is behind, i is negative) the
main chain at time T assuming the attacker was ahead by i blocks with probability pi when the transaction
was broadcast. In other words, p∗i represents the probability the attacker is exactly i blocks ahead/behind
the main chain immediately after transaction acceptance. Since the distribution for the number of blocks
the attacker finds in time T is Poisson with parameter αλT and the main chain had N confirmations within
this time, we have:

p∗i =

i
∑

j=−N

pj+N

e−αλT (αλT )
i−j

(i− j)!

Step 3: We now determine the explicit form for the probability the attacker creates a chain longer than the
main chain that double spends the transaction. If the attacker was ahead of the main chain immediately
after transaction acceptance (i.e. the attacker’s chain is longer than the main chain), then the attacker can



double spend immediately. Additionally, even if the attacker was not ahead of the main chain immediately
after transaction acceptance, there is still a chance the attacker catches up and exceeds the main chain.

The continuous-time Markov process in Fig. 2 models how the attacker may be able to beat the main chain
and double spend. Each numbered state represents the number of blocks the attacker is ahead and the
labels on the arcs represent transition rates. We note that in addition to the numbered states, there is an
absorbing ‘Double Spend’ state. The probability of double spend, pDouble Spend, is the probability of reaching
the ‘Double Spend’ state in this Markov process given some initial distribution (based on p∗i ).

−N −1 0 Double Spend

αλ αλαλαλ

(1− α)λ (1− α)λ(1− α)λ

Fig. 2. This continuous-time Markov process models how the attacker may be able to beat the main chain and double
spend after transaction acceptance. Each numbered state represents the number of blocks the attacker is ahead and
the labels on the arcs represent transition rates. We note that in addition to the numbered states there is an absorbing
‘Double Spend’ state. The probability of double spend is the probability of reaching the ‘Double Spend’ state in this
Markov process.

Given the attacker starts at state i in this Markov process, the probability of reaching the ‘Double Spend’

state is
(

α
1−α

)

−i+1

. This is equivalent to the Gambler’s Ruin problem discussed in [11] and the result is

well-known in random walk theory [8].

Since the probability that the attacker is already capable of double spending at the time of transaction
acceptance is

∑

∞

i=1 p
∗

i , the probability of a double spend eventually occurring is given by:

pDouble Spend =

0
∑

i=−N

p∗i

(

α

1− α

)

−i+1

+

∞
∑

i=1

p∗i

In order to compute the above probability, we need to need to avoid the infinite summation in the right-most
term. Since

∑

∞

i=−N p∗i = 1 (immediately after transaction acceptance, the attacker can never be more than
N blocks behind), we have:

pDouble Spend =

0
∑

i=−N

p∗i

(

α

1− α

)

−i+1

+ 1−

0
∑

i=−N

p∗i

The left sum above refers to the probability of the attacker catching up sometime after the transaction has
already been accepted. The remainder of the probability refers to immediately being able to double spend
after transaction acceptance.

4 Dynamic Transaction Acceptance Policies

In this section we consider dynamic policies for transaction acceptance that depend on the number of
confirmations as well as the amount of time waited since transaction broadcast. Specifically, based upon the
amount of time waited, a dynamic policy chooses the minimum number of confirmations required to keep
pDouble Spend below a certain threshold. We start by looking at a particular dynamic policy and then use
numerical results to analyze properties of comparable static and dynamic policies.

The dynamic policy shown in Fig. 3 ensures the probability of double spend at the time of transaction
acceptance is below 1.337%. Note that the number of confirmations required changes with the time elapsed



since transaction broadcast. For example, if the third confirmation arrives ten minutes after transaction
broadcast, the transaction is accepted under this policy. However, 60 minutes after transaction broadcast,
if the transaction has not yet been accepted then five confirmations would be required for transaction
acceptance.
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Fig. 3. This plot of a dynamic policy shows the number of confirmations required for a transaction to be accepted as a
function of time since transaction broadcast to ensure pDouble Spend < 1.337%. Note that the number of confirmations
required changes with the time since transaction broadcast. For example, if the third confirmation arrives ten minutes
after transaction broadcast, the transaction is then accepted under this policy. However, if the transaction has not
yet been accepted 60 minutes after transaction broadcast, then five confirmations would be required for acceptance.

Fig. 4 shows the double spend probability as a function of time from transaction broadcast to acceptance
for the dynamic policy in Fig. 3. Note that the double spend probability at transaction acceptance may
be significantly lower than 1.337%. For example, a transaction that is accepted just a few minutes after
broadcast has a double spend probability of roughly 0.5%. Comparing to Fig. 1, we see that the dynamic
policy bounds the double spend probability at the time of transaction acceptance unlike the static policy.

We note that the parameter space for dynamic acceptance policies allows for continuous policy adjustments
as compared to static policies where only the number of confirmations can be adjusted (e.g. wait for 3, 4, or
5 confirmations).

