Cryptology ePrint Archive: Report 2017/892

The Iterated Random Function Problem

Ritam Bhaumik and Nilanjan Datta and Avijit Dutta and Nicky Mouha and Mridul Nandi

Abstract: At CRYPTO 2015, Minaud and Seurin introduced and studied the iterated random permutation problem, which is to distinguish the $r$-th iterate of a random permutation from a random permutation. In this paper, we study the closely related iterated random function problem, and prove the first almost-tight bound in the adaptive setting. More specifically, we prove that the advantage to distinguish the $r$-th iterate of a random function from a random function using $q$ queries is bounded by $O(q^2r(\log r)^3/N)$, where $N$ is the size of the domain. In previous work, the best known bound was $O(q^2r^2/N)$, obtained as a direct result of interpreting the iterated random function problem as a special case of CBC-MAC based on a random function. For the iterated random function problem, the best known attack has an advantage of $\Omega(q^2r/N)$, showing that our security bound is tight up to a factor of $(\log r)^3$.

Category / Keywords: secret-key cryptography / Iterated random function, random function, pseudorandom function, password hashing, Patarin, H-coefficient technique, provable security

Original Publication (with minor differences): IACR-ASIACRYPT-2017

Date: received 7 Sep 2017, last revised 17 Sep 2017

Contact author: nicky at mouha be

Available format(s): PDF | BibTeX Citation

Version: 20170917:192500 (All versions of this report)

Short URL:

[ Cryptology ePrint archive ]