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ABSTRACT
Masking schemes represent a well-researched and successful option

to follow when considering side-channel countermeasures. Still,

such measures increase the implementation cost in term of power

consumption, clock cycles, and random numbers generation. In fact,

the higher the order of protection against side-channel adversaries,

the higher the implementation cost of countermeasures. S-boxes

represent the most vulnerable part in an implementation when con-

sidering side-channel adversary. In this paper, we investigate how

to generate S-boxes that have improved resilience against varying

orders of side-channel a�acks while minimising the implementa-

tion costs. We examine whether S-boxes generated against a certain

order of a�ack also represent a good solution when considering

di�erent order of a�acks. We demonstrate that we successfully

generated S-boxes resilient against a certain physical a�ack order

but the improvements are small. As a result, S-boxes that are re-

silient against �rst order a�acks stay resilient against higher-order

a�acks, which saves computational power during the design of

higher-order side-channel a�acks resilient S-boxes.
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1 INTRODUCTION
For decades, designers estimated the security level of a crypto-

graphic algorithm independently of its implementation in a cryp-

tographic device. Since the �rst publication on implementation

a�acks in 1996, the physical a�acks have become an active research

area [11]. A side-channel a�ack (SCA) represents a process that

exploits physical leakages (measured on cryptographic devices) in

order to extract sensitive information (e.g., the key used in a sym-

metric encryption algorithm). �e ability to secure devices against

side-channel a�acks represents a critical requirement for the in-

dustry due to several publications on real-world physical a�acks

against (certi�ed and uncerti�ed) industrial products.

�e Internet of �ings (IoT) represents an a�ractive target for

physical a�acks (see e.g., Ronen et al. [21]) since the target device

is in the vicinity of the adversary (which facilitates the analysis of

physical properties). �e widespread adoption of IoT, its extreme

constraints (in term of area and power consumption) as well as the

hostile environments in which the IoT is manipulated raise the need

,
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of lightweight countermeasures against side-channel a�acks. Fol-

lowing several works on this subject (see for example [4, 8, 10, 20]),

this paper analyses the protection of the nonlinear part (called S-

boxes) of ciphers, which is o�en targeted by implementation a�acks.

More precisely, this paper focuses on lightweight countermeasures

in which the S-boxes (also called (n,m) functions) are intrinsically

more resilient against side-channel a�acks.

In 2014, Picek et al. generated S-boxes of various sizes providing

improved resistance to physical a�acks [16]. �ey used genetic

programming and genetic algorithms to evolve S-boxes minimising

the transparency order metric that relates to the side-channel resis-

tance of the S-boxes [19]. �e main advantage of these approaches

(compared to the exhaustive search) lies in the execution time of the

research: exhaustive search generates 2
m ·2n

di�erent n ×n S-boxes

((2n )! if we only consider permutations) while genetic algorithms

optimise this search in an automatic way. At the same year, Picek et

al. obtained two S-boxes of sizes 4×4 and 8×8 by exploiting genetic

algorithms optimising the confusion coe�cient property, which

represents another metric related to the side-channel resistance of

the S-boxes [18]. One year later, Picek et al. built a 4×4 S-box using

genetic algorithms optimising the improved transparency order

metric [6, 17]. Recently, Lerman et al. provided new S-boxes min-

imising the success probability of actual physical a�acks [13]. �ey

provided 4 × 4 and 5 × 5 S-boxes that possess increased resistance

against various real-world a�acks exploiting actual leakages.

In this paper, we focus on 4 × 4 S-boxes since we deem this size

to have the most impact in the future design of lightweight ciphers.

We aim to give an answer to the following question: “Should we
take into account the key-enumeration during the design of S-boxes?”.

�is approach is of high importance since (as reported in this paper)

the designers of S-boxes can concentrate only on the �rst order

success probability of side-channel adversaries. Eventually, this

paper highlights that the best S-box (which minimises the success

probability of physical a�acks) depends on the physical noise level

in the leakages. �is result demonstrates the requirement to select

S-boxes as a function of the cryptographic device executing these

S-boxes, and it con�rms the assumption of Lerman et al. [13].