4.1 Comparing Static and Dynamic Acceptance Policies

In the following, we present numerical results based on the exact analysis in Section 3. In the following
numerical results, we have assumed α = 0.2 unless otherwise noted. We initially find a static and dynamic
policy such that their expected double spend probabilities are equal. We then compare the distribution of
transaction acceptance time and well as double spend probability for both these policies. We also find the
distribution of the required time to perform a double spend attack under both static and dynamic policies.
We find that for the same level of security, dynamic policies reduce the expected waiting time for transaction
acceptance as compared to static policies. On the other hand, we find dynamic acceptance policies reduce
the attacker’s time (and cost) for the successful double spend of a particular transaction as compared to
static policies. The simulation is written in Matlab and uses the finite-sum expression for the probability of
double spend derived in Section 3. All code is open-sourced and can be found at [3].

Comparable static and dynamic policies are shown in Fig. 5. The static policy, shown in dashed red, accepts
a transaction after 6 confirmations, regardless of the time since the transaction was broadcast. This results
in an E[pDouble Spend] of 0.8754%. The dynamic policy, shown in solid blue, ensures pDouble Spend < 1.337%
at the time of transaction acceptance, which also results in E[pDouble Spend] of 0.8754%. So these policies are
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Fig. 4. This plot shows the double spend probability as a function of time from transaction broadcast to acceptance
for the dynamic policy in Fig. 3. Note that the double spend probability at transaction acceptance may be significantly
lower than 1.337%. For example, a transaction that is accepted just a few minutes after broadcast has a double spend
probability of roughly 0.5%. Comparing to Fig. 1, we see that the dynamic policy bounds the double spend probability
at the time of transaction acceptance unlike the static policy.

comparable in the sense they result in the same expected probability of double spend when α = 0.2. Note
the dynamic policy requires fewer confirmations than the static policy up to 70 minutes since transaction
broadcast but requires more confirmations after 100 minutes since transaction broadcast.

Fig. 6 shows the distribution of time taken for transaction acceptance for the static and dynamic policies
shown in Fig. 5. Note that up to 70 minutes after transaction broadcast, the probability of having accepted
a particular transaction is larger with the dynamic policy because fewer confirmations are required. For
example, 50 minutes after transaction broadcast, with probability 55% the transaction has already been
accepted by the dynamic policy, whereas the transaction has only been accepted with probability 20% under
the static policy.

The probability of double spend at the time of transaction acceptance depends on the time from transaction
broadcast to acceptance which in turn depends on the timing of block arrivals. Since the time between block
arrivals are stochastic, the probability of double spend has a distribution. Fig. 7 shows this distribution of
pDouble Spend at the time of transaction acceptance for the static and dynamic policies shown in Fig. 5. The
plot essentially combines the distribution of time for transaction acceptance in Fig. 6 with the double spend
probability at the time of transaction acceptance in Figs. 1 and 4. The pDouble Spend under the dynamic policy
never exceeds 1.337%. This implies P (pDouble Spend < X) = 1 for all X > 1.337% and hence the solid blue
CDF curve is 1 for 1.337% and beyond. Compare this to the static policy where the pDouble Spend at the time of
transaction acceptance is less than 1.337% with probability 0.8. This implies P (pDouble Spend < 1.337%) = 0.8
and hence the dashed red CDF curve is 0.8 at 1.337%. Also note how the dynamic policy protects against the
downside of a large pDouble Spend; with probability 0.95, the dynamic policy results in pDouble Spend < 1.33%
whereas the static policy only results in pDouble Spend < 0.04.

Fig. 8 shows the expected amount of time to accept a transaction as final versus the 99th percentile of
the double spend probability at transaction acceptance, for a spectrum of dynamic and static policies.
We consider the 99th percentile of the double spend probability (opposed to the expected double spend
probability) in order to capture the ‘near worst-case’ security effects of the policies. The red dots represent
the static policies (e.g. wait for 1, 2, 3, etc. confirmations), and the accompanying red dashed plot shows the
lowest expected acceptance time using static policies. Note that for a particular value of the 99th percentile
of the double spend probability, the expected amount of time waited using the fixed policy is generally larger
than the dynamic policy. Roughly speaking, this means for the same protection against the near worst-case,
the dynamic policy requires waiting for less time for transaction acceptance.
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Fig. 5. The plot shows a comparable static and dynamic policy. The static policy, shown in dashed red, accepts
a transaction after 6 confirmations, regardless of the time since the transaction was broadcast. This results in an
E[pDouble Spend] of 0.8754%. The dynamic policy, shown in solid blue, ensures pDouble Spend < 1.337% at the time
of transaction acceptance, which also results in E[pDouble Spend] of 0.8754%. Note the dynamic policy requires fewer
confirmations than the static policy up to 70 minutes since transaction broadcast but requires more confirmations
after 100 minutes since transaction broadcast.

