
Ubiquitous Weak-key Classes of
BRW-polynomial Function

Kaiyan Zheng1,2,3, Peng Wang1,2,3?, and Dingfeng Ye1,2,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

2 Data Assurance and Communication Security Research Center, Chinese Academy
of Sciences, Beijing 100093, China

3 School of Cyber Security, University of Chinese Academic Science, Beijing 100049,
China

zhengkaiyan@iie.ac.cn,{wp,ydf}@is.ac.cn

Abstract. BRW-polynomial function is suggested as a preferred alter-
native of polynomial function, owing to its high efficiency and seemingly
non-existent weak keys. In this paper we investigate the weak-key is-
sue of BRW-polynomial function as well as BRW-instantiated crypto-
graphic schemes. Though, in BRW-polynomial evaluation, the relation-
ship between coefficients and input blocks is indistinct, we give out a
recursive algorithm to compute another (2v+1 − 1)-block message, for
any given (2v+1 − 1)-block message, such that their output-differential
through BRW-polynomial evaluation, equals any given s-degree polyno-
mial, where v ≥ blog2(s + 1)c. With such algorithm, we illustrate that
any non-empty key subset is a weak-key class in BRW-polynomial func-
tion. Moreover any key subset of BRW-polynomial function, consisting
of at least 2 keys, is a weak-key class in BRW-instantiated cryptographic
schemes like the Wegman-Carter scheme, the UHF-then-PRF scheme,
DCT, etc. Especially in the AE scheme DCT, its confidentiality, as well as
its integrity, collapses totally, when using weak keys of BRW-polynomial
function, which are ubiquitous.

Keywords. Weak key, polynomial evaluation hash, BRW-polynomial,
DCT, message authentication code, authenticated encryption.

1 Introduction

Universal hash function. Universal hash functions (short as UHFs) were
firstly introduced by Carter and Wegman [8,37], and have become common
components in numerous cryptographic constructions, like message authentica-
tion code (short as MAC) schemes [13,11,13,7], tweakable enciphering schemes
[19,35,10] and authenticated encryption (short as AE) schemes [21,3], etc. A UHF
is a keyed function. Compared with other primitives like pseudorandom permu-
tations (short as PRPs) and pseudorandom functions (short as PRFs), UHFs

? This is corresponding author.

2

have no strength of pseudorandomness. The only requirement is some simple
combinatorial properties, which makes UHFs high-performance but brittle and
vulnerable to weak-key analyses [14,27,25,39,1] and related-key attacks [34,36].

Weak-key analysis. Handschuh and Preneel [14] initiated the study of the
weak-key issue of UHFs, as they pointed out that “in symmetric cryptology,
a class of keys is called a weak-key class if for the members of that class the
algorithm behaves in an unexpected way and if it is easy to detect whether a
particular unknown key belongs to this class. Moreover, if a weak-key class is
of size C, one requires that identifying that a key belongs to this class requires
testing fewer than C keys by exhaustive search and fewer than C verification
queries.” Following such definition, they investigated several weak-key classes of
UHFs in MACs. Later on the weak-key analyses of UHFs mainly focused on a
specific UHF, i.e. polynomial function.

Polynomial function. Polynomial function, which evaluates a polynomial in
the key with the data blocks as coefficients, is one of the most widely used
UHFs [5,20,17,35,10,4,15]. However the weak-key issue of polynomial function
in cryptographic schemes such as MACs was extensively studied and was found
unavoidable, especially in the example of GCM/GMAC which uses polynomial
function in its authentication component. Saarrinen [27] found that the keys
of polynomial function satisfying Kt = K formed a weak-key class in GCM.
Procter and Cid [25] found that any subset W is a weak-key class in GCM and
GMAC, if |W| ≥ 3 or |W| ≥ 2 and 0 ∈ W, exploiting the so-called forgery
polynomial q(K) = ΣH∈W(K −H). Zhu, Tan and Gong [39] pointed out that
any subset W consisting of at least 2 keys is a weak-key class. Sun, Wang and
Zhang [34] applied the above results to tweakable enciphering schemes based
on polynomial function. Abdelraheem, Beelen, Bogdanov and Tischhauser [1]
further proposed twisted polynomials from Ore rings to construct sparse forgery
polynomials, which greatly facilitate key recovery attacks.

The weak-key issue casts shadow on the further application of polynomial
function. For example, during the CAESAR competition, due to the weak-key
issue of polynomial function in the AE scheme POET [2], the designers [3] de-
cided to abandon the polynomial-function-based POET and retain the four-
round-AES-based version.

BRW-polynomial function. Bernstein [6] proposed a variant of polynomial
function, after the work of Rabin and Winograd [26], which is named as BRW
(short for Bernstein-Rabin-Winograd) in [28]. BRW-polynomial function per-
forms more highly-efficient than polynomial function, as it decreases nearly a half
of multiplications in polynomial evaluation. BRW-polynomial function is widely-
used in lots of cryptographic schemes, including authentication schemes [6,30],
tweakable enciphering schemes [28,29,9], authenticated encryption schemes [12],
etc.

Furthermore, unlike the case of polynomial function, the weak-key issue of
BRW-polynomial function seems avoidable. By now, no weak-key problem of
BRW-polynomial function has been found [14,12], which makes BRW-polynomial
function an ideal UHF candidate in cryptographic schemes to alleviate the threat

3

of weak keys. For example, the designers of DCT, a deterministic authenticated
encryption scheme [12], suggested using BRW-polynomial function to instantiate
its UHF to avoid the weak-key issue.

Our contributions. This work investigates the weak-key problem of BRW-
polynomial function and BRW-instantiated schemes. Unlike polynomial func-
tion, in BRW-polynomial evaluation, the relationship between coefficients and
input blocks is indistinct owing to its recursive definition. Nevertheless we give
out a recursive algorithm -SumBRWpoly- which, for any given (2v+1 − 1)-block
message M and any given s-degree polynomial q(K) = Q0K

s+Q1K
s−1+· · ·+Qs

that v ≥ blog2(s+1)c, computes another (2v+1−1)-block message M ′ such that
BRWK(M ′) = BRWK(M) + q(K).

With SumBRWpoly, we illustrate that any s-key subsetW = {H0, · · · , Hs−1}
is a weak-key class of BRW-polynomial function. Moreover similar to the case
of polynomial function, any W, as long as s ≥ 2, is also a weak-key class in
BRW-instantiated schemes, even when padding rules are taken into considera-
tion, which negates the suggestion of substituting BRW-polynomial function for
polynomial function to mitigate the weak-key threat.