2 BACKGROUND
Let n,m be positive integers – n,m ∈ N+. We denote by Fn

2
the

n-dimensional vector space over F2 and by F2
n the �nite �eld with

2
n

elements. �e set of all n-tuples of elements in the �eld F2 is

denoted by Fn
2

, where F2 is the Galois �eld with two elements. For

any set S , we denote S\{0} by S∗. �e usual inner product of a and

b equals a · b =
⊕n

i=1
aibi in Fn

2
.

�e Hamming weight wH (a) of a vector a, where a ∈ Fn
2

, is the

number of non-zero positions in the vector. An (n,m)-function is

any mapping F from Fn
2

to Fm
2

. An (n,m)-function F is de�ned as a

vector F = ( f1, · · · , fm ), where the Boolean functions fi : Fn
2
→ F2

for i ∈ {1, · · · ,m} are called the coordinate functions of F.



, ,

�e component functions of an (n,m)-function F are all the

linear combinations of the coordinate functions with non all-zero

coe�cients. Since for every n, there exists a �eld F2
n of order 2

n
,

we can endow the vector space Fn
2

with the structure of that �eld.

�e addition of elements of the �nite �eld F2
n is denoted with “+”,

as usual in mathematics. Since we o�en identify Fn
2

with F2
n and

when there is no ambiguity, the addition of vectors of Fn
2
,n > 1 is

denoted with “+” as well.

2.1 S-box Properties and Bounds
An (n,m)-function F is balanced if it takes every value of Fm

2
the

same number 2
n−m

of times.

�e Walsh-Hadamard transform of an (n,m)-function F is (see

e.g., [2]):

WF (a,v ) =
∑
x ∈Fm

2

(−1)v ·F (x )+a ·x , a,v ∈ Fm
2
. (1)

�e nonlinearity NF of an (n,m)-function F equals the minimum

nonlinearity of all its component functionsv ·F , wherev ∈ Fm∗
2

[15]:

NF = 2
n−1 −

1

2

max

a ∈ Fn
2

v ∈ Fm∗
2

|WF (a,v ) |. (2)

Let F be a function from Fn
2

into Fm
2

with a ∈ Fn
2

and b ∈ Fm
2

.

We denote:

DF (a,b) =
{
x ∈ Fn

2
: F (x ) + F (x + a) = b

}
. (3)

�e entry at the position (a,b) corresponds to the cardinality of the

di�erence table DF (a,b) and is denoted as δ (a,b). �e di�erential
uniformity δF is then de�ned as [14]:

δF = max

a,0,b
δ (a,b). (4)

�e nonlinearity of any (n,m) function F is bounded above by

the so-called covering radius bound:

NF ≤ 2
n−1 − 2

n
2
−1. (5)

�ere exists a be�er bound whenm = n – the Sidelnikov-Chabaud-

Vaudenay bound [5]:

NF ≤ 2
n−1 − 2

n−1

2 . (6)

Eq. (6) is an equality if and only if F is an Almost Bent (AB) function.

Functions that have di�erential uniformity equal to 2 are called

the Almost Perfect Nonlinear (APN) functions. Every AB function is

also APN, but the converse does not hold in general. AB functions

exist only in an odd number of variables, while APN functions

also exist for an even number of variables. When discussing the

di�erential uniformity for permutations, the best possible (and

known) value is 2 for any odd n and also for n = 6. For n even

and larger than 6, this is an open question. To conclude, for 4 × 4

S-boxes, the best nonlinearity and di�erential uniformity equals 4.

2.2 Side-Channel Attacks
We assume that the adversary wants to retrieve the secret key used

when the cryptographic device (that executes a known encryp-

tion algorithm) encrypts known plaintexts and provides known

ciphertexts. In order to �nd the key, the adversary targets a set of

key-related information (called the target intermediate values) with

a divide-and-conquer approach. �e divide-and-conquer strategy

extracts information on separate parts of the key (e.g., the adversary

extracts each byte of the key independently) and then combines the

results in order to get the full secret key. In the rest of the paper, we

systematically use the term key to denote the target of our a�acks,

though in fact, we address one part of the key at a time.

