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Abstract. Recently, Döttling and Garg (CRYPTO 2017) showed how
to build identity-based encryption (IBE) from a novel primitive termed
Chameleon Encryption, which can in turn be realized from simple number
theoretic hardness assumptions such as the computational Diffie-Hellman
assumption (in groups without pairings) or the factoring assumption. In
a follow-up work (TCC 2017), the same authors showed that IBE can
also be constructed from a slightly weaker primitive called One-Time
Signatures with Encryption (OTSE).
In this work, we show that OTSE can be instantiated from hard learning
problems such as the Learning With Errors (LWE) and the Learning
Parity with Noise (LPN) problems. This immediately yields the first
IBE construction from the LPN problem and a construction based on a
weaker LWE assumption compared to previous works.
Finally, we show that the notion of one-time signatures with encryption
is also useful for the construction of key-dependent-message (KDM) se-
cure public-key encryption. In particular, our results imply that a KDM-
secure public key encryption can be constructed from any KDM-secure
secret-key encryption scheme and any public-key encryption scheme.
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1 Introduction

Identity-based encryption (IBE) is a form of public key encryption that
allows a sender to encrypt messages to a user without knowing a user-
specific public key, but only the user’s name or identity and some global
and succinct public parameters. The public parameters are issued by a
key authority which also provides identity-specific secret keys to the users.

The notion of IBE was originally proposed by Shamir [Sha84], and
in two seminal results Boneh and Franklin [BF01] and Cocks [Coc01]
provided the first candidate constructions of IBE in the random oracle
model from groups with pairings and the quadratic residue problem re-
spectively. Later works on IBE provided security proofs without random
oracles [CHK04, BB04, Wat05, Wat09, LW10, BGH07] and realized IBE
from hard lattice problems [GPV08, CHKP12, ABB10].

In a recent result, Döttling and Garg [DG17b] showed how to con-
struct IBE from (presumably) qualitatively simpler assumptions, namely
the computational Diffie-Hellman assumption in groups without pair-
ings or the factoring assumption. In a follow-up work, the same authors
[DG17a] provided a generalization of the framework proposed in [DG17b].
In particular, the authors show that identity-based encryption is equiva-
lent to the seemingly simpler notion of One-Time Signatures with Encryp-
tion (OTSE) using a refined version of the tree-based IBE construction
of [DG17b].

An OTSE-scheme is a one-time signature scheme with an additional
encryption and decryption functionality. Informally, the encryption func-
tionality allows anyone to encrypt a plaintext m to a tuple consisting of a
public parameter pp, a verification key vk, an index i and a bit b, to obtain
a ciphertext c. The plaintext m can be deciphered from c by using a pair
of message-signature (x, σ) that is valid relative to vk and which satisfies
xi = b. Security of the OTSE asserts that an adversary knowing a pair of
message-signature (x, σ) and the underlying public parameter pp and ver-
ification key vk cannot distinguish between encryptions of two plaintexts
encrypted to (i, 1 − xi) under (pp, vk), for any index i of the adversary’s
choice. (Note that this security property implies the one-time unforge-
ability of the signature.) The OTSE also needs to be compact, meaning
the size of the verification key grows only with the security parameter,
and does not depend on the size of messages allowed to be signed.



1.1 PKE and IBE from Learning with Errors

We will briefly review constructions of public-key encryption and identity-
based encryption from the Learning with Errors (LWE) problem.

The hardness of LWE is determined by its dimension n, modulus
q, noise magnitude parameter α and the amount of samples m. Regev
[Reg05] showed that among the latter three parameters, in particular the
noise magnitude parameter α is of major importance since it directly
impacts the approximation factor of the underlying lattice problem.

Theorem 1 ([Reg05]). Let ε = ε(n) be some negligible function of n.
Also, let α = α(n) ∈ (0, 1) be some real and let p = p(n) be some integer
such that αp > 2

√
n. Assume there exists an efficient (possibly quantum)

algorithm that solves LWEp,α. Then there exists an efficient quantum al-
gorithm for solving the following worst-case lattice problems:

1. Find a set of n linearly independent lattice vectors of length at most
Õ(λn(L) · n/α).

2. Approximate λ1(L) within Õ(n/α).

Here, λk is the minimal length of k linearly independent vectors in
lattice L. To find such vectors within a constant or slightly sublinear
approximation is known to be NP-hard under randomized reductions
[ABSS93, Ajt98, Mic98, Kho04, HR07], while for an exponential approx-
imation factor, they can be found in polynomial time using the LLL al-
gorithm [LLL82]. Regev [Reg05] introduced the first PKE based on LWE
for a choice of α = Õ(1/

√
n), more precisely α = 1/(

√
n log2 n). The first

lattice based IBEs, by Gentry et. al. [GPV08], Cash et. al. [CHKP10] and
by Agrawal et. al. [ABB10] require α = Õ(1/n), α = Õ(1/(

√
kn)), where

k is the output length of a hash function, and α = Õ(1/n2).
The reason for this gap between PKE and IBE is that all the known

IBE constructions use an additional trapdoor in order to sample short
vectors as secret keys. This sampling procedure increases the norm of
sampled vectors, such that the initial noise of a ciphertext must be de-
creased to maintain the correctness of the schemes. By losing a factor

√
n

in the sampling procedure [MR04, GPV08, MP12, LW15], α needs to be
chosen by a factor

√
n smaller. Therefore, this methodology unavoidably

loses at least an additional
√
n factor. This explains why these techniques

cause a gap compared to Regev’s PKE where α is at least a factor
√
n

larger, which decreases the approximation factor by at least a factor of√
n. This results in a stronger assumption with respect to the underlying

short vector problem.



1.2 Our Results

As the main contribution of this work, we remove the requirement of the
collision-tractability property of the hash function in the construction
of [DG17a]. Specifically, we replace the notion of Chameleon Encryp-
tion with the simpler notion of Hash Encryption, for which no collision
tractability property is required. The notion of Hash Encryption natu-
rally arises from the notion of laconic Oblivious Transfer [CDG+17]. We
provide simple and efficient constructions from the Learning With Er-
rors (LWE) [Reg05] and (exponentially hard) Learning Parity with Noise
(LPN) problem [YZ16].

Our overall construction of IBE from hash encryption proceeds as fol-
lows. We first show that we can use any CPA PKE to build a non-compact
version of One-Time Signatures with Encryption (OTSE), in which, infor-
mally, the size of the verification key of the OTSE is bigger than the size
of the messages allowed to be signed. We then show how to use hash en-
cryption to boost non-compact OTSE into compact OTSE, under which
arbitrarily large messages could be signed using a short public parameter
and a short verification key, while preserving the associated encryption-
decryption functionalities. Our transformation makes a non-black-box use
of the non-compact OTSE primitive.

Using a recent result by Döttling and Garg [DG17a], we transform
our compact OTSE to an IBE. Hence, we obtain the first constructions
of IBE from the LWE assumption used by Regev’s PKE and the first
construction from an LPN problem.