For example, when instantiating with BRW-polynomial, both the Wegman-
Carter scheme and the UHF-then-PRF scheme suffer the forgery attack if the
UHF key falls into W, and it is easy to detect if the unknown UHF key belongs
to W. Furthermore, the BRW-instantiated DCT, a deterministic AE scheme,
suffers both the distinguishing attack and the forgery attack once its UHF key is
in W, implying that the confidentiality, as well as the integrity, of DCT totally
collapses when using weak keys of BRW-polynomial, which are ubiquitous.

The remaining of the paper is structured as following: after reviewing the
weak-key problem of polynomial-based MACs in Section 2, SumBRWpoly is
illustrated in Section 3, together with ubiquitous weak keys of BRW-polynomial
and BRW-instantiated MACs. Section 4 discuss weak-key classes of DCT, and
Section 5 makes a simple conclusion of this work.

2 Preliminaries

2.1 Notations

For a finite set S, let x
$←− S denote selecting an element x uniformly at random

from the set S and #S denote the number of members in S. Let |s| represent
the bit length of s. For b ∈ {0, 1}, bm denotes m bits of b. Let ‖ denote the
concatenation of two bit-strings, and ⇐⇒ means if and only if. For a function
H : K × D → R where K is a key space, we often write H(K,M) as HK(M),
where (K,M) ∈ K × D. Without loss of generality, most of operations, such
as additions, multiplications, in the remaining are defined over the finite filed
GF(2n). M = M0 · · ·Mm−1 is a m-block message where Mi ∈ GF(2n) for i =
0, · · · ,m− 1.

4

2.2 Universal hash functions

Two commonly-used UHFs are almost-universal (AU) hash function and almost-
XOR-universal (AXU) hash function. Both UHFs satisfy some simple combina-
torial properties for any two different inputs.

For AU hash function, the output-collision probability of any two different
inputs is negligible.

Definition 1 (AU [32]). H : K×D → R is an ε-almost-universal (ε-AU) hash
function, if for any M,M ′ ∈ D, M 6= M ′,

Pr[K
$←−K : HK(M) = HK(M ′)]=

#{K∈K :HK(M)=HK(M ′)}
#K

≤ ε.

When ε is negligible we say that H is AU. Generally, ε = max
M 6=M ′

Pr[K
$←− K :

HK(M) = HK(M ′)].

For AXU hash function, the output-differential distribution of any two dif-
ferent inputs is almost uniform.

Definition 2 (AXU [33]). Let (R,+) be an abelian group where the addition
is exclusive-OR (XOR). H : K ×D → R is an ε-almost-xor-universal (ε-AXU),
if for any M,M ′ ∈ D, M 6= M ′, and any C ∈ R,

Pr[K
$←−K :HK(M)+HK(M ′)=C]=

#{K∈K :HK(M)+HK(M ′)=C}
#K

≤ε.

When ε is negligible we say that H is AXU. Generally, ε = max
M 6=M ′,C

Pr[K
$←− K :

HK(M) +HK(M ′) = C].

Clearly, if H is ε-AXU, it is also ε-AU, for ε-AU is a special case of ε-AXU
when C = 0.

2.3 UHF-based MACs

One popular design of UHF-based MACs is to firstly compress the variable-
length input message into a fixed-length digest by a UHF and secondly encrypt
it into a tag. For example, the Wegman-Carter scheme [37,18,31] masks the digest
with the keystream of a block-cipher, while the UHF-then-PRF scheme [31] maps
the digest into a tag by a PRF.

More specifically, let H : K × D → R be a UHF and E : K′ ×R → R be a
secure block-cipher. Two common UHF-based MACs are as following:
– The Wegman-Carter scheme WC : (K ×K′)×N ×D → R, for M ∈ D, N ∈
N and K

$←− K,K ′ $←− K′,

WCK,K′(N,M) = EK′(N) +HK(M).

5

– The UHF-Then-PRF scheme UTP : (K ×K′) × D → R, for M ∈ D and

K
$←− K,K ′ $←− K′,

UTPK,K′(M) = EK′(HK(M)).

In the Wegman-Carter scheme, N denotes a non-repeated Nonce which is re-
quired fresh in each computation.

The Security of MACs. Without loss of generality, assuming that the key

is uniform-randomly chosen, i.e. K
$←− K,K ′ $←− K′, the MAC scheme O often

consists of two algorithms: (let O ∈ {WC,UTP})
– Tag-generation T O: When O = WC, on the input (N,M) where N is non-

repeated nonce, calculate T = WCK,K′(N,M); otherwise on the input M ,
calculate T = UTPK,K′(M). Return T .

– Verification VO: When O = WC, on the input (N,M, T), compute T ′ =
WCK,K′(N,M); otherwise on the input (M,T) compute T ′ = UTPK,K′(M).
If T ′ = T , return 1; else return 0.
During the communication between two parties who have shared a secret

key (K,K ′), the sender generates tags of his messages by the tag-generation
algorithm T O and transmits the message-tag pairs, while the receiver validates
the received message-tag pairs when the verification algorithm VO returns 1.

The security goal of MACs is to resist the forgery attack. More specifically,
any adversary who has access to both the tag-generation oracle T O and the
verification oracle VO, is said to have made a successful forgery, once it outputs
a new message-tag pair, i.e. a triple (N,M, T) when O = WC or a duplet (M,T)
when O = UTP, which is not produced by T O but is validated by VO.

It has been proved that the Wegman-Carter scheme is secure if H is an AXU
and E is a PRP [18], and that the UHF-then-PRF scheme is secure if H is an
AU and E is a PRP [31].

2.4 Weak keys of polynomial function and polynomial-based MACs

Polynomial function. Polynomial function is defined as

PolyK(M) = M0K
m−1 +M1K

m−2 + · · ·+Mm−1

where K ∈ GF(2n), M = M0M1 · · ·Mm−1, Mi ∈ GF(2n) for i = 0, 1, · · · ,m− 1.
Obviously PolyK(M) determines a polynomial in GF(2n)[K].

It is easy to deduce that PolyK(·) is a (m−1)/2n-AU, and that K ·PolyK(·)
is a m/2n-AXU. Because for any distinct M,M ′ and any C ∈ GF(2n), the
equation PolyK(M ′) = PolyK(M) has at most (m − 1) roots in GF(2n), while
the equation K · PolyK(M) +K · PolyK(M ′) = C has at most m roots.

Weak-key classes of Poly and Poly-based MACs. Unfortunately, the weak-
key issue of polynomial function is unavoidable. As shown in [25,39,34], any
subset W, as long as |W| ≥ 2, is a weak-key class of polynomial function in
GCM and GMAC, both Poly-based schemes. We just give it a brief explanation
in the following, and more details refer to [14,25,39,34].