During the execution of the encryption algorithm, the crypto-

graphic device processes a function F (e.g., the S-box of the block

cipher AES):

F : P × K → Y (7)

y = Fk (p),

that outputs the target intermediate value y and where k ∈ K is a

key-related information (e.g., one byte of the secret key), and p ∈ P
represents information known by the adversary (e.g., one byte of

the plaintext).

2.2.1 Physical Characteristics. Let
jTy be the j-th leakage (also

known as trace) measured when the device manipulates the target

value y. In the following, we represent each leakage with one real

value measured when the analysed cryptographic device manipu-

lates the target value y, i.e.:

jTy = L (y) + jϵy , (8)

= L (Fk (p)) + jϵy , (9)

where
jϵy ∈ R is the noise of the trace

jTy following for example

the Gaussian distribution with zero mean, and L is the (determinis-

tic) leakage function. �e function L can be linear (e.g., the weighted

sum of each bit of the input value) or nonlinear (e.g., the weighted

sum of products of bits of the input value). Evaluators o�en model

linear leakage functions as the Hamming weight of the manipulated

value y for so�ware implementations.

A side-channel a�ack is a process during which an a�acker anal-

yses leakages measured on a target device in order to extract infor-

mation on the secret value. Several side-channel a�acks exist but

we focus on classical a�acks exploiting correlation power analysis

(presented by Coron et al. [7]) since 1) they represent the most e�-

cient a�acks when the leakage model �t to the leakage function in

univariate se�ings [1], and 2) we assume no assumption error and

no estimation error (of the estimation of the leakage function) lead-

ing to the evaluation of the S-boxes with the worst-case (univariate)

side-channel adversaries.

2.2.2 Correlation Power Analysis. Correlation power analysis

(CPA) recover the secret key from a cryptographic device by se-

lecting the key that maximises the dependence between the actual

leakage and the estimated leakage based on the assumed secret key.

More precisely, CPA selects the secret key k̂ such that:

k̂ ∈ arg max

k ∈K


ρ

(
T̂(k ) ,T

) 
, (10)

where ‖x ‖ denotes the Euclidean norm of x , ρ (X,Y ) represents

the Pearson’s correlation between two vectors X and Y , and:

• T =
[
1T , ..., NaT

]
represents a vector of Na a�ack traces

measured when the target device manipulates the S-box

(where
iT denotes the i-th measurement on the target de-

vice and Na is the number of a�ack traces), and



Higher Order Side-Channel A�acks
Resilient S-boxes , ,

• T̂(k ) =
[̂
L(F(k ⊕ p

[1]
), . . . , L̂(F(k ⊕ p

[Na ]
)
]

refers to a vec-

tor of estimated leakages (with a leakage model L̂) parametrised

with the output of the S-box combining (with the exclusive-

or operation denoted ⊕) an estimated key k and known

plaintext p
[i] associated to

iT .

2.2.3 i-th order Success Rate. �e designers of cryptographic

devices measure the resistance of an implementation against a

physical a�ack by using (among others) the �rst order Success

Rate (1oSR) [22]. �e �rst order success rate (also known as the

�rst order success probability) represents the probability that the

physical a�ack ranks the actual key in the �rst position of the list of

keys sorted by the physical a�ack in decreasing order of likelihood.

Similarly, the i-th order success rate denotes the probability that the

physical a�ack ranks the actual key among the i �rst positions of the

list of keys. �is metric relates to a side-channel adversary applying

key enumeration algorithms (in which the adversary outputs a set

of keys from the most probable one to the least probable one).

3 RESILIENT S-BOXES AGAINST
KEY-ENUMERATION

�is section extends the analysis of S-boxes (generated by genetic

algorithms and reported in [13, 16, 17]) by considering side-channel

adversaries exploiting a CPA with a key-enumeration. More pre-

cisely, we aim to verify whether the generated S-boxes, that min-

imise the �rst order success rate, minimise also a higher order

success rate. We also provide results of newly generated S-boxes

taking into account the key enumeration during their design as

well as the multiplicative complexity of such S-boxes.