Further, we show how to use non-compact OTSE to transform key-
dependent-message (KDM) secure private key encryption to KDM-secure
public key encrpyption. Informally, a private-key encryption scheme is F-
KDM secure, for a function class F , if the scheme remains semantically
secure even if the adversary is allowed to obtain encryptions of f(k), for
f ∈ F , under the secret key k itself. This notion is analogously defined for
PKE. A large body of work, e.g., [BHHO08, ACPS09, BG10, BHHI10,
App14, Döt15], shows how to build KDM-secure schemes from various
specific assumptions. Briefly, in order to construct KDM-secure schemes
for a large class of functions, they first show how to build KDM-secure
schemes for a basic class of functions [BHHO08, BG10, ACPS09] (e.g.,
projections, affine) and then use KDM amplification procedures [BHHI10,
App14] to obtain KDM security against richer functions families. We show
that for any function family F , an F-KDM secure PKE can be obtained
from a non-compact OTSE (and hence a CPA PKE) together with a G-
KDM secure private-key encryption scheme, where G is a class of functions



related to F . (See Section 6 for a formal statement.) Using the result of
[App14] we obtain that F-KDM-secure PKE, for any F , can be based
on projection-secure private-key encryption and CPA PKE. We mention
that prior to our work it was not known whether projection-secure PKE
(which is sufficient for KDM PKE) could be constructed (in a black-
box or a non-black-box way) from the combination of CPA PKE and
projection-secure private-key encryption.

An overview of the contributions of this work is given in Figure 1

exLPN LWE

HE

PKE LPN

NC-OTSE KDM-SKE

KDM-PKEOTSE

IBE

Sec. 3.3 Sec. 3.2 Sec. 4 [ACPS09]

Sec. 6Sec. 5
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Fig. 1: Overview of the results in this work, bold arrows are contributions of this work.

1.3 Technical Outline

We will start by providing an outline of our construction of hash encryp-
tion from LWE. The LPN-based construction is similar in spirit, yet needs
to account for additional subtleties that arise in the modulus 2 case. We
will then sketch our construction of IBE from hash encryption.

Hash Encryption from LWE The hashing key k of our hash function is
given by a randomly chosen matrix A ← Zm×κp . To hash a message, we
encoded it as a vector x ∈ {0, 1}m ⊆ Zm and compute the hash value
h ← x> · A. It can be shown that under the short integer solution (SIS)
problem [Reg05] this function is collision resistant.

We will now specify the encryption and decryption procedures. Our
encryption scheme is a variant of the dual-Regev [GPV08] encryption
scheme. For a matrix A, let A−i denote the matrix obtained by removing
the i-th row of A, and let ai be the i-th row of A. Likewise, for a vector
x let x−i denote the vector obtained by dropping the i-th component of



x. Given the hashing key k = A, a hash-value h, an index i and a bit b,
we encrypt a message m ∈ {0, 1} to a ciphertext c = (c1, c2) via

c1 ← A−i · s+ e−i

c2 ← (h− b · ai)s+ ei + bp/2e ·m,

where s← Zκp is chosen uniformly at random and e ∈ Zmp is chosen from
an appropriate discrete gaussian distribution.

To decrypt a ciphertext c using a preimage x, compute

µ← c2 − xT−ic1,

output 0 if µ is closer to 0 and 1 if µ is closer to p/2. Correctness of this
scheme follows similarly as in the dual Regev scheme [GPV08]. To argue
security, we will show that a successful adversary against this scheme can
be used to break the decisional extended LWE problem [AP12], which is
known to be equivalent to standard LWE.

Compact OTSE from Non-Compact OTSE and Hash Encryption To ob-
tain a compact OTSE scheme, we hash the verification keys of the non-
compact OTSE-scheme using the hash function of the hash encryption
primitive. While this resolves the compactness issue, it destroys the en-
cryption-decryption functionalities of the non-compact OTSE. We over-
come this problem through a non-blackbox usage of the encryption func-
tion of the base non-compact OTSE-scheme.

KDM Security We sketch the construction of a KDMCPA-secure PKE from
a non-compact OTSE NC and a KDMCPA-secure secret-key encryption
scheme SKE = (Enc,Dec). We also need a garbling scheme (Garble,Eval),
which can be built from SKE.

The public key pk = (pp, vk) of the PKE is a public parameter pp and
a verification key vk of NC and the secret key is sk = (k, σ), where k is a
key of the secret-key scheme and σ is a valid signature of k w.r.t. vk.

To encrypt m under pk = (pp, vk) we first form a circuit C which on
input k′ returns Enc(k′,m). We then garble C to obtain a garbled circuit
C̃ and input labels (Xι,0, Xι,1) for every input index ι. For all ι and bit b,
we OTSE-encrypt Xι,b relative to the index ι and bit b (using pp and vk)
to get ctι,b. The resulting ciphertext is then ct = (C̃, {ctι,b}ι,b).

For decryption, using (k, σ) we can OTSE-decrypt the proper ctι,b’s
to obtain a matching garbled input k̃ for k. Then evaluating C̃ on k̃ we
obtain ct′ = Enc(k,m). We can then decrypt ct′ using k to recover m.

Using a series of hybrids we reduce the KDM security of the PKE to
the stated security properties of the base primitives.



1.4 Concurrent works

In a concurrent and independent work, Brakerski et al [BLSV17] provided
a construction of an IBE scheme from LPN with a very low noise rate of
Ω(log(κ)2/κ), using techniques similar to the construction of OTSE from
sub-exponentially hard LPN in this work. Also in a concurrent and inde-
pendent work, Kitagawa and Tanaka [KT17] provided a construction of
KDM-secure public key encryption from KDM-secure secret key encryp-
tion and IND-CPA secure public key encryption using techniques similar
to ours.

2 Preliminaries

We use {0, 1}mk to denote the set of binary vectors of length m with
hamming weight k and [m] to denote the set {1, . . . ,m}. We use A−i to
denote matrix A where the ith row is removed. The same holds for a row
vector x−i, which denotes vector x where the ith entry is removed.

Lemma 1. For m ∈ N and 1 ≤ k ≤ m, the cardinality of set {0, 1}mk is

lower bounded by
(
m
k

)k
and upper bounded by

(
em
k

)k
.

Definition 1 (Bias). Let x ∈ F2 be a random variable. Then the bias of
x is defined by

bias(x) = Pr[x = 0]− Pr[x = 1].

Remark 1. The bias of x is simply the second Fourier coefficient of the
probability distribution of x, the first Fourier coefficient being 1 for all
distributions. Thus, as Pr[x = 1] = 1 − Pr[x = 0] it holds that Pr[x =
0] = 1

2 + 1
2bias(x).

In the following, we summarize several useful properties of the bias of
random variables.

– If x← Bρ, then bias(x) = 1− 2ρ.

– Let x1, x2 ∈ F2 be independent random variables. Then it holds that
bias(x1 + x2) = bias(x1) · bias(x2).

– Assume that the distribution of x is the convex combination of two
distributions via px = αpx1 + (1− α)px2 . Then bias(x) = αbias(x1) +
(1− α)bias(x2).

Proof. Convolution theorem



Lemma 2. Let v ∈ Fn2 be a vector of weight t and e ∈ Fn2 a distribution
for which each component is iid distributed with bias ε. Then it holds that
Pr[〈v, e〉 = 0] = 1

2 + 1
2ε
t.

Proof. As v has weight t, it holds that

bias(〈v, e〉) = bias(
∑

i=1,...,n;vi=1

ei) = εt,

where the second equality follows by the properties of the bias. Conse-
quently, it holds that Pr[〈v, e〉 = 0] = 1

2 + 1
2ε
t. ut

2.1 Hard Learning Problems

We consider variants of the learning problems LWE and LPN that are
known to be as hard as the original problems. These variants are called
extended LWE or LPN, since they leak some additional information about
the noise term.