6

For any key subset W = {H0, H1, · · · , Hs−1} that s ≥ 2, define

q(K) = (K −H0)(K −H1) · · · (K −Hs−1) = Q0K
s +Q1K

s−1 + · · ·+Qs,

where Q0 = 1. It is obvious that

K ∈ W ⇐⇒ q(K) = 0. (1)

In polynomial function, each coefficient corresponds exactly each input block,
and it is easy to find message pairs whose output-differential after polynomial
evaluating equals q(K). Specifically, for arbitrary m-block M that m > s, com-
pute

PolyK(M) + q(K) = M ′0K
m−1 +M ′1K

m−2 + · · ·+M ′m−1,

K · PolyK(M) + q(K) = K ·
(
M ′′0K

m−1 +M ′′1K
m−2 + · · ·+M ′′m−1

)
+Qs.

Let M ′ = M ′0M
′
1 · · ·M ′m−1 and M ′′ = M ′′0M

′′
1 · · ·M ′′m−1, and by (1),

K ∈ W ⇐⇒ PolyK(M) = PolyK(M ′), (2)

K ∈ W ⇐⇒ K · PolyK(M) = K · PolyK(M ′′) +Qs. (3)

By (2) (3), it is trivial that Pr
[
K

$←−W : PolyK(M) = PolyK(M ′)
]

= 1 and

Pr
[
K

$←−W : K · PolyK(M) = K · PolyK(M ′′) +Qs

]
= 1, which implies that

the AU property of PolyK(·), as well as the AXU property of K · PolyK(·),
totally disappears in the key subset W.

Furthermore, once the key of Poly falls into W, the security of Poly-based
schemes also collapses, and it is easy to detect whether the unknown key of
Poly belongs to W. Thus W (|W| ≥ 2) is a weak-key class of Poly in Poly-
based schemes. Take two common Poly-based MACs, i.e. UTP and WC, as
examples, that is, UTPK,K′(M) = EK′(PolyK(M)), and WCK,K′(N,M) =
EK′(N) +K ·PolyK(M). Since EK′ is a PRP, according to (2) (3), it is easy to
deduce that

K ∈ W ⇐⇒ UTPK,K′(M) = UTPK,K′(M ′), (4)

K ∈ W ⇐⇒ WCK,K′(N,M) = WCK,K′(N,M ′′) +Qs, (5)

which means that 1) when K ∈ W, neither UTP nor WC can resist the forgery
attack, and 2) by verifying if the UTP tags between M and M ′ or the WC tags
between (N,M) and (N,M ′′) are equal, it is able to detect if K belongs to W.

From above, it is crucial that, for arbitrary key subset W, it is easy to find
message pairs whose output-differential after polynomial evaluating equals q(K),
the so-called forgery polynomial defined by W. To deal with variable-length
inputs in real applications, inputs to polynomial function are padded firstly.
However even when padding rules are taken into consideration, such message
pairs are easy to find, and examples include GCM and GMAC [27,25,39,1].

7

3 Weak keys of BRW-polynomial function and
BRW-instantiated MACs

3.1 The description of BRW-polynomial function

BRW-polynomial function [6,23] is defined recursively, just as follows:
– BRWK(ε) = 0n;
– BRWK(M0) = M0;
– BRWK(M0M1) = M0K +M1;
– BRWK(M0M1M2) = (M0 +K)(M1 +K2) +M2;
– BRWK(M0· · ·Mm−1)=BRWK(M0· · ·Mt−2)(Kt+Mt−1)+BRWK(Mt· · ·Mm−1)

for t ∈ {4, 8, 16, 32, · · · } and t ≤ m < 2t (i.e. t = 2blog2mc);
where ε is an empty string, K ∈ GF(2n),Mi ∈ GF(2n) for i = 0, · · · ,m − 1.
When m ≥ 3, let t = 2blog2mc, BRWK(·) is a monic polynomial with the degree
of (2t − 1). And it is easy to conclude that BRWK(·) is (2t − 1)/2n-AU and
K ·BRWK(·) is 2t/2n-AXU [28].

Unlike the case of polynomial function, in BRW-polynomial evaluation, each
input block may affect multiple coefficients in the meantime, and its difficult to
track the coefficients after modifying input blocks. However, even though the
relationship between input blocks and coefficients is not so obvious as that in
polynomial function, there are efficient methods to find message pairs whose
output-differential after BRW-polynomial evaluating equals some given polyno-
mial, and BRW-polynomial function suffers the same weak-key issue as polyno-
mial function.

In the following, we firstly give out a recursive algorithm, SumBRWpoly
in Algorithm 1, which finds another new (2v+1 − 1)-block message for any
given (2v+1 − 1)-block message such that their output-differential after BRW-
polynomial evaluating equals any given s-degree polynomial, where v ≥ blog2(s+
1)c. Secondly, we study the weak-key problem of BRW-polynomial function and
BRW-instantiated MACs, i.e. BRW -based UTP and WC, with the recursive
algorithm.

3.2 The description of SumBRWpoly.

Given any s-degree polynomial q(K) = Q0K
s + Q1K

s−1 + · · · + Qs and any
m-block message M that m = 2v+1 − 1 and v ≥ blog2(s + 1)c, SumBRWpoly,
exploiting the observations about the BRW-polynomial evaluation of the specific
(2v+1 − 1)-block inputs, computes another new m-block message M ′ such that
BRWK(M ′) is exactly the sum of BRWK(M) and q(K).

In this section, we first introduce the observations about the BRW-polynomial
evaluation of (2v+1−1)-block inputs, and then explain how SumBRWpoly works,
where v ≥ 2.

BRW-polynomial evaluation of (2v+1 − 1)-block inputs. When v ≥ 2, let
m = 2v+1 − 1 and t = 2blog2(m)c = 2v. To an m-block message M ,

BRWK(M0· · ·Mt−2Mt−1Mt· · ·M2t−2) =

BRWK(M0· · ·Mt−2) ·Kt +Mt−1 ·BRWK(M0· · ·Mt−2) +BRWK(Mt· · ·M2t−2),

8

and the observations exploited in SumBRWpoly are as following:
(1) BRWK(M) is a monic polynomial with the degree of (2t − 1), i.e. m or

2v+1 − 1;
(2) Both BRWK(M0· · ·Mt−2) and BRWK(Mt· · ·M2t−2) are monic polynomials

with the degree of (t − 1), i.e. (2v − 1), and thus the coefficient of Kt−1 is
(Mt−1 + 1);

(3) The last (t− 1) blocks of M , i.e. Mt · · ·M2t−2, only affect the terms with a
degree lower than (t− 1);

(4) Only the first (t− 1) blocks of M , i.e. M0 · · ·Mt−2, affect the terms with a
degree greater than t.