3.1 Scenarios under Consideration
3.1.1 Leakages generation. We generated synthetic leakages

having 1 points related to the Hamming weight of the S-Box:

jTy = L (y) + jϵy = HW (SBox (p ⊕ k )) + jϵy . (11)

�is leakage function models the measurements collected during

the execution of (serial) so�ware implementations (which represent

a realistic scenario in IoT). We assume no estimation/assumption

error, which leads the adversary to consider the Hamming weight

model during the a�ack: L̂(·) = L(·) = HW(·). We estimated the

success rate by generating 100 000 sets of a�ack leakages.

3.1.2 Target functions. We focus on seven 4× 4 S-boxes used by

Joltik, Klein, Minalpher, Prince, Prøst, Present, and Rectangle.

In the sequel, we refer to these (4×4) S-boxes as unoptimised S-boxes

since the designers did not optimise these S-boxes with respect to

minimising the success rate of physical a�acks.

�e optimised S-boxes represent nonlinear functions designed

to minimise the �rst order success rate of physical a�acks and

already published in the side-channel literature. �ese optimised

4 × 4 S-boxes are the following: EvolvedCC [18], EvolvedTO [17],

EvolvedSR1, and EvolvedSR2 [13]. Table 1 reports all these (unopti-

mised and optimised) S-boxes with their cryptographic properties.

�e new optimised S-boxes are nonlinear functions generated with

genetic algorithm by taking into account the key enumeration and

the noise level during the S-box generation. Table 2 provides the

new optimised 4 × 4.

3.1.3 Search strategy. As a search technique used to generate S-

boxes, we use genetic algorithms (GAs) since it represents a method

that is easy to implement while being very e�cient as reported

in related work. Genetic algorithms are generic population-based

metaheuristic optimization technique inspired by biological evolu-

tion and phenomena like mutation, recombination, and selection [9].

Candidate solutions to the optimization problem play the role of

individuals in a population, and the �tness function determines the

quality of the solutions. Evolution of the population takes place

a�er the repeated application of the above operators. In our algo-

rithm, we encode solutions as lists of values between 0 and 2
n − 1

where n is the size of the S-box. Next, we use 3-tournament selec-

tion where three solutions are randomly selected and the worst one

is discarded. �e remaining two solutions are used by the crossover

operator (order crossover) to create a new o�spring. �e order

crossover works by �rst randomly selecting two crossover points

and copying everything between those two points from the �rst

parent to the o�spring. �en, starting from the second crossover

point in the second parent, the unused numbers are copied in the

order they appear in that parent [9]. Finally, we use the toggle

mutation where we randomly select two values and swap them.

�e initial population is created uniformly at random and the pop-

ulation size equals 200 individuals. As a stopping criterion, we use

the number of evaluations without improvement, which we set to

150 generations. In order to obtain S-boxes with as high as possible

nonlinearity and as low as possible di�erential uniformity, we use

the following expression:

f itnesst = NF + (2n − δF )). (12)

�en, only those solutions that have good enough values of cryp-

tographic properties are further evolved (while retaining those

cryptographic properties) so they have low SCA success probabil-

ity, which gives us the �tness function used in our experiments:

f itness = f itnesst + (1 − SR). (13)

We note that for 4 × 4 S-box size, we consider only S-boxes that

are optimal: bijective, with nonlinearity and di�erential uniformity

equal to 4 [12].

3.1.4 Multiplicative complexity of S-boxes. Introduced in the

context of side-channel a�acks by Carlet et al., the multiplicative

Complexity (MC) of an S-box is important for its secure implemen-

tation [3]. Here we will refer to the MC of an S-box as the minimum

number of AND gates (or instructions in case of a so�ware imple-

mentation) that one would need to implement the S-box. MC is

important because the amount of randomness that one needs for

masked implementation grows fast with the number of AND opera-

tions required for the implementation (i.e., it is easier to mask an

XOR operation compared to AND). We estimate the MC of each S-box

using equivalence classes presented in the work by Turan et al. [23],

where their work gives a way to compute the MC for 4-bit Boolean

functions. �e results show that the multiplicative complexity for

our new S-boxes is similar to the previously obtained ones, which

points us that optimising S-boxes for di�erent orders of a�ack does

not bring a negative impact with respect to the MC.