Definition 2 (Extended LWE). A ppt algorithm A = (A1,A2) breaks
extended LWE for noise distribution Ψ , m samples, modulus p and dimen-
sion κ if

|Pr[A2(st, A,As+ e, x, xT e) = 1]− Pr[A2(st, A,B, x, x
T e) = 1]| ≥ ε,

where (x, st) ← A1(1
κ) and the randomness is taken over A ← Zm×κp ,

B ← Zmp , s← Zκp , e← Ψ and a non-negligible ε.

Lemma 3 ([AP12, Theorem 3.1]). For dimension κ, modulus q with
smallest prime divisor p, m ≥ κ+ω(log(κ)) samples and noise distribution
Ψ , if there is an algorithm solving extended LWE with probability ε, then
there is an algorithm solving LWE with advantage ε

2p−1 as long as p is an

upper bound on the norm of the hint xT e.

When p = 2 and the noise distribution Ψ = Bρ is the Bernoulli dis-
tribution, we call the problem LPN. The LPN problem was proposed by
[BFKL94] for the private key setting. A series of works [Ale03, DMQN12,
KMP14, Döt15] provided public key encryption schemes from the so-
called low-noise LPN problem where the error term has a noise-rate of
O(1/

√
κ). In a recent work, Yu and Zhang [YZ16] provided public key

encryption schemes based on LPN with a constant noise-rate but a sub-
exponential number of samples m = 2O(

√
κ). We refer to this variant as

(sub-) exponentially hard LPN.



For our LPN based encryption scheme, we need to be able to embed a
sufficiently strong binary error correction code such that decryption can
recover a message. Therefore, we define a hybrid version of extended LPN
that is able to hide a sufficiently large generator matrix of such a code.

Definition 3 (Extended Hybrid LPN). A ppt algorithm A = (A1,A2)
breaks extended LPN for noise distribution Bρ, m samples, modulus p, di-
mension κ and ` hybrids if

|Pr[A2(st, A,AS + E, x, xTE) = 1]− Pr[A2(st, A,B, x, x
TE) = 1]| ≥ ε,

where (x, st) ← A1(1
n) and the randomness is taken over A ← Zm×κp ,

B ← Zm×`p , S ← Zκ×`p , E ← Bm×`
ρ and non-negligible ε.

A simple hybrid argument yields that if extended hybrid LPN can
be broken with probability ε, then extended LPN can be broken with
probability ε/`. Therefore we consider extended hybrid LPN as as hard
as extended LPN.

2.2 Weak Commitments

In our LPN-based hash encryption scheme, we will use a list decoding
procedure to receive a list of candidate messages during the decryption of
a ciphertext. To determine which candidate message has been encrypted,
we add a weak form of a commitment of the message to the ciphertext
that hides the message. In order to derrive the correct message from the
list of candidates, we require that the commitment is binding with respect
to the list of candidates, i.e. the list decoding algorithm.

Definition 4 (Weak Commitment for List Decoding). A weak com-
mitment scheme WCD with respect to a list decoding algorithm D con-
sists of three ppt algorithms Gen, Commit, and Verify, a message space
M ⊂ {0, 1}∗ and a ranomness space R ⊂ {0, 1}∗.

– Gen(1κ): Outputs a key k.

– Commit(k,m, r): Outputs a commitment wC(m, r).

– Verify(k,m, r,wC): Outputs 1 if and only if wC(m, r) = wC.

For hiding, we require that for any ppt algorithm A = (A1,A2)

|Pr[A2(st,wC(m0, r)) = 1]− Pr[A2(st,wC(m1, r)) = 1]| ≤ negl,



where (m0,m1, st)← A1(k) and the randomness is taken over the random
coins of A, k ← Gen(1κ) and r ← R. For binding with respect to D, we
require that for any m ∈ M

Pr[Verify(k,m, r,wC(m′, r′)) = 1 ∧m 6= m′] ≤ negl,

where the randomness is taken over (m′, r′) ← D(1n,m, r), the random
coins of Verify, D, k← Gen(1κ) and r← R.

Since D does not depend on the key k, a wCD can be easily instantiated
with a universal hash function. The key k corresponds to the hash function
h and wC(m, r) := h(m, r) is the hash of m and r. In the following we
define universal hash functions and show with two lemmata that our
construction of a weak commitment is hiding as well as binding.

Definition 5. For n,m ∈ N, m > n, a family of functions H from
{0, 1}m to {0, 1}n is called a family of universal hash functions if for
any x, x′ ∈ {0, 1}m with x 6= x′

Prh←H[h(x) = h(x′)] ≤ 2−n.

Lemma 4. h is weakly binding with respect to D. In particular,

Prh←H[∃i ∈ [`] : h(m, r) = h(mi, ri) ∧m 6= mi] ≤ `2−n,

where {(mi, ri)}i∈[`] ← D(1n,m, r) and ` is the output list length of D.

Proof. D outputs a list of at most ` tuples of the form (m1, r1), . . . , (m`, r`).
For each of the tuples with mi 6= m,

Prh←H[h(m, r) = h(mi, ri)] ≤ 2−n

holds. Using a union bound, we receive the statement of the lemma.

The work of Hastad et. al. [HILL99] shows that for an r with sufficient
entropy, for any m, h(r,m) is statistical close to uniform. Therefore it
statistically hides the message m.

Lemma 5 ([HILL99] Lemma 4.5.1). Let h be a universal hash func-
tion from {0, 1}m to {0, 1}n and r ← {0, 1}|r| for |r| ≥ 2κ + n, then for
any m, h(r,m) is statistically close to uniform given h.



2.3 Secret- and Public-Key Encryption

We will briefly review the security notions for secret- and public-key en-
cryption this work is concerned with.

Definition 6. A secret-key encryption scheme SKE consists of two algo-
rithms Enc and Dec with the following syntax

– Enc(k,m): Takes as input a key k ∈ {0, 1}κ and a message m ∈ {0, 1}`
and outputs a ciphertext c.

– Dec(k, ct): Takes as input a key k ∈ {0, 1}κ and a ciphertext ct and
outputs a message m.

For correctness, for all k ∈ {0, 1}κ and m ∈ {0, 1}` we have :

Dec(k,Enc(k,m)) = m.

The standard security notion of secret-key encryption is indistinguisha-
bility under chosen plaintext attacks (IND-CPA). However, the notion
of interest in this work is the stronger notion of key-dependent-message
security under chosen-plaintext attacks. A secret-key encryption scheme
SKE = (Enc,Dec) is called key-dependent-message secure under chosen
plaintext attacks (KDMCPA) if for every PPT-adversary A the advantage

AdvKDMCPA(A) =

∣∣∣∣Pr[KDMCPA(A) = 1]− 1

2

∣∣∣∣
is at most negligible advantage in the following experiment:

Experiment KDMCPA(A):

1. k
$←− {0, 1}κ

2. b∗
$←− {0, 1}

3. b′ ← AKDMb∗,k(·)(1κ)
where the oracle KDM is defined by KDM0,k(f) = SKE.Enc(k, f(k))
and KDM1,k(f) = SKE.Enc(k, 0`).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 2: The KDMCPA(A) Experiment

Definition 7. A public-key encryption scheme PKE consists of three (ran-
domized) algorithms KeyGen, Enc and Dec with the following syntax.