(5) The last block of M , i.e. M2t−2, only affects the constant term, and the
constant term in BRWK(M0· · ·Mt−2) (if any) turns out to be the coefficient
of Kt.

Note that when v = 0, 1 and m = 1, 3 respectively, the evaluation of BRWK(M)
is simple.

How SumBRWpoly works. The description of SumBRWpoly is shown in Algo-
rithm 1. It is required that m > s. Otherwise there is no such m-block message
pair M,M ′ satisfying BRWK(M ′) = BRWK(M)+q(K) since both BRWK(M ′)
and BRWK(M) are monic polynomials with the degree of m. By 2v+1 − 1 > s,
let v ≥ blog2(s + 1)c for simplicity. Besides, m is often expected to be as small
as possible to make the attacks efficient. For any s, the shortest messages dealt
by SumBRWpoly is mmin = 2blog2(s+1)c+1 − 1, i.e. s < mmin ≤ (2s+ 1).

When s = 0. Note that when s = 0, W = ∅, which is actually insignificant, and
this case is given to complete the recursive algorithm. And v = 0 is included
in this case. Let q(K) = Q0 that Q0 ∈ GF(2n). To be simple, let M ′m−1 =
Mm−1 + Q0, as the last block of the (2v+1 − 1)-block message only affect the
constant term in BRW-polynomial evaluation for v ≥ 0.

When v = 1 and s = 1, 2. In this case, the specific message that SumBRWpoly
processes is of 3 blocks, i.e m = 3. According to{

BRWK(M ′0M
′
1M
′
2) = K3 +M ′0K

2 +M ′1K +M ′0M
′
1 +M ′2

BRWK(M0M1M2) = K3 +M0K
2 +M1K +M0M1 +M2

,

it is easy to define M ′ satisfying BRWK(M ′) = BRWK(M) + q(K) for s = 1, 2.
One simple way to define M ′ is given in Algorithm 1.

When v ≥ 2. In this case, SumBRWpoly runs in a recursive way by exploit-
ing the observations about the BRW-polynomial evaluation of (2v+1 − 1)-block
inputs. Let t = 2v (see Algorithm 1).

If s < t − 1, because the last (t − 1) input blocks only affect the terms
with the degree lower than (t− 1) in BRW-polynomial evaluation, to be simple,
SumBRWpoly(q(K),M) keeps the first t blocks of M ′ the same as that of M ,
and computes the remaining (t − 1) blocks of M ′ by making a recursive call of
SumBRWpoly(q(K),Mt · · ·M2t−2). That is,

SumBRWpoly (q(K),M) = M0 · · ·Mt−1‖SumBRWpoly (q(K),Mt· · ·M2t−2) .

9

Algorithm 1: The description of SumBRWpoly

Input: q(K) = Q0K
s + Q1K

s−1 +· · ·+ Qs, M = M0· · ·Mm−1, where
m = 2v+1 − 1 and v ≥ blog2(s + 1)c.

Output: M ′ = M ′0· · ·M ′m−1.
if s = 0 then

M ′0· · ·M ′m−2 = M0· · ·Mm−2;
M ′m−1 = Mm−1 + Qs;

else
v = blog2 mc;
t = 2v;
if v = 1 then

if s = 1 then
M ′0 = M0;
M ′1 = M1 + Q0;
M ′2 = M2 + Q1 + M0Q0;

if s = 2 then
M ′0 = M0 + Q0;
M ′1 = M1 + Q1;
M ′2 = M2 + Q2 + M0Q1 + M1Q0 + Q0Q1;

else
if s < t− 1 then

M ′0· · ·M ′t−1 = M0· · ·Mt−1;
M ′t · · ·M ′2t−2 = SumBRWpoly(q(K),Mt· · ·M2t−2);

if s ≥ t− 1 then
if s ≥ t then

q1(K) =
∑s−t
i=0 Qs−t−iK

i;
M ′0· · ·M ′t−2 = SumBRWpoly (q1(K),M0· · ·Mt−2);

else
q1(K) = ε;
M ′0· · ·M ′t−2 = M0· · ·Mt−2;

M ′t−1 = Mt−1 + Qs−t+1;
q2(K) =

∑t−2
i=0 Qs−iK

i + Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) + Kt−1

)
+

(Mt−1 + Qs−t+1) · q1(K);
M ′t · · ·M ′2t−2 = SumBRWpoly (q2(K),Mt· · ·M2t−2);

return M ′

10

Note that in this specific case s < t−1 and v ≥ blog2(s+1)c, thus v−1 ≥ blog2(s+
1)c which means that the recursive call of SumBRWpoly(q(K),Mt · · ·M2t−2) is
reasonable.

However when s ≥ t− 1, the problem is a bit complex. Rewrite the terms of
q(K) into three parts as following:

q(K) =
(
Q0K

s + · · ·+Qs−tK
t
)

+Qs−t+1K
t−1 +

(
Qs−t+2K

t−2 + · · ·+Qs
)

= q1(K) ·Kt +Qs−t+1K
t−1 +

(
Qs−t+2K

t−2 + · · ·+Qs
)
, (6)

where when s ≥ t, q1(K) = Q0K
s−t+Q1K

s−t−1+· · ·+Qs−t, and when s = t−1,
q1(K) = ε.

When s ≥ t, because only the first (t−1) input blocks affect the terms whose
degree is greater than t in BRW-polynomial evaluation, SumBRWpoly(q(K),M)
first calls SumBRWpoly(q1(K),M0· · ·Mt−2) to computes M ′0· · ·M ′t−2. The re-

cursive call is reasonable, since M0· · ·Mt−2 is a (2(v−1)+1 − 1)-block input and
the relationship between (v − 1) and the degree of q1(K), i.e. (s − t), satis-
fies the requirement of SumBRWpoly. Due to the property of floor number,
(s+ 1) ≤ 22blog2(s+1)c−1 + 2blog2(s+1)c−1 for s ≥ 1, and

s− t+ 1 = s− 2v + 1 ≤ s+ 1− 2blog2(s+1)c ≤ 2blog2(s+1)c−1.

Since v−1 ≥ blog2(s+1)c−1, it is easy to deduce that v−1 ≥ blog2(s− t+1)c.
Otherwise when s = t− 1, since q1(K) = ε, let M ′0· · ·M ′t−2 = M0· · ·Mt−2.