0 50 100 150 200 250 300 350 400 450 500

time since transaction broadcast (minutes)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f 
ti

m
e 

to
 a

cc
ep

ta
n
ce

CDF of Time To Transaction Acceptance For A Static and Dynamic Policy

Assuming  = 0.2

Dynamic Policy -  p
Double Spend

 < 1.337%

Static Policy - 6 confirmations

Policies with E[  p
Double Spend

]  = 0.8754%

Fig. 6. This plot shows the distribution of time taken for transaction acceptance for the static and dynamic policies
shown in Fig. 5. Note that up to 70 minutes after transaction broadcast, the probability of having accepted a particular
transaction is larger with the dynamic policy because fewer confirmations are required. For example, 50 minutes after
transaction broadcast, with probability 55% the transaction has already been accepted by the dynamic policy, whereas
the transaction has only been accepted with probability 20% under the static policy.
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Fig. 7. The plot shows the distribution of pDouble Spend at the time of transaction acceptance for the static and
dynamic policies shown in Fig. 5. The plot essentially combines the distribution of time for transaction acceptance
in Fig. 6 with the double spend probability at the time of transaction acceptance in Figs. 1 and 4. The pDouble Spend

under the dynamic policy never exceeds 1.337%. This implies P (pDouble Spend < X) = 1 for all X > 1.337% and hence
the solid blue CDF curve is 1 for 1.337% and beyond. Compare this to the static policy where the pDouble Spend at the
time of transaction acceptance is less than 1.337% with probability 0.8. This implies P (pDouble Spend < 1.337%) = 0.8
and hence the dashed red CDF curve is 0.8 at 1.337%. Also note how the dynamic policy protects against the downside
of a large pDouble Spend; with probability 0.95, the dynamic policy results in pDouble Spend < 1.33% whereas the static
policy only results in pDouble Spend < 0.04
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Fig. 8. The plot shows the expected amount of time to accept a transaction as final versus the 99th percentile of
the double spend probability at transaction acceptance, for a spectrum of dynamic and static policies. The red dots
represent the static policies (e.g. wait for 1, 2, 3, etc. confirmations), and the accompanying red dashed plot shows
the lowest expected acceptance time using static policies. Note that for a particular value of the 99th percentile of
the double spend probability, the expected amount of time waited using the fixed policy is generally larger than the
dynamic policy.



Fig. 9 shows the expected probability that a particular transaction has been double spent versus the time
elapsed since the transaction broadcast for the static and dynamic policies shown in Fig. 5. We note the
dynamic policy approaches E[pDouble Spend] more quickly. So roughly speaking, this dynamic acceptance
policy reduces the attacker’s burden (in time and cost) to double spend against a particular transaction
as compared to the static policy since the transaction will be double spent more quickly with the dynamic
policy. This is essentially because if the transaction is accepted shortly after transaction broadcast, then the
attacker has to overcome fewer blocks with the dynamic policy as compared to the static policy.
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Fig. 9. This plot shows the expected probability that a particular transaction has been double spent versus the time
elapsed since the transaction broadcast for the static and dynamic policies shown in Fig. 5. We note the dynamic
policy approaches E[pDouble Spend] more quickly. So roughly speaking, this dynamic acceptance policy reduces the
attacker’s burden (in time and cost) to double spend against a particular transaction as compared to the static policy
since the transaction will be double spent more quickly with the dynamic policy. This is essentially because if the
transaction is accepted shortly after transaction broadcast, then the attacker has to overcome fewer blocks with the
dynamic policy as compared to the static policy.

The the 99th percentile of the probability of double spend at the time of transaction acceptance versus α

is shown in Fig. 10 for the static and dynamic policies in Fig. 5. Recall, α is the fraction of total network
hashrate belonging to the attacker. Roughly speaking, this plot shows for a particular transaction the dynamic
policy reduces the near worst-case risk (99th percentile of the double spend probability) over a wide range
of attacker hashpower.

5 Other Families of Dynamic Policies and Future Work

In this paper we analyzed a transaction acceptance policy that ensured the double spend probability is below
a certain threshold at the time of transaction acceptance. In the future, the same analysis can be done under
a different network and threat models that may have different security/performance tradeoffs. For example,
acceptance policies can be analyzed assuming the presence of block delays as in [16]. Alternatively, consider
the case when mining incentive comes mostly from transaction fees instead of a fixed block reward. This
assumption changes the distribution of time between blocks and so the double spending probability and
analysis of transaction policies would change [5].

By relaxing the constraint on the maximum probability of double spend, it is possible to construct other
families of dynamic transaction acceptance policies. For example, consider the policy that minimizes the
expected waiting time for transaction acceptance over all policies with a particular expected probability of
double spend. Alternatively, consider the policy that maximizes the amount of time (and hence cost) taken
for the attacker to double spend over all policies with a particular expected probability of double spend.
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Fig. 10. This plot shows the the 99th percentile of the probability of double spend at the time of transaction
acceptance versus α for the static and dynamic policies shown in Fig. 5. Recall, α is the fraction of total network
hashrate belonging to the attacker. Roughly speaking, this plot shows for a particular transaction the dynamic policy
reduces the near worst-case risk (99th percentile of the double spend probability) over a wide range of attacker
hashpower.

These families of acceptance policies may have significantly different performance and security trade-offs
compared to the policies considered here.

In addition to determining the probability of double spending a particular transaction, it is possible for other
future work to consider the effects acceptance policies on the probability of successfully double spending any

transaction over a window of time (not just a single transaction).
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