– KeyGen(1κ): Takes as input the security parameter 1κ and outputs a
pair of public and secret keys (pk, sk).

– Enc(pk,m): Takes as input a public key pk and a message m ∈ {0, 1}`
and outputs a ciphertext c.

– Dec(sk, c): Takes as input a secret key sk and a ciphertext c and out-
puts a message m.

In terms of correctness, we require that for all messages m ∈ {0, 1}`
and (pk, sk)← KeyGen(1κ) that

Dec(sk,Enc(pk,m)) = m.

A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called
INDCPA-secure, if for every PPT-adversary A the advantage

AdvINDCPA(A) =

∣∣∣∣Pr[INDCPA(A) = 1]− 1

2

∣∣∣∣
is at most negligible in the following experiment:

Experiment INDCPA(A):

1. (pk, sk)← PKE.KeyGen(1κ)
2. (m0,m1)← A1(pk)

3. b∗
$←− {0, 1}

4. c∗ ← PKE.Enc(pk,mb∗)
5. b′ ← A2(pk, c

∗)
6. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 3: The INDCPA(A) Experiment

A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called
key-dependent-message secure under chosen plaintext attacks (KDMCPA),
if for every PPT-adversary A the advantage

AdvKDMCPA(A) =

∣∣∣∣Pr[KDMCPA(A) = 1]− 1

2

∣∣∣∣
is at most negligible in the following experiment:



Experiment KDMCPA(A):

1. (pk, sk)← PKE.KeyGen(1κ)

2. b∗
$←− {0, 1}

3. b′ ← AKDMb∗,sk(·)(pk)
where the oracle KDM is defined by KDM0,sk(f) =
PKE.Enc(pk, f(sk)) and KDM1,sk(f) = PKE.Enc(pk, 0`).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 4: The KDMCPA(A) Experiment

2.4 One-Time Signatures with Encryption [DG17a]

Definition 8. A One-Time Signature Scheme with Encryption consists
of five algorithms (SSetup, SGen,SSign,SEnc,SDec) defined as follows:

– SSetup(1κ, `): Takes as input a unary encoding of the security parame-
ter 1κ and a message length parameter ` and outputs public parameters
pp.

– SGen(pp): Takes as input public parameters pp and outputs a pair
(vk, sk) of verification and signing keys.

– SSign(sk, x): Takes as input a signing key sk and a message x ∈ {0, 1}`
and outputs a signature σ.

– SEnc(pp, (vk, i, b),m): Takes as input public parameters pp, a verifi-
cation key vk, an index i, a bit b and a plaintext m and outputs a
ciphertext c. We will generally assume that the index i and the bit b
are included alongside.

– SDec(pp, (vk, σ, x), c): Takes as input public parameters pp, a verifica-
tion key vk, a signature σ, a message x and a ciphertext c and returns
a plaintext m.

We require the following properties.

– Compactness: For pp ← SSetup(1κ, `) and (vk, sk) ← SGen(pp) it
holds that |vk| < `, i.e. vk can be described with less than ` bits.

– Correctness: For all security parameters κ, message x ∈ {0, 1}`,
i ∈ [`] and plaintext m: If pp ← SSetup(1κ, `), (vk, sk) ← SGen(pp)
and σ ← SSign(sk, x) then

SDec(pp, (vk, σ, x), SEnc(pp, (vk, i, xi),m)) = m.



– Selective Security: For any PPT adversary A = (A1,A2,A3), there
exists a negligible function negl(·) such that the following holds:

Pr[INDOTSIG(A) = 1] ≤ 1

2
+ negl(κ)

where INDIBE(A) is shown in Figure 5.

Experiment INDOTSIG(A):
1. pp← SSetup(1κ, `)
2. (vk, sk)← SGen(pp)
3. x← A1(pp, vk)
4. σ ← SSign(sk, x)
5. (i,m0,m1)← A2(pp, vk, σ)

6. b∗
$←− {0, 1}

7. m∗ ← mb∗

8. c∗ ← SEnc(pp, (vk, i, 1− xi),m
∗)

9. b′ ← A3(pp, vk, σ, c
∗)

10. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 5: The INDOTSIG(A) Experiment

We remark that multi-challenge security (i.e. security in an experiment
in which the adversary gets to see an arbitrary number of challenge-
ciphertexts) follows via a simple hybrid argument. We also remark that
in the definition of [DG17a], the message x was not allowed to depend on
vk. The definition given here is stronger and readily implies the definition
of [DG17a].

If an OTSE scheme does not fulfill the compactness property, then we
refer to such a scheme as a non-compact OTSE-scheme or NC-OTSE.

Döttling and Garg [DG17a] showed that (compact) OTSE implies
both fully secure IBE and selectively secure HIBE.

Theorem 2 (Informal). Assume there exists an OTSE-scheme. Then
there exists a fully secure IBE-scheme and a HIBE-scheme.

2.5 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and
Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and fur-
ther discussion). A projective circuit garbling scheme is a tuple of PPT
algorithms (Garble,Eval) with the following syntax.



– Garble(1κ,C) takes as input a security parameter κ and a circuit C and
outputs a garbled circuit C̃ and labels eC = {Xι,0, Xι,1}ι∈[n], where n
is the number of input wires of C.

– Projective Encoding: To encode an x ∈ {0, 1}n with the input labels
eC = {Xι,0, Xι,1}ι∈[n], we compute x̃← {Xι,xι}ι∈[n].

– Eval(C̃, x̃): takes as input a garbled circuit C̃ and a garbled input x̃,
represented as a sequence of input labels {Xι,xι}ι∈[n], and outputs an
output y.

We will denote hardwiring of an input s into a circuit C by C[s]. The
garbling algorithm Garble treats the hardwired input as a regular input
and additionally outputs the garbled input corresponding to s (instead
of all the labels of the input wires corresponding to s). If a circuit C
uses additional randomness, we will implicitly assume that appropriate
random coins are hardwired in this circuit during garbling.

Correctness. For correctness, we require that for any circuit C and input
x ∈ {0, 1}n we have that

Pr
[
C(x) = Eval(C̃, x̃)

]
= 1

where (C̃, eC = {Xι,0, Xι,1}ι∈[n])
$←− Garble(1κ,C) and x̃← {Xι,xι}.

Security. For security, we require that there is a PPT simulator GCSim
such that for any circuit C and any input x, we have that

(C̃, x̃) ≈c GCSim(C,C(x))

where (C̃, eC = {Xι,0, Xι,1}ι∈[n])← Garble(1κ,C) and x̃← {Xι,xι}.

3 Hash Encryption from Learning Problems

Intuitively, our hash encryption scheme can be seen as a witness encryp-
tion scheme that uses a hash value and a key to encrypt a message. The
decryption procedure requires the knowledge of a preimage of the hash
value to recover an encrypted message. Given key a k, an algorithm Hash
allows to compute a hash value for an input x. This hashing procedure is
tied to the hash encryption scheme. More concretely, the encryption pro-
cedure encrypts a message with respect to a bit c for an index i. Given
knowledge of a preimage, where the ith bit has the value c, one can suc-
cessfully decrypt the initially encrypted message. Due to this additional
constraint, a hash encryption is more restrictive than a witness encryption
for the knowledge of the preimage of a hash value.



3.1 Hash Encryption

Definition 9 (Hash Encryption). A hash encryption (HE) consists of
four ppt algorithms Gen, Hash, Enc and Dec with the following syntax

– Gen(1κ,m): Takes as input the security parameter κ, an input length
m and outputs a key k.