After that SumBRWpoly figures out how q1(K) affects the remaining lower-
degree terms. Moreover let M ′t−1 = Mt−1 +Qs−t+1, and then

BRWK(M ′0· · ·M ′t−2) ·
(
Kt +M ′t−1

)
(7)

= (BRWK(M0· · ·Mt−2) + q1(K)) ·
(
Kt +Mt−1 +Qs−t+1

)
= BRWK(M0· · ·Mt−2) ·

(
Kt +Mt−1

)
+ q1(K) ·Kt

+ (Mt−1 +Qs−t+1) · q1(K) +Qs−t+1 ·BRWK(M0· · ·Mt−2)

= BRWK(M0· · ·Mt−2) ·
(
Kt +Mt−1

)
+ q1(K) ·Kt +Qs−t+1K

t−1

+ (Mt−1 +Qs−t+1) · q1(K) +Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) +Kt−1) .

To deal with the lower-degree terms, by (6) (7), let

q2(K) = Qs−t+2K
t−2 + · · ·+Qs

+ (Mt−1 +Qs−t+1) · q1(K) +Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) +Kt−1) ,

and the degree of q2(K) is either smaller than (t− 1) or equal to that of q1(K),
and thus satisfies the requirement to call SumBRWpoly(q2(K),Mt· · ·M2t−2).

That is, the remaining blocks M ′t · · ·M ′2t−2 can be computed by making an-
other recursive call of SumBRWpoly(q2(K),Mt· · ·M2t−2), and then

BRWK(M ′t · · ·M ′2t−2) = BRWK(Mt· · ·M2t−2) + q2(K). (8)

11

Therefore when s ≥ t− 1, by (7) (8),

BRWK(M ′0· · ·M ′t−2M ′t−1M ′t · · ·M ′2t−2)

= BRWK(M ′0· · ·M ′t−2) ·
(
Kt +M ′t−1

)
+BRWK(M ′t · · ·M ′2t−2)

= BRWK(M0· · ·M t−2) ·
(
Kt +Mt−1

)
+BRWK(Mt· · ·M2t−2)

+q1(K) ·Kt +Qs−t+1K
t−1 + q2(K)

+ (Mt−1 +Qs−t+1) · q1(K) +Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) +Kt−1)

= BRWK(M0· · ·Mt−2Mt−1Mt· · ·M2t−2) + q(K).

3.3 Weak keys of BRW-polynomial in MACs

Weak keys in BRW-polynomial function are found ubiquitous, which also threats
BRW-based schemes. In this section, we explain how a key subset of BRW-
polynomial function turns out to be a weak-key class, and then briefly discuss
the weak-key issue of BRW-instantiated MACs.

For any key subset W = {H0, H1, · · · , Hs−1} that s ≥ 1, define

q(K) = (K −H0)(K −H1) · · · (K −Hs−1) = Q0K
s +Q1K

s−1 + · · ·+Qs

where Q0 = 1, similarly. Moreover let q(K) = Q0K
s−1 +Q1K

s−2 + · · ·+Qs−1
and then q(K) = K · q(K) +Qs.

Choose arbitrary m-block message M where m = 2v+1−1 and v = blog2(s+
1)c, i.e. s < m ≤ (2s+ 1). Compute M ′ and M ′′ by calling SumBRWpoly, that
is M ′ = SumBRWpoly (q(K),M) and M ′′ = SumBRWpoly (q(K),M). By

BRWK(M ′) = BRWK(M) + q(K),

K ·BRWK(M ′′) = K ·BRWK(M) +K · q(K),

it is obvious that

K ∈ W ⇐⇒ BRWK(M ′) = BRWK(M), (9)

K ∈ W ⇐⇒ K ·BRWK(M ′′) = K ·BRWK(M) +Qs. (10)

Thus the AU property ofBRWK(·), as well as the AXU property ofK·BRWK(·),
totally disappears in W, as Pr

[
K

$←−W : BRWK(M) = BRWK(M ′)
]

= 1 and

Pr
[
K

$←−W : K ·BRWK(M) = K ·BRWK(M ′′) +Qs

]
= 1.

Besides, once the key of BRW falls into W, the security of the BRW -based
scheme also collapses, and it is easy to detect whether the unknown key of BRW
belongs to W. So W is a weak-key class of BRW in the BRW -based schemes.

Take two BRW-instantiated MACs, i.e. UTP and WC, as examples, any W
is a weak-key class, as long as |W| ≥ 2, because that:
– UTPK,K′(M) = EK′(BRWK(M))

1) Forgery attack. Make a single tag-generation query of M and get its tag
T . Once K ∈ W, (M ′, T) is a successful forgery, since EK′ is a PRP and
then T = EK′ (BRWK(M)) = EK′ (BRWK(M ′)) according to (9).

12

2) Detection. Simply make a tag-generation query of M to get its tag T , and
one more verification query of (M ′, T). If 1 is returned, BRWK(M) =
BRWK(M ′) since EK′ is a PRP, and thus K ∈ W according to (9),
otherwise K /∈ W.

– WCK,K′(N,M) = EK′(N) +K ·BRWK(M)
1) Forgery attack. Make a single tag-generation query of (N,M) and get

its tag T . Once K ∈ W, (N,M ′′, T + Qs) is a successful forgery, since
T +Qs = EK′(N) +K ·BRWK(M) +Qs = EK′(N) +K ·BRWK(M ′′)
according to (10).

2) Detection. Make a single tag-generation query of (N,M) to get its T , and
one more verification query of (N,M ′′, T +Qs). If 1 is returned, K ∈ W
according to (10), otherwise K /∈ W.

Both forgery attack and detection given above require at least 1 tag-generation
query and 1 verification query, and to avoid non-sense weak-key classes, it is re-
quired that |W| ≥ 2. In real applications, inputs are often padded firstly to deal
with variable-length inputs. However even when padding rules are taken into
consideration, SumBRWpoly still works by some tricks, such as the one used in
the weak-key discussion of DCT (Section 4.2), and more refer to [27,25,39,1].

4 Weak keys of BRW-polynomial in DCT

DCT [12], short for Deterministic Counter in Tweak, is a Beyond-Birthday-
Bound-secure AE scheme, which is constructed from an efficient UHF, a CCA-
secure PRP and a Beyond-Birthday-Bound-secure encryption scheme. Forler et
al., the designers of DCT, suggest instantiating the underlying UHF with BRW-
polynomial function, rather than polynomial function, to avoid the weak-key
issue. However BRW-polynomial function suffers the same weak-key problem,
which can be extended to DCT when instantiating with BRW-polynomial func-
tion.

4.1 A brief introduction to DCT.

The encryption of DCT takes the input (A,P), where A is the associated data
and P is the plaintext, and outputs the ciphertext C. The decryption of DCT
takes the input (A,C), and outputs the plaintext P if the verification is passed.