Finally, in Table 3 we list the equivalence classes where all the

investigated 4 × 4 S-boxes belong. In total, there are 16 optimal

classes as de�ned by Leander and Poschmann. [12]. Interestingly,
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Size Type Name NF δF MC S-box

4 × 4

U

Joltik 4 4 6 E,4,B,2,3,8,0,9,1,A,7,F,6,C,5,D

Klein 4 4 8 7,4,A,9,1,F,B,0,C,3,2,6,8,E,D,5

Minalpher 4 4 8 B,3,4,1,2,8,C,F,5,D,E,0,6,9,A,7

Prince 4 4 8 B,F,3,2,A,C,9,1,6,7,8,0,E,5,D,4

Prøst 4 4 6 0,4,8,F,1,5,E,9,2,7,A,C,B,D,6,3

Present 4 4 7 C,5,6,B,9,0,A,D,3,E,F,8,4,7,1,2

Rectangle 4 4 6 6,5,C,A,1,E,7,9,B,0,3,D,8,F,4,2

O

EvolvedCC 4 4 7 6,4,7,8,0,5,2,A,E,3,D,1,C,F,9,B

EvolvedTO 4 4 6 2,0,C,6,A,E,F,7,3,1,8,4,9,D,B,5

EvolvedSR1 4 4 8 2,4,8,0,F,B,7,D,6,5,E,3,1,9,C,A

EvolvedSR2 4 4 7 F,E,0,A,1,8,9,B,7,6,4,C,5,2,3,D

Table 1: Properties of S-boxes when considering correlation power analysis. Values of S-boxes are given in hexadecimal for-
mat. Notations O andU represent optimised and unoptimised S-boxes with respect to side-channel analysis. �e notation NF
represents nonlinearity, δF di�erential uniformity, and MC multiplicative complexity.

Size Name NF δF MC Order σ S-box

4 × 4

Ev4x4 1oSR σ 0.5 4 4 8 1 0.5 1,9,4,5,B,6,D,A,C,0,3,F,2,7,8,E

Ev4x4 2oSR σ 0.5 4 4 8 2 0.5 8,1,F,A,4,9,6,7,0,3,E,B,2,C,D,5

Ev4x4 3oSR σ 0.5 4 4 7 3 0.5 1,F,2,0,D,C,8,7,5,9,3,B,4,6,E,A

Ev4x4 4oSR σ 0.5 4 4 7 4 0.5 0,8,C,1,F,B,9,D,7,E,6,A,2,3,5,4

Ev4x4 1oSR σ 2 4 4 8 1 2 9,C,3,5,F,E,1,2,7,B,0,4,D,6,A,8

Ev4x4 2oSR σ 2 4 4 7 2 2 D,1,2,E,3,8,A,9,5,B,6,C,4,7,F,0

Ev4x4 3oSR σ 2 4 4 8 3 2 6,5,E,2,1,A,B,8,C,9,D,4,3,7,F,0

Ev4x4 4oSR σ 2 4 4 8 4 2 7,8,D,4,3,2,E,5,C,6,9,A,B,0,F,1

Table 2: Properties of new optimised S-boxes when considering correlation power analysis. �e genetic algorithms optimise
each S-box as a function of its size, its nonlinearity (NF ), di�erential uniformity (δF ), the order of the success rate as well as
the standard deviation of the noise in the leakages.

it can be seen that S-boxes optimized in previous works favours

classesG0 andG1 while our new S-boxes are in classesG13,G14, and

G15. �is could indicate that those classes have be�er side-channel

resilience when considering various orders of a�ack.