– Hash(k, x): Takes a key k, an input x ∈ {0, 1}m and outputs a hash
value h of κ bits.

– Enc(k, (h, i, c),m): Takes a key k, a hash value h an index i ∈ [m],
c ∈ {0, 1} and a message m ∈ {0, 1}∗ as input and outputs a ciphertext
ct. We will generally assume that the index i and the bit c are included
alongside.

– Dec(k, x, ct): Takes a key k, an input x and a ciphertext ct as input
and outputs a value m ∈ {0, 1}∗ (or ⊥).

Correctness. For correctness, we require that for any input x ∈ {0, 1}m,
index i ∈ [m]

Pr[Dec(k, x,Enc(k, (Hash(k, x), i, xi),m)) = m] ≥ 1− negl,

where xi denotes the ith bit of x and the randomness is taken over k ←
Gen(1κ,m).

Security. We call a HE secure, i.e. selectively indistinguishable, if for any
ppt algorithm A

Pr[INDHE(1κ,A) = 1] ≤ 1

2
+ negl,

where the game INDHE is defined in Figure 6.

Experiment INDHE(A):

1. (x, st1)← A1(1
κ)

2. k← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2)← A2(st1, k)
4. b← {0, 1}
5. ct← Enc(k, (Hash(k, x), i, 1− xi),mb)
6. b′ ← A3(st2, ct)
7. Output 1 if b′ = b and 0 otherwise.

Fig. 6: The INDHE(A) Experiment



3.2 Hash Encryption from LWE

We use the same parameters as proposed by the PKE of [Reg05], i.e.
Gaussian noise distribution Ψα(κ) for α(κ) = o

(
1√

κ log(κ)

)
, prime modulus

κ2 ≤ p ≤ 2κ2, m = (1 + ε)(1 + κ) log(κ) for ε > 0. For hash domain
{0, 1}m and message space M = {0, 1}, we define our LWE based HE as
follows.

– Gen(1κ,m): Sample A← Zm×κp .

– Hash(k, x): Output xTA.
– Enc(k, (h, i, c),m): Sample s← Zκp , e← Ψmα(κ) and compute

c1 := A−is+ e−i

c2 := (h− c · ai)s+ ei + bp/2e ·m.

Output ct = (c1, c2).
– Dec(k, x, ct): Output 1 if c2 − xT−ic1 is closer to p/2 than to 0 and

otherwise output 0.

Depending on the concrete choice of m = (1 + ε)(1 + κ) log(κ), the
compression factor of the hash function is determined. For our purposes,
the construction of an IBE, any choice of ε > 0 is sufficient.

Lemma 6. For the proposed parameters, the LWE based HE is correct.

Proof. If ct = (c1, c2) is an output of Enc(k, (h, i, c),m), then for any x
with Hash(k, x) = h, c2 has the form

c2 = (xTA− c · ai)s+ ei + bp/2e ·m.

Therefore, on input x, c = xi, Dec computes

c2 − xT−ic1 = (xTA− c · ai)s+ ei + bp/2e ·m− xT−iA−is− xT−ie−i

= (xi − c) · ais+ ei + bp/2e ·m− xT−ie−i

= bp/2e ·m + ei − xT−ie−i.

By [Reg05, Claim 5.2], for any x ∈ {0, 1}m, |ei− xT−ie−i| < p/4 holds with
overwhelming probability. Hence, the noise is sufficiently small such that
Dec outputs m. ut

Theorem 3. The LWE based HE is INDHE secure under the extended
LWE assumption for dimension κ, Gaussian noise parameter α(n) =
o
(

1√
n log(n)

)
, prime modulus κ2 ≤ p ≤ 2κ2, and m = (1 + ε)(1 + κ) log(n)

samples.



Proof. For proving the theorem, we will show that if there is an adversary
A that successfully breaks the INDHE security of the proposed HE then
there is an algorithm A′ that breaks the extended LWE assumption with
the same probability.

We construct A′ = (A′1,A′2) as follows:

1. A′1(1κ): (x, st1)← A1(1
κ), Return x

2. A′2(x,A,B, xT e): k := A
3. (i ∈ [m],m0,m1, st2)← A2(st1, k)
4. b← {0, 1}
5. c1 := B−i, c2 := (−1)xi+1Bi + bp/2e ·mb − xT−ie−i + xT−ic1
6. b′ ← A3(st2, ct = (c1, c2))
7. Return 1 if b′ = b and 0 otherwise.

In the LWE case, B = As + e. Therefore A′ creates ct with the same
distribution as in game INDHE. This is easy to see for c1 = B−i = A−is+
e−i. For c2, we have

c2 = (−1)xi+1Bi + bp/2e ·mb − xT−ie−i + xT−ic1

= (−1)xi+1ais+ (−1)xi+1ei + bp/2e ·mb − xT−ie−i + xT−iA−is+ xT−ie−i

= (−1)xi+1ais+ (−1)xi+1ei + bp/2e ·mb + xT−iA−is

= (h− ((−1)xi + xi)ai)s+ (−1)xi+1ei + bp/2e ·mb

= (h− (1− xi)ai)s+ (−1)xi+1ei + bp/2e ·mb.

Notice since ei is Gaussian with mean 0, −ei and ei have the same distri-
bution.

In the uniform case, B is uniform and therefore A′s guess b′ is inde-
pendent of b. Hence, A′2 outputs 1 with probability 1

2 . A′ breaks extended
LWE with advantage

|Pr[A3(st
′, A,As+ e, x, xT e) = 1]− Pr[A3(st

′, A,B, x, xT e) = 1]|

=

∣∣∣∣Pr[INDHE(A) = 1]− 1

2

∣∣∣∣ .
ut

3.3 Hash Encryption from Exponentially Hard LPN

For LPN, we use a Bernoulli noise distribution Bρ with Bernoulli parame-
ter ρ = cρ and hash domain x ∈ {0, 1}mk , where k = ck log(κ) for constants

cρ and ck. G ∈ Z(|m|+κ)×`
2 is the generator matrix of a binary, list decode-

able error correction code that corrects an error with 1/poly bias, where



|m| is the message length and ` the dimension of the codewords. For this
task, we can use the error correction code proposed by Guruswami and
Rudra [GR11]. Further, we use a weak commitment scheme WC with
respect to the list decoding algorithm of G.

– Gen(1κ,m): Sample A← Zm×log
2(κ)

2 , output k := A.

– Hash(k, x): Output xTA.

– Enc(k, (h, i, c),m): Sample S ← Zlog2(κ)×`
2 , E ← Bm×`

ρ , and a random
string r← RWC and compute

c0 := kWC ← GenWC(1κ)

c1 := A−iS + E−i

c2 := (h− c · ai)S + Ei + (m||r) ·G
c3 := wC(m, r)← Commit(kWC,m, r).

Output ct = (c1, c2, c3).

– Dec(k, x, ct): Use code G to list decode c2 − xT−ic1. Obtain from the
list of candidates the candidate (m||r) that fits Verify(c0,m, r, c3) = 1.
Output this candidate.

The choice of the constant ck will determine the compression factor
of the hash function Hash. The compression is determined by the ratio
between |{0, 1}mk | and the space of the LPN secret 2log

2(κ). By Lemma 1,
the cardinality of |{0, 1}mk | is lower bounded by ( m

ck log(κ)
)ck log(κ). m := cκ

yields a compression factor of at least ck(c − log(ck log(κ))
log κ ), which allows

any constant compression factor for a proper choice of the constants c
and ck.