The encryption and decryption of DCT are illustrated in Table 1. The block
length is n-bit. Encodeτ (P) puts 0τ on the left of P and then partitions the data
into two part PL‖PR where |PL| = n. E is a block cipher. E is an encryption
scheme and D is its inverse. If the left τ bits of PL are zeroes, Decodeτ (PL, PR)
deletes the zeroes and returns the rest bits of PL‖PR, otherwise Decodeτ returns
⊥ indicating the verification is failed.

In DCT, E is instantiated by the stream-cipher mode CTRT [24]. For sim-
plicity, let CTRT.GenK3(CL, l) be the function that outputs l-bit keystream in
the key K3, and once CL is new, the l-bit keystream looks random at all. And

13

DCT.encK1,K2,K3(A,P)
PL‖PR = Encodeτ (P)
X = HK1(A,PR)
Y = PL + X
CL = EK2(Y)
CR = EK3(CL, PR)
return CL‖CR

DCT.decK1,K2,K3(A,C)
CL‖CR = C
PR = DK3(CL, CR)
X = HK1(A,PR)

Y = E−1
K2

(CL)

PL = Y −X
return Decodeτ (PL, PR)

Table 1. The encryption and decryption of DCT.

then {
EK3

(CL, PR) = PR + CTRT.GenK3
(CL, |PR|)

DK3
(CL, CR) = CR + CTRT.GenK3

(CL, |CR|)
.

The underlying UHF is defined as

HK1
(A,PR) = K1 ·BRWK1

(pad(A)‖pad(PR)‖L)

where the function pad(X) pads X with the minimal number of trailing zeroes
such that its length after padding are multiples of n, L = len(A)‖len(PR) that
len(X) is an (n/2)-bit variable representing the bit length of X. Note that the
UHF description here is a bit different from the original design in [12], but it
doesn’t affect the weak-key discussion in the following.

4.2 Weak keys of BRW-polynomial function in DCT.

When instantiating with BRW-polynomial function, which is suggested by its
designers, DCT suffers the unavoidable weak-key problem, owing to ubiquitous
weak keys of its BRW-polynomial UHF component, and the details are given
out in the following.

AE schemes are designed to provide both the confidentiality of plaintexts
and the integrity of plaintexts and associated data. However when weak keys
are used, at least one of the security goal is broken. For example, GCM, one
of the standardized AE schemes, fails to provide the integrity when using weak
keys of its polynomial-function UHF, which is proved by the forgery attacks
given in [14,27,25,39,1]. Another example is the robust AE scheme AEZ [16],
which, when using weak keys given in [22], fails to offer the confidentiality, as
its ciphertexts can be distinguished from random bits efficiently. As for BRW-
instantiated DCT, both its confidentiality and integrity collapse, when using
weak keys of BRW-polynomial. Besides it is easy to detect if the unknown key
of BRW-polynomial belongs to some weak-key class.

Inherited from BRW-polynomial function, any subset W = {H0,· · ·, Hs−1}
is a weak-key class of DCT, as long as s ≥ 2. That is, once K1 ∈ W, the
confidentiality, as well as the integrity, of DCT collapses totally, and it is easy
to detect whether K1 ∈ W.

14

Construct message pairs. The crux is how to construct distinct message pairs,
say (A,P), (A′, P ′), for any W, satisfying that

K1 ∈ W ⇐⇒ HK1(A′, P ′R) = HK1(A,PR).

In the following, we explain how to find such pairs with SumBRWpoly and a
little trick to deal with the padding rule.

For any s-key subset W, let m = 2v+1 − 1 and v = blog2(s + 1)c, i.e. s <
m ≤ (2s+ 1). Let A be arbitrary m-block message, i.e. A = M0· · ·Mm−1 where
Mi ∈ {0, 1}n for i = 0, · · · ,m− 1. Let q(K1) = (K1 −H0) · · · (K1 −Hs−1) and
A′ = M ′0· · ·M ′m−1 = SumBRWpoly(q(K1),M0· · ·Mm−1), thus

BRWK1
(M ′0· · ·M ′m−1) = BRWK1

(M0· · ·Mm−1) + q(K1). (11)

Besides, let PR = P ′R = 0n‖U where U ∈
⋃(m−2)n
l=0 {0, 1}l, and{

pad(A)‖pad(PR)‖L = M0· · ·Mm−1 ‖ 0n‖pad(U)‖L
pad(A′)‖pad(P ′R)‖L′ = M ′0· · ·M ′m−1 ‖ 0n‖pad(U)‖L′

(12)

where L = len(A)‖len(PR), L′ = len(A′)‖len(P ′R) and L = L′. Obviously,
(m + 2)n ≤| pad(A)‖pad(PR)‖L |≤ 2mn, i.e. at most 2(2s + 2) blocks, and
| pad(A)‖pad(PR)‖L |=| pad(A′)‖pad(P ′R)‖L |.

Therefore, by (11)(12),

BRWK1(pad(A′)‖pad(P ′R)‖L′)
= BRWK1(pad(A′)‖pad(P ′R)‖L)

= BRWK1(M ′0· · ·M ′m−1) ·
(
Km+1

1 + 0n
)

+BRWK1(pad(U)‖L)

= (BRWK1(M0· · ·Mm−1) + q(K1)) ·
(
Km+1

1 + 0n
)

+BRWK1(pad(U)‖L)

= BRWK1
(M0· · ·Mm−1) ·

(
Km+1

1 + 0n
)

+BRWK1
(pad(U)‖L) + q(K1) ·Km+1

1

= BRWK1
(pad(A)‖pad(PR)‖L) + q(K1) ·Km+1

1 ,

and thus

K1 ∈ W
⋃
{0} ⇐⇒ HK1(A′, P ′R) = HK1(A,PR). (13)

Moreover, with HK1(A′, P ′R) = HK1(A,PR), let P = V ‖PR, P ′ = V ‖P ′R
where V ∈ {0, 1}n−τ , and thus

C ′L = CL, (14)

where C ′L‖C ′R = DCT.encK1,K2,K3
(A′, P ′), CL‖CR = DCT.encK1,K2,K3

(A,P).

Weak-key classes in DCT. For any key subset W of BRW-polynomial func-
tion, with the message pair (A,P), (A′, P ′) that satisfy (13) (14) found, both
confidentiality and integrity of DCT collapse when K1 ∈ W. More specifically,
when K1 ∈ W, the following attacks are successful:

15

– Distinguishing attack. Make two encryption queries of (A,P), (A′, P ′),
and denote the ciphertexts as CL‖CR, C ′L‖C ′R respectively. According to
(14), CL = C ′L is always true in DCT, while happens with the small proba-
bility of 2−n in the random case.