3.2 Impact of the Noise in the Generation of
S-boxes

�e �rst experiment analyses the impact of the noise during the

generation of S-boxes by genetic algorithms. We focus on the �rst

order success rate of CPA against 4× 4 S-boxes. Figure 1 shows the

success probability of CPA as a function of the number of a�ack

traces in which the standard deviation of the noise equals 0.5, 1,

and 2 (which leads to a signal-to-noise ratio of 4.27, 1.07, and 0.27).

Interestingly, the generated S-boxes optimised by genetic algorithm

for a noise level x minimise the success rate when the standard

deviation of the physical noise in the leakages equals x . In other

words, the noise level in the leakages impacts the selection of the

best S-boxes, which stresses the usefulness of the selection of S-

boxes as a function of the device executing the S-box operation (as

reported by Lerman et al. [13]).

3.3 New Optimised vs. Optimised vs.
Unoptimised S-boxes

�is section compares the unoptimised 4×4 S-boxes with respect to

optimised S-boxes. We focus on the �rst, second, third, and fourth

order success rates. Figures 2 and 3 report the results by considering

a standard deviation of the noise equal to 0.5 and 2 (which leads to

a signal-to-noise ratio of 4.27 and 0.27). Interestingly, as already

reported for the masking countermeasures, Figure 2 highlights that

all the (optimised and unoptimised) 4 × 4 S-boxes provide similar

success rate when the leakages contain a low noise. Figure 3 exhibits

that the generated S-boxes, that minimise the �rst order success

rate, minimise also a higher order success rate. We can see that

the higher the order of the success rate, the lower the di�erence

between the optimised and the unoptimised S-boxes.

4 CONCLUSION
Providing side-channel countermeasures represents a complex task

when considering the IoT. �e rationale is that the IoT has ex-

treme constraints in terms of area and power consumption. In

this paper, we investigate lightweight side-channel countermea-

sures minimising the implementation costs. More precisely, we

investigate whether the key-enumeration should be considered

when designing side-channel a�acks resilient S-boxes. Genetic

algorithms provide S-boxes that reduce the success probabilities of
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Name Class

EvolvedSR1 G0

Present, Rectangle, EvolvedCC , EvolvedTO , EvolvedSR2 G1

Klein, Minalpher G4

Prøst, Joltik G8

Prince, Ev4x4 1oSR σ 2, Ev4x4 3oSR σ 2 G13

Ev4x4 1oSR σ 0.5, Ev4x4 2oSR σ 0.5, Ev4x4 2oSR σ 2, Ev4x4 4oSR σ 2 G14

Ev4x4 3oSR σ 0.5, Ev4x4 4oSR σ 0.5 G15

Table 3: Optimal 4 × 4 S-boxes and their equivalence classes (classes use the same order as presented by Turan et al. [23]).
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(b) σ = 1
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(c) σ = 2

Figure 1: Success rate of correlation power analysis on 4 × 4 S-boxes as a function of the number of attack traces. �e standard
deviation of the noise equals σ = 1. �e S-boxes have nonlinearity equal to NF = 4 and di�erential uniformity equal to δF = 4.
Each S-box was generated by genetic algorithms minimising the �rst order success rate given a �xed noise level.
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(a) First order success rate.
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(b) Second order success rate.
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(c) �ird order success rate.

Figure 2: Success rates (di�erent orders) of correlation power analysis on 4 × 4 S-boxes as a function of the number of attack
traces. �e standard deviation of the noise equals σ = 0.5. �e S-boxes have nonlinearity equal to NF = 4 and di�erential
uniformity equal to δF = 4.

side-channel adversaries while keeping the same power consump-

tion, clock cycles and multiplicative complexity as an unprotected

S-box. �e results exhibit that there is no advantage to take into

account the key-enumeration in order to build higher order resilient

S-boxes. In other words, S-boxes minimising the �rst order suc-

cess rate, minimise also a higher order success rate. Consequently,

the designers of S-boxes can save computational power by only

focusing on the �rst order success probability of physical a�acks.

Finally, since we recognise several classes for 4× 4 size that seem to

be favoured by our search strategy, we plan to conduct additional

experiments where we concentrate only on the S-boxes belonging

to those classes.
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