For the correctness, we need to rely on the error correction capacity
of code G and the binding property of the weak commitment scheme. For
properly chosen constants cρ and k, the proposed HE is correct.

Lemma 7. For ρ = cρ ≤ 1
4 , k = ck log(κ), and an error correction code

G that corrects an error with a bias of 2−4cρκ−4cρck and let WC be a weak
commitment that is binding with respect to the list decoding of G, then
the LPN based HE is correct.

Proof. ct = (c0, c1, c2, c3) is an output of Enc(k, (h, i, c),m), then for any
x with Hash(k, x) = h, c2 has the form

c2 = (xTA− c · ai)S + Ei + (m||r) ·G.



Therefore, on input x, c = xi, Dec computes

c2 − xT−ic1 = (xTA− c · ai)S + Ei + (m||r) ·G− xT−iA−iS − xT−iE−i

= (xi − c) · aiS + Ei + (m||r) ·G− xT−iE−i

= (m||r) ·G+ Ei − xT−iE−i.

By Lemma 2, for each component ej , j ∈ [`] of e := Ei − xT−iE−i and
ρ ≤ 1

4 ,

ρ′ := Pr[ej = 1] =
1

2
(1− (1− 2ρ)k+1) ≤ 1

2

(
1− 2−4cρ(ck log(κ)+1)

)
=

1

2

(
1− 2−4cρκ−4cρck

)
.

This lower bounds the bias of each component of the noise term Ei −
xT−iE−i by bound 2−4cρκ−4cρck . This bound is polynomial in κ and there-
fore correctable by a suitable error correction code with list decoding.
Hence, (m||r) is contained in the output list of canidates of the list de-
coding. By the binding of WC, there is with overwhelming probability
only a single candidate of the polynomially many candidates that fits
Verify(c0,m, r, c3) = 1, which corresponds to the initially encrypted mes-
sage m. Otherwise, the list decoding of G would break the binding prop-
erty of WC. ut

The security analysis is simliar to the one of the LWE based scheme
with the difference that now a ciphertext also contains a commitment
which depends on the encrypted message. In a first step, we use the LPN
assumption to argue that all parts of the ciphertext are computationally
independent of the message. In a second step, we use the hiding property
of the commitment scheme to argue that now the whole ciphertext is
independent of the encrypted message and therefore an adversary cannot
break the scheme.

Theorem 4. Let WC be a weak commitment scheme that is hiding, then
the LPN based HE is INDHE secure under the extended hybrid LPN as-
sumption for dimension log2(κ), m samples, ` hybrids and noise level
ρ.

Proof. Consider the following hybrid experiments:

Hybrid H1:

1. (x, st1)← A1(1
κ)



2. k := A← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2)← A2(st1, k)
4. b← {0, 1}
5. S ← Zlog2(κ)×`

2 , E ← Bm×`
ρ , r← RWC,

c0 := kWC ← GenWC(1κ), c1 := A−iS+E−i, c2 := (h− (1− xi) ·ai)S+
Ei + (mb||r) ·G, c3 := wC(mb, r)← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

Hybrid H2:

1. (x, st1)← A1(1
κ)

2. k := A← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2)← A2(st1, k)
4. b← {0, 1}
5. B ← Zm×`2 , r← RWC,
c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi, c3 := wC(mb, r) ←
Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

Lemma 8. Let A be an adversary that distinguishes H1 and H2 with
advantage ε. Then there is an algorithm A’ that breaks the extended hybrid
LPN assumption with advantage ε.

Proof. We construct A′ = (A′1,A′2) as follows:

1. A′1(1κ): (x, st1)← A1(1
κ) Return x

2. A′2(st1, x, A,B, xTE): k := A
3. (i ∈ [m],m0,m1, st2)← A2(st1, k)
4. b← {0, 1}
5. r← RWC,
c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi + (mb||r) ·G− xT−iE−i +
xT−ic1, c3 := wC(mb, r)← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

In the LPN case, B = AS + E. Therefore A’ creates ct with the
same distribution as in game INDHE. This is easy to see for c0, c3 and
c1 = B−i = A−iS + E−i. For c2, we have

c2 = Bi + (mb||r) ·G− xT−iE−i + xT−ic1

= aiS + Ei + (mb||r) ·G− xT−iE−i + xT−iA−iS + xT−iE−i

= aiS + Ei + (mb||r) ·G+ xT−iA−iS

= (h + (1− xi)ai)S + Ei + (mb||r) ·G,



which results in the same distribution over Z2.
In the uniform case, B and hence c2 are uniform. Therefore A’ simu-

lates H2. A′ breaks extended hybrid LPN with advantage

|Pr[A2(st1, x, A,AS + E, x, xTE) = 1]− Pr[A2(st1, x, A,B, x, x
TE) = 1]|

= |Pr[H1(1
κ,A) = 1]− Pr[H2(1

κ,A) = 1]|.

ut

Lemma 9. If there is an adversary A with Pr[H2(1
κ,A) = 1] = 1

2 + ε,
then there is an algorithm A′ that breaks the hiding property of WC with
advantage 2ε.

Proof. We construct A′ = (A′1,A′2) as follows.

1. A′1(kWC): (x, st1)← A1(1
κ)

2. k := A← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2)← A2(st1, k), Return (m0,m1)
4. A′2(kWC, st2,wC): b← {0, 1}
5. B ← Zm×`2 ,
c0 := kWC, c1 := B−i, c2 := Bi, c3 := wC

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

It is easy to see that A’ correctly simulates H2. When A guesses b
with his guess b′ correctly, then also A’ does. Therefore

1

2
Pr[A′2(kWC, st2,wC(m1, r)) = 1] +

1

2
Pr[A′2(kWC, st2,wC(m0, r)) = 0]

= Pr[H2(1
κ,A) = 1] =

1

2
+ ε.

Hence,

Pr[A′2(kWC, st2,wC(m1, r)) = 1]− Pr[A′2(kWC, st2,wC(m0, r)) = 1] = 2ε.

ut
ut

4 Non-compact One-Time Signatures with Encryption

In this Section we will construct a non-compact OTSE scheme NC from
any public-key encryption scheme PKE = (KeyGen,Enc,Dec).



– SSetup(1κ, `): Output pp← (1κ, `).

– SGen(pp): For j = {1, . . . , `} and b ∈ {0, 1} compute (pkj,b, skj,b) ←
PKE.KeyGen(1κ). Set vk← {pkj,0, pkj,1}j∈[`] and sgk← {skj,0, skj,1}j∈[`].
Output (vk, sgk).

– SSign(pp, sgk = {skj,0, skj,1}j∈[`], x): Output σ ← {skj,xj}j∈[`].
– SEnc(pp, (vk = {pkj,0, skj,1}j∈[`], i, b),m): Output c← PKE.Enc(pki,b,m).

– SDec(pp, (vk, σ = {skj,xj}j∈[`], x), c): Output m← PKE.Dec(ski,xi , c).

Correctness of this scheme follows immediately from the correctness
of PKE.

Security We will now establish the INDOTSIG-security of NC from the
INDCPA-security of PKE.

Theorem 5. Assume that PKE is INDCPA-secure. Then NC is INDOTSIG-
secure.