– Forgery attack. Make a single encryption query of (A,P) to get its cipher-
text CL‖CR, and forge the ciphertext of (A′, P ′) as CL‖ (P ′R + PR + CR),
where PR+CR is the keystream which is produced by the CTRT encryption
component E , i.e. PR + CR = CTRT.GenK3

(CL, |PR|).
More specifically, let C ′L‖C ′R = DCT.encK1,K2,K3(A′, P ′). By (14), C ′L = CL,
and then CTRT.GenK3(C ′L, |P ′R|) = CTRT.GenK3

(CL, |PR|) since |PR| =
|P ′R|. Thus C ′R = P ′R + CTRT.GenK3

(C ′L, |P ′R|) = P ′R + PR + CR.

Moreover it is easy to detect whether K1 ∈ W
⋃
{0}. Simply make two en-

cryption queries of (A,P), (A′, P ′) and denote the ciphertexts as CL‖CR, C ′L‖C ′R
respectively. Once C ′L = CL, HK1

(A′, P ′R) = HK1
(A,PR) as the block-cipher E

is a PRP, and by (13), K1 ∈ W.
Besides, if K1 = 0, the UHF outputs 0 for arbitrary input, and thus when

0 /∈ W, by 1 more encryption query, it is able to detect either K1 = 0 or
K1 ∈ W. That is, make a encryption query of some input (A′′, P ′′) for any A′′

and P ′′ = V ‖P ′′R, and observe if its first n-bit ciphertext equals CL.
Thus, any key subset W of BRW-polynomial function that |W| ≥ 2 is a

weak-key class in BRW-instantiated DCT. Again, |W| ≥ 2 is required to avoid
non-sense weak-key classes.

5 Conclusions

This work studies the weak-key problem of BRW-polynomial function and BRW-
instantiated schemes. It is found that weak keys in BRW-polynomial function
are ubiquitous, and that any key subset of BRW-polynomial which consists of
at least 2 keys is a weak-key class in BRW-based cryptographic schemes like the
Wegman-Carter scheme, the UHF-then-PRF scheme, DCT, etc. Similar weak-
key classes also exist in more BRW-instantiated schemes [6,30,28,29,9]. Although
the weak-key attack seems impossible to break the provable security of these
schemes, the ubiquity of weak keys is a potential security risk.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful com-
ments and suggestions. The work of this paper is supported by the National Key
Basic Research Program of China (2014CB340603) and the National Natural
Science Foundation of China (Grants 61472415, 61732021, 61772519).

References

1. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted polyno-
mials and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.) Advances

16

in Cryptology - EUROCRYPT 2015, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 9056, pp. 762–786. Springer (2015), http://dx.doi.org/10.

1007/978-3-662-46800-5_29 2, 6, 12, 13
2. Abdelraheem, M.A., Bogdanov, A., Tischhauser, E.: Weak-key analysis of poet.

Cryptology ePrint Archive, Report 2014/226 (2014), http://eprint.iacr.org/

2014/226 2
3. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., ,

Wenzel, J.: The POET family of on-line authenticated encryption schemes (2014),
http://competitions.cr.yp.to/caesar-submissions.html 1, 2

4. Andreeva, E., Bogdanov, A., Lauridsen, M.M., Luykx, A., Mennink, B., Tis-
chhauser, E., Yasuda, K.: AES-COBRA (2014), http://competitions.cr.yp.to/
caesar-submissions.html 2

5. Bernstein, D.J.: The poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 3557, pp. 32–49. Springer (2005), http://dx.doi.org/10.1007/
11502760_3 2

6. Bernstein, D.J.: Polynomial evaluation and message authentication (2011), http:
//cr.yp.to/papers.html#pema 2, 7, 15

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener [38], pp. 216–233, http://dx.doi.org/
10.1007/3-540-48405-1_14 1

8. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979) 1

9. Chakraborty, D., Mancillas-López, C.: Double ciphertext mode: a proposal for
secure backup. IJACT 2(3), 271–287 (2012), http://dx.doi.org/10.1504/IJACT.
2012.045588 2, 15

10. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) Progress in Cryptology
- INDOCRYPT 2006. Lecture Notes in Computer Science, vol. 4329, pp. 287–302.
Springer (2006), http://dx.doi.org/10.1007/11941378_21 1, 2

11. Etzel, M., Patel, S., Ramzan, Z.: SQUARE hash: fast message authenication via
optimized universal hash functions. In: Wiener [38], pp. 234–251, http://dx.doi.
org/10.1007/3-540-48405-1_15 1

12. Forler, C., List, E., Lucks, S., Wenzel, J.: Efficient beyond-birthday-bound-secure
deterministic authenticated encryption with minimal stretch. In: Liu, J.K., Ste-
infeld, R. (eds.) Information Security and Privacy - 21st Australasian Confer-
ence, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9723, pp. 317–332. Springer (2016),
http://dx.doi.org/10.1007/978-3-319-40367-0_20 2, 3, 12, 13

13. Halevi, S., Krawczyk, H.: MMH: software message authentication in the gbit/sec-
ond rates. In: Biham, E. (ed.) Fast Software Encryption 1997. Lecture Notes in
Computer Science, vol. 1267, pp. 172–189. Springer (1997), http://dx.doi.org/
10.1007/BFb0052345 1

14. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO. Lecture Notes in Computer
Science, vol. 5157, pp. 144–161. Springer (2008) 2, 5, 13

15. Harris, S.: The Enchilada authenticated ciphers (2014), http://competitions.cr.
yp.to/caesar-submissions.html 2

16. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) Advances in

http://dx.doi.org/10.1007/978-3-662-46800-5_29
http://dx.doi.org/10.1007/978-3-662-46800-5_29
http://eprint.iacr.org/2014/226
http://eprint.iacr.org/2014/226
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/11502760_3
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema
http://dx.doi.org/10.1007/3-540-48405-1_14
http://dx.doi.org/10.1007/3-540-48405-1_14
http://dx.doi.org/10.1504/IJACT.2012.045588
http://dx.doi.org/10.1504/IJACT.2012.045588
http://dx.doi.org/10.1007/11941378_21
http://dx.doi.org/10.1007/3-540-48405-1_15
http://dx.doi.org/10.1007/3-540-48405-1_15
http://dx.doi.org/10.1007/978-3-319-40367-0_20
http://dx.doi.org/10.1007/BFb0052345
http://dx.doi.org/10.1007/BFb0052345
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