Proof. Let A be a PPT-adversary against INDOTSIG with advantage ε.
We will construct an adversary A′ against the INDCPA experiment with
advantage ε

2` .A
′ gets as input a public key pk of the PKE and will simulate

the INDOTSIG-experiment to A. A′ first guesses an index i∗
$←− [`] and a

bit b∗
$←− {0, 1}, sets pki∗,b∗ ← pk and generates 2` − 1 pairs of public

and secret keys (pkj,b, skj,b)← KeyGen(1κ) for j ∈ [`] and b ∈ {0, 1} with
the restriction that (j, b) 6= (i∗, b∗). A′ then sets vk ← {pkj,0, pkj,1}j∈[`]
and runs A on input vk. If it holds for the message x output by A that
xi∗ = b∗, then A′ aborts the simulation and outputs a random bit. Once
A outputs (m0,m1, i), A′ checks if (i, b) = (i∗, b∗) and if not aborts and
outputs a random bit. Otherwise, A′ sends the message-pair (m0,m1)
to the INDCPA-experiment and receives a challenge-ciphertext c∗. A′ now
forwards c∗ to A and outputs whatever A outputs.

First notice that the verification key vk computed by A′ is identically
distributed to the verification key in the INDOTSIG experiment. Thus, vk
does not reveal the index i∗ and the bit b∗, and consequently it holds that
(i, b) = (i∗, b∗) with probability 1

2` . Conditioned on the event that (i, b) =
(i∗, b∗), it holds that the advantage of A′ is identical to the advantage of
A. Therefore, it holds that

AdvINDCPA(A′) =
AdvINDOTSIG(A)

2`
,

which concludes the proof. ut



5 Compact One-Time-Signatures with Encryption via
Hash-Encryption

In this Section, we will show how a non-compact OTSE scheme NC can be
bootstrapped to a compact OTSE scheme OTSE using hash-encryption.
Let NC = (SSetup, SGen,SSign,SEnc,SDec) be a non-compact OTSE
scheme, HE = (HE.Gen,HE.Hash,HE.Enc,HE.Dec) be a hash-encryption
scheme and (Garble,Eval) be a garbling scheme. The scheme OTSE is
given as follows.

– SSetup(1κ, `): Compute p̄p ← NC.SSetup(1κ, `), k ← HE.Gen(1κ, `′)
(where `′ is the size of the verification keys vk generated using p̄p)
and output pp← (p̄p, k).

– SGen(pp = (p̄p, k)): Compute (v̄k, ¯sgk)← NC.SGen(p̄p). Compute h←
HE.Hash(k, v̄k), set vk← h, sgk← (v̄k, ¯sgk) and output (vk, sgk).

– SSign(pp = (p̄p, k), sgk = (v̄k, ¯sgk), x): Compute the signature σ′ ←
NC.SSign(p̄p, ¯sgk, x). Output σ ← (v̄k, σ′).

– SEnc(pp = (p̄p, k), (vk = h, i, b),m): Let C be the following circuit.
C[p̄p, i, b,m](v̄k) : Compute and output NC.SEnc(p̄p, (v̄k, i, b),m).3

(C̃, eC)← Garble(1κ,C[p̄p, i, b,m])
Parse eC = {Yj,0, Yj,1}j∈[`′]
fC ← {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[`′],b′∈{0,1}
Output ct← (C̃, fC).

– SDec(pp = (p̄p, k), (vk = h, σ = (v̄k, σ′), x), ct = (C̃, fC)):

Parse fC = {cj,b′}j∈[`′],b′∈{0,1}
y← v̄k
ỹ← {HE.Dec(k, y, cj,yj )}j∈[`′]
c′ ← Eval(C̃, ỹ)
m← NC.SDec(p̄p, (v̄k, σ′, x), c′)
Output m

Compactness and Correctness By construction, the size of the verification
key vk = HE.Hash(k, v̄k) depends on κ, but not on `′ or `. Therefore, OTSE
is compact.

To see that the scheme is correct, note first that since it holds that
h = HE.Hash(k, v̄k) and fC = {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[`′],b′∈{0,1}, by
correctness of the hash-encryption scheme HE we have

ỹ = {HE.Dec(k, y, cj,yj )}j∈[`′] = {Yj,yj}j∈[`′].
3 We also need to hardcode the randomness for NC.SEnc into C, but for ease of notation

we omit this parameter.



Thus, as (C̃, eC) = Garble(1κ,C[p̄p, i, b,m]) and by the definition of C, it
holds by the correctness of the garbling scheme (Garble,Eval) that

c′ = Eval(C̃, ỹ) = C[p̄p, i, b,m](v̄k) = NC.SEnc(p̄p, (v̄k, i, b),m),

as y = v̄k. Finally, as σ′ = NC.SSign(p̄p, ¯sgk, x) it holds by the correctness
of the non-compact OTSE-scheme NC that

NC.SDec(p̄p, (v̄k, σ′, x), c′) = m,

which concludes the proof of correctness.

Security We will now establish the INDOTSIG-security of OTSE from the
security of the hash-encryption scheme HE, the security of the garbling
scheme (Garble,Eval) and the INDOTSIG-security of NC.

Theorem 6. Assume that HE is an INDHE-secure hash-encryption scheme,
(Garble,Eval) is a secure garbling scheme and NC is INDOTSIG-secure.
Then OTSE is an INDOTSIG-secure OTSE-scheme.

Proof. Let A be a PPT-adversary against the INDOTSIG-security of OTSE.
Consider the following hybrid experiments.

Hybrid H0 This experiment is identical to INDOTSIG(A).

Hybrid H1 This experiment is identical to H0, except that fC is com-
puted by fC ← {HE.Enc(k, (h, j, b′), Yj,yj )}j∈[`′],b′∈{0,1}, i.e. for all j ∈
[`′] the message Yj,yj is encrypted, regardless of the bit b′. Computa-

tional indistinguishability between H0 and H1 follows from the INDHE-
security of HE. The reduction R first generates the public parameters
p̄p ← NC.SSetup(1κ, `), the keys (v̄k, ¯sgk) ← NC.SGen(p̄p) and sends v̄k
as its selectively chosen message to the INDHE-experiment. It then ob-
tains k, computes h ← HE.Hash(k, v̄k) and sets pp ← (p̄p, k), vk ← h,
sgk ← (v̄k, ¯sgk) and then simulates H0 with these parameters with A.
Instead of computing the ciphertexts fC by itself, R sends the labels
{Yj,0, Yj,1}j∈[`′] to the multi-challenge INDHE-experiment and obtains the
ciphertexts fC . R continues the simulation and outputs whatever A out-
puts. Clearly, if the challenge-bit of R’s INDHE-experiment is 0, then from
the view of A the reduction R simulates H0 perfectly. On the other hand,
if the challenge-bit is 1, then R simulates H1 perfectly. Thus R’s advan-
tage is identical to A’s distinguishing advantage between H0 and H1. It
follows that H0 and H1 are computationally indistinguishable, given the
INDHE-security of NC.



Hybrid H2 This experiment is identical to H1, except that we com-
pute C̃ by (C̃, ỹ) ← GCSim(C,C[p̄p, i, b,m](v̄k)) and the value and fC
by fC ← {HE.Enc(k, (h, j, b′), ỹj)}j∈[`′],b′∈{0,1}. Computational indistin-
guishability of H1 and H2 follows by the security of the garbling scheme
(Garble,Eval).

Notice that C[p̄p, i, b,m](v̄k) is identical to NC.SEnc(p̄p, (v̄k, i, b),m∗).
Thus, by the security of the non-compact OTSE-scheme NC, we can argue
that A’s advantage in H2 is negligible. ut

6 KDM-secure Public-Key Encryption

In this section, we will build a KDMCPA-secure public-key encryption
scheme from a KDMCPA-secure secret-key encryption scheme and a non-
compact OTSE-scheme. The latter can be constructed from any public-
key encryption scheme by the results of Section 4.

Let NC = (SSetup,SGen,SSign, SEnc, SDec) be a non-compact OTSE
scheme, SKE = (Enc,Dec) be a KDMCPA-secure secret-key encryption
scheme and (Garble,Eval) be a garbling scheme. The public-key encryption
scheme PKE is given as follows.

– KeyGen(1κ): Sample k
$←− {0, 1}κ, compute pp ← NC.SSetup(1κ, κ),

compute (vk, sgk)← NC.SGen(pp) and σ ← NC.SSign(pp, sgk, k). Out-
put pk← (pp, vk) and sk← (k, σ).

– Enc(pk = (pp, vk),m): Let C be the following circuit: C[m](k): Com-
pute and output SKE.Enc(k,m).4

(C̃, eC)← Garble(1κ,C[m])
Parse eC = {Kj,0,Kj,1}j∈[κ]
fC ← {NC.SEnc(pp, (vk, j, b),Kj,b)}j∈[κ],b∈{0,1}
Output ct← (C̃, fC).

– Dec(sk = (k, σ), ct = (C̃, fC)):

k̃← {NC.SDec(pp, (vk, σ, k), fCj,kj )}j∈[κ]
c′ ← Eval(C̃, k̃)
m← SKE.Dec(k, c′)
Output m

Note in particular that the secret key sk does not include the signing
key sgk.

4 We also need to hardcode the randomness for SKE.Enc into C, but for ease of notation
we omit this parameter.



6.1 Correctness

We will first show that the scheme PKE is correct. Let therefore (pk, sk)←
PKE.KeyGen(1κ) and ct ← PKE.Enc(pk,m). By the correctness of the
OTSE-scheme NC it holds that k̃ = {Kj,kj}. Thus, by the correctness of

the garbling scheme it holds that ct′ = C̃[m](k) = SKE.Enc(k,m). Finally,
by the correctness of SKE it holds that SKE.Dec(k, ct′) = m.

6.2 Security

We will now show that PKE is KDMCPA-secure.

Theorem 7. Assume that NC is an INDOTSIG-secure OTSE-scheme and
(Garble,Eval) is a secure garbling scheme. Let F be a class of KDM-
functions and assume that the function gpp,sgk : x 7→ (x,NC.SSign(pp, sgk, x))
is in a class G (e.g. affine functions). Assume that SKE is a KDMCPA-
secure secret-key encryption scheme for the class F ◦ G. Then PKE is a
KDMCPA-secure public key encryption scheme for the class F .

Note that if both F and G are the class of affine functions, e.g. over
F2, then F ◦G is again the class of affine functions (over F2). Thus, every
function in F ◦ G can also be implemented as an affine function, i.e. by a
matrix-vector product followed by an addition.

Proof. Let A be a PPT-adversary against the KDMCPA-security of PKE.
Consider the following hybrids, in which we will change the way the KDM-
oracle is implemented. For sake of readability, we only provide 3 hybrids,
where in actuality each hybrid consists of q sub-hybrids, where q is the
number of KDM-queries of A.

Hybrid H1: This hybrid is identical to the KDMCPA-experiment.

Hybrid H2: This hybrid is identical to H1, except that fC is computed
by fC ← {NC.SEnc(pp, (vk, j, b),Kj,kj )}j∈[κ],b∈{0,1}, i.e. for each j ∈ [κ] we

encrypt Kj,kj twice, instead of Kj,0 and Kj,1. By the INDOTSIG-security
of NC the hybrids H1 and H2 are computationally indistinguishable.

Hybrid H3: This hybrid is identical to H2, except that we compute C̃
and fC by (C̃, k̃) ← GCSim(C,C[m](k)). Computational indistinguishabil-
ity between H2 and H3 follows by the security of the garbling scheme
(Garble,Eval). Notice that it holds that C[m∗](k) = SKE.Enc(k,m∗).



We will now show that the advantage of A is negligible in H3, due
to the KDMCPA-security of SKE. We will provide a reduction R such that
RA has the same advantage against the KDMCPA-security of SKE as A’s
advantage against H3.

Before we provide the reduction R, notice that R does not have ac-
cess to its own challenge secret key k, which is part of the secret key
sk = (k, σ) of the resulting PKE. Also, since σ is a signature on k, R
does not know the value of σ either. Thus, R cannot on its own simulate
encryptions of messages that depend on (k, σ). We overcome this prob-
lem by using the KDM-oracle provided to R which effectively allows R to
obtain encryptions of key-dependent messages sk = (k, σ). Details follow.

The reduction R first samples pp← NC.SSetup(1κ, κ) and (vk, sgk)←
NC.SGen(pp) and invokes A on pk = (pp, vk). Then R simulates H3 for A
with the following differences. Whenever A queries the KDM-oracle with
a function f ∈ F , the reduction R programs a new function f ′ ∈ F ◦ G
which is defined by

f ′(k) = f(k,NC.SSign(pp, sgk, k)).

We assume for simplicity that the signing procedure NC.SSign is determin-
istic, if not we require that the same randomness r is used for NC.SSign
at each KDM-query5.

We claim that R simulates H3 perfectly from the view of A. If the
challenge-bit in R’s KDMCPA-experiment is 0, then the outputs of A’s
KDM-oracle on input f are encryptions of f ′(k) = f(sk), and therefore,
from the view of A the challenge-bit in H3 is also 0. On the other hand,
if the challenge-bit in R’s KDMCPA-experiment is 1, then the outputs of
A’s KDM-oracle on input f are encryptions of 0`, and therefore, from
A’s view the challenge-bit in H3 is 1. We conclude that the advantage
of RA is identical to the advantage of A against H3. It follows from the
KDMCPA-security of SKE that the latter is negligible, which concludes the
proof. ut
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[Döt15] Nico Döttling. Low noise LPN: KDM secure public key encryption and
sample amplification. In Jonathan Katz, editor, PKC 2015, volume 9020 of
LNCS, pages 604–626, Gaithersburg, MD, USA, March 30 – April 1, 2015.
Springer, Heidelberg, Germany.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206, Victoria,
British Columbia, Canada, May 17–20, 2008. ACM Press.

[GR11] Venkatesan Guruswami and Atri Rudra. Soft decoding, dual BCH codes,
and better list-decodable varepsilon-biased codes. IEEE Trans. Information
Theory, 57(2):705–717, 2011.



[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector
problem to within almost polynomial factors. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 469–477, San Diego, CA, USA,
June 11–13, 2007. ACM Press.

[Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in
lattices. In 45th FOCS, pages 126–135, Rome, Italy, October 17–19, 2004.
IEEE Computer Society Press.

[KMP14] Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext
security from low-noise LPN. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 1–18, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany.

[KT17] Fuyuki Kitagawa and Keisuke Tanaka. Key dependent message
security and receiver selective opening security for identity-based
encryption. Cryptology ePrint Archive, Report 2017/987, 2017.
http://eprint.iacr.org/2017/987.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
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