17

Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9056, pp.
15–44. Springer (2015), https://doi.org/10.1007/978-3-662-46800-5_2 13

17. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage
media (2011) 2

18. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y. (ed.) Ad-
vances in Cryptology - CRYPTO ’94. Lecture Notes in Computer Science, vol. 839,
pp. 129–139. Springer (1994), http://dx.doi.org/10.1007/3-540-48658-5_15 4,
5

19. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of opera-
tion. IACR Cryptology ePrint Archive 2004, 278 (2004), http://eprint.iacr.

org/2004/278 1

20. McGrew, D.A., Viega, J.: The Galois/Counter mode of operation (GCM) (2004),
http://csrc.nist.gov/groups/ST/toolkit/BCM/ 2

21. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
mode of operation (full version). IACR Cryptology ePrint Archive 2004, 193 (2004),
http://eprint.iacr.org/2004/193 1

22. Mennink, B.: Weak keys for aez, and the external key padding attack. In: Hand-
schuh, H. (ed.) Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track
at the RSA Conference 2017, San Francisco, CA, USA, February 14-17, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10159, pp. 223–237. Springer
(2017), https://doi.org/10.1007/978-3-319-52153-4_13 13

23. Morales-Luna, G.: On formal expressions of BRW-polynomials. IACR Cryptology
ePrint Archive 2013, 3 (2013), http://eprint.iacr.org/2013/003 7

24. Peyrin, T., Seurin, Y.: Counter-in-tweak: Authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9814, pp. 33–63. Springer (2016), http://dx.doi.org/10.
1007/978-3-662-53018-4_2 12

25. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) Fast Software Encryption - 20th International
Workshop, FSE 2013. Lecture Notes in Computer Science, vol. 8424, pp. 287–304.
Springer (2013), http://dx.doi.org/10.1007/978-3-662-43933-3_15 2, 5, 6, 12,
13

26. Rabin, M.O., Winograd, S.: Fast evaluation of polynomials by rational preparation.
Communications on Pure and Applied Mathematics 25(4), 433–458 (1972) 2

27. Saarinen, M.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and Hashes. In: Canteaut, A. (ed.) Fast Software Encryption - 19th International
Workshop, FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp. 216–225.
Springer (2012), http://dx.doi.org/10.1007/978-3-642-34047-5_13 2, 6, 12,
13

28. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Trans. Information Theory 55(10), 4749–4760 (2009), http:
//dx.doi.org/10.1109/TIT.2009.2027487 2, 7, 15

29. Sarkar, P.: Tweakable enciphering schemes using only the encryption function of a
block cipher. Inf. Process. Lett. 111(19), 945–955 (2011), http://dx.doi.org/10.
1016/j.ipl.2011.06.014 2, 15

https://doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/3-540-48658-5_15
http://eprint.iacr.org/2004/278
http://eprint.iacr.org/2004/278
http://csrc.nist.gov/groups/ST/toolkit/BCM/
http://eprint.iacr.org/2004/193
https://doi.org/10.1007/978-3-319-52153-4_13
http://eprint.iacr.org/2013/003
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-662-43933-3_15
http://dx.doi.org/10.1007/978-3-642-34047-5_13
http://dx.doi.org/10.1109/TIT.2009.2027487
http://dx.doi.org/10.1109/TIT.2009.2027487
http://dx.doi.org/10.1016/j.ipl.2011.06.014
http://dx.doi.org/10.1016/j.ipl.2011.06.014

18

30. Sarkar, P.: Modes of operations for encryption and authentication using stream
ciphers supporting an initialisation vector. Cryptography and Communications
6(3), 189–231 (2014), http://dx.doi.org/10.1007/s12095-013-0097-7 2, 15

31. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004, 332 (2004), http://eprint.iacr.org/

2004/332 4, 5
32. Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.)

Advances in Cryptology - CRYPTO ’91. Lecture Notes in Computer Science, vol.
576, pp. 74–85. Springer (1991), http://dx.doi.org/10.1007/3-540-46766-1_5
4

33. Stinson, D.R.: On the connections between universal hashing, combinatorial de-
signs and error-correcting codes. Electronic Colloquium on Computational Com-
plexity (ECCC) 2(52) (1995), http://eccc.hpi-web.de/eccc-reports/1995/

TR95-052/index.html 4
34. Sun, Z., Wang, P., Zhang, L.: Weak-key and related-key analysis of hash-counter-

hash tweakable enciphering schemes. In: Foo, E., Stebila, D. (eds.) ACISP 2015.
Lecture Notes in Computer Science, vol. 9144, pp. 3–19. Springer (2015), http:
//dx.doi.org/10.1007/978-3-319-19962-7_1 2, 5

35. Wang, P., Feng, D., Wu, W.: HCTR: A variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) Information Security and Cryptology, CISC
2005. Lecture Notes in Computer Science, vol. 3822, pp. 175–188. Springer (2005),
http://dx.doi.org/10.1007/11599548_15 1, 2

36. Wang, P., Li, Y., Zhang, L., Zheng, K.: Related-key almost universal hash func-
tions: definitions, constructions and applications. In: Peyrin, T. (ed.) Fast Software
Encryption - 23rd International Conference, FSE 2016. Lecture Notes in Computer
Science, vol. 9783, pp. 514–532. Springer (2016), http://dx.doi.org/10.1007/

978-3-662-52993-5_26 2
37. Wegman, M.N., Carter, L.: New hash functions and their use in authentication

and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981) 1, 4
38. Wiener, M.J. (ed.): Advances in Cryptology - CRYPTO ’99, Lecture Notes in

Computer Science, vol. 1666. Springer (1999) 16
39. Zhu, B., Tan, Y., Gong, G.: Revisiting MAC forgeries, weak keys and provable

security of Galois/Counter mode of operation. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) Cryptology and Network Security - 12th International Conference,
CANS 2013. Lecture Notes in Computer Science, vol. 8257, pp. 20–38. Springer
(2013), http://dx.doi.org/10.1007/978-3-319-02937-5_2 2, 5, 6, 12, 13

http://dx.doi.org/10.1007/s12095-013-0097-7
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://dx.doi.org/10.1007/3-540-46766-1_5
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html
http://dx.doi.org/10.1007/978-3-319-19962-7_1
http://dx.doi.org/10.1007/978-3-319-19962-7_1
http://dx.doi.org/10.1007/11599548_15
http://dx.doi.org/10.1007/978-3-662-52993-5_26
http://dx.doi.org/10.1007/978-3-662-52993-5_26
http://dx.doi.org/10.1007/978-3-319-02937-5_2

	Ubiquitous Weak-key Classes of BRW-polynomial